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WEIGHTED NORM INEQUALITIES FOR THE CONJUGATE FUNCTION 

ON a-ADIC SOLENOIDS 

Nakhle Asmar and Phyllis Panman 

ABSTRACT. In this paper we generalize a theorem of Hunt, Muckenhoupt, and 
Wheeden on weighted norm inequalities for the conjugate function. Our gener- 
alization to the cases of a-adic solenoids is formulated in terms of the ergodic 
Ap -condition. 

1. Introduction 

We consider an arbitrary noncyclic subgroup of Q and its compact dual group Ea. 
There is an explicit construction for Ea which is called the a-adic solenoid. Since Ea is 
simply a subgroup of Q, Ea inherits the order from Q; that is, if we let P = Ean (0, oo) 
then P defines the order on Ea. For / G £2(£a)> we use the Fourier transform of / to 
define the conjugate function / (with respect to the order P): 

fA(x) = -isgnP(x)f(x)    UeSL) (1.1) 

where sgnp(x) ■= —1, 0, or 1 according to % € (—P)\{0}, % = 0, or x € -P\{0}- The 
operator / >-» / is clearly a norm-decreasing multiplier on £2(^a)- If 1 < p < oo, the 
operator / i—> / extends from £2(£a) n£p(Ea) to a bounded linear operator of £p(Ea) 
such that the identity (1.1) holds, and the inequality 

H/HP < Mp\\f\\p 

holds for all / G £p(Ea), where Mp is independent of / (see [3], or [1, Theorem 
7.2]). We ask for which measures, other than Haar measure, is the operator / i-» / 
a bounded operator. More precisely, if 1 < p < oo, we seek to characterize those 
finite nonnegative Borel measures u for which the operator / i-> / is bounded from 
£p(Ea, u) n £i(Ea) into £p(Ea, i/). 

By way of background, we recall that Forelli [7] studied this problem in the case G = 
T (henceforth, T is parameterized by [—7r,7r)). He showed that if the operator f *-> f 
is bounded from £p(T, z/) n£i(T) into £p(T, z/), then z/ must be absolutely continuous 
with respect to Lebesgue measure A (z/ <^ A), and hence there is a nonnegative function 
w in £i(z/) where dv = WTJ^. This result was later extended by Hunt, et al. [13], who 
showed that the operator / t-> f is bounded from £p(T,^) n £i(T) into £p(T,w) 
exactly when w satisfies a property called the .Ap-condition. We state this result in 
the following definition and theorem: 

Definition 1.1. (The ^-condition on T) Let 1 < p < oo. Let w be a nonnegative 
27r-periodic measurable function.  The function w satisfies the ^-condition on T if 
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there is a constant Ap independent of all intervals / C R such that 

supy [w(t)dt(j f w-^P-^^dtY'1 < Ap. (1.2) 

We say that w G Ap(T) if w satisfies (1.2), and we let Ap(w) denote the least 
constant such that (1.2) holds. When p = 1, (1.2) is of the form supj j fjwtydt 
esssup^j^y <i4i. 

Theorem 1.1. Let w be a nonnegative 27r-periodic measurable function. If 1 < p < 
oo,then w G .Ap(T) if and only if for all f G Zp(^,w), 

(j* m\Pw{t)dt)1/P < KP(J^ \f(t)\*>w(t)dty/P (1.3) 

where Kp is independent of f. If 1 < p < oo, w € -4p(T) if and only if for all 
fe£p(T,w), 

suprP r l{te[_»lW)!|/(t)|>T}(t)i«(*)* < KP p \mrw(t)dt (1.4) 
T>0 J— n J— TT 

where Kp is independent of f. 

Remark 1.1. We note that from the proof of Theorem 1.1 ([13]), when (1.4) holds, 
w G AP(T) with Ap(w) less than or equal to Kp(A7r)2p. Also, by a modification of the 
proof in [13], it is enough to assume that (1.4) holds for all / G £p(T,w) n £i(T). 

Hewitt and Ritter in [8] and [9] make an extensive study of conjugate Fourier series 
on a-adic solenoids. In this paper, we study weighted norm inequalities on a-adic 
solenoids Sa- Our main theorem (Theorem 4.4) gives a generalization of Theorem 1.1 
in terms of the conjugate function on Sa, obtaining a similar characterization as Hunt 
et al. [13] of those finite nonnegative Borel measures v for which the operator / i-» / 
is bounded from £p(Ea,l/) ^ ^(^a) ^0 £p(Saj v). 

The plan of the paper is as follows. In Section 2, we give an explicit representation 
of Sa and define some other terms needed in our analysis. In Section 3, we show that 
if v is a nonnegative Borel measure on Ea, and the operator / i—> f is bounded from 
£p(Ea,^) fl £i(5]a) into -CpCSaj^)? then v is absolutely continuous with respect to 
Haar measure p,. This shows that we need only characterize those weights w G £i(£a) 
that satisfy the property that the operator / i-» / is bounded from £p(£a, w) n£i(£a) 
into £p(£a, w). In Section 4, we state and prove a characterization of those weights 
that satisfy this last property (Theorem 4.4). 

2. Preliminaries 

2.1. The a-adic solenoid and its character group. Up to isomorphism, any 
non-cyclic subgroup of Q can be described as follows. Let a = (ao, ai,...) be a fixed 
infinite sequence of integers all greater than 1. Let 

AQ = 1, Ai = ao, A2 = aoai,..., An = aoai • • • an-i, • • • 

Let Qa be the set of all rational numbers -£-, where / G Z and k G Z+. Clearly Qa is 
a non-cyclic additive subgroup of Q, and as shown in [2], any non-cyclic subgroup of 
Q is of this form. 

According to the Pontrjagin duality ([10, 24.8, p. 378]), the character group of 
Qa is a compact abelian group, which we denote by Ea, and the character group of 
Ea is again Qa. We let p, denote normalized Haar measure on Sa. The group Ea 

can be realized as the set [0,1) x Aa, which is described in detail in [10, Section 
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10]. The group Aa consists of all infinite sequences x = (XQ, XI, ..., Xk,...) where 
each Xk € {0,1,..., a^ — 1}. Addition in Aa is defined coordinate-wise and carrying 
quotients (see [10, 10.2]). Also, the elements u = (1,0,0,...) and 0 = (0,0,0,...) are 
both in Aa, and addition on [0,1) x Aa is defined by 

where |_-J is the greatest integer function. The group Ea is a compact connected 
Abelian group admitting a continuous homomorphism ip : R —> Ea, where ^(R) is a 
dense subgroup of Ea and 

vto = (*-W>klu) (2.1) 
([10, Theorem 10.13], and [9, 3.2]). For k = 1,2,..., define the sets 

Afc = {(0, x) G Ea : XQ = xi = • • • = Xk-i = 0}. 

The sets A^ are compact, closed subgroups of Ea ([10, Theorem 10.5, p. 110]), and 
we let fik denote normalized Haar measure on Afc. The measure fik is a singular 
Borel measure on Ea, and the Fourier transform is equal to the indicator function of 
(l/Ak)Z: 

V'k = l(l/Ak)Z 

([9, 5-. Iff, p. 825]). For all k e N, the quotient group Ea /Afc is topologically isomorphic 
to the circle group T (see [8, 3.1]). Indeed, the mapping 

7r*(t,x) = x i (t,x) (2.2) 

is a continuous homomorphism of Ea onto T with kernel A^ where 
k-l 

X^-((«,x)) = exp (27ri— (t + Y, xhAh)) 
h=0 

is the character corresponding to the element ■%- of Qa. Also, if / € £i(Ea) and / 
is constant on cosets of A^, then f = f * /j,k, and there is a function fk G ili(T) that 
satisfies / = / * //& = fk o irk and 

/    fd/M =        fko TTkdfi = / fkdx (2.3) 

([11, 28.55] and [9, 5.1.3]). 

Martingales on Ea. If / G £i(Ea), then the sequence (/ * fJ,k)k>o is a martingale 
relative to a sequence of cr-algebras (3rA;)fc>o where 3^ consists of those Borel sets 
F C Ea such that F + Afc = F (see [6, Theorem 5.4.1]). The functions / * fik also are 
known as the conditional expectations of / relative to #&. It is a well-known theorem 
of Doob's that if / G £p(Ea), then / * fik —> / in £p(Ea) as k —» oo (see [5], or [6, 
Theorem 5.2.6]). 

The conjugate function on Ea. It is easy to see that Qa admits exactly one order 
P under which 1 is in P; the order is the one inherited from the usual order on R. We 
take this ordering on Qa where P = {xa £ Qa : a > 0}. For / G £2(Ea), we use the 
Fourier transform and the order generated by P to define the conjugate function /: 

fA(Xa) = -t'Sgnp(Xa)/(Xa) (X« G Qa) 

where sgnp(xa) = —1, 0, or 1, according to a < 0, a = 0, or a > 0, respectively. 
As noted before, if 1 < p < oo, the operator f *-+ f extends from £2(Ea) n £p(Ea) 
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to a bounded linear operator of £p(£a) ([!> Theorem 7.2]). In addition, the conju- 
gate function / has an integral representation that exists //-almost everywhere for all 
functions / G £i(£a) ([1, 6.11(c) and Theorem 6.5]). 

The ergodic .Ap-condition on Ea. Let <£> : M —► Ea be the continuous homomor- 
phism defined in (2.1). If 1 < p < oo and w is a nonnegative function in £i(£a), we 
say that w is in ^4p(Ea) if the following condition is satisfied: for almost every x G Ea, 

sup i jw{x - <p{t))dt(^ jw-V^Xx - fimtf'1 < Kp (2.4) 

where Kp is a constant independent of #. We let Ap{w) denote the least constant such 
that (2.4) holds. 

3. The continuity of the conjugate function 
with respect to Borel measures 

In this section, we show that if v is a finite nonnegative Borel measure on Ea, the 
continuity of the operator f *-> f from £p(Ea, is) fl £i(Ea) into £p(Ea, v) implies that 
i/ <C // where // is Haar measure on Ea- 

Theorem 3.1. Let 1 < p < oo. Let v be a finite nonnegative Borel measure on Ea. 
Suppose that the inequality 

ll/IUpdJ.,,) < Kp\\f\\Zp{^v) (3.1) 

is valid for all f G £p(Ea, v) n £i(Ea) where Kp is independent of f. Then v <C //, 
and hence there is a nonnegative function w in £i(Ea) such that dp = wdji. 

Proof. Assuming that the linear operator / i—► / is bounded from £p(Ea, v) fl £i(Ea) 
into £p(Ea,z/), we can continuously extend the operator to all of £p(Ea,z/). Let T 
denote the extended linear operator. Fix a real-valued function g in £9(Ea, z/)n£i(Ea) 
where ^ + ^ = 1. Then by Holder's inequality, we have for all / G £p(Ea, i>), 

'■/Ea 
{Tf)gdv < ||T/||fip(EaiI/)||^||£fl(EaiI/) <Kp\\9\Uq{^v)\\f\\zp{^uy 

Hence, if we define the linear functional Lg : £p(Ea, v) —> C by Lgf = /s (Tf)gdi/, 
then Lg is bounded. By the Riesz Representation Theorem ([15, p. 284]), there is a 
function h G £9(Ea, v) such that 

Lgf = f  (Tf)gdv = /   hfdu (3.2) 
./Ea JEa 

forall/G£p(Ea,i/). 
We claim that h is real-valued z/-a.e. To see this, consider a continuous character 

Xa e P \ {0} (so then a > 0 and xa € (-P)\{0}). By (3.2), we have 

f  (Rexa)hdjy=^ f  (xa +Xa)hdv = \ f  (Txa+Txa)gdv 
J Ea ^ «/Ea ^ «/Sa 

= 2/   (-iXcc+iXo^gdv 

= /   (Imxa)gdv. 

Since the last integral is real-valued, /^ Rexalmhdp = 0. Similarly, /E Imxa 
Imhdv = 0, so that /s xaIm/iofi/ = 0.   This is also true if Xa is replaced by any 
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trigonometric polynomial Yl
1£=lXaj (Xotj € Qa)- By the Stone-Weierstrass Theorem, 

the set of trigonometric polynomials on Ea is dense in the set of all continuous func- 
tions on Sa; hence for all continuous functions / on Ea, we have /s flrnhdv = 0. 
But then the signed measure (Im hdv) = 0, which means that Im h = 0 z/-a.e. and h 
is real-valued i/-a.e. 

We also claim that (h + ig)du is of analytic type in the sense that (h + ig)du has 
a Fourier transform vanishing for the negative characters in Qa (see [16, p. 197]). By 
(3.2), we have 

-i /   Xagdv = /    hxadv, for all Xa G P\{0}. 

Thus, 

and equivalently 

/   Xa(h + ig)du = 0, for all Xa e P\{0}, 
^Sa 

L Xa(h + ig)du = 0, for all Xa € (-P)\{0}. 

Thus, (/i + i^)^^ is of analytic type. 
By [12, Theorem 19.42, p. 326], we can write the Lebesgue decomposition of du 

as dv = di/s + dua where dua is singular with respect to dfi (dvsLdii), and dva is 
absolutely continuous with respect to d/x (di/a <C d/x). Then it is clear that the 
Lebesgue decomposition of (h + ig)dv is 

(h + Z0)di/ = (h 4- i^)di/s + (ft + ig)dva. (3.3) 

Since (ft + i^)di/ is of analytic type, 

(ft + ig)dva = 0 
Js, 

([16, Theorem 8.2.3, p. 200]). Since g and ft are real-valued z/s-a.e., /E ^dz/s = 0. 
This is true for every continuous real-valued g 6 £p(£a, tu) n£i(Sa), so it is also true 
for the real and imaginary parts of every continuous complex-valued function g, and 
hence vs = 0. But then is <^. JJ,, and by the Radon-Nikodym Theorem, ([12, Theorem 
19.23, p. 315]), there is a nonnegative measurable function w € £^(£a) such that 
is (A) = JA wdfi for all Borel measurable subsets A of Sa. □ 

Remark 3.1. We note that the proof of Theorem 3.1 does not depend on the struc- 
ture of the a-adic solenoid Sa. In fact, using the same argument, we can show that 
Theorem 3.1 holds for any compact connected abelian group G where the dual is 
ordered and the conjugate function / is defined as in (1.1). 

4. The Ap-condition on a-adic solenoids 

We seek to characterize those finite nonnegative Borel measures is for which the op- 
erator / H-> / is bounded from £p(£a,z/) fl £i(Sa) into £p(Sa,z/). By Theorem 3.1, 
it suffices to characterize those weights w € £i(Sa) for which the operator / i-» / is 
bounded from £p(Sa,t(;) n£i(£a) into £p(£a,i£;). In Theorem 4.4, we show that this 
property holds if and only if w satisfies the ergodic Ap-condition in (2.4). 
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We prove some propositions before proving Theorem 4.4.   It is essential for our 
analysis to define the following classes of functions for 1 < p < oo and w € £i(£a): 

£p(£a, /x) * fjLk = {/ * fjLk : / G £p(Da)}, 

£p(Ea, w*iik)*li>k = {f*IJ>k'-f€ SpC^a, ^ * Ate)}. 

Prom Hewitt and Ross [11, p. 95, Theorem 28.55], £p(Ea) * /i^ is isometrically iso- 
morphic to £p(Ea /Afc) « £p(T). By a modification of the proof in [11], we also have 
(£p(X;a, w * pLk) H £i(Ea)) * fik isometrically isomorphic to £p(T, Wk) n £i(T) where 
t^fc is the function in £i(T) such that w * //& = Wk o TT^ (see (2.3)). 

We use the following notation.   If u is a nonnegative Borel measure on Ea and 
1 < p < oo, we define the Lorentz £p,oo quasi-norm for a measurable function / as 

H/IIJ,,^,,) = SUPT(K{Z € Sa : l/WI > r}))1/p. 

(See [17, Ch.5, Sect.3]; note that || • ||£     / ^ actually defines a norm when 1 < p < oo.) 

Proposition 4.1. Let 1 < p < oo. Let T denote the operator /»-►/, and let w be a 
nonnegative function in £i(Ea). Then the following are equivalent: 

(i) The inequality 

is valid for every f G £p(Ea, w) D £i(Ea) where Kp is independent of f. 
(ii) For each k = 1,2,..., the inequality 

\\T(f * Mfc)llflPi00(Ea,w*/*fc) < Kp\\f * ^IUP(Sa^*^) 

25 ?;aKd for every f G £p(Ea, w * //&) n £i(Ea) where Kp is independent of f and k. 

Proof, (i)—>(ii) Let / be a trigonometric polynomial'on Ea and fix an integer 1 < k < 
oo. Since / is bounded, / * fik is bounded and / * //& G £p(Ea, w) n £i(Ea). Then we 
have by Fubini's Theorem and the translation invariance of ^, 

suprp  /     l{a!eE«:|T(/*/ifc)(a:)|>r}(^)w*Mib(^)dM(a;) 
r>0       JSa 

= suprp /     /    l{xGSa:|T(/*/ife)(^)l>T}(^)w;(^ - V) dfik(y)dfj,(x) 
r>0 7Sa «/Sa 

= suprp /     /    l{xe^&:lTif^k){x)l>T}(x + y)w(x)dfj)(x)dfXk(y) 
T>0 ./Ea ^Ea 

= suprp /     /    l{xe^a:lT{f^k)ix+y)l>r}(x)w(x)dfi(x)dfik(y).        (4.1) 
r>0 ^Ea ^Sa 

Letting (/ * /jLk)y denote the function x i-> (/ * /Xfc)(^ + 2/) and applying the hypothesis 
to (/ * /ifc)^ we have from (4.1), 

suprp /    l{xGllei:inf^k){x)l>T}(x)w^fik(x)dfi(x) 
r>0       JEa 

<K*[[   \(f^k)y(x)\^w(x)dfi(x)dfik(y) 
^Ea ^Sa 

= K? /    |/ * ^fc(x)|piu * fik(x)dfjL(x). 
^Ea 

It is easy to see that this is enough to show that (ii) holds. 
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(ii)—►(!) Consider a trigonometric polynomial / on Ea. Then it is clear that there 
is an integer N > 1 such that / = / * /ifc for all k > N. Fix r > 0. Since ||^ * /x^ — 
^lUi(Sa) —* 0> and / is a bounded function, we have by the hypothesis 

rP 

/sa 

= lim T
P 

k—too 
k>N 

/     l{xe^ai:\Tf(x)\>r}(x)w(x)dfJ/(x) 

/     l{s€Sa:|T(/*Mfc)(s)|>T}(£)w * Hk(x)dfl(x) 

<Kl lim  /    \f*Vk{x)\pw*Vk(x)dv>(x) 
k>N Jlj& 

= K>[   \f(x)\>w(x)drtx). 

It is easy to see that this is enough to show that (i) holds. □ 

Remark 4.1. We note that by slightly modifying the proof of Proposition (4.1), we 
can show that similar strong-type estimates hold. 

Proposition 4.2. Let 1 < p < oo. Suppose w is a nonnegative function in £i(£a) 
and w is constant on the cosets of A^ for some positive integer k. Let w^ denote the 
function in ili(T) such that w = w * jik = Wk 0 ^k (see (2.3)). Then w is in Ap(Sa) if 
and only if Wk is in AP(T). Moreover, in this case Ap(wk) < Ap(w). 

Proof. We show that the necessity part of the proposition holds. The sufEciency part 
follows by a similar argument. Assume that w is in ^4p(Ea) with bound Ap(w). Let 
/ = (a, b) be an interval in M. Let (£, x) be an element in Ea such that (2.4) holds. 
As noted in (2.2) and the following, we have 7rfc((£,x)) = x_i_((£,x)) = exp(27ri^£o) 

where to = t + YlhZo xhAh> We consider the expression 

^^fc(exp(iS))^^^-1/(p-1)(exp(zS))^P     . (4.2) 

Let s = j^(to - u), ds = -%du, a' = to - J£a, V = to - $£b, and I' = (V, a'). It is 

easily observed that 7rk(^p(u)) = X-±-{iP(u)) = exp(27r2^ii) for all u G K (see [9, 3.2.4 

ff]). Since w is in ^4p(Sa) with bound Ap(w) and w = w * /ik = Wk 0 Kk, we can use a 
change of variables to see that (4.2) is bounded by Ap(w): 

— / Wk(exp(is))ds (—     •w;^1/(p~1)(exp(z5))d5j 

= |7| (^0 /, MeM^ij-k(to - u)))du 

x (wictSl ^1/(p"1)(«p(2^^(fe-«)))^N,, ' 
= TT7T /  WfcfafeCfox) - y?(u)))dw 

K I Ji' 

x (^1 ^^-^(^((t.x)-^)))^^ ' 

< Ap(w). 
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This is true for any interval /, hence Wk is in AP(T) with bound less than or equal to 
Ap(w). D 

The next proposition shows that if w G -4p(Sa), then the operator / H-» / is bounded 
from £p(£a,w) ^ £i(£a) ^0 ^pC^a? '^)- The proof is similar to that of [14, Theorem 
2.1 and Corollary 2.4], using the transference methods of Coifman and Weiss [4]. We 
include the proof for completeness. 

Proposition 4.3. Let T denote the operator f *-+ f and let w be a nonnegative func- 
tion in £i(Ea). Ifl<p<oo and w G .Ap(£a), then the inequality 

IIT/lU^s^^^HII/IU,,^,,,) 
is valid for all f G £p(Ea, w) n £i(£a), where Ap(w) is independent of f. If p = 1 
and w G Ai(Ea), then the inequality 

llr/llfii.-)(S..») ^ ^lHII/IUi(E.,») 
is valid for all f G £i(£a,i/;) n£i(£a), where Ai(w) is independent of f. 

Proof We show the proposition holds for the case 1 < p < oo. The case p = 1 follows 
by a similar argument. We assume that w G Ap(Ea) with bound Ap(w) and show that 
the inequality 

l|r/|Up(Eill»)<i4l>(fi;)||/||£p(Eaf™) (4.3) 

is valid for all / G £p(Ea, w) fl £i(Sa). Let Kn = {t : £ < |t| < n} and kn(t) = 
^t^-Knit) and Hnf{x) = /R f(x—(p(t))kn(t)dt where ip : R —>• Ea is the homomorphism 
defined in (2.1). To see that (4.3) holds, it is enough to show that for all n > 1, the 
inequality 

/   \Hnf{x)\W*)dti*)<J%W{l + $) [   \m\*w(*)dti*) (4.4) 

is valid for all / G £p(Ea,^)n£i(Ea). (By [1, Theorem 6.5 and 6.11(c)], if / G £i(Ea), 
then \Hnf(x)\ -» |T/(a:)| for /i-a.e. x G Ea- So assuming (4.4) holds, we can use 
Fatou's lemma to show that (4.3) is valid for all / G £p(Ea, w) fl £i(Ea).) 

To see that (4.4) holds, fix / G £p(Ea,w) fl £i(Ea) and let n > 1. Since R is 

amenable, we can choose a compact set K such that * \K\ < 1 + n (see [4> 2.1, 
p. 8]). By the translation invariance of Haar measure fj, and Fubini's theorem, we 
have 

./sn 

\Hnf(x)\pw(x)dfx(x) 

=
 W\IKL  ^^ " VW^* - Vtt)) Mx)dt 

w(x — (p(t)) dtdfji(x) 
l^l ^Sa JK \JR 

= T^T /    /    / f(x ~ ^ ~ s))1^-^n(^ - s)kn(s)ds 
1^1   J^aJK \JR 

w(x - (p(t)) dtdfj,(x). 

Let gx(t) = /(a: — <£>(£))!;<-_/<:„(£) and ^(t) = w(x — (p(t)). We have assumed that 
w G Ap(Ea), which means that for /z-a.e. x G Ea, Wx(£) satisfies (2.4) with bound 
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Ap(w). Then by the above equalities and [13, Theorem 9, p. 247], we have 

/   \Hnf(x)\*w(*)Mx) 

= nEFT /     /     / 9x(t - s)kn(s)ds   wx{t) dtd/i(x) 
\K\ JXaJK \JR 

<^Wr f    [\9x(t)\pwx(t)dtdii(x) 
\K I     7sa JR      ' 

- ^^ /    / \f{x - vmw* - vW) Mx)dt \K\ 

J So 

I  TS-  TV"      I - 

Since '   |K|n| < 1 + £, we have shown that (4.4) holds, completing the proof of the 
proposition. □ 

Now we state and prove our main theorem. 

Theorem 4.4. Let T denote the operator f i~> / and let w be a nonnegative function 
in £i(Ea). Ifl<p<oo, then w € .Ap(£a) if and only if the inequality 

\\TfhA^,w) < Kp\\f\\2p^w) (4.5) 

is valid for all f G £p(£a, w) H ili(Ea), where Kp is a constant independent of f. If 
1 < p < oo, then w £ Ap(£a) if and only if the inequality 

llT/IIWSa,»)<^ll/lk(^) (4-6) 

is valid for all f € £p(£a,t(;) n£i(£a), where Kp is a constant independent of f. 

Proof By Proposition (4.3), the necessity parts of the theorem hold. To prove the 
sufhciency parts of the theorem, let 1 < p < oo and assume that (4.6) holds. As noted 
before, (£p(£a) w*Mfc)n£i(£a))*/Xfc is isometrically isomorphic to £p(T,Wk)r\£i(T) 
where Wk is a function in £i(T) such that w * fik = Wk 0 flV So by Proposition (4.1), 
for k = 1,2,..., the inequality 

llr/llfip,oo(Tfti;fc) ^ Kp\\f\\&p(T,wk) 

is valid for all / € £p(T, Wk)fl £i(T) where Tf is the conjugate function of / defined 
on the circle. By Theorem 1.1, for k = 1,2,..., we have Wk € Ap(T) with bound 
less than or equal to Kp(47r)2p. By Proposition (4.2), for k = 1,2,..., we have 
w* jik € ^4p(Sa) with bound less than or equal to i^(47r)2p. Fix an interval /. Since 
\\w * Hk — w|Ui(Ea) —^ 0 as A; ^' oo, by Fatou's lemma and Fubini's Theorem, there is 
a subsequence (w * //fci)z>o such that for /i-a.e. x in Ea, 
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j Jw(x - <p{8))d8 (1-Jw-1'**-1^ - ip(s))dsj 

< — liminf / w * //^ (x — (p(s))ds 
m   i  Ji 

x f|-7 liminf / (w *//fci)~1^p~1Ha; _ <p(s))ds 

< -j—7 limsup / w * fiki (x — ip(s))ds 
m    /    Ji 

x limsup f r— / (it; * Mfei)"1^"1^^ _ p(s))ds 

= T-T limsup / w * fiki(x - (p(s))ds 
m      *     Ji 

p-i 

p-i 

So, for each interval I, the above inequality holds for x in La, except possibly on a set 
of measure 0 (depending on /). Thus, the inequality holds for /z-a.e. x in Ea and for 
all intervals with rational endpoints (countably many). Approximating an arbitrary 
interval / by an interval with rational endpoints, a straightforward argument shows 
that the above inequality still holds for /x-a.e. x in Ea and all intervals /, hence showing 
that (2.4) holds and w € Ap(Ea). □ 

Acknowledgment. The work of the authors was supported by a grant from the 
National Science Foundation. 

References 
1. N. Asmar and E. Hewitt, Marcel Riesz's theorem on conjugate Fourier series and its descendants, 

in Proceedings of the Analysis Conference, Singapore (1986), (Eds. S. T. L. Choy et al.), Elsevier 
Science Pub., 1988, pp. 1-56. 

2. R. A. Beaumont and H. S. Zuckerman, A characterization of the subgroups of the additive ratio- 
nals. Pacific J. Math. 1 (1951), 169-177. 

3. E. Berkson and T. A. Gillespie, The generalized M. Riesz Theorem and transference, Pacific J. 
Math. 120 (1985), 279-288. 

4. R. R. Coifman and G. Weiss, Transference Methods in Analysis, A. M. S. Providence RI, 1977. 
5. J. L. Doob, Stochastic Processes, Wiley Publications, New York, 1953. 
6. R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Gren- 

zgeb. No. 90, Springer, Berlin, 1977. 
7. F. Forelli, The Marcel Riesz theorem on conjugate functions, Trans. Amer. Math. Soc. 106 

(1963), 369-390. 
8. E. Hewitt and G. Ritter, Fourier series on certain solenoids, Math. Ann. 257 (1981), 61-83. 
9.  , Conjugate Fourier series on certain solenoids, Trans. Amer. Math Soc. 276 (1983), 

817-840. 
10. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, 1963. 
11.  , Abstract Harmonic Analysis, Vol. 2, Springer-Verlag, 1970. 
12. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, 1965. 
13. R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate func- 

tion and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. 
14. F. Lancien. Inegalites a poids pour la transformee de Hilbert ergodique et extension a H1 er- 

godique d'un theoreme de Bourgain, Seminaire d'Initiation a 1'Analyse, (Exp. no. 10, Publ. Math. 
Univ. Pierre et Marie Curie, 95, Univ. Paris VI, Paris, 1993). 

15. H. L. Royden, Real Analysis, 3rd ed., Macmillan Pub. Co., New York, 1988. 



508 ASMAR AND PANMAN 

16. W. Rudin, Fourier Analysis on Groups, John Wiley, New York, 1962. 
17. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. 

Press, Princeton, 1971. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211 
E-mail: mathnaQmizzoul.missouri.edu, saleemQcsulb.edu 


