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OSCILLATION THEOREMS FOR SECOND-ORDER NONLINEAR 
DIFFERENTIAL EQUATIONS OF EULER TYPE 

James S. W. Wong 

ABSTRACT. Consider the second-order nonlinear differential equation 
tV' + /(aO = 0, (E) 

where f(x) is continuous and satisfies xf(x) > 0 if x ^ 0, but otherwise no 
monotonicity condition is imposed. In particular, f(x) is neither sublinear nor 
superlinear. Here we discuss the oscillation and nonoscillation of solutions of 
(E) when f(x) is assumed to be asymptotically linear. Results are applicable 
to the critical case f(x)/x —> 1/4 as |:r| —> oo. In particular, when f(x) = 
x/4 + Aaj/(log|a;|)2, equation (E) is oscillatory if A > 1/4 and non-oscillatory if 
A < 1/16. This extends recent results of Sugie and Hara which were established 
by a method of reducing equation (E) to a two dimensional autonomous system 
of Lienard type. 

1. Introduction 

Consider the second-order nonlinear differential equation: 

t2x" + f(x) = 0,        i€[0,oo), (1) 

where f(x) satisfies xf(x) > 0 if x ^ 0, and is locally Lipschitz continuous so that 
all solutions with arbitrary initial conditions are continuable throughout [0, oo). A 
nontrivial solution of (1) is said to be oscillatory if it has arbitrarily large zeros, and 
is said to be nonoscillatory otherwise.' Here we are concerned with conditions on f(x) 
so that all solutions of (1) are either oscillatory or nonoscillatory, in which case we say 
equation (1) is oscillatory or nonoscillatory for short. It should be noted, however, 
that in the absence of Sturm's separation theorem, the nonlinear equation (1) can 
have both oscillatory and nonoscillatory solutions simultaneously. 

When the equation is linear, i.e., f(x) = kx, equation (1) becomes the celebrated 
Euler equation, which is oscillatory if k > 1/4 and is nonoscillatory if k < 1/4. Judging 
from this, we are led to consider the asymptotic behavior of the ratio 

f(x)/x -> 1/4   as |a;| -+ oo. (2) 

The purpose of this paper is to study this problem and re-examine the recent results 
of Sugie and Hara [10] which have made significant steps toward solving this delicate 
problem. 

Contrary to the existing literature on the second-order nonlinear equation 

x" + a(t)f{x) = 0 (3) 

where a(£) is a continuously differentiable function which is sometimes referred to 
as the coefficient function, here equation (1) depicts the coefficient explicitly, i.e., 
a(t) = t~2. On the other hand, most results on the oscillation theory of equation (3) 
require that the nonlinear function f(x) be monotone, like the special case of the 
Emden-Fowler equation, which further separates into sublinear and superlinear cases 
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depending upon whether x~1f(x) is decreasing or increasing in x. For general surveys 
on oscillation results concerning equation (3), see [12,14,15]. Here there is no specific 
information on f(x) for bounded x except the sign requirement that xf(x) > 0 if 
x 7^ 0. When a(t) is non-negative, the following results on equation (3) are known: 

Theorem A. (Waltman [11]) Let p > 1, and f(x) satisfies 

ImimfiMl>o. 
|a:|-Kx>     \x\P 

If &(£) > 0 and satisfies 
poo 
/     ta(t)dt = oo, 

./o 
then equation (3) is oscillatory. 

Theorem B. ([Wong [12]) Let f(x) satisfy 

liminfLS>0. 
|x|->-oo    |a;| 

If a(t) satisfies 
poo 

txa{t)dt = oo,    for some A < 1, (4) f Jo 10 

then equation (3) is oscillatory. 

Theorem C. (Wong [12]) Let f{x) satisfy 

If a(t) satisfies 

liminf \f(x)\ > 0. 
|a:|—»-oo 

a(t)dt = oo, (5) 
JO 

then equation (3) is oscillatory. 

Theorem D. (Wong [12]) Let a(t) be bounded below by a positive constant. If f(x) 
satisfies 

\[Xf(u)d* 
\Jo 

then equation (3) is oscillatory. 

lim inf | 
\x\-±oo 

oo, (6) 

Clearly, none of the above four theorems is applicable to the problem at hand, since 
a(t) = t~2 fails to satisfy (4), (5) and is not bounded below by a positive constant. 

Sugie and Hara [10] studied equation (1) by reducing it to the second-order au- 
tonomous system, 

x = y + x1        y = -f(x), (7) 

where the dot denotes differentiation with respect to s = logt. This reduction is sig- 
nificant in that the resulting autonomous system then can be studied by the methods 
from the Poincare-Bendixson theory. Indeed the system (7) is a special case of the 
more general Lienard system, which has been the subject of intensive study during 
the past century. Using results from their earlier investigations for such a system (see 
Hara et al. [3,4], Sugie {9], and Hara and Sugie [5]), they proved in [10] that the 
following results concerning oscillation and nonoscillation for equation (1). 
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Theorem E. (Sugie and Hara [10]) Let f(x) satisfy 

^M + r-^,        A>0, (8) 
x        4     log|a:| 

for \x\ > R for a sufficiently large R; then equation (1) is oscillatory. 

Theorem F. (Sugie and Hara [10]) Let f(x) satisfy 

for \x\ > R for a sufficiently large R; then equation (1) is nonoscillatory. 

The above theorems imply the following corollary, which is the desired extension 
for the linear case of the Euler equation; see [6,13] for further results in the linear 
case: 

Corollary G. Suppose that f(x) is asymptotically linear, i.e., 

lim   \IM = k. (10) 
|x|->-oo      \x\ 

Then equation (1) is oscillatory if k > 1/4 and nonoscillatory if k < 1/4. 

We are interested in alternative, and perhaps more direct, proofs of these results 
since phase-plane analysis for autonomous systems can be cumbersome at times. We 
also believe that results in oscillation theory for second-order equations can best be 
developed based on Sturm's theory, rather than Poincare-Bendixson theory. This 
paper is the outcome of our investigations. We shall give our results for the more 
general equation (3), thereby extending Theorems E and F. 

2.  Oscillation theorem 

In this section, we shall prove the following extension of Theorem E: 

Theorem 1. Assume that a(t) satisfies 

a(t)t2 > 1, (11) 

for t sufficiently large, and there exists R > 0 such that for \x\ > R, 

M>1 + _* A>i (12) 
x        4     (log|x|)2 4 

Then equation (I) is oscillatory. 

Note that condition (12) is considerably weaker than (8) in Theorem E. 

Proof. Let x(t) be a nonoscillatory solution of (3). Without loss of generality, let 
x(t) > 0 for t > to > 0. Since a(t) > 0 implies x"(t) < 0, xf(t) must be positive. 
Otherwise, if xf(ti) < 0 for some h > to, then x(t) either tends to minus infinity or 
x(t) = constant. The first instance clearly contradicts the assumption that x(t) > 0, 
for t > to. On the other hand, that x(t) is identically constant and satisfies equation 
(3) implies either a(t) = 0 which contradicts (11), or in view of the sign restriction 
that xf(x) > 0 if x ^ 0, x(t) = 0, which again contradicts x(t) > 0 for t > to. 

Since x(t) > 0 and x'(t) > 0 out > to, then 

lim x(t) = L>0 
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exists, which can be infinite. Assume that L is finite; thus by continuity of f(x) 

limf(x(t)) = f(L). 
t—>-oo 

Integrating (3), we have for t > s, 

x'(t) - x'(s) + f a(r)/(a;(r))dr = 0, 

which together with xf(t) > 0 yields 

a(r)/(x(T))dr. (13) 

We now integrate (13) once again and by a change of order of integration, we find for 
t>T>to 

x(t) - x(T) > a(r)f(x(T))dTds 

pt nOO 

= J {r-T)a{T)f{x{r))dT + J    (t-T)a(r)f(x(T))dT 

>J{T-T)a{T)f{x{T))dT. (14) 

Note that if r > 2T, r - T > T/2, then (14) can be further estimated as follows: 

x{t) >\j   Ta(T)f(x(T))dT. (15) 

For sufficiently large T, we also have f(x(t)) > l/2/(L), for t > 2T. 
Using (11) in (15), we obtain 

4 J2T     T 
-dr, 

which diverges as t —* oo.  This contradicts L being finite, hence lim^oo x(t) = oo 
monotonically. 

We therefore can choose t2>ti> to sufficiently large so that x(t) > R for t >t2, 
so that (12) becomes applicable. Since x"(t) < 0, so x(t) < x(t2) + x'(t2)(t-t2) < Kt 
for some suitable positive constant K. Note that for e > 0, there again exists £3 > £2 
so that for t > £3, 

log x(t) < log if + log t < (1 + e) log *. (16) 

Using (16) in (12), we have 

a(t)f(x)      m      J_ + A 
x       -  fix  - 4t2      (l + £)2(log<)2t2' 

Choose e so small that A > (l + £)2/4, which is possible since A > 1/4. Simply choose 
0<e<2\/A-l. 

Now compare equation (3) with the linear equation 

y" + U<2 + (1 + e)2(logt)H2) y~0' 

which is oscillatory if A > (1 + £)2/4. By Sturm's Comparison Theorem, we conclude 
that equation (3) is oscillatory. The proof is complete. □ 
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3. Nonoscillation theorem 

In this section, we consider a similar extension of Theorem F for equation (3), namely 
in the case when all solutions of (3) are nonoscillatory. Judging from the nonoscil- 
lation theorems for equation (3), when f(x) = x|x|7_1, 7 > 0, see e.g., Heidel [2], 
Gollwitzer [1], Wong [16], Kwong and Wong [8], it becomes clear that a certain con- 
dition on the derivative of the coefficient a(t) would be necessary, and in most cases, 
the requirement is that a(t) should decrease "monotonically" to zero in a certain way. 
Since we only require f(x) to behave linearly for large x, we need to impose more 
"stringent" assumptions on the coefficient a(t); although it is not known whether such 
a condition involving a^t) indeed is necessary. The following result extends Theorem F 
to equation (3). 

Theorem 2. Assume that a(t) > 0, a(t) € C^O, 00), and satisfies 

a(t)t2 < 1, (17) 

for t sufficiently large, and 

A(*) = 2^%)+1^0(1)'        as*-*00- (18) 

If, in addition, A(t) < 0 and for some large R > 0 it satisfies 

x        4     (log|z|)2 16 

then equation (3) is nonoscillatory. 

The proof of Theorem 2 is somewhat more complicated than that of Theorem 1. 
We begin with the following 

Lemma. If x(t) is an oscillatory solution of (3), then x(t) is unbounded. 

Proof. Define E(t) in terms of x(t) as follows 

*<«>■= K^-a!)a+F(a0 (20) 

where F(x) = f* f{u)du. Additionally, define 

V(t) = ~+F{x). (21) 

Using (3), it is easy to see that V'{t) = -a'x'2/2a2 > 0 since A(t) < 0. 
Thus, if x(t) is oscillatory and bounded, say \x\ < Si, then V(t) is bounded. In 

fact V(t) < JP(BI), and {x*/y/a\ < B2 for some suitable constant i?2. We can relate 
E(t) to V(t) by (20) and (21) as follows 

9        / 

E(t) = V(t) + ^-^t (22) 

from which we deduce that 

E(t)<F(B1)^^+B1B2 (23) 

for all t. We now shall show that E(t) bounded is incompatible with the rest of the 
hypothesis of Theorem 2. Use (3) to compute E'^t) 

AT'2 

E'(t) = -^=j=r + AxxT + y/axf(x). (24) 
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Recall that Vf(t) > 0, so if x(t) is bounded and oscillatory, then Voo = limV(t) exists, 
and VQO is positive and finite. Choose eo sufficiently small so that Voo > F(£o) + ^o- 
Hence, for sufficiently large t and for \x(t)\ < eo, we have 

Thus x'2'/a > el > \x\2, from which it follows that xf(x'/y/a - x) > 0 for all t when 
l#0OI ^ ^o- Define for eo > 0, the following positive numbers: 

M = max /(#),        mn =     min     xf(x). 
\*\<Bi eo<\x\<B1    

JK   ' 

Rewrite (24) as 

E\t) = -Ax' (^= -x\+ ^xf(x). 

Since A < 0, so for \x{t)\ < SQ, we have E'(t) > 0. Otherwise, if |a:(^)| > eo, then 
\Ax'(x'/^ - x)\ = o(y/a) by (18); thus, there exists mi > 0, mi < mo, such that for 
large £, 

E'(t) > mxy/a. (25) 

In either case, we have Ef(t) > 0 for all t sufficiently large. Using (3) once again, we 
note that 

= \^ (f{x) + ^P) < M1VE (26) 

for some Mi > M since A(t) = o(l) as t —> oo. Let {tk} be the sequence of zeros 
of x(t). For eo > 0, there exist crjb, r^ such that tk < (Tk < ^k < tk+i so that 
x((Jk) = ^(Tfc) = eo. We note from (22) and (23) that E^ = lim^oo E(t) exists and 
is finite. For sufficiently large fc, ^(x*j'>Ja((Tk) - ^o)2 > ^oo - 2F(6:o) = KQ. Likewise, 
we have \(xf/y/afa) — SQ)

2
 > KQ. We can choose subsequences in {crfc} and {TAJ, if 

necessary, and obtain 

£^>_eo>V5*0,        
X-^-eo<-V2K0. y/a y/a 

(27) 

Using (27) and integrating (26), we find 

x'(ak) \      (x'(Tk) \ p 
eo ) - { —7^ - £oJ < Mi /     Va, 

from which it follows 

2V2Ko < Mi / " Va. (28) 

Returning to (25) and integrating from CTQ to r*., we have by (28) 

E(Tk) - E(ao) > p E'{t)dt > J2 P E'(t)dt 

>^2rno        Va> kmo2V2Ko/Mli 
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which tends to infinity as k —> oo. This contradicts the fact that E(t) is bounded. 
Hence, x(t) must be unbounded. □ 

Turning to the proof of Theorem 2, let x(t) be an oscillatory solution of (3). The 
above lemma shows that x(t) is unbounded, so there exists sequences {^fc}, {%}, £fc < 
£fc < Vk < h+i such that #(£&) = x(rjk) = R and x(t) > R for £*. < t < rjk. Denote 
^k = Kfcj^fc]- We shall now apply a Wronskian-type argument to equation (3) on /&. 
In fact, we do this through a transformed equation. Let s = logt, u(s) = x(t)/y/i, 
then equation (3) becomes 

i(s) + aW(?M2M_i)=o. (29) 

For s =■ log^, t G /fc, we have x(t) > iZ. Now using (17) and (19) in (29), we have 

fiW+o5iWoW-0- (30) 

Note that #(£') = \/iu(s), \og\x\ = | logt + log^(s), and u(s) = -jifa' — x/2). Since 

E{t) t oo implies JB(&) =■ \{x,^k)l^{ik)-R)2^F(R) -* oo, hencea:/(&)/Va'(&)- 
i? t oo- We now integrate (18) to obtain 

1 1 

V«      va(*o) 
or l/VS =■ i + o(t). Thus, x1 {^k)Iy/^i^k) —* oo implies ^^'(Cfc) -^ —00 as A: —^ oo. 
For ffc sufficiently large, ^^'(^fc) > R, so ^(log^) > 0. On Ik = [Cfc,^], there 
exists Cfc G /fc, ^fc < Cfc < ^fc such that u(log£k) = 0. This is possible because for 
Zk < Sk < Vk such that x'(sk) = 0, we have 

jfay = o =» ^(iog5fc) = J±^M < o. 

In fact, on Ik, we have & < Ck < Sk < Vk> Let Jfc = [log£fc>k)gCfc] be an interval in 
the s variable so that 'Lt(s) > 0 on Jk and 

r> 

u(s) > u(log€k) = —?=, S €Jk- 

Note that 

log|a;| = -logt + logu(s) 

> -+logi6(log^) 

5 1 
= 2+loSjR-2l0g^ 

s 

where 2<7fc = 2\ogR — log£fc. Thus on Jk, u(s) satisfies 

{s + 2<7k) 

Compare (31) with the linear equation: 

u(s) + ,_ | 0_ ^u > 0. (31) 

^ + WT2^V = 0> ^ 
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which is known to be nonoscillatory, and its general solution in fact can be represented 
as 

1/(8) = ci(s + 2ak)
1/2 + 02(3 + 2<7fc)

1/2log(s + 2ak). (33) 

Differentiating (33), we obtain 

*>(*) = (y + <*) (s + 2ak)-
1/2 + |(S + 2ck)-i \og(s + 2ak). (34) 

We note from (34) that z>(s) is positive if C2 > 0 and for s sufficiently large. Choose 
u(s) by the initial conditions 

"(&) = ^(log^fc)    and   i>(log&) = ^(log^). 

We then obtain the following system of equations in terms of ci and C2, 

Klog&) = c1(21ogii)1/2 + c2(21ogE)1/2log(21ogJ?) = -^=) 

Writing 2 log R = Q2 for short, we find 

*<*«-(! + *) 9-+ 3g2 

Solving (35) for C2, we obtain 

Q R/y/E 

(35) 

c2 = A"1 

where 

1/2Q    (^(a)-^)^ 

A = Q QlogQ 
Q/2    l/2Q + logQ/2Q = 1. 

So, C2 = Q/VSbC&^Cfo) - R/2) - R/2Q^ = Q/v^fe^fe) - fl/2 - it!/2Q2). If 
Q > 1, then C2 > ^(6^(6) - -R) > 0. Thus, for sufficiently large fe, i/(s) > 0, and 
also 

^(5) > 0    and    z>(s) > 0    on Jk. 

Recall that A < 1/16, so by (31) and (32) and the fact that ^(log^) = ^(log^), we 
obtain 

^(logf*;) > i/(log^), 

and so u(s) > u(s) in the right neighborhood of log^.  Since u(log^k) = u(logr]k), 
it follows that u(s) must cross ^(5) at some point 7 G [log£fc,log77fc]. We now denote 
the s-interval by Lk = [logCfejlog^] and consider 7 6 Jk and 7 € Lk separately. 

Let W(u, v) = uv — i/u. Note that 

W{\og£ik) = Q       and       W = uv - vu > 0. 

If 7 € Jfc, then 1/(7) > ^(7) (otherwise u(s) < u(s) on Jk, so there is no crossing), 
hence 

W(7) = u(7)(u(7)-z>(7))<0, 
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which contradicts W > 0, W(log£fc) = 0. In the second case when 7 € Lfc, we also 
have 

1/(7) > 0,    ^(7) < 0,    so again   £(7) > ^(7), 

and the same argument applies. This contradiction on an interval Jk for some large 
k establishes the fact that 'u(s) must not be oscillatory. Hence, x(t) is nonoscillatory, 
and the proof is complete. □ 

4. Examples and remarks 

(i) We now consider a special case of equation (1) for 

/(a;) = &x+(i^W (36) 

when |£| > R for some large R > 0. Theorems 1 and 2 show that equation (1) is 
oscillatory when k > 1/4 and nonoscillatory when k < 1/4. In the critical case when 
k = 1/4, it is nonoscillatory if A < 1/16. These results improve those obtained by 
Sugie and Hara [10]. In case of oscillation, their result is not applicable when k = 1/4 
since they require that the second term A/log |a;| is large compared to A/(log \x\)2 in 
(36) above. In case of nonoscillation, their result requires that A < 1/16 as compared 
to A < 1/16. We conjecture that when k = 1/4 and 1/16 < A < 1/4, equation (1) 
has both oscillatory and nonoscillatory solutions. However, we are unable to establish 
results in this direction and hope to return to this problem in a later paper. 

(ii) It is of interest to note that the sign requirement xf(x) > 0 is implicit in condi- 
tion (12) of Theorem 1. On the other hand, Theorem 2 without the sign requirement 
is false. Consider 

*', + ^2 (x + 2>/l-s2) =0, 

which has x(t) = sin | logt as an oscillatory solution. Here f(x) is not yet defined for 
\x\ > 1, so condition (19) in Theorem 2 can be satisfied trivially 

(iii) We also note that the Euler-Kneser-types of conditions are known to be valid 
for oscillations of equation (3). In the linear case, see [6,13], and for superlinear and 
sublinear cases, see [17]. A similar type of result was given for a delayed differential 
equation in a recent paper of Kulenovic [7]. 

(iv) We remark that in conditions (11) and (17), the lower and upper bounds for t2a(t) 
can in fact be any positive number /? instead of 1, since we can always redefine 

a(t) = /rVi),        f(x) = Pf{x) 

and apply results to equation (3) with a(t), /(#) instead of a(t), f{x). 

(v) We also remark that condition (18) in Theorem 2 is undesirable as it implies that 
a(t) = t"2 + o(t~2) as t —> 00. This would exclude cases when a(t) is known to be 
small, say a(t) — t~3, in which case it is well-known that not only the linear equation 
is nonoscillatory, but so are all solutions of the Emden-Fowler equation, i.e., (1) when 

/(aO = aM7-\l<7<i. 
(vi) Finally, we consider a nonlinear function f{x) defined by 

kx(\ -l-sina;2)    |a;| < 1, 

■{: ^X'     \ kx \x\ > 1, 
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and a(t) = t~2 + o(t~2). Here the nonlinear function can have rather erratic behaviour 
when \x\ < 1. Theorems 1 and 2 imply that equation (3) is oscillatory if k > 1/4 
and a(£) satisfies (11) and nonoscillatory if k < 1/4 and a(t) satisfies (17). These 
conclusions cannot be deduced from any previous known results. 
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