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ASYMPTOTIC REPRESENTATION FOR THE BLUMENTHAL-NEVAI 

ORTHOGONAL POLYNOMIALS IN THE ESSENTIAL SPECTRUM 

Renato Spigler and Marco Vianello 

ABSTRACT. A recent Liouville-Green (or WKB)-type approximation theorem for 
linear second-order difference equations is used to study the asymptotic behavior 
of certain families of orthogonal polynomials in the essential spectrum. These 
polynomials fall in the class first investigated by O. Blumenthal in 1898, and 
then studied extensively by P. Nevai in the late 70s. When explicit qualitative 
representations already are available, the WKB method also allows obtaining 
precise bounds for the error terms. This procedure is applied in detail to the case 
of Jacobi polynomials, for which error estimates are derived also in the parameter 
range —1 < a, /3 < —1/2. A second-order discrete WKB theory with error bounds 
then is developed and applied, for illustration, to the ultraspherical polynomials, 
thereby obtaining a representation with an estimated error of order 0(n-2), also 
valid for A < 0. 

1. Introduction 

The widely celebrated Liouville-Green (or WKB) approximation for solutions of linear 
second-order differential equations has been known and used for many decades by 
physicists and put on sound (rigorous) mathematical bases by F. W. J. Olver in 1961, 
cf. [19, 20]. The first extensions to difference equations seem to have appeared much 
later, in [8, 4, 29]. More recently, a discrete Liouville-Green (LG) theory for some 
classes of linear second-order oscillatory difference equations has been developed [22] 
where, in the spirit of Olver [20], precise error bounds accompany the asymptotic 
representations. In [10], a discrete WKB theory also has been developed following 
different lines. A unified LG theory has been presented in [23], to include both linear 
second-order differential and difference equations; in particular, certain nonoscillatory 
difference equations were treated there. All these results are part of a recently observed 
renaissance of the entire subject of difference equations; for a review of all results 
concerning the discrete WKB approximation, the reader is referred to [24]. For the 
case of linear second-order equations, in particular describing families of orthogonal 
polynomials, other asymptotic results (not of the LG-type) appeared in [14, 31]. 

The purpose of the present paper is threefold. First (§2, §3.1), we use our LG 
theory to describe the asymptotic behavior of solutions of certain linear second-order 
difference equations, which include three-term recurrence equations satisfied by well- 
known families of orthogonal polynomials, which form a subclass of the Blumenthal- 
Nevai polynomials, [3, 16]. The latter includes the entire set of polynomials studied 
in [14]. The ensuing asymptotic representations hold in the essential spectrum. 
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The second purpose (§3.2) is to obtain precise error estimates for the Darboux- 
type asymptotic representations of Jacobi polynomials [25, Thm. 8.21.8]. Though for 
general Jacobi polynomials our estimates are uniform for x = cos 0, 9 G [e, 7r/2 — e] U 
[7r/2 + £, TT — e], they cannot be applied at x = 0. For the ultraspherical polynomials, 
however, they hold uniformly on [e, n — e]. Asymptotic formulae with bounds, valid in 
a half-interval up to the endpoint —1 or 1 (included), under some restrictions on a, (3, 
have been derived in the 1980s by Hahn [11], Prenzen and Wong [9], and Baratella and 
Gatteschi [2]. While such bounds are better than ours, our estimates hold without any 
restriction on the parameters, in particular for — 1 < a,/3 < —1/2 (e.g., A < 0 for the 
ultraspherical polynomials), which is a case apparently not covered in the literature. 
Moreover, other than in our estimates, those of [2, 9] hold (under certain restrictions 
on the parameters) only on one half-interval. Under more severe restrictions, they 
hold on the whole interval, [—1,1]. We stress the fact that our estimates hold on the 
whole set (—1,1) \ {0} (and uniformly on compact subsets of it) irrespective of the 
parameters for general Jacobi polynomials, and on (—1,1) in the case of ultraspherical 
polynomials. Indeed, even the restriction a, ft > — 1 (necessary for orthogonality) 
can be removed if one focuses on the polynomials merely as solutions to the "Jacobi 
difference equation." 

In §3.3, finally, we develop a second-order discrete WKB approximation with error 
bounds, which is applied, for the purpose of illustration, to the ultraspherical polyno- 
mials, thus obtaining a representation with an estimated error of order 0(n~2), valid 
also for A < 0. 

2. Asymptotic representation for the Blumenthal-Nevai 
orthogonal polynomials 

We first recall, as a basic device, that it is possible to take a rather general three-term 
recurrence equation such as 

Fn+2 + AnYn+1 + BnYn = 0,        n e Zv, (1) 

where Z^ = {n € Z : n > z/}, v G Z, and An ^ 0 in Z^, into the "canonical form" 

A22/n + qnyn = 0,        n € Z,,, (2) 

by the transformation 

n~2 /   A \ 
Yn = OLnyn', OLn = Uv+l fl f —y- ) , n > z/ + 2, (3) 

a^ and o^+i ^ 0 being arbitrary constants. Correspondingly, the coefficient qn in (2) 
is given by 

^ = -1+ A   /    »        ri>v + l, (4) 

qu = [A2^ + (A, + 2)Aa^ + (Au + B„ + 1)0^/0^+2, cf. [22]. 
In [22], we proved the following 

Theorem 2.1 (Discrete Liouville-Green approximation). Suppose that equation (2) 
is given, with 

qn = CL + 9n,        a>0, (5) 
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where 
oo 

^2\9n\<oo. (6) 

Then there exists no G ZV such that there are two linearly independent solutions to 
(2), having the form 

^ = (A±)"[l + e±]       for   n>no, (7) 

where 

A+^l + m1/2,        A-=A+ (8) 

are the roots of the characteristic polynomial associated with (2) with gn = 0, and 

oo 

K^Ki + a)]-1/2^!^!. (10) 
k=n 

When gn is real valued, y+ and y~ are complex conjugate. 

In proving Theorem 2.1 in [22], we have shown that no can be chosen to be 

no = min{n : n G ZU1 Vn < 1}. (11) 

Remark 2.2. One of the most important results in Theorem 2.1 is that of providing 
precise error bounds in the asymptotic representation of a basis for equation (2). This 
is in the spirit of Olver's approach to the Liouville-Green approximation for differential 
equations (cf. [20]). Moreover, even the purely qualitative behavior y^ ~ (A^)71 

in (7) could not be obtained by the classical Poincare's or Perron's theorems, since 
|A+| = |A-|in(8),cf.[15]. 

In what follows, we shall assume An and Bn to be real, so that, in particular, gn 

and the transformation coefficient an in (3) will be real Theorem 2.1 then implies, 
for every real solution to (1), the representation 

Yn = Aanpn[cos(n0 + rj) + En},        n > no, (12) 

where A and rj are two real parameters, and 

p:=\\+\ = (l + a)1/2,        0:=argA+, (13) 

provided that 

L = (a+l)/4, and 

\En |< 141 = 0^), 

Bn               T .   1 hm                  =: L >    , 
n-Kx> AnAn-i                     4 

oo 

E *"     -L 
AnAn-.i 

< oc 

(14) 

(15) 

(16) 

cf. [22]. In fact, in terms of the coefficients of the original three-term recurrence 
equation, (15) and (16) correspond to the requirement that qn —> a > 0 and to the 
convergence of the series in (6), respectively. 



460 SPIGLER AND VIANELLO 

Remark 2.3. Note that all real solutions yn to (2), under the hypotheses of Theorem 
2.1, are oscillatory according to the usual definition (e.g. [21, 22]). This can be shown 
from (12) (see Appendix 1), but it does not seem to be derivable immediately from the 
best known oscillation criteria [1, 13, 21, 22]. The oscillatory behavior of Yn, however, 
is certainly guaranteed when An has constant sign for n sufficiently large. In fact, if 
An < 0 for all n large enough, an in (12) has constant sign, while if An > 0 for all n 
large enough, an changes sign at each n, and the oscillations persist (cf. Appendix 1). 
Another important consequence of (12) is the growth estimate 

Yn = 0(anpn),        n > no. (17) 

Hereafter, we shall focus our attention on families of monic orthogonal polynomials 
which are defined by three-term recurrence equations like 

Pn+2(x) - (a? - 7»)Pn+i(aO + SnPn(x) = 0,        n = -1,0,1,..., (18) 

P-i(x) = 0, Po(^) = 1? 7n being real and 5n > 0. We shall refer to monic orthogonal 
polynomials for which 

lim 7n = 7, lim 8n = S (19) 
n—>oo n—>oo 

are both finite as the Blumenthal-Nevai class (see [7, p. 101]). Note that this case 
includes the Jacobi and the Pollaczek polynomials, for instance. Under these hy- 
potheses, it is known that the Hamburger moment problem is determined and that, 
if the smallest and the largest limit-points of the spectrum are denoted by a and r, 
respectively, then 

(7 = 7- 2V5,        r = 7 + 2V6. (20) 

Moreover, Blumenthal [3] showed that the zeros of the Pn(x) are dense in [cr,r], and 
Nevai proved that this interval is a subset of the spectrum (cf. [6, p. 172] and [7, 
pp. 122,104]). Other deep investigations about spectral and asymptotic properties of 
the polynomials in the Blumenthal-Nevai class have been carried out by many authors 
(see, e.g., [5, 7, 16, 17, 18, 26, 27] and the references therein). Below, we shall restrict 
our attention to the asymptotic behavior as n —► 00 for x in the essential spectrum 
[a,r]. 

Comparing (18) with (1), one can see that in (15) 

for all x € (cr,r) \ {7}. Note that 5 > 0 in (19), in any case. If 5 = 0, condition (21) 
cannot be fulfilled and the interval [a, r] degenerates into the singleton {7}. Moreover, 
since 

an = an(x) = Y[(^*y (22) 

provided that x ^ 7, one can choose v = — 1 as long as x ^ jk for each fc; otherwise, 
one takes u = m + 1 where m = max{fc : 7^ = x}. We stress that, in any case, 
v = u(x). 

If condition (16) also is satisfied, which for the Blumenthal-Nevai class becomes 

n=i/4-l 

5n 
(X - 7n)(z - 7n-l)        (X - 7)2 

< OO, (23) 
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then the asymptotic representation 
<n-2 

n > no(x), 

holds (cf. (12), (13), (21), (22)) where 

U-7)2     7 
1/2 

6{x) := arctan 

Setting x = 7 + 2y/5cos<t>, 0 < <f> < TT, </> ^ f, the latter becomes 

; 7 + 2\/J        (i.e., 0 < 0 < f) 

(24) 

(25) 

0(a 
\ _ j^ if 7 < x < 

X^_|7r-^   if7-2\/5<x<7 (i.e., f .< <£ < TT) 

cf. Example 3.1 concerning Legendre polynomials in [22]. Moreover, the error term in 
(24), En(x), can be estimated by 

\En(x)\ < J^r^y        n>n0(x), 

where 

(26) 

(27) 

Vr ■^K'-Ws Sk (x - if 
(x - lk){x - Jk-l) 

-5 (28) 

which follows from (5), (10) and (21). According to (11), in (24), (27), no(x) is the 
smallest integer, no(x) > u(x), for which Vn(x) < 1. 

When the functions A(x), ri(x) in (24) can be identified, (24) yields an asymptotic 
representation with precise error bounds. In any case, (24) provides qualitative infor- 
mation on the asymptotic behavior of the orthogonal polynomials in the Blumenthal- 
Nevai subclass characterized by condition (23). The following corollary will be used. 

Corollary 2.4. Suppose that the three-term recurrence equation (1) is given with An, 
Bn real valued and 

lim Bn = B. lim An = A 7^ 0, 
n—>oo 

Moreover, suppose that 

with 

n=v+l 

Bn 

AnAn- 

B_ 
A2 < oo 

B_     1 
A2 > 4' 

(29) 

(30) 

(31) 

Then, 
(a) ifO < B < 1, Yn —»• 0 exponentially as n —► oo; 
(b) if B = 1, Yn is bounded as n —► oo, provided that 

f^(\An\-\A\) < oo; (32) 

(c) if B > 1, Yn exhibits exponentially growing amplitude oscillations on suitable 
subsequences whenever An has constant sign for n sufficiently large. 
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The following corollary, concerning the Blumenthal-Nevai class, can be derived, in 
part, from Corollary 2.4. 

Corollary 2.5. Suppose that a family of orthogonal polynomials in the Blumenthal- 
Nevai class (18), (19), satisfying (21) and (23), is given. Then, for each fixed x G 
(7 — 2\/J,7 + 2\f8) \ {7}, every solution to (18) is oscillatory {in the classical sense, 
cf. [21]). Moreover, the following holds: 

(a) if0<5< 1, then Pn(x) —> 0 exponentially as n —► 00; 
(b) if 5 = 1, £ften Pn(^) is bounded as n -» 00, provided that the series Y^=v l7n—7| 

converges; and 
(c) if 8 > 1, £ften Pn(x) exhibits exponentially growing amplitude oscillations on 

suitable subsequences as n —> 00. 

Proof 0/ Corollary 2.4. Noting that (30) and (31) coincide with (15) and (16) with 
L = B/A2, we obtain from (12) (or (17)) 

"-"(nt-fr'B)).  -^ (33) 

where no is defined in (11). Prom this, parts (a) and (6) of the corollary follow. We 
only observe that, when B — 1, condition (32) ensures the convergence of the infinite 
product lKlJ4bMI- 

When B > 1 and ^4n has constant sign (for n sufficiently large), since cos (rikO + 77)+ 
i£nfc and cos [n/i(0 + TT) + 77] + (—l)nhEnh alternate in sign and are uniformly bounded 
away from zero for k and h sufficiently large (cf. Appendix 1), and since the product 
in (33) increases exponentially as n —> 00, Ynk and Ynh exhibit exponentially growing 
amplitude oscillations (cf. Remark 2.3 and Appendix 1). □ 

Proof of Corollary 2.5. The oscillatory behavior of each solution to (18) follows at 
once from Remark 2.3, observing that, for every fixed x € (7 — 2\/5,7 + 2\f8) \ {7}, 
An = An{x) = 7n — x does have constant sign for n sufficiently large. The rest of the 
proof is a mere rephrasing of that of Corollary 2.4. D 

Remark 2.6. Observe that condition (32), in this case, becomes 

00 

$3(l7n-sM7-*l) < 00. (34) 

In part (6) of Corollary 2.5, however, we gave the stronger condition that X^^Lr/ Yin — l\ 
converges, which is uniform in x. This last condition, together with the convergence 
of the series Y^=v l^n — <J|> ensures the absolute continuity of the measure associated 
with (18), cf. [7, Theorem 2.8, p. 104]. Note that such a condition, i.e., 

E(I^-^I + I^-<JI)<O0' (35) 
n=v 

implies our hypothesis (23) which plays a central role in the present theory, as well 
as in other approaches, e.g. [14]. Indeed, the results given by Corollary 2.4, being 
essentially qualitative, could be obtained also from [14]. 
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3. Error bounds in the asymptotic representation 

When asymptotic formulae, even merely qualitative (but explicit), already are avail- 
able, it is possible to identify A(x) and r}(x) in (24), thus obtaining an asymptotic 
representation with a precise error bound. In §3.1 below, this will be done for the 
subclass of the Blumenthal-Nevai class satisfying (35). In §3.2, the case of Jacobi 
polynomials will be worked out in detail, and in §3.3 a second-order discrete WKB 
approximation with error bounds will be developed and applied to the ultraspherical 
polynomials. 

3.1. General results. Without any loss of generality, assume 7 = 0, 8 = 1/4 in (19). 
Under the hypothesis 

00   • 

E (w + k     4 
< 00 (36) 

(cf. (35)), Ismail et al. [14] obtained the asymptotic formula 

'•W = ^O^T" ("•« + *M " 3 + 0(1))       <37> 
where x e (—1,1), 0(x) := arccosx, and 

/ Y^(x + i0) + Y^(x-i0)  \ 
X(x) := arccos    ^      , /  —   , (38) 

Yn(z) denoting a certain subdominant (or recessive, or minimal) solution to the 
recurrence equation (18), z G C \ [—1,1]; cf. (3.13) in [14]. In (37), //(#) denotes the 
density of the orthogonality measure, for x G (—1,1); cf. Remark 2.6. A representation 
similar to that in (37) is reported in [28]. 

On the other hand, (24) becomes 

PB(*) = 2-»(|j       (SgaxrA(x)(ll(l-^)j 

x jcos[n0(x) + 77(£)] + En(x)}, n > no(rc),    x ^ 0,       (39) 

where 

z/ = i/(x) := mm{k : k G Z_I,7A; # x} (40) 

and no(x) is defined by means of (11). In (39), it is not restrictive to assume A(x) > 0, 
since otherwise we can change rj(x) into rj(x) + TT, and En(x) into — En(x). Compar- 
ing (37) with (39), we get 

9\ H-l /n-2 
(sgnx)nA(x) (jl (l - ^)N) cQ8[n0(x) + Ti(x)] 

-(^ffw)^cosH'^'+x(x)-f] "(1)' »—■ (41) 

This can be written, for short, as 

r TTI 
an(a;) cos [n0(a;) + 7/(a:)] - 6(a:) cos n8(x) + x(x) — —   = o(l),    n -* oo,        (42) 

z J 
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with obvious positions. Since the infinite product 0^=1/(1 ~ Ik/x) converges (due to 
(36)), we have an{x) —► a{x) as n —»• oo, and thus, from (42), 

a{x) cosrj(x) = b(x) cos (x(x) ~ 9 )»    a(x) sinr7(x) = b(x) sin (x(x) - - ).      (43) 

Prom this, it follows that a(x) = b(x), rj(x) = x(x) — 7r/2, and hence 

The final asymptotic representation for Pn(x) is 

PM 2-"( r\ d 7My72(n~o(^))y/2 
B()     L1?-^   ^ Ui-^(»)i 

x{sm[n6(x) + x(x)} + En(x)},    x € (-1,1) \ {0},    n > no(a:),    (45) 

where, by (23) and (27), 

En(x) = 0(yn(x)) = 0(-7rLpf:(|^| + |4-i|)), 

the constant implied by the O-symbol being independent of x and n. 

(46) 

Remark 3.1. Observe that no (re) as well as the estimates for En{x) (valid for n > 
no(£)) can be given uniformly for a? € [-1 + e, -e] U [e, 1 — e] for an arbitrary but 
fixed £, 0 < e < 1/2. The pathological behavior of the representation (45) at the 
point x = 0 disappears in the special case 7fc = 0 for every k (e.g., for the Jacobi 
polynomials with |a| = |/3|, see §3.2). In this case, in fact, x — 0 is the only singular 
point of the transformation an{x) given by (22), so that we can take v(x) = -1 for 
every x ^ 0. However, Vn(x) in (28) is defined now also at x = 0, and En(x) turns out 
to be continuous in any compact subset K of (-1,1) for n > no (if) > — 1. The latter 
statement is nontrivial and can be proved on the basis of the uniform convergence of 
the series (2.11) and (2.16) in [22] defining the error term e+(x) (cf. (7)). Moreover, 
the estimate for En(x) can be given uniformly in K. Then, the representation (45) 
holds at x = 0 when jk = 0, and uniformly in every compact subset of (—1,1). In 
fact, //(#) > 0 is continuous in (-1,1) as well as x(x) (cf- Theorem 3 and Corollary 
5 in [14]). 

3.2. Jacobi polynomials. The case of Jacobi polynomials, which falls in the sub- 
class for which (36) holds, will be worked out in detail in this section. It is less 
cumbersome to derive this result rather than depending on (45) by comparing (24) 
with the well-known Darboux-type formula for the monic Jacobi polynomials, 

P^>(cos^) = /^P^(W),        O<0<7r, (47) 

f<a.n_n\T{-Ji-)T{    2    J r(a + /? + l + n) 
Jn      •    2" r(a + /3 + l) r(£±|±l+n)r(2±f±2+„)' 
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so that 

P^(cos0) = (7m)-1/2 fsin^ 
-a-1/2 

X cos n + 
a + /5 + l 

0 cos- 

^     2 

-0-1/2 

an + 0(n-3/2),       (49) 

cf. [6, p. 215], [25, (8.21.10), p. 196]. 
The monic Jacobi polynomials satisfy equation (18) with 

 P2-a2  
(2n + a + 0 + 2)(2n + a + (3 + 4)' 7n ~(a./8) 

in 

r   =rfa./8)=     4(n + l)(n + a + l)(n + /3 + l)(n + a + ^ + l) 
"      n (2n + a + ^ + l)(2n + a + /3 + 2)2(2n + a + /3 + 3)' 

(50) 

for n > 1 (cf. [6, Appendix, p. 220] and [26, p. 271]). One can easily check that they 
belong to the Blumenthal-Nevai subclass for which (21) and (36) hold. Here, 7 = 0 
and 5 = 1/4, and hence (21), (23) are satisfied for all x E (-1,1) \ {0}. The quantity 
Vn in (10) becomes 

V^ix) = 
Vi=: k=n 

N(a,0) 
(X) 

D ("./») (s) 
(51) 

where N^ \x) and D^^\x) are polynomials in k of the 4-th and 6-th degree, 
respectively; the key condition (23) is equivalent to the convergence of the series in 

(51). The explicit form of iV^ {%) is useful in estimating the error term, En (x), in the 
asymptotic representation (cf. (27), (28)) and is reported in Appendix 2. Observe that 
the series in (51) clearly converges for all x ^ 0 since N)^^\x)/D)^ \X) = 0{k~2). 

The evaluation of N^ (x) is rather cumbersome and has been accomplished by using 
the symbolic computational device Mathematica [30]. Therefore, for the monic Jacobi 
polynomials, the asymptotic representation (24) holds, that is 

o-n+iz+l  / n-2 \ 
■P^«(x) = A(x)-——( H (x - 7^)    [cos (ne + TJO*)) + En(x)],        (52) 

for n > no(x). Here 0 = 0(x) is defined by (26) with 7 = 0 and 5 = 1/4. Moreover, 

u = u(x) = — 1 when x ^ % ^0T every &• Otherwise, if x = 7m for some m, 
z/(a:) = ra + 1. 

Now, 
n-2 

IK* •7^) 
fc=i/ 

nfc^{^[4fc2 + 4fc(a + j3 + 3) + (a + /3 + 2)(a + /? + 4)] + a2 - /32} 

4"-c+i) n^,2 (*+^F) n^,2 (*+^F) 
(53) 

and, using formulae (89.1.1), (89.2.1) of [12, p. 482] to express the finite products in 
(53), we get from the representation (52) 

p}i
a^(x) = A(x)2 

x [cos (nO + r](x)) + En(x)] 

a+f3+4 

x)       (g     ' T(w+ + v)r(w-+u) 

+ 
') 

(54) 
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where we have set, for short, 

»*:= Sift'* »{„[,-(„•-•)]}•/». 
2x 

(55) 

(Note, incidentally, that formula (89.2.1) of [12, p. 482] contains a mistake: On the 
right-hand side, xn must replace x2n.) Observe that T(w'h-{-u)r(w~ +z/) is always real, 
since w+ and w~ are necessarily conjugate to each other whenever they are complex. 

Since, by Stirling's formula, /n '^  in (48) has the asymptotics 

^^      r(a+ /g + i)    V  asn-*00' 
by multiplying (47) and (54) by 2n and subtracting, we get 

r^^cagg) 1/2 0_1/2 

VZT(a + e + l)      r2J (C0S2j 

[(. + . 

(56) 

X cos "T— J*-2    a+2 

■^)(i)      I form •v»\n    ^ / >• / (sgna?) 
r(^+ + v)T(w- + i/) 

x cos [n9 + ?7(x)] = o(l) (57) 

as n —♦ oo. Considering separately the two cases, x > 0 and re < 0, we obtain from 
(57), (26), recalling that ri(x) is defined mod TT (cf. [22]), 

*4(cos 0) 

rj (cos (j)) = 

_ i r(H±f±i)r(g±f±3)        !>++ ,)!>- + ,) 
VSF        r(a + /3 + l) r(a±e + 1+.I/)r(«|g + 2 + ^ 

XV2C0SV       \Sin2) (C0S2J ' (58) 

-j9!>-|fa + -J   sgn(cos0). (59) 
Q; + /3 + : 

Therefore, we get, finally, from (54) 

r(*±f±i)r(^)      ,    ty-w 
^      (cos^-^- r(a + /3+1) 

2     ^in
2>| (-1) 

-/3-1/2 

+ (sgn(cos 4>))nEn(cos ^) i, (60) 

for 0 e (0,7r) \ {7r/2} and for n > no (cos 0) > i/(cos0). Here 

l,0) for all fc, 

' for some m, 

and no(x) is the smallest index for which Vn      (x) < 1, Vn      (x) being given by (51). 

|_m + l   if a; = 7^ ^ 
(61) 
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Consider the case of (monic) ultraspherical polynomials Pn      (#). Here Remark 
3.1 applies, and after a little algebra we obtain explicitly 

V^a){x) 
s/Y^x* Ek (a.a) |l-4a2| 

2N/r^2(2n + 2a + 1)' 
-1< x< 1, 

(62) 

cf. (28). Correspondingly, we can estimate the absolute error in (60), say |fn(a;)|, as 

1 r(a + |)r(o + i)   2-n+a+1/2 

\Sn(x)\ = -= 

< 

v^F        r(2a + l) (i_x2)K«+l) 

1  r (a + i) r(a + 1)     2-"+ffl+1/2 

l^nWI 

VSF r(2a + l) (i-aj2)Ka+i) 

|1-4Q!
2
| 

2\/r^x2(2n + 2o + 1) - |1 - 4a2|' 

Also, the index no(x), defined in (11), can be given explicitly as 

-2a\ 
no(x) = a + 

2j\2VT 
-1 + 1 

(63) 

(64) 

where the square brackets denote taking the integral part. 
Going back to the usual (non-monic) ultraspherical polynomials, for the purpose 

of comparison with known formulae, one discovers that our representation (60) for 
f3 = a leads to formula (8.21.14) of [25, p. 197] at the lowest order, which is the 
generalization of the Darboux formula for Legendre polynomials to the ultraspherical 
case. In doing that, both the factor fn in (48) and the appropriate normalization 
of ultraspherical polynomials (the factor between Pn (x) and Pn (x), cf. (4.7.1) of 
[25, p. 80]) have been taken into account, and the duplication formula for the gamma 
function has been used. Moreover, in (8.21.14) of [25, p. 197] with p = 1, i.e., 

2    r(A + n)        1   ^cos[(n + A)^-A|]+^),        ^(0,.), 

(65) 

pWCcos^H r(A)       n!       (2sin(/>); 

the absolute error, |Sn  |, can be precisely estimated as 

|?7(A)|= 

n\ 
r(A + n) 

r(A) \Sn\ 

<2 
|A(1-A)| |r(A + n) 

|r(A)| n!        (2sin0)* (n + A)sin0 - |A(1 - A)!' (66) 

cf. (63). Obviously, this is useful for computational purposes for large n only when 

A < 2 since Eh   is infinitesimal as n —» oo for such values of A. 
As for the comparison with the available results in the literature for general Jacobi 

polynomials, we observe what follows: 

Remark 3.2. When a > —1/2, a—/3 > —4, a+/3 > —1, andx £ [0,1], an asymptotic 
formula with a bound can be found for Pn (x) in [9]. By the reflection formula, 
■Pn (x) = (—l)nPn,a\—x), [25, (4.1.3)], one then can obtain a representation (with 
a bound) valid in [-1,0], at the price of restricting a, (3 to (3 > -1/2, fj — a > -4, and 
a+(3 > — 1. Consequently, a representation (with a bound) valid on the whole interval 
[—1,1] holds when both restrictions above are valid, namely a,/3 > —1/2, \a — (3\ < 4, 
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and a + (3 > —1. Note that such conditions reduce to A > 0 for the ultraspherical 
polynomials. In [2], similar results have been obtained under the stronger limitations 
—1/2 < a, (3 < 1/2; Hahn [11] gave different asymptotic expansions with bounds, 
under the same restrictions. In [2] the cases a = ±1/2 and/or (3 = ±1/2 also were 
included. 

Even though, when these formulae can be applied they perform better than ours, 
our estimates hold for any choice of the parameters (in particular, for a and/or /? < 
—1/2), and for x G (—1,1) \ {0}. In the ultraspherical case, our results hold on the 
whole interval (—1,1), even for A < 0. It seems, therefore, that the present results 
contribute to the completion of the asymptotic theory for the Jacobi polynomials in 
the orthogonality interval. 

In view of Remark 3.2, it is worthwhile to give more explicit estimates for Vn (x) 
in (51), which might be useful also for computational purposes. After a little algebra, 
we obtain (see Appendix 2 and (51)) 

 fc4|Etoasfoa>/3)fcs~4l  NW) (x) 

Df'ft (x)       4v/r^r \x - jia'0) | \x - 7^f > | (2k + a + 0 + 2) 

x „,    ,n, 7; T>    & > "(x). (67) 

Noting that, for fc > n and a + /? > -2, 2k + a + /? > 2A;(1 - 1/ra), 2fc + a + /? + l> 
2k(\ - l/2n), and 2k + a + /? + j > 2k for j = 2, 3, 4, we get 

V^Hx) < 

(Eto Ma,/3)M-4) x2 + (Eto Ma,/3)M-4) \x\ + E-=o M^Dk"4 

64vT^2(l - l/n)(l - l/2n) 

E n > max {2, u(x)}. (68) 
t^^x-^\\x-^\' 

To display dependence on n, we write the final pointwise estimate for x G (—1,1) \ {0} 
as 

where 

(69) 

U=0 2=0 

^•«(x)        (70) 

and 

^•«(x) := { 

((x - -y^rKx - 7iajf )-1 if \0\ > M, x > 7^), 
orif|/3|<H)a;<7iajf, 

,-2 if |/3| > |a|, x < 0, 
or if |/?| < |a|, x > 0, 

(71) 
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is an estimate of \x - T^'^TV - 7*-?I"1 for A: > n > 2. Note that 

= i(li-2(^-^)i + ?!2!^!!). (72) 

Clearly, the restrictions shown in the first relation of (71) imply that, for each fixed 

x, n should be chosen suitably large, in view of the fact that 7n ~ const/n2 as 

n —» oo, and the sign of 7n is the same as |/3| - |a|. Recall that an additional 
restriction on n could be required in (60) (cf. (27)) to ensure that Vn      (x) < 1. 

Uniform estimates also can be derived starting from (69)-(71). Let e > 0, 0 < 77 < 
1 — e. Then, when x e [77,1 - e], 

^.W^J^Jf^-M^,    Vn>max{2>Mi}.    Mi := min{n : 7^f < *      (73) 
71^(2 - e) 

when a; G [—1 + e, —77], 

yi^)(a;)<^4J^,    Vn>maX{2,^2},    M2 := min{n : 7^f > -rj}.   (74) 
n >/e(2 - e) 

In order to estimate the error term En in (60) uniformly through (27), (73) and (74), 
n should be chosen so large that Vn (x) < 1 uniformly in x in the appropriate 
interval. 

We observe in closing that our estimates can be generalized by minor modifications 
in (68) to the case of aZZthe real values of a and (3 not included in (68) (i.e., a+(3 < — 2). 
In fact, our theory as well as the basic formula (8.21.8) in Szego's book are free from 
restrictions on a and /3. When a+ (3 < —2, it suffices to replace (1 — l/n)(l — l/2n) in 
the right-hand side of (68) with (l-\a+(3\/2n)6, since 2k+a+(3+j > 2fc(l-|a+/3|/2n), 
under the additional restriction n > \a-\- 0\/2. 

3.3. Second-order discrete WKB approximations. It is possible to improve the 
discrete Liouville-Green (WKB) theory developed by the authors, obtaining higher- 
order approximations, by splitting e^ as £„ = f^ -f e^, so that 

y± = pn(l + £ + e*;)e*ine, (75) 

cf. (7) and (13), with 

fi = 0(Vn),    et = o(Vn),    n^oo, (76) 

where ^ is explicitly representable and e^ can be estimated. In fact, in view of the 
(discrete) Liouville-Neumann expansion of the error term in (7) [22, 23], we have 

et = ht(n) + rf(n),    |r±(n)| < VzV'    s = l,2,...,    n>no,        (77) 

where hf (n) = O(V^) is recursively defined by 

5,(1 + ^0')), kiln) mo.    ^.W.-^j^-^j;   ,-(_) 
j=n 

8 = 0,1,2,.... (78) 
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In what follows, ^ in (75) will be identified with hf(n) or with its "dominant part" 
with respect to Vn (as n -+ oo). This approach can be pursued for s = 1 (second- 
order approximation) exploiting suitable assumptions on the asymptotic behavior of 
the sequence gn^ while the case s > 1 seems to be much more difficult to treat explicitly. 
Recall that, when gn e R, e* and s~ as well as hf(n) and hj(n) are conjugate; in the 
applications below, £+ and £~ also turn out to be conjugate, and so do e+ and e~. 

Considering the general real solution to (1) under the assumptions (15) and (16), 

Yn = anp^ae^'il + & + e+) + c2e-
in6(l + C + c")] (79) 

where C2 = cT, we obtain, after simple manipulations, 

Yn = Aanpn[cos {nO + rj) + |f+| cos (nfl + ry + arg^+) + En) (80) 

where 

En := |e+| cos (n(9 + 77 + arge+). (81) 

The latter shows, in particular, that En = 0(1^) in view of (76). 
As a first example, suppose that in (5) 

gn = cn-p + 0(n"9),    cGR,    n > -1, (82) 

where q > p > 1. Prom (78) with 5 = 0 and (82), we obtain 

+ f;o(r')-(^)'"°i;(^)'o(r')}. (83) 
j=n ^        ^ J=n   ^        ^ ' 

Using well-known asymptotic results for the remainder of the power series defining 
the Riemann ("-function (for the first and the third terms inside parentheses), and of 
the power series defining the generalized "polylogarithm" on the boundary of the unit 
disc (for the second and the fourth terms, since |A+/A~| = 1, A+/A~ ^ 1) [20, Ch.8], 
we get 

J. c_ 
2A+(A+-1) p-1 

and thus, by (77), 

j-p 

h^n) = 2A+a+-l)^l"1"P + 0 (--min{^-1}) . (84) 

Finally, by (80), 

Yn = Aanpn ( cos (n6 + 77) + 
2(p-l)y/a(a + l) 

x n1^ sin [(n-1)19 + 77] +^n),        n > no, (86) 

with no defined in (11), and 

En = O (n- min {p'q-^ 2p-2}) . (87) 

We stress that all O-terms in the formulae above could be explicitly estimated, provided 
that an estimate for the constant implied by the O-symbol in (82) is known. 

As an application to the Blumenthal-Nevai polynomials, consider for simplicity the 
subclass 7fc = 0 and 5k = 1/4 + cn~p + 0(n~9), q > p > 1 (cf. Remark 3.1); such a 
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class satisfies (36) and includes, in particular, the ultraspherical polynomials (p = 2, 
q = 3). Therefore, the representation (45) can be improved, in this case, to 

-./sair-oWh"1/., 
"^"(.vCTw)   {-MM + xMl 

*     =nx-*c«i[{n-l)9(x)+x{x)\ 
2{p - 1) VT^5 

+ 0(n-min{p'<'-1'2p-2>)|,    xe(-l,l),    n>no(x).       (88) 

Even though the capital O-term in (88) could be estimated (as pointed out above), 
in the case of ultraspherical polynomials it is more convenient to choose a different 
splitting of the first-order error term: 

& :~ 2A+(A+ - 1) S*'    & - x2 [Sj     4J , (89) 

e+ -- 
1 ^ /\+\J~n+1 

2A+(A+-l)^3J V^- 

(91) 

(cf. (77), (78)) where 

(cf. (50)). Summing up the telescopic series in (89) explicitly, it follows that 

£+ = _£ i-4"2 I  m 
4y/T=xs(\x\+iy/T=xs)2n + 2a + l K    ' 

and 

l£l = Y,    arge+ = -^-|sgn(l-4a2) (93) 

(see (62) for the definition of Vn = V^a'a^). An estimate of e+, defined in (90), is 
obtained by summing by parts and using the telescopic property of ^2 {gj+i — 9j), 
after rather long but simple calculations. The result is 

, +| |l-4a2| + 3|2a + l|(2a + 3) 
|en' - 2(1 - X

2)(2n + 2a + l)(2n + 2a + 3) 

(l-4a2)2 1  .       . . 

2VT:^xs(2n + 2a + l)2^/^^xs(2n + 2a + l)-\l-4a^2\,        ~     W' 
(94) 

Finally, we have the second-order asymptotic representation for the non-monic ul- 
traspherical polynomials, Pn   (cos^), a = A — 1/2, 

+ 2(n + A)^i^ Sgn(C0S^ C0S [(n + A _ 1)4, - Xl. 
+ (sgn(cos <£))"£„},        </>e(0,7r), (95) 
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n > no(cos(/>), where 

\E I < |fi+l <    |A|(|1-A1+3(1 + A)) 
1   n1-1 nl- 2(n + A)(n + A + l)sin20 

A2(l - A)2 1  
+ (n + A)sin0 (n + A)sm0 - |A(1 - A)I" 

In closing, we stress that the representation (95) along with the bound (96) hold for 
all values of A > — 1, including the negative values, which case seems to be missing in 
the literature. 

Appendix 1 

As is known, a sequence Yn is called oscillatory if, for every N 6 N, there is an 
index m > N such that YmYm+i < 0, cf. [21]. Therefore, it suffices to show that the 
sequence in (12) is oscillatory on a suitable subsequence, say {rife}, whenever An has 
constant sign for n sufficiently large. 

Suppose first that An < 0 forn > // > no, for some fi € N. Then an has a constant 
sign for n > //, and the oscillatory character of Yn and that of cos (n6 + 77) + En is the 
same. We can show first that cos (n0 + rj) alternates in sign on a suitable subsequence. 
In fact, for each fixed value of 6 and 77, with 0 < 0 < 7r/2 (cf. (13)), there is at least 
one integer n^ such that 

2k7r-i2-_7r/A 2k7r - rj + 7r/4 
 g <nk< g  (97) 

for each k G N, since the length of such an interval is L = 7r/26 > 1. Moreover, 
clearly, any two consecutive intervals of this type do not overlap, so that choosing, 
e.g., the smallest value satisfying (97) in each interval, we get a subsequence {n^} on 
which cos (nkO -f 77) > l/\/2. 

Similarly, replacing 2k7r in (97) with (2/i+l)7r, we get a subsequence {n/J such that 
cos (nhO + 77) < —1/\/2. Prom these two subsequences another can be constructed, 
which we rename {n^}, such that cos (nkO + 77) alternates in sign and | cos (rikO + rj)\> 
1/V2. Therefore, for k sufficiently large, cos (nkO + 77) + Enk also alternates in sign 
and I cos (nk9 + v) + Enk \ > c> 0, for some constant c. 

If, finally, An > 0 for n > /x > no, for some fj, e N, the factor (—l)n deriving from 
the transformation an can be absorbed in the cos term by replacing 9 with 6 + TT (and 
En with (—l)nEn). The same conclusion then follows. 

Appendix 2 

The polynomials Nn (#), Dn^(x) in n appearing in (51) (which are also poly- 
nomials in a;, a, /?), can be evaluated with the help of symbolic computation, more 
precisely by using Mathematica [30]. In view of (67), we only need to consider 

4 

Nia'f3\x) = J£iak(x,a,P)nk (98) 

where 
2 

ak (x, a,/3):=J2 akj (a, l3)xj\        k = 0,..., 4, (99) 
i=o 
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aoo(a, /?) = -3a4 - 4a5 - a6 - 4a4/3 - 2a5/? + 6a2^2 + 8a302 + a4/?2 

+ Sa2^3 + 4a3/33 - 3/34 - 4a^4 + a2^4 - 4/35 - 2a/35 - ^6, 

aoi(a,i9) = -24a2 - 56a3 - 46a4 - 16a5 - 2a6 - 56a2/? - 92a3/? - 48a4/? 

- 8a5/? + 24/?2 + 56a/?2 - 32a3/?2 - 10a4/?2 + 56/?3 + 92a/?3 

+ 32a2/?3 + 46/?4 + 48a/?4 + 10a2/?4 + 16/?5 + 8a/?5 + 2/?6, 

ao2(a, /?) = 16a + 20a2 - 24a3 - 39a4 - 12a5 - a6 + 16/3 + 40a/? - 8a2/? 

- 76a3/? - 44a4/? - 6a5^ + 20/?2 - 8a/?2 - 74a2/?2 - 72a3/?2 

- 15a4/?2 - 24/?3 - 76a/?3 - 72a2/?3 - 20a3/?3 - 39/3* 

- 44a/?4 - 15a2/?4 - 12/?5 - 6a/?5 - /?6, (100) 

aio(a,/?) = -8a4 - 4a5 - 4a4/? + 16a2/?2 + 8a3/?2 + 8a2/?3 - 8/?4 - 4a/?4 - 4/?5, 

oii(a,/?) = -112a2 - 184a3 - 96a4 - 16a5 - 184a2/? - 192a3/? - 48a4/? 

+ 112/?2 + 184a/?2 - 32a3/?2 + 184/?3 + 192a^3 + 32a2/?3 + 96/?4 

+ 48a/?4 +16/?5, 

012 (a, /?) = 32 + 80a - 16a2 - 152a3 - 88a4 - 12a5 + 80/? + 96a/? - 136a2/? 

- 192a3/? - 44a4
/3 - 16^2 - 136a/?2 - 208a2/?2 - 72a3/?2 - 152/?3 

- 192a/?3 - 72a2/?3 - 88/?4 - 44a/?4 - 12/?5, 
(101) 

Ma, /?) = -4a4 + 8a2/?2 - 4/?4, 

a2i (a, P) = -184a2 - 192a3 - 48a4 - 192a2/? - 96a3/? + 18402 + 192a/?2 

+ 192/?3 + 96a/?3 + 48/?4, 

022(0;, /?) = 80 + 96a - 136a2 - 192a3 - 44a4 + 96/? + 48a/? - 192a2/? 

- 96a3/? - 136/?2 - 192a/?2 - 104a2/?2 - 192/?3 - 96a/?3 - 44/?4, 
(102) 

030 (a, /?) = 0,    031 (a, /?) = - 128a2 - 64a3 - 64a2/? + 128/?2 + 64a/?2 + 64/?3, 

032 (a, /?) = 64 + 32a - 128a2 - 64a3 + 32/? - 64a2/? - 128/?2 - 64a/?2 - 64/?3, 
(103) 

040 (a, /?) = 0,    041 (a, /?) = -32a2 + 32/?2,        042 (a, /?) = 16 - 32a2 - 32/S
2. 
(104) 
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