
Methods and Applications of Analysis © 1996 International Press 
3 (4) 1996, pp. 447-456 ISSN 1073-2772 

INTEGRAL EQUATIONS FOR SPECIAL FUNCTIONS OF HEUN CLASS 

A. Ya. Kazakov and S. Yu. Slavyanov 

ABSTRACT. Integral equations equivalent to boundary problems for the differen- 
tial equations of Heun class are studied. A new method of their derivation is 
proposed which is not as general as the known ones but is efficient in creating 
integral equations of a certain type. A number of new integral equations are ob- 
tained, some related to the double-confluent Heun equation. Formal calculations 
at the first stage are followed by rigorous formulations. 

1. Introduction 

The well-known special functions of mathematical physics, Bessel functions, hyper- 
geometric functions, etc., are defined as solutions of linear ordinary second-order dif- 
ferential equations with polynomial coefficients. Below we call any solution of such 
equations a special function. The special functions can be expressed by means of in- 
tegral representations in terms of elementary functions. These representations are of 
particular importance for further study of additional characteristics of these functions: 
recurrence relations, asymptotic expansions, etc. 

There is no hope of finding such representations for all special functions in our 
more general sense; however, there exist more sophisticated integral relations and 
integral equations which do succeed. Our main goal in this article is to deduce several 
simple integral equations for some special functions, namely of Heun type and the 
corresponding confluent cases [4, 10]. These functions usually arise as eigenfunctions 
of an eigenvalue problem associated with the initial differential equation. 

Several of our results are known. The main tools used previously for their derivation 
are either utilization of some integral transforms [6] or separation of variables in an 
auxiliary partial differential equation (pde) [1, 2, 5, 7-9]. Our approach is based on 
the polynomial structure of the original equation, and it permits us to obtain new 
relations as well as to give a new derivation of the old ones in a unique manner. 
On the other hand, it does not give the large variety of relations depending on an 
additional parameter obtained by separation of variables of the mentioned pde. In 
fact these two methods are complementary to each other. 

2. Major definitions 

By a Heun equation we mean a second-order linear homogeneous differential equation 
with four regular singular points. With the help of a linear transformation of the 
independent variable these points can be located at zi = 0, Z2 = 1, £3 = a, Z4 = 00 
with the arbitrary parameter a. A simple transformation of the dependent variable 
may further convert the given equation to the so-called canonical form [4] 

40)(a,a,/3,7,5,gM^) = 0, (1) 
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4°) = z(z - l)(z - a)D2 + (y(z - i)(z - a) + 5z(z - a) 

+ (a + /? + l-7- S)z(z - 1))D + (a(3z + q), (2) 

where D = ^. Here a, a, /?, 7, 5, q may be arbitrary (generally complex) parameters. 
However, we shall pay major attention to the case when they are real and, moreover, 
satisfy additional conditions. 

In the vicinity of each regular singularity Zj of equation (2), there exist two solutions 
ym(zj,z)i rn^ 1, 2 determined by the behaviour at the singularity: 

tfite,z) = {z- z^Xl + 0{z - z-)), 

y2(Zj,z) = (z- Zj)P^)(l + 0{z- Zj)),        i = l,2,3, (3) 

2/2(oo,z) = z-^^)(l + 0(^-1)). (4) 

They are called Frobenius solutions. The numbers Pm(zj) (m = 1, 2; j = 1, 2, 3) are 
called characteristic exponents at the singularity Zj. In case of the canonical form of 
the Heun equation, pi(zj) = 0. The numbers pi(oo), ^2(00) are called characteristic 
exponents at infinity. Formulas (3)-(4) must be modified in the case when the dif- 
ference pi(zj) — P2(zj) is an integer. The study presented below also needs special 
care in this case; this is not always stressed. Characteristic exponents P2(ZJ), jf = 1, 
2, 3, pi(oo), £2(00) are easily expressed explicitly in terms of parameters a, /?, 7, 5, 
and do not depend upon the parameter #, which is called the accessory parameter of 
equations (l)-(2): 

P2(0) = l-7,    P2(l) = l-ff,    P2(a)=7 + 5-a-(3, 

pi(oo) = a,    p2(oo) = f3. (5) 

We suppose that PI(ZJ), p2(zj) are real and 

P2(*j)<0,        j = 1,2,3, (6) 

which implies certain restrictions on a, /3, 7, 5. In addition to the operator Li , the 
formally adjoint operator Lz     can be defined by 

4°)* = £>2z(2 -!)(*- a) - Z>(7(* - l)(z - a) + fo(z - a) 

+ (a + /3 + l-7- (J)«(^ - 1)) + a/3z + g 

= L(0)(a,2-a>2-i8,2«7,2-*,g), 

§ = q - 7a - S(a - 1) - a - /3 + 2a + 1. (7) 

Solutions corresponding to the equation 

(Lf)M*) = 0 (8) 
axe characterized by characteristic exponents Pm(zj)i which satisfy 

/9i(«i) = 0,    pS(*i) = -P2(zj),       3 = 1,2,3. (9) 

Confluent cases of the Heun equation arise when regular singular points coalesce so 
as to form irregular singular points [4]. The following equations can be distinguished 
by general values of the parameters. 

Firstly, the confluent Heun equation 

LPV = 0, 
41) = z{z - 1)D2 + (-pz(z - 1) + 7(z - 1) + Sz)D + (-paz + q),        (10) 
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is characterized by two regular singularities at zi = 0, zz = 1 and one irregular 
singularity at infinity. Once more Probenius solutions can be defined in the vicinities of 
regular singularities characterized by characteristic exponents pi(0) = 0, ^2(0) = 1—7, 
p1(l) = 0, P2(l) = 1 — 6. We suppose that 

P2(zi)<0,        j = l,2. (11) 

At infinity, other types of solutions, often called Thome solutions, can be defined. 
They are characterized by asymptotic behavior of the form 

Vm(z) - ^m(oo) exp(/Uoo)2),        rn = 1,2, (12) 

in appropriate sectors where the /3m(oo) (/?i(oo) = 0, #2 (00) = p) and am(oo) 
(ai(oo) = a, 0:2(00) = 7 + 5 — a) are called characteristic exponents of the second 
kind. We suppose that 

/?2(oo) < 0. (13) 

Secondly, we obtain the biconfluent Heun equation 

L^y = 0,    42) = zD2 + (-z2 -IJLZ + i)D + (-as + <?), (14) 

with one regular singularity at zero and one irregular singularity at infinity. Thome 
solutions at infinity are characterized by the asymptotics: 

VM ~ z-a^ exp hm(™>2 + /?m(oo)z) ,        m = 1,2, (15) 

with characteristic exponents of the second kind am(oo) (ai(oo) = a, 02(00) = 1 + 
7 - a), /3m(oo) (/3i(oo) = 0, faioo) = ji), and 7m(oo) (71(00) = 0, 72(00) = 1). 

The so-called double-confluent Heun equation can be presented in the form 

Lf^y = 0,    43) = z2D2 + {-z2 + TZ + v)D-az + q (16) 

with two irregular singularities: one at zero and the other at infinity. At infinity, 
Thome solutions resemble (12), and near zero we have 

yrn(z)~Z«rn(0)exp^r^y      m = 1,2, (17) 

with /3i(0) = 0, ft(0) = i/, ai(0) = 0, and 02(0) = 2 - r. 
Finally, the triconfluent Heun equation is 

L^y = 0,    L^ =D2 + (-z2 - a)D -az + q. (18) 

Equation (18) is characterized by only one irregular singularity located at infinity, 
which appears as a result of confluence of three regular singularities. Thome solutions 
at infinity are characterized by the asymptotic behavior: 

yM ~ ,-(~> exp (^! + 2^ + ^(00),) ,        m = 1,2, (19) 

with characteristic exponents of the second kind am(oo) (ai(oo) = a, 02(00) = 2 — 0) 
An(00) (/3i(oo) = 0, /?2(oo) = a-,), 7m(oo) (71(00) = 72(00) = 0,), and 5m(oo) 
(5i(oo) = 0, ^2(00) = 1). We discuss this equation only for completeness since there 
is no integral equation of Predholm type related to this equation. 

Besides the confluent equations listed above, several additional equations can be 
studied. They arise by means of a slightly modified confluent process. At first, one of 
the regular singularities Zj by specialization of parameters is reduced to an elementary 
singularity for which p2(zj) = 1/2. Further irregular singularities appear as a result of 
the confluence process with participation of this elementary point. With the help of 
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such procedures, we get four more equations of Heun type which, as far as we know, 
have no conventional names: 

L^y(z) = 0, 45) = *(* - 1)£>2 + (7(-z - 1) + Sz)D - k2z + q, (20) 

L^y(z)=0, L^=zD2+1D + {-z2 + fz + q), (21) 

L^y{z) = 0, LP = z2D'2 + {pz -uj)D-z + q, (22) 

LWy(z) = 0, LM = D2 + (-z3 + fz + q). (23) 

Equations (1), (10), (14), (16), (18), (20)-(23) constitute an essential Heun class of 
equations in the sense that their derivation is based not on simple substitution but 
on a certain limiting process. All of these equations may be presented in general as 
follows: 

Ly = 0,    L = R(z)D2 + P(z)D + Q(z) (24) 

with different polynomials l?(z), P(z)^ and Q(z), all of them being not higher than 
of the third degree. Among the coefficients of these polynomials, an exceptional role 
is played by the accessory parameter g, which does not influence the characteristic 
exponents at the singularities. Taking this parameter as a spectral one, we can turn 
equation (24) by the transformation 

y(z) = R1/2 exp (- J ^dz^j ,       w(z) = G(z)w(z), (25) 

into the self-adjoint form 

DR(z)Dw(z) + (Q(z) + q)w(z) = 0 (26) 

where 

Q{*) = ¥^-£^- + Q-* (27) 

Taking the enumerated operators 14 , j = 0,... , 8, we transform them by means 
of (24) to self-adjoint operators Afi   , 

Mj» = [G^iz)}-1^^ - q - Mp, (28) 

corresponding to the equation 

(Mp+q)w(z)=0,        j = 0,...,8. (29) 

The functions G^ (z) can be expressed either in terms of the parameters of the 
original equation or in terms of characteristic exponents. The second possibility looks 
more representative. For instance, we have 

G^(z) = zp*M/2(l - z)P^'2{z - a)^'2, (30) 

GV>{z) = z»<W20- - «)pa(1)/2exp(^2)£), (31) 

G(2)(z) = zM0)/2exp(^2}l + AHi), (32) 

GV\z) = *»«»/* eJ M&L + Ml). (33) 
\      2 2z   J 

Functions G^ (z) relating to operators (20)-(23) are discussed below. 
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3. Formal computations 

In this section, we shall obtain the major results of the article on a formal level. We 
seek an integral relation of the form 

y(z) = / i4(*,tMt)dt = Av (34) 
Jc 

where y(z) is a solution of equation (24) and v(t) is a solution of the adjoint equations 
and we check that some formal commutation rule holds. To be rigorous, we have to 
check in addition that 

(i) non-integral terms arising from integration by parts vanish, 
(ii) the functions y(z), v(z) and the kernels belong to the proper spaces of functions, 

(iii) the required behavior at singularities is reproduced by (34), and 
(iv) all integrals converge. 
These additional requirements imply certain conditions for the parameters of the 

initial equation which for simplicity have been partly formulated above. The contour 
of integration is supposed to be an interval [Ti, T2] on the real axis. 

Lemma 1. Suppose that (34) holds and that the function A(z,t) is a solution of the 
pde 

(Lz-Lt)A(z,t) = 0. (35) 

Let v(t) be a proper solution of L^v = 0. Then y(z) is a proper solution of (24). 

The proof of this lemma, which is well-known, follows from formal computations 
which neglect the terms arising from integration by parts. 

Lzy(z) = I v(t)LzA(z,t)dt = f v(t)(Lz - Lt)A(zit)dt+ f A(z,t)L*v(t)dt.   (36) 

One also can find solutions of (35) by the method of separation of variables. In this 
article, we present the simplest solutions of (35). 

Lemma 2. Suppose that 

A{z,t) = A{0,        Z = z + t. (37) 

Then the operators Lz   — L^, i = 1,... , 7, may be represented as 

LW - L^ = (Z- *)((£ - 1)1?! + (-p(£ - 1) + 7 + S)Dt - pa), (38) 

42) - 42) = (z- t)(Dl - (/i + £)Ar - «), (39) 

43> - Lj3) = (z - i)(££>f + (r - QDi - a), (40) 

44>-L(4) = -(z-*)(^ + a), (41) 

L?) - Lj6> = (z- tm - l)£f + (7 + *)J>€ " k2), (42) 

46) - L® = {z-t)(Dl -£ + /), (43) 

Lf) - IJP = (z - mn2 + pDs - 1). (44) 

All these equations are proved by direct substitution. 

Lemma 3. Suppose that the kernel A(z^ t) is of the form 

A(z,t) = A(ri),        fi = zt. (45) 
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Then the operators Ly — L^, i = 0,... , 3,5,7, may be represented as 

L(o) _ L(0) = {z_ tMr] _ a)D2 + {(a + /3 + 1)r} _ ai)Dri + Q/3)) (46) 

LW - L?> = (z -t)(r,D2
v + (-pi, + ^Dr, - pa), (47) 

Lf - L™ = -(z - t)(r,D2
v + (7? + 7)0, + a), (48) 

43> - it
(3) = -(z - *)((i7 + i>)Dv + a), (49) 

ii5) - if = (* - *)(i7^ + 7A, - A;2), (50) 

^-^^(z-^D,-!). (51) 

In both Lemma 2 and Lemma 3 the kernel satisfies an ordinary differential equation 
of hypergeometric type or simpler type. Now we turn to equations (29) and to the 
boundary-value problems associated with these self-adjoint forms. In this case, we 
may seek, instead of an integral relation, an integral equation of Predholm type 

w(z) = A / 2 K(z, t) w(t) dt (52) 

It follows from (25), (28), and (34) that 

K(z,t) = Aiz^lGiz)}-1^)}-1. (53) 

Suppose that the set of eigenfunctions of (52) is the same as the set of eigenfunc- 
tions originated by one of equations (29) on the interval [Ti, T2]. Then the following 
necessary condition, arising from integration by parts in (36), 

R(t) [w(t)DtK(z, t) - K{z, t)Dtw(t)] ^ = 0, (54) 

should be satisfied. Since equation (54) depends on z as a parameter, the points Ti 
and T2 appear to be (if there is no additional symmetry) singularities of the initial 
equation (29). 

4. Rigorous formulations 

In this section, several theorems are formulated which are by no means exhaustive. 
The proof of all of them is based on the standard facts about the asymptotic behav- 
ior at singularities of solutions of the equations being considered, standard theorems 
on convergence of integrals depending on a parameter, and properly checking condi- 
tion (36). 

Theorem 1. Suppose that condition (6) for equation (1) is satisfied, and the value of 
a is negative.  Then the boundary conditions 

\w(0)\ < 00,        Hl)| < 00 (55) 

lead for corresponding equation (29) to a self-adjoint boundary-value problem on the 
interval [0,1] with the infinite set of eigenfunctions denoted by {wn(z)} and eigenvalues 
{qn}- The set of eigenfunctions serves also as a complete set of eigenfunctions of the 
integral equation of Predholm type with continuous symmetrical kernel 

w(z) = X f [G^\z)G^(t)]~1F(a,^^^w(t)dt (56) 

where F(a,P,j,x) is the standard hypergeometric function, and the function G^(z) 
is defined by (30). 
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This result is a special case of the integral equation obtained in [4]. 
Integral equations associated with the confluent Heun equation differ first by the 

kernel and second by the interval of integration. 

Theorem 2. Suppose that characteristic exponents P2(zj) and ^2(00) for the equation 
(10) are chosen as above. Then the boundary conditions 

|^(0)| < 00,        \w{l)\ < 00 (57) 

lead for the corresponding equation (29) to a self-adjoint boundary-value problem, the 
eigenfunctions wn(z) of which are the same as the eigenfunctions of the two integral 
equations 

w(z) = A f [G^)(z)Gw(t)]"'19(a9%pzt)w(t)dt (58) 
Jo 

and 

w(z)=fjL f [G^)(z)Gw(t)]'19(a9j + S9p(z + t-l))w(t)dt (59) 

where G^(z) is defined by (31) and $ is the standard confluent hypergeometric func- 
tion. 

Two other integral equations appear when the interval [0,1] is replaced by [l,oo] 
and the function $ is replaced with the function ^ — the other standard solution of 
the confluent hypergeometric equation [3]. Integral equations related to the special 
case of the confluent Heun equation have been studied in [2]. 

For the biconfluent Heun equation, we obtain only one integral equation relating 
to a given interval. 

Theorem 3. Suppose that G^(z) is the function which transforms equation (14) to 
the self-adjoint form, and wn(z) satisfies the conditions 

\w(o)\ < 00,        |w(cx))| < 00. (60) 

Then the eigenfunctions wn(z) are also eigenfunctions of the integral equation 

w(z) = A jT^WGWWj-^d, i; iX + i-'t)a) w®* (61) 

The other integral equation is associated with the boundary-value problem on the 
interval [—00,0]. Instead of examining this case, it is possible to perform the trans- 
formation z i-» — z in the initial equation. Equation (62) is a simplification of the 
equation obtained in [8]. 

The use of Lemma 3 does not lead to an integral equation of Predholm type in case 
of arbitrary coefficients in (14) since (54) holds only if the value a is a nonpositive 
integer. But for this latter special case, we get an integral equation of the form 

W(Z) = A[   [G2(z)G2(t)]~1^(al7;-zt)w(t)dt (62) 
Jo 

where ^ is the confluent hypergeometric function of the second kind. 
In the case of the double-confluent Heun equation, two types of kernels may be 

used. 
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Theorem 4. Suppose that v > 0. The boundary conditions (60) lead to a set of 
eigenfunctions for the self-adjoint form of the double-confluent Heun equation, which 
are also eigenfunctions of the integral equations 

and 

w 

w 

/»oo 

(z) = A /    [G^(z)G^{t)]~1(zt + u)-aw(t)dt (63) 

(*) = A /    [G^\z)G^\t)Y1^{pL,T,z + t)w{t)dt. (64) 

As far as we know, these equations are new. 
In the case of the triconfluent Heun equation, we get no integral equation of Fred- 

holm type related to the corresponding differential boundary problem. The same 
statement is valid for equation (23). 

Theorem 5. Suppose that 7 — 1 > 0. The boundary conditions (60) for the self- 
adjoint form of equation (21) lead to eigenfunctions wn(z) which satisfy the integral 
equation 

poo 
w(z) = A /    Crf)^-1)/2 Ai(z + t-f) w(z) dt (65) 

where Ai(x) is the standard Airy function, namely decreasing at +00 and solving the 
equation y"{z) = zy(z). 

Similar results can be found in [1]. 

Theorem 6. Suppose that u < 0. Boundary conditions (60) lead for the self-adjoint 
form of equation (22) to a boundary-value problem on the interval [0,00) whose eigen- 
functions satisfy the two integral equations 

W(z) = x£(zty^exv(2{l/;+1/t))x(z + t)Mt)dt (66) 

and 

where 

"(^r^'^w^M^)"*1*   (67) 

*(») = »<1-»>'2s:,_„(2%/;) (68) 

and Kpfa) is the decreasing at +00 solution of the modified Bessel equation [3]. 

These equations are new. 
Our list of integral equations may be enlarged by several means. Firstly, some more 

equations can be deduced by our methods if certain parameters of the original differ- 
ential equation satisfy additional conditions. Secondly, we can test more sophisticated 
kernels such as A(z2 +12 + nzt). 

5. Proofs 

As written above, the proofs of our theorems can be performed in a unique manner 
by verifying the convergence of integrals and simple equalities.  For this reason, we 
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give only one proof for probably the most unusual integral equation (67). By simple 
substitution, the differential equation for the function w(z) is obtained from (22) as 

d   o d    , N     /    J
1      w[\- p/2)     p(l - p/2) \   , N     ,,     frk^ Kw=TzzTzw^+(-4?--hr1 +    2°+q-znz)=0- (69) 

The local behavior of the solutions of (69) is 

w (1)        _pu/zyp/2-l 
z->-\-0 = e (i + 0W), 

w 

w 

w 

(2)        _ 
z-++0 

.(3) 
^—f+OO 

(4) 
2—>-+oo 

= e-w/zz-p/2+1(l + 0(z)), 

e-^z-^^l + O^-1)), 

e^^/^l + O^-1)). (70) 

Under our assumption on the parameter a;, only solutions w^, w^ satisfy the bound- 
ary conditions (60). By setting Wronskian of these solutions to zero, we get the secular 
equation for eigenvalues qn. Standard theorems on the spectrum of singular differ- 
ential operators show that there is an infinite set of eigenvalues bounded from below 
satisfying qn —> oo as n —> oo. The asymptotic estimates (70) for eigenfunctions imply 
that for any z E [0, oo[, the integral in the right-hand side of (67) is absolutely and 
uniformly convergent and equals a function U(z) that is regular on the ray ]0, oo[. 
Estimates of the integral at small and large z show that this function satisfies the 
same asymptotic behavior at the end-points as the eigenfunctions of the differential 
operator functions wn(z). 

Now it is only necessary to prove that U(z) satisfies the same differential equation as 
w(z). It can be easily verified by direct differentiation that L^G = GK and K = K* 
where G(i) = t1~p/2exp(-a;/(2t)). The differential operator from (69) acting on the 
function U{z) on the left-hand side of (67) gives 

KzU(z) = iin\KxG-\z)exv(?£\  G'^w^dt 

LV m poo 

= W    G-'iz) 
Jo 

noo 

= 1*1    G-^z) 
Jo 

= nj~G-l{z) KtG-\t)exv(j^J 

^M?;j 

G-1 (*)«;(*)* 

= va-1{z)\#[w{t)^G-1{t)eq> 

w{t) dt 

G-^tJexpJ (f)-<r'W-p(S)^ 

+ /* p G-l{z) G-^tJexp^) Kt w(t) dt 

0 (71) 

All differentiations under the integral sign can be justified, and the non-integral terms 
vanish on the basis of asymptotic estimates of w(z) at the end-points (70). Since 
the function U(xz) satisfies the same boundary conditions as Wniz) and the same 
differential equation, it must be proportional to wn(z). The proportionality factor is, 
in fact, the eigenvalue pn. 
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The eigenvalue /in can be determined by 

Mn = \J   ^/2"1 exp (^) wn(t) dt (72) lim 
2->0 

zl-p/2expl-«\Wn{z) 
2z 
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