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AN OSCILLATORY DIFFERENTIAL EQUATION 

S. P. Hastings and J. B. McLeod 

ABSTRACT. The paper discusses the equation 

y" + e-x+y2y = Q 

and gives a complete discussion of the asymptotic behavior of solutions, showing 
in particular that there are both oscillating and non-oscillating solutions. 

1. Introduction 

In the context of a review of oscillatory and non-oscillatory equations, J. S. W. Wong 
has raised the following question: 

Is the equation 

y" + e-x+y2y = 0,        0 < x < oo, (1.1) 

oscillatory or non-oscillatory? 
The background to this question lies in a conjecture made by F. V. Atkinson in the 

early 80's and which appeared in print for the first time in [1]. This concerned the 
equation 

y" + 2/exp(|t/|m - x) = 0,        m > 0, 

and the conjecture was that this contains only non-oscillatory solutions if 0 < m < 2, 
but both oscillatory and non-oscillatory if m > 2. In [1] the conjecture was proved for 
0 < m < 2, and the current paper proves the conjecture for the critical case m = 2. 
We understand from J. S. W. Wong that he now has extended the ideas of the present 
paper to deal with m > 2 and thus completed the proof of the Atkinson conjecture. 

Here we show that the equation (1.1) possesses both oscillatory and non-oscillatory 
solutions, and we are able to go further by obtaining the complete asymptotic behavior, 
as x —► oo, of all solutions of the equation. In the remainder of this section, we describe 
heuristically what the situation is and state the precise theorems. In later sections we 
provide the rigorous proofs. 

If we multiply (1.1) by y' and integrate, we have 

^,2 + le-*+y2 + ^fX e-t+y2dt = const., (1.2) 

so that yf2 + e~x+y   is positive decreasing, and so is bounded. Thus, for any solution, 

y' is bounded, (1.3) 

y2 — x is bounded above, (1.4) 

/ 
e't+y2dt < oo. (1,5) 
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From (1.5) it is clear that y2 — x should be large and negative for most x as x —» oo, 
and (1.1) then suggests that yff is small so y, is essentially constant. Thus as x —► oo, 
we expect that the solution consists of straight line segments, each segment continuing 
until it comes close to the curve y2 = x, after which the solution "bounces back" onto 
another straight line segment. Whether the solution is oscillatory or not depends on 
whether these successive segments cross the line y = 0 or not. 

Computer studies of (1.1) show some solutions which oscillate initially, but the 
space between successive zeros of y increases rapidly. Hence it is unclear from these 
studies if the oscillations continue. However, these computer investigations, plus the 
obvious importance of the curve y2 = x, led us to make the change of variables 

u = #~1//22/,        v = x1/2^. 

Then the equations for u and v are 

xv! = v — -u, (1.6) 

xv^lv-xtue^-V, (1.7) 

and when this system is studied numerically and solutions plotted in the {u, v) -plane, 
we see strong evidence for the existence of both oscillating and non-oscillating solu- 
tions. 

These last equations certainly suggest that most of the time, as x —> oo, we have 

1 ,     1 xu  =v — -u, XV  = -V, 

which has the first integral 

{u — v)v =  const. (1.8) 

This suggests that we should look at the quantity (u — v)v in the context of the full 
equations (1.6), (1.7), and in fact these can be written in the form 

4-{(u - v)v - xey2-*} = -{y2 -x + l)ey2-x. (1.9) 
ax K 

Now from (1.5) and the fact that y2 — x is bounded above, we can conclude that 

(y2-x + l)ey2-xdx (1.10) 
/ 

either converges as x —» oo or diverges to — oo. Thus 

(u-v)v-xey2-x -^L, (1.11) 

say, as x —> oo, where possibly L = +oo. However, we know already from (1.4) that 
u is bounded, and so the left-hand side of (1.11), if it is unbounded, can only be 
unbounded negative. Thus, in fact, L is finite, and we can conclude that 

v = x1/2y'    is bounded, (1.12) 

xey2-x    is bounded. (1.13) 
2 

Since it is presumably the case that xey ~x is small most of the time as x —► oo, we 
will have (u — v)v close to L. (At the moment, this is only a heuristic observation, to 
be made more precise and proved below.) We therefore look now at the phase-plane 
curves given by 

(u — v)v = L. 
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FIGURE 1 

For each L, the curve is a hyperbola, with two disjoint branches. For L = 0, the 
hyperbola degenerates to straight lines. However, there is the added restriction in the 
full problem that from (1.13), we always have y2 < x, u2 < 1, so that, as x —> oo, 
what happens is that the solution proceeds along a branch of a hyperbola until it 
reaches u = ±1, when it moves along the line u = ±1 to the other branch of the same 
hyperbola (L < 0) or to another point on the same branch (L > 0). It thus tends to 
a singular limit-cycle consisting of segments of a hyperbola intercepted by segments 
of the lines u = ±1. Note also that necessarily L < |, since L > \ implies that the 
curve represented by {u — v)v = L lies entirely to the right of u — 1 or entirely to the 
left of u = —1. 

The limiting behavior of y as a function of x can, of course, be obtained from this. 
It consists, as already said, of segments of straight lines (when in the phase plane we 
are on a branch of a hyperbola) interrupted by "bounces" from the curve y2 = x (when 
the solution is on the line u = ±1 and v in effect has a discontinuity). If L < 0, the 
solution is oscillatory, since u changes sign on the hyperbola. If L > 0, the solution is 
non-oscillatory, and the solution keeps bouncing back from the hyperbola, but never 
crosses the x—axis. 

We are now in a position to state rigorous theorems. 

Theorem 1. (L ^ 0, \) (i) Let CL denote the limit curve assembled above, for 
0 < L < ^ or L < 0. Then, ifd{(u, v), CL} denotes the distance in the phase plane of 
the solution (u,v) from CL where L is related to the solution through (1.11), we have 

d{(u,v),CL} = 0(logx/x). (1.14) 
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(ii) // L < 0, there exists a sequence of values {xn}, xn ~ ka^ for some positive 
constants k, aL (> 1), such that, for xn < x < ccn+i, 

(-l)n 

y(x) ~ —{y/x^(xn+1 -x)- y/xn+1(x - xn)}, 

and we have the relation 

aL = (VT^lL + 1)4/(16^2). (1.15) 

(iii) If 0 < L < |, there exists a sequence of values {xn}, xn ~ fcaj for some 
positive constants k, a^ (> 1), such that, for xn < x < xn+i, 

y(x) ~ ± {y/x^{xn+1 -X) + ^Xn+i{x - Xn)}, 
%n-\-1      *^n 

the sign, for any particular solution y, being either always positive or always negative. 
Further, we again have the relation (1.15). 

Finally, there are solutions for every L < \, L ^ 0, 1/4. 

Theorem 2. (L — 0) The limit set Co consists of two triangles, one in the first 
quadrant, one in the third, with the origin as the only common point. As in Theorem 
1, d{(u,v),Co} —> 0, and in the phase plane the solution either converges to (0,0) or 
to the whole of Co, i.e., traversing each half alternately. 

If the solution converges to (0,0), then y —> A, for some constant A. 
Both types of solutions exist. 

Theorem 3. (L = |) The limit set C1/4 consists of the two points (1, |), (—1, — |). 
We have y ~ x1/2 ory ~ —x1/2, and there is precisely one solution with each behavior. 

While this answers the original question about oscillatory behavior (and more), one 
could go on, using the ideas in the proof of the above theorems, to say more about 
the asymptotic behavior of the solutions near the "bounce" points xn, or about the 
asymptotic positions of the points xn, but we do not pursue this further here. 

It is also the case that the methods described here would apply more generally to 
equations of the form 

p" + ef(y)-9(x)y = 0, 

but again we do not pursue this. 

2. Proof of Theorem 1 

We prove first that d{(u,v),CL} —» 0 as x —► 00. From (1.5), we see that there must 
exist a sequence of points x* —> 00 such that 

lim x*ey2-< = 0. 
n->oo 

(For otherwise, ey ~? > Kx~l for some positive constant K and all sufficiently large 
#, and this contradicts (1.5).) Hence there must be a corresponding sequence {un^Vn) 
where un = uix^), vn — v(Xn), such that (un — vn)vn —► L, so that (tin, vn) is close to 
CL- If |^n| 7^ 1? then it is clear from (1.6), (1.7) that, for x > #*, the point (u, v) will 
remain close to CL until u is close to ±1 (say, without loss of generality, u = +1). It 
is also clear that, as x —> 00, lim sup \u\ < 1, since the contrary would contradict (1.4) 
or (1.13). Thus, if (u,v) is close to CL and u close to 1, then v is close to a root of 

v2 - v + L = 0, 
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i.e., 

v=\(l±y/r='U), 

and since we have reached this point with increasing x, the arrows on Figure 1 show 
that in fact 

Thus from (1.6), u continues to increase (and thus remains close to 1) until v decreases 
to |. Hence (u,v) remains close to CL at u = l,v = |, and it then follows that at 
this point 

xey2-x ~ i - L >0. (2.1) 

So long as x2ey ~~x remains large, it follows from (1.7) that v continues to decrease, 
and, since now v < |u, also u decreases. Thus v is still decreasing when xey ~x is 
small, and then (u — v)v is close to L, and (w, v) is close to CL, although now on the 
other branch of CL (L < 0) or at the other end of the same branch (if 0 < L < |). 
Then, as x further increases, (w, v) moves again along the hyperbolic segment of CL- 

This discussion shows that as x -* oo, we must have 

d{(ti,t;),CL}->0. 

To prove the more precise estimate (1.14), we first note that if we define 

H = y2 -rc + logx, 

then, as x —> oo,if is bounded above (an immediate consequence of (1.13)) with a 
sequence of maxima at points a;n, say. It is clear that the maxima must occur when 
(n, v) is close to one of the straight line segments of CL and that at them, H is bounded 
below, from (2.1). Further, since 

H' = 22/?/ - 1 + - = 2uv - 1 + -, 
x x 

it is clear that, at xn, u ~ 1, v ~ | (or u ^ —1, v ~ —|), and by considering H", it 
is easy to see that there is precisely one maximum near (1, |) and one near (—1,-1) 
in each circuit of CL- These are the points xn. Of course, if L > 0, the maxima 
occur only near (1,|), or alternatively only near (—1, — |), since the solution does not 
oscillate. 

We next compute the distance xn+i —xn. We may suppose without loss of generality 
that y(xn) > 0. Since 

x 

we have 
,,2 

x 

Thus, if 

X X1 

x \xJ 

eH > logx/x2    for   xn < x < a?*, (2.2) 
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which defines x*, we have, for xn < x < a;*, 

H" ~ -2eH, 

lH'2~eH<>-eH,        Ho = H(xn), 

so that, on integration, 

e~iHo cosh"1 (eiHo"iH) ~ rr - xn. 

Since 

we have 

cosh     y ~ log y       for large    y, 

x*n-xn~±e-iH°(Ho-H)(x*n) 

~ie-^oiog«7logx;) 

~ e-5Hologxn 

2l0Sa:n     from (2.1). (2.3) 
V1-4L 

Similarly, if a;*+1 is such that (2.2) holds for x*+1 < x < xn+i, we have 

21oga;n+i 

For x* < x < x*+1, we have 

dogxn' 

(2.4) 

e^0(^), (2.5) 

so that 

(u-v)v-L = o(l). (2.6) 

Thus, from (1.7), with t = logo;, t* = logrr*, t*+1 = loga;*+1, we have 

dv      1        ./log^ 
. + 0(Hi). (2.7) dt      2 

and since, from (2.5), u2(x^) = 1 + 0(loga;n/#n), ^2(^n4-i) = 1 + 0(loga:n/a;n), we 
see from (2.6) that 

««)-1(1-^1=41), 

^x*  ')^/i(l + Vr^E) forL>0, 
t,^»+^~{i(_l_vT34L)    fori<0. 

Thus, integrating (2.7) over (x*,x*+1), we have 

C+i - *; = 2 log I
1 + V/

1    ^ + o(l), n+1      n |1 - VI - 4L| 

^-{l + o(l)} = igp = flL, 
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say, so that 

^±i=aL{l + o(l)}    as   n^oo. (2.8) 

We now want to make the estimate (2.6) more precise. We note that for x suffi- 
ciently large, 

y2 — x < — \ogx + K 

for some constant if, from (1.13), so.that 

y2 — x + 1    is ultimately negative. 

We now show that 

rn+1|y2_x+1|ey2-sd:c = 0/!£g£nY (29) 
Jxn ^    ^n      ' 

For since, at xn, from (2.1), 

y2 ~ x - logs + log (- - Lj, 

we can divide the interval (xn,xn+i) into three subsets: 

5i    where   y2 — x > —21ogx,    y > 0, 

52 where   y2 — x > —21oga;,    y < 0, 

53 where   y2 — x < — 21ogx. 

Prom 5i, we have the contribution 

Prom (1.1) and the fact that y' = 0(l/y/x), we see that the contribution from 5i is 
of the required form, and 52 is similar. In 53, we have 

\y2 -x + l\ey2-x = 0(logx/x2), 

so that 

\y2 - x + l\ey2~xdx = 0(logxn/xn). J. 
This proves (2.9). 

Now, integrating (1.9) over (#,00), we have 

\(u-v)v-xeV2-*-L\=o(jr1^^ (2.10) 

where x^ is the maximum of H next below x.   Since (2.7) certainly implies that 
£iv+p > AP

XN, for some A > 1, we see that in (2.10), we have 

log ay < (r-iV)logA + log:rjv 
Xf J\ X pj 

giog£, = 0/iog^\=0/iog^Y (2ll) 

N     xr \   XN   J        V   x   J 
Hence, 

\(u — v)v — xey ~x - L\ = 0(loga:/a;), 

and this is the more precise form of (2.6). Prom this, (1.14) is easily derived. 
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If we now follow through the argument that succeeds (2.6), with the more precise 
form of (2.6), we improve (2.8) to 

xn ^ \   xn   / J 

Since 

we conclude that 

n(.+^)<~, 

xn = kal{l + 0(naln)}. 

The remaining statements in the theorem are now trivial, except for the existence 
of solutions corresponding to any L. 

To prove the existence of such solutions, we observe first that the proof of (2.9) is 
independent of the value of L, and that, in particular, the constant implicit in the 
order symbol in (2.9) is independent of L. Indeed, by integration of (1.9), what the 
proof actually shows is that, if Xi, X2 (X2 > Xi) are two (large) values of x between 
which H has only a bounded number of maxima, say 2, and if 

2 
f(x) = (u - v)v - xey ~x, 

then 

|/(X2)-/(X1)h0(^), (2.12) 

say |/(^2) — /(^i)| < -Ko l0xf1 ? ^0 independent of L. (The modulus signs can in 
fact be dropped since / is ultimately increasing.) Further, the number az, (> 1) is 
bounded from 1 so long as L(< \) is bounded from |, and by effectively repeating 
the argument that leads to (2.8), we can easily show that, if /(X2) is bounded from 
|, say \ — /(X2) > 77, and if X2 and Xi are separated by at least two maxima of i?, 
then 

-X2/-X1 > Af fa) (2.13) 

where M{rj) is bounded from 1 so long as 77 is bounded from 0. 
Now take any fixed value of L, say LQ, LQ < |- Take a fixed 77, with 0 < 77 < 

^(| — LQ). Choose a sequence of points Xn, Xi being large and to be specified more 
precisely later and each Xn separated from the next by two maxima of H. Choose a 
solution such that 

Lo-\ri< /(Xi) < Lo + \r). 

Then we shall prove inductively that 

f(Xn)<\-n, (2.14) 

and so 
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To prove (2.14) (which is certainly true for n = 1), we suppose it true up to n — 1 and 
note that, by (2.11), (2.12), and (2.13), 

/m^xO + Ko^^ 
r=l 

KKXJ + KiKotM)^^ (2.15) 

by a calculation similar to that in (2.11), K being some constant that depends on KQ 

and M (and thus ry). Since Xi is still at our choice, we can choose it so large that 
(2.15) implies (2.14), and this induction proof is complete. 

By taking the limit in (2.15) as n —► oo, we see that we can arrange that f(Xn) 
for all n, and thus the limit L = limn_^oo f{Xn), is as close as we please to LQ. Since 
LQ < j is arbitrary, we can obtain solutions with values of L which are arbitrarily 
large and negative or as close as we please to |. 

To show that we can obtain any L with -oo < L < |, we have only to show that 
the limit L is continuous in the initial data. Give any solution with initial data (^o? ^o) 
and limit LQ, we can certainly find XQ sufficiently large that, given any 77 as above, 

Lo--ri<fo(Xo)<Lo + -ri 

where the subscript in /o indicates that we are dealing with the solution with initial 
data (uo,vo). If (ui,vi) is sufficiently close to (^0,^0)) then certainly 

Lo-2V<fi(Xo)<Lo + -ri, 

and so, from the argument above, the limit Li is close to LQ, proving the required 
continuity. 

3. Proof of Theorem 2 

To show the existence of solutions converging to (0,0), we solve the integral equation 

f00 2 
y = A-        (t- x)yey ^dt 

JX 

by iteration in the usual manner. This solution clearly has the asymptotic form 

y = A + 0(e-*), 

and (u,v) -* (0,0). 
In fact, any solution such that (n, v) —> (0,0) must have y —► A, for some A. For 

u —» 0 certainly implies that 

y" = 0(e-x), 

and since v —► 0 implies y* —► 0, we have 

y' = 0(e-%       y = A + 0(e-x). 

The fact that d{(u, v), Co} -> 0 for any solution is proved as for the corresponding 
result in Theorem 1, and we do not repeat it. We show now that, if a solution does 
not converge to (0,0), then necessarily, for x sufficiently large, when the solution is 
close to the -u-axis at the right-hand half of Co, v must become negative, thus forcing 
the solution then to follow the left-hand half of CQ. (This shows that any solution 
converges either to (0,0) or to the whole of CQ.) 
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To do this, suppose for contradiction that v > 0. Now 

uv-v2 - xey ~x < 0, 

since the left-hand side is increasing to zero, and so, if v is small and positive and u 
lies in the range (2v, 1 — 5), for some fixed 6 > 0, we must have 

uv < 2xexp[-x(2S - S2)}. (3.1) 

From (1.6), with t = logx, we have 

du     1  o 
Uti + 2U  =UV' 

4-(etu2) = 2etuv. 
at 

Since, for large x, 
CO 

s2 exp[-s(2<5 - 52)]ds = 0(x2 exp[-x(2d - 62)]), 1 
we see that xu2 remains essentially constant, so that u becomes small. However, 
since u is of order l/<\/ir, (3.1) implies that v < ^u, and so u never reaches the lower 
end of the range (2^, 1 — S). Thus (3.1) continues to hold, and we are forced to the 
conclusion that (u^v) —> (0,0), which we have excluded. This contradiction gives us 
what we require. 

All that remains is to exhibit the existence of a solution with L = 0 and limit set 
given by the whole of Co- To do this, take any large value XQ and consider the solution 
yk or (uk,Vk) determined by 

yk(xo) = 0,        VkM = k. 

If fc(> 0) is sufficiently large, then yk oscillates infinitely often. This is because the 
quantity 

uv-v2-xey2-x (3.2) 

is large and negative at XQ, and since we know from our considerations in Theorem 1 
that its total increase is only O(loga;o/^o)) it remains negative as x —► oo, so that the 
corresponding value of L has L < 0. This implies infinitely many oscillations. 

On the other hand, if k (> 0) is sufficiently small, then yk has no subsequent zeros. 
It is easy to see that the quantity (3.2) becomes positive (before u or v vanishes), and 
once it is positive (and increasing), we can never have u = 0. 

Thus let ko be the least value of k such that, for k > ko, the solution yk has at least 
one zero for x > XQ. It is clear that yk0 has no zeros for x > XQ, since if it had, so also 
would yk for all k sufficiently close to ko, even k < ko. Thus yk0 does not oscillate, 
and so the corresponding LQ has LQ > 0. 

For k > ko, all solutions yk have at least one zero for x > XQ. AS we have already 
seen, if k is sufficiently large, yk has infinitely many zeros. Let ki be the least value 
of k such that, for k > ki, the solution yk has at least two zeros for x > XQ. NOW 

ki ^ ko, for if that were so, then, for k > ki and close to ki, we would have two zeros, 
say xi, X2, both going to infinity as k j fci. But if xi —► oo, then necessarily y{xi) = 0 
and y'{xi) is small, and, as we have already seen, this would imply that there are no 
subsequent zeros and that #2 does not exist. 

So ki ^ ko. The solution y^ has precisely one zero and Li > 0. Inductively, let kn 

be the least value of k such that, for k > kn, the solution yk has at least n zeros for 
x > XQ, and consider k* = limn-too kn. Certainly, fc* is finite, and since Ln > 0 for all 
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n, we must have that L* (the value of L corresponding to k*) satisfies L* > 0. But 
for any k > k*, the corresponding solution y*. has infinitely many zeros, and so L < 0, 
L* < 0. The conclusion is that L* = 0, and we are done. 

4. Proof of Theorem 3 

That the limit set C1/4 consists of just the two points (1, |) and (-1, —|) is obvious. 
We next show that any solution of (1.1) in the case when L = 1/4 has the property 

that 

x(u2 - 1) = -2 log a; - 2 log 2 + <f>(x) (4.1) 

where </>(#) —► 0 as x —► 00. The first part of the proof consists in proving this and in 
improving it until we reach the estimate (4.16). We are then in a position to convert 
the equation into an integral equation and complete the proof of the theorem. 

To prove (j) —> 0, recall that we have the two equations 
PCX) 

2/2 + ev-x= ey -tdt) (4 2) 

Jx 

(v - ^u)2 + 1(1 - u2) + xey'-* = f^ (l - u2 - ^te^-'d*. (4.3) 

From (4.3), it follows (as we saw earlier) that xey ~x is bounded, so that, for some 
constant K, 

x(u2 -I) < -logz + if. 

Following the same argument as in §2, when we were dealing with (2.9), we can show 
that 

(1 - u2)tey -*<ft = 0(\ogx/x). f J X 

(Divide the interval of integration into regions where t(l-u2) < —21og^and^(l-^2) > 
-2log*.) Thus, from (4.3), 

and 

which implies that 

and that 

ey2-x = 0(\ogx/x2) 

v-lu = 0(log^2x/x^2), 

v-\ = 0{\ogl*xlxxl'1) (4.4) 

1 +0w*-- °m "       2^1/2 

Prom (4.2), we then have 

and by an integration by parts 
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Note also that (4.5) can be written in the form 

/. 
Now substitute (4.1) in (4.3) to obtain 

(v - i«)2+^(21ogx + 2log2 -4) + ^e* 

r00 2 
= /    (2 log* + 21og 2 -4>- l)ey -'dt 

J X 

log* ,   1   , 21og2-l      f00   1   ,,M , ^/log3/2 

+ ^- + r^*+o(! X 

2x       2x 4x Jx    U
2^ V   x3/2 

In view of (4.6), we can rewrite this as 

^-^2+i(e'-^-1) = r^(e'-1-^)+0(!2fr)-    (4-7) 

But 

e^ _ 0 _ 1 > 0       for all       0, 

and 

e^ - 1 - <£e* < 0       for all       0, 

with equality in both cases only when (/> = 0. So we conclude from (4.7) that 

and that (since e^ — 0 — 1 is precisely of order 02 for small (j)) 

Thus certainly 0—^0. 
It is now easy to improve this. If we go back to (4.5) and use (4.8) in place of (4.4), 

we can repeat the argument and obtain 

Indeed, by successive repetition, we could reach 

for any rj > 0, but we have to do better still, which requires looking at the error terms 
more closely. 

Since we now have (4.10), we can write 

x\2 
J_ 
4x 
1       v1- 
iz + ^+Oi*-2-5), (4-12) 
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for some S > 0, not necessarily the same at each appearance. Prom (4.1) and (4.11), 

Using (4.2), (4.12), and the last formula, we see that (4.5) becomes 

and 

ya. 4a: a; 4x2 v / 

+ l ^Tt + v-ik+^^ 
logX +   1_ + (v-±)l0gX + logX + J_ + 0fx-2-S\ 
ix      4x x ix2      8x2        ^ ' 

Jx   t2 

But 

so that 

+        -^-dt. (4.14) 

sfu-l)'= »----(«-!), 

(u-iy^.iru-^ 

u-1     3  f°° u-1 
--    x    +2jx    ~fi~ 

t2 

OO 
•ii. —   i 

dt 

log a;     log 2       3 , -2-s\ f,-,^ 

by using (4.1) and (4.11). If we substitute (4.13), (4.14), (4.15) in (4.3), and write 

(t; - luf =(v- I)' - (y - l)(u - 1) + i(« - I)2 

-(-5)"-(-i)^-K^),+^-M)- 
we obtain, after some algebra, 

V ' 2 " 2^(l0g(2x) " 2)}   + 4i(e* " ^ " O " X    4^2 (^ " 1 - ^)df 

= 0(x-2-*)) 

whence 

^ = 0(»-*-'). (4.16) 

We now write the equation (1.1) in terms of the function g, defined by 

log x     log 2 
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Prom the estimates (4.16) on 0, we have the estimate 

g = 0(x-i-6). (4.17) 

It is easy to verify that g satisfies 

x*g" + Xg' = x
2G" + xG, + {±-±e2x9+x(u-1f}u (4.18) 

where 

G(x) = ^, 
X 

and we can rewrite (4.18) as 

x2g" + xgf + Ixg = x2G" + xG' 

+ j{ - (1 + 2x5)(ex(u-1)2 - 1) - e*^-1)2 (e2^ - 1 - 2a*) }u 

+ |!Bfl(l-«)=F, (4.19) 

say. Since 

sV' + ajp'+2^3 = 0 

has solutions 

5 = Jo(\/2^),y(V2^), 

where V is a second solution of the equation chosen so that 

and since Jo has the asymptotic expression 

with a similar expression for F, we can write (4.19) in the integral form 

9=1    {jo(V2^)r(\^)-Jo(V2t)r(v/2^)}yA. (4.20) 

Since, for t > x, we have 

MVte)Y(V2i) - Jo(v^)r(v^) = -xl/ltl/4 sin(v^ - Vt) + o{x-3iH-1/A), 
(4.21) 

there is no difficulty from the form of F and the estimate (4.17) on g in asserting that 
the infinite integral converges. Also, we do not need to include in (4.20) arbitrary 
multiples of JQ{\/2X), Y(\/2X) since the estimate on g necessarily excludes them. 

We are going to look for solutions of (4.20) in the space B of continuous functions 
g such that, for some fixed 5 > 0, 

g = 0(x-3V-s). 

(The earlier estimates would have given us a specific choice of 5, but this is unim- 
portant.) We want to show first that the integral operator on the right side of (4.20) 
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carries B into itself, and so we write 

log(2x) 
u-l = 9 —, 

x{u _ 1)2 = !2I^) + 0{glogx) + 0{xg2^ ^ ^^ 

F = a!2G" + xG' - 7l0S(2a;) + 0(x2(U - I)4) + 0(x2
5(n - I)2) 

+ 0(a:V) + 0(xg(l -u)). 

Of the first three terms in (4.22), the major one is the third, and if we substitute this on 
the right side of (4.20), and use (4.21) and integrate by parts, we obtain a contribution 
to the right side of (4.20) which is certainly of order 0(x~3/2~5), as required. (The 
integration by parts is required only on the trigonometric term in (4.21); the O-term 
gives no problems.) For the O-terms in (4.22), if g G B, we also see easily that the 
result of the operation in (4.20) is again in B. (Here the integration by parts is not 
required.) 

It is routine to show that the mapping is in fact a contraction mapping, the details 
being left to the reader. Thus there exists a unique solution of (4.20) (and so of (4.18)) 
in B, and the proof is complete. 

We now can use (4.20) to develop a complete asymptotic expansion of the solution, 
but we do not pursue this. 
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