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SINGULAR LIMIT ANALYSIS OF PLANAR EQUILIBRIUM SOLUTIONS TO 

A CHEMOTAXIS MODEL EQUATION WITH GROWTH 

Tohru Tsujikawa 

ABSTRACT. We consider the stability of planar localized equilibrium solutions of 
a chemotaxis model equation with growth term, which describes aggregation of 
biological individuals. Assuming that the diffusion and chemotactic rates are both 
very small compared with the growth rate, we introduce a small parameter, say 
£, into the equation. The asymptotic form of the eigenvalues with respect to the 
parameter, which is essential to determine the stability for the linearized equation, 
can be obtained by using singular limit analysis as e ^ 0. 

1. Introduction 

It is known that the movement of some biological individuals is affected by an acute 
sense of smell which conveys information between individuals or groups. One typical 
example is chemotactic movement which is the process by which biological individ- 
uals aggregate by moving preferentially toward higher concentrations of chemotactic 
substances [1,6]. Recently, Budrene and Berg [3] have shown experimentally that the 
bacterium E. coli exhibits complex two-dimensional spots or stripe patterns by the in- 
terplay of diffusion, growth, and aggregation in response to the gradients of attractant 
(aspartte). To analyze the spatial pattern formation caused by the interdependence 
of these characteristics, we propose the following chemotaxis model equations with 
growth term: 

£- = duAu - dV{u ■ Vx(t,)) + /(«), 

d
T

v T>O,   xeci,        (i.i) 
-r— = dvAv + 0u — 71?, 
or 

where w(r,x) and v(r,x) are, respectively, the population density and the concentra- 
tion of chemotactic substance at time r and position x G 0 C R2. A and V are 
the Laplace and the gradient operators with respect to x. du and dv are the diffu- 
sion rates of u and v, respectively, and /3 and 7 are the production and degradation 
rates. SVx(v) is the velocity of the direct movement of u due to chemotaxis, which 
generally satisfies x'(v) > 0 for v > 0. Ford and Lauffenburger [8] summarized some 
plausible functional forms of x(v). In the absence of the growth term f(u), (1.1) is 
called the Keller-Segel model [13], which describes slime mold aggregation. As for the 
growth term /(u), several forms are proposed (see Murray [18], for instance). Here 
we consider the case of the bistable type, /(0) = f(u) = f(u) = 0 for some 0 < u < % 
f(u) < 0 for 0 < u < u, f{u) > 0 for u < u < % and /'(0) < 0, f(u) < 0. This 
includes the effects of intraspecific competition and cooperation. 

Received April 10, 1995, revised January 30, 1996. 
Key words and phrases: chemotaxis, planar equilibrium solution, stability, singular perturbation. 

401 



402 TSUJIKAWA 

From the biological view point [2, 3], we are concerned with (1.1) when (i) the 
migration of individuals by diffusion and chemotaxis is slow compared with the dif- 
fusivity of the chemotactic substance and (ii) the movement of individuals is mainly 
due to chemotaxis. We thus assume 

du        8 ^u 
< -r < 1 dv 

and that there is a small parameter e such that 

2     du 8 
e  — —        and       ek = — 

CLi) • CLv 

with some positive constant k. 
By using a suitable transformation, the equations (1.1) can be rewritten as 

— = £2Au - ekV(u • Vx{v)) + f[u), 
or 
dv 
■5-= Av 4-w - 7^ (1.2) 
or 

where f[u) satisfies /(0) = /(a) = /(I) = 0 (0 < a < 1). 
In this paper, we consider (1.2) in the strip domain O = f^ = R x (0,^) C R2. 

Then the corresponding boundary and initial conditions for (1.2) are 

i lim (tt(r,a;,»),t;(T,a:,y)) = (0,0)       (r,?/) € R+ x (0,^), (1.3) 
|x|—»oo 

— u(T,X,0) = 0=—u(T,X,e), 
/ / (r.^eR+xR, (1.4) 
— v(T,X,0) = 0=-^v(T,X,e), 

and 

(u(0,x,y),v(0,x,y)) = {uo(x,y),vo(x,y)),        fay) € fi£, (1.5) 

where \im\x\_>00(uo(x, y), Vo(x, y)) = (0,0). Recently, Furuya and Yagi [25] have shown 
the existence of the global solutions of (1.2)-(1.5) when the space dimensions n = 1,2. 

When J0 f(u)du > 0, by using an approximate equation of (1.2)-(1.5) as the limit 
e I 0, which we call a limiting system (see (2.5)), it is shown in [15] that there is 
a 1-dimensional symmetric localized equilibrium solution to (1.2), (1.3), (1.5), which 
means an aggregating pattern, due to the suitable balance among diffusion, chemo- 
taxis, and growth. The 1-dimensional equilibrium solution can be extended uniformly 
in the y-direction in fi^, and it is obvious that this solution is also an equilibrium 
solution of (1.2)-(1.5) in O^, which we call a planar equilibrium solution in fit. We 
study the stability of the planar equilibrium solutions depending on the form of x(v) 
as well as on £ > 0 and k > 0. It is numerically shown in [15] that, for x(v) = vi 
the solution is always stable for any £ > 0, and for xiv) = sv2/(s + v2), its stability 
changes depending on the values of £ > 0, k > 0, and s > 0. 

Motivated by these numerical results, we study the stability of planar equilibrium 
solutions of (1.2)-(1.5) for sufficiently small e > 0. 

Let us state the definition of the stability of the planar equilibrium solution of 
(1.2)-(1.5) in Qi. 

Definition. The planar equilibrium solution of (1.2)-(1.5) is stable with shift if and 
only if the spectrum of the linearized operator around the solution contains a simple 
zero eigenvalue and the remaining spectrum is contained in a closed angle lying in 
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the left half of the complex plane (see [9, 22], for instance). Unless it has a nonzero 
spectrum point with nonnegative real part, the solution is unstable. 

The aim of this paper is to determine the distribution of eigenvalues since they 
play an essential role for the stability of the equilibrium solution. We first show that 
eigenvalues which do not satisfy the condition (5.7) are all in the left half of the 
complex plane and away from the imaginary axis (Proposition 1). Therefore, it is 
important for stability to show the distribution of the other eigenvalues, which we 
call critical eigenvalues. To do that, we consider the limiting system of (1.2)-(1.5) as 
elO. 

In Section 2, we introduce the limiting system which is derived from (1.2)-(1.5) as 
e i 0. In Section 3, the existence of 1-dimensional symmetric equilibrium solutions 
of (1.2)-(1.5) is proved for sufficiently small £ > 0 (Theorem 1) by using singular 
perturbation methods. From the limiting system (4.1) as e I 0, in Section 4, we 
obtain the ordinary differential equations (4.2) which the Fourier components of the 
disturbances for the planar equilibrium solution satisfy. In Section 5, by using the 
SLEP method [19, 24], we show that the asymptotic form of critical eigenvalues of 
the linearized problem of (1.2)-(1.5) around the planar equilibrium solution equals 
the coefficients of the ordinary differential equations which are obtained in Section 4 
(Theorem 2). Though we should say that the planar equilibrium solution of (1.2)-(1.5) 
is stable with respect to discrete spectrum if all eigenvalues of the linearized problem 
have negative real part except for a simple zero eigenvalue, we simply say that it is 
stable. It follows from Theorem 2 that when the width £ > 0 of the strip domain 
becomes 0(£2) for sufficiently small £ > 0, the stability is determined by that of the 
1-dimensional equilibrium solutions for the limiting system in Section 6 (Corollary 2). 
On the other hand, if £ > 0 is suitably large, the stability of 1-dimensional solutions 
is not necessarily inherited by the planar solutions, which depend on the form of x(v) 
as well as the value of k > 0. 

Some function spaces are needed in this paper: 

flft(R+) = {u e Hn(R+) | ux(0) = 0}, 

L2
p(n) = {ue L2(n) I |M|L2 = (y |e'Wu(aO|2<fc)1/2 < +oo}, 

iJ-^fi) EE the dual space of fl"1^), 

and CcU (^)-sense means the uniform convergence on any compact subset of ft with 
respect to Cn(n)-norm where R+ = (0, oo), p is a positive number, n is a nonnegative 
integer, and i7n(fi) is the usual Sobolev space on ft. 

2. Limiting system as s j 0 

In this section, following [15], we formally introduce the limiting system as £ | 0 for 
(1.2)-(1.5) in fi^, which gives the essential information for the existence and stability 
of symmetric localized equilibrium solutions. To do that, we use the transformation 
t = £T for (1.2). Then (1.2) is rewritten as 

T£ = £&u - kV(u • Vx(v)) + -/(u), 

£— = Av + u — JV. 
at 

If initial data are smooth, both the diffusion and chemotaxis terms of the first equation 
in (2.1) are small in comparison with j/(u), that is, the two terms may be neglected 
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for a short time so that the first equation of (2.1) can be approximated by the ordinary 
differential equation ut = ^/(^)- Therefore, u(t, x, y) tends quickly to either 0 or 1. It 
turns out that after a short time, the space is partitioned into three regions: a region 
QQ where u is almost equal to 0, a region fif where u is almost equal to 1, and a "thin" 
strip region R£ which links fl^ and Qf. As e tends to zero, flg and Of become formally 
Qo and fii where the value of u is 0 in QQ and 1 in Cti and the region R£ becomes 
a 1-dimensional curve r(£), which we call the interface (see Chen [4], for instance). 
Subsequently, the diffusion and chemotaxis terms of u in (2.1) still can be neglected, 
and therefore u(t, x, y) approximately equals 0 or 1 depending on the region away from 
the interface, whereas the dynamics of v is approximately obtained by solving 

0 = Av + gi(v)r t>0,    {x,y)eQi(t)    (i = 0,l), 

lim  v(t,x,y) = 0, t > 0,    y e (0,£), 
|a;|->oo {^-^J 

■7^v(t, x,0) = 0= -z-vft, x, £),       t > 0,    x G R, 
oy ay 

where go(v) = —71;, ^i^) = 1 - 7V, and Q,i(t) — {(x,y) G Ct£\u(t,x,y) = i}. On the 
other hand, near the interface, a layer develops, so that the diffusion and chemotaxis 
terms are no longer negligible. Then these two terms will become large enough to 
balance approximately the reaction term ^/(w), and the difference of the magnitudes 
of each term is a driving force which makes the interface move. The motion of the 
interface will be determined by the equation 

dv 
dN 

where N is the outward unit normal vector on T(t) and K is the mean curvature at the 
interface (for the formal derivation, see [15]). Here, c is the velocity of the traveling 
front solution w(x — ct) of the system 

wt = Wxx + /(w)>      ■ t > 0, x G R, 

w(t,-oo) = l,        w(t,oo) = 0,        t>0, (2.4) 

for which the velocity c is uniquely determined where c > 0 (resp., < 0) if /0 f{u)du > 
0 (resp., < 0). Moreover, if the initial interface is orthogonal to the boundary, then 
the interface moves so as to intersect the boundary orthogonally (see [4]), that is, 

N'NQ = 0,       t > 0,       fay) G r(t) ndSli, 

where NQ means the outward unit normal vector on dQe. Integrating (2.2) and (2.3), 
we have 

rt = {c + kx!(v)~-e(n-i)K}-Nt       t > 0,    (x,y)€r(<), (2.3) 

rt = {c + kx!(v)~-eK}-N, t>0, (x,y)eT(t), 

N-Nn = 0, t>0, (x,y)er(t)ndSli, 

0 = Av + gtiv), t > 0, (x,y) € ^(t), (2.5) 

lim v(t,x,y) = 0, * > 0, y G (0,^), 
|x|-+oo 

—v(t, x, 0) = 0 = ^-v(t, xj), t > 0, x G R. 
dy                        dy 

The smoothness of v on the interface T(t) should be C1, that is, 
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We call (2.5) the limiting system or simply the interface equation of (2.1). 
By solving this limiting system, the approximate solutions corresponding to the 

planar symmetric equilibrium solution of (1.2)-(1.5) for sufficiently small e > 0 are 
constructed in the next section. Using this approximate solution, we have the planar 
equilibrium solution of (1.2)-(1.5) for sufficiently small e > 0. 

3. Existence of the 1-dimensional symmetric equilibrium solutions 

In order to obtain planar symmetric equilibrium solutions, we only show the existence 
of 1-dimensional localized equilibrium solutions of (1.2)-(1.5) which are symmetric at 
x — 0. To do that, we first consider the 1-dimensional stationary problem correspond- 
ing to (2.5) in R+. Put OQ = {# € R+ | x > rj) and fii = {x G R+ | x < 77} with an 
interface point 77 G (0,00). The resulting problem is to find (77,^(0:)) which satisfies 

O^c-h/cx'^K,        a = 77, 

O^ss+ftfa), x€&i       (2 = 0,1), (3.1) 

t;a.(0) = 0,     limt;(x)=0,    and   v G C,1(R+). 

We first fix 77 > 0 arbitrarily.   Then the solution v{x\r{) of the second and third 
equations of (3.1) is described by 

v{z;r,)=h     V       ^ 1 + e^ (3.2) 

^cre-x^*-^, xe (77,00), 

with 

1 _ e-2V7Tl 
ff = —27— 

By substituting (3.2) in the first equation of (3.1), the solution (TJ^^T?)) of (3.1) is 
given by solving 

H^ s C 2^ X \       27       J = 0- (3-3) 

If there is an 77*  > 0 satisfying #(77*) = 0, a solution of (3.1) is represented as 
(77*,7;(x;77*)). 

Assumption 1. 

X'(t>) > 0       for       v > 0. 

Under this assumption, it has been shown that if c < 0, then there is no solution 
of (3.3), and if c > 0, then there is a k* > 0 satisfying c - 2777^'(l^) — 0 SUC':1 t^at 

there is at least one solution (77*, v(x577*)) of (3.1) for any k > k*. In fact, there is a 
specific form x(v) for which many solutions of (3.1) coexist (see [15]). 

We thus assume 

Assumption 2. 

c> 0        (or /  f(u)du>0). 
Jo 
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As a simple but suggestive form of /(it), we take f(u) = u(l — u)(u — a), in which 
case Assumption 2 requires 0 < a < 1/2. 

When x(^) = v and x(v) — sv2/(s + v2), the global structures of H(r]) = 0 are 
drawn in Figures 1 and 2. 

FIGURE 1. Dependency of k on solutions of (3.3) for x(v)  = ^ 
a = 0.1, and 7 = 1.0. 

Let 77* > 0 be a solution of H(rj) = 0 satisfying 

d 
drj 

W) * o, (3.4) 

and define the pair of functions (u0(x), v0(x)) by 

for |a:| < 77*, 

for \x\ > rf, 

\V(-X;TII*)    for 0 > x, 
(3.5) 

which is called a 1-dimensional symmetric equilibrium solution (v?(x),v0{x)) of (3.1) 
in the limit e I 0. 

By using (^0(^), ^0(^)), we construct the 1-dimensional localized symmetric equilib- 
rium solution of the problem (1.2)-(1.5) for sufficiently small e > 0. The equilibrium 
solution (ii(a;),i;(a:)) which is symmetric at x = 0 satisfies 

0 = e2uxx - ek{ux!(v)vx}x + /(u), 
x 6 (0,oo), (3.6) 

0 = vxx + u - 7V, 

with 

K(0),^(0)) = (0,0)        and lim (^^(a?)) = (0,0). (3.7) 
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FIGURE 2. Dependency of k on solutions of (3.3) for x(v) = sv2/(s + 
v2). Other parameters are as in Figure 1. The global structures are 
different depending on the value of s > 0: (i) I/47 < s (s = 3.0); (ii) 
0 < s < I/472 (5 = 0.1). 

Using the singular perturbation method [7, 14], we obtain 

Theorem 1.   Under Assumptions 1 and 2, there is an SQ > 0 such that for any 
e G (0,£o) a 1-dimensional equilibrium solution (u£(x), v£(x)) of (3.6), (3.7) exists 
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and satisfies 

lim u£(x) = u0(x)       uniformly   in    [0, rj(e) - 5) U (rj(e) + 5, oo), 

11111^(0;) = v0 (x)       uniformly   in    [0,00), 
£4-0 

with a small constant 5 > 0 where r)(e) satisfies lim^o ??(£) = 77*. Moreover, for 
fie(0 = ^(f7(e) + eO and 5e(0 = t;e(^(e) + ^), 

lim {t£ (0 = Wo (0        in Cc
2 u (R) -sense, 

£4-0 

lim{;e(^) = a*        in C2 U(R) -sense, 

where Wo(0 ^ ^e traveling front solution of (2.4) wztt velocity c. 

The proof is given in Section 7. 
This theorem shows that (u0(x), v0(x)) and (Wo(4), cr*) are good approximate solu- 

tions corresponding to the equilibrium ones of (3.6), (3.7). We thus can construct the 
1-dimensional symmetric equilibrium solution (w£(x), v£(x)) of the stationary problem 
of (1.2)-(1.4) by 

(u«(af),^))=(;u^)\^(f „ {OTX-O> 
K     V   ;'      V   ^        \(U£(-X),V£(-X)) iOTX<0. 

We define the planar equilibrium solutions (u£(x,y),v£(x1y)) of (1.2)-(1.4) by ex- 
tending (u£(x), v£(x)) uniformly in the y-direction in the strip domain Q^ = R x (0, £) 
and similarly the planar equilibrium solution (u0(x, y), v0(x, y)) of the limiting system 
by extending (ti0(x),^0(a:)). We note that the latter solution is characterized by the 
interface positions {(±7/*, y) \ y G (0,^)} and v0{x,y). 

We now consider the distribution of the eigenvalues of the linearized problem around 
(u£(xiy),v£{x,y)) for sufficiently small e > 0. Before doing that, we study the eigen- 
value problem around (u0(x,y)iv

0(x,y)) in the limiting system as e j 0. 

4. Singular limit eigenvalue problem 

In this section, we consider the linearized eigenvalue problem of the limiting system 
(2.5) according to the argument used in the previous paper [15]. Let us consider the 
situation when the interface position F^. = {(±77*, y) | y G (0,^)} is perturbed to 
become r±(0) = {( ± 77* + Co"(2/).2/) | V € (0,^)}. Prom (2.5), the time-evolution of 
the interface curves T±(t) = {(± 77* + C±(t,y),y) \ y G (0,^)} is described by 

z-FW) ,   #/ x \dv     dv dC+ 

+kx{v)[^-^^- 
9C+ _ ../, , fdc+y , ,„„.., \dv   dvd<;+] ,     e<;+ 

t>0,    yeCO.f), 

=-Hfr 9i>     9t; 9^" £77, yy d4r = -i1+[w) + kx'{v) La*  ^ ^ J  1+(¥)2 + i2-> 
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(C-(o,yU+(o,y)) = (Co-0/Uo+(2/)),   V € (0,*), 

t>0, |-C-(*Io) = o = |c-(M)) 

lim  u(i, x, y) = 0, 
|a;|—>oo 

—v(t,x,0) = 0 = —v(t,x,e), 

<>0, 

t>0,    (x.yjGfiiCt)    (* = 0,1),      (4-1) 

t>0,    ye(0,t), 

t>o,   x e R, 

t>o, 

where fi^O) = {(x,y) | -i,* + ^(0) < * < r?* + Co+(y) for y € (0,0}, flo(0) = 
f2£\$li(0), and R* are the higher-order terms with respect to C± and their derivatives. 
Suppose that £* are given. We can solve (4.1) for v. Substituting the solution v 
into the equations for ^±, we obtain the equations of ^ only. Let C^(*) be the 
Fourier coefficients of C±(*), which are defined by £*(t) = /f0 ^±(t,y)e~iKydy where 
K = rmr/C with positive integer m. Then the linear parts of the resulting equations 
for C*^;!/) become 

dt - £KQ kx'i**) 
-2^7'/* e-2-v/7+«2'7* 
 c+ - — c- 

+ AX,,(^) 
1 _ e-2V7>?* 

2^ K1 e-avW 

2^ 2V
/7T^ 

e-2i/7+/c2r7* 

2v/::Hr^ 

(4.2)H 

and 

fi.^c.^o  c~ - — c+ 

+ A;x"(a*) 
1 -a^t?* 

2^ [(L -a^^* 

2x77 2v/7 + tt2 

e_2x/7+/c27?* 

2^/7T^ 

(4.2)- 

We note that disturbances are divided into two types, that is, varicose ones (Co(y) = 
~Co(y)) and zig-zag ones (Co"(2/) = Co"(2/))- Since the corresponding solutions satisfy 
CW = -CW and #(*) = Q(*), we may set C^ = C = "C^ and C^ = C = C« • 
Then (4.2)± lead to the equations for Q(t) and CK(^) which are described, respec- 
tively, by 

dt 
= -e^Q-k 

2 ^-'2^7 

2v/7\/7 + tt2 

(4.3) 
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and 

vK 2/-Z 1 — = -eKQK-k 
e-2%/7»7* _ e-2V/7-H?'7* 1  _ p-l-JlV* 

X'(0! ; X"(^) 
2^ 

x y/l + K2
 - V7 - x/T+^e"2^' + v/7e-2^/^:+;;?'', j 

2V/7-\/7 + «2 -I 
= ^(K)C. (4.4) 

Thus, one finds that the stability of the stationary interfaces F^. is determined by the 
signs of AV

(K) and AZ
(K). 

In the next section, we show that critical eigenvalues for the linearized problem 
(1.2)-(1.5) are given by the forms of SA

V
(K) + o(s) and SA

Z
(K) + o(e) for sufficiently 

small e > 0. 

5.  Stability of planar equilibrium solutions 

For sufficiently small e > 0, we consider the distribution of eigenvalues of the linearized 
problem of (1.2)-(1.5) around the planar equilibrium solution (ue(x, y),v£(x, y)) in $}g. 
The corresponding linearized eigenvalue problem is given by 

Xw = e2Aw - ek \)(!{ve)v%wx + {^{v^vDxw] + f(u£)w - ek^-x^v^kz 

+ Kx'^) + 2ttVVM} ^ + Kx,,(^)^)^],        (x, y) € ^,    (5.1) 
\z = w + Az - 72, 

with boundary conditions 

w(-oo, 2/) = 0 = ^(00, y), 

z(-oo,y) = Q = z(oo,y). 

To solve that, we use the complete orthonormal system {ym}^=:0 in L2(0,£) where 

ym = | 
f"1/2 for m = 0, 

\/2£"1/2 cos(rmry/e)    for m > 0. 

For (t(;(x,y),z(x,2/)) G Z/2(f^) x L2(f^), we define (if;m(a;),zm(x)) by 

wm(x)= /   w(x,y)Ym(y)dy,        zm(x) = /   z(x,y)Ym(y)dy 
Jo Jo 

for # G R, m = 0,1,2, Then (^(o;, t/), z(x, y)) may be expanded to 

00 00 

w(x,y) = J^ ii;m(a:)ym(2/),        z(x,y) = J^ 2m(»)^m(2/) 
m=0 77i=0 

in L2(0£). It follows from (5.1), (5.2) that for K = rmr/£, Wm and zm satisfy 

XWm, = (Le - £2/C2)™m - N^Zn, 
(0.0)7; 

A^m = ^m + (M - «2)2m 
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where 

L* = £
2^ - ekx'(v°)v°x£ - ek{X'(v°Kx + x"(^)«)2} + /V), 

"^^{^ - K2} + {<x'(^) + 2U
£x"(^K}^ + («WK) J, Ar£'K = ek 

Substituting the second equation of (5.3)m into the first one, we rewrite (5.3)m as 

(Te-e2K2-\)wm = Se(\)zm, 
f*, 2        ^ (5-4)m 

(M - K
J
 - X)zm = -wm, 

where 

T£ = Le+eku£x'(v£), 

S%\) = ek[{ulx'(vs) + 2u£x»x}^ + (7 + AJtiVC^) + (ueX»S)* 

The boundary conditions for (5.4)m are 

^m(-oo)=0 = 'w;m(oo), 

^m(-OO) = 0 = 2m(00). 

We note that to solve the eigenvalue problem (5.3)m with (5.5)m on R is equivalent 
to solving (5.4)m on R-j. under the two types of boundary conditions 

wm(oo) = 0 = zm(oo), 
(5.6)iv 

Wmx(0) = 0 = Zrnx(Q), 

and 

Wm(oo) = 0 = 2m(oo), 
(5.6)D 

wm(0) = 0 = zrn(0). 

Here, the boundary conditions (5.6) JV and (6.6)1) correspond to those for the linearized 
eigenvalue problem with varicose and zig-zag disturbances, respectively. 

Remark 1. By differentiating (3.6) with respect to x and using (3.7), one finds that 
(u%(x)1v^(x)) is the eigenfunction corresponding to the zero eigenvalue of (5.4)o with 
(5.6)D. 

For the distribution of non-zero eigenvalues, we first show 

Proposition 1. There exists a positive constant 0 such that for any given S > 0, 
there is an so > 0 such that any eigenvalue A G C of (5.4)m, (5.5)m satisfies either 
Re A < -0 or 

leV + A| < 6 (5.7) 

for any 0 < e < So and K > 0. 

The proof of this proposition is given in Section 7. 
This proposition indicates that any eigenvalues not satisfying (5.7) are uniformly 

away from the imaginary axis in the left-half plane. On the other hand, the distribution 
of eigenvalues satisfying (5.7) is given as follows. 
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Theorem 2. Let m G Z and I 6 R+ he arbitrarily fixed. Then there are critical 
eigenvalues A-y and Ag 0/(5.4)™ mtfi (5.6)^ and (5.6)D which are simple and satisfy 

^-"•(x)}-0 - !ff{?-*(")}=° 
wftere Av and A2 are the quantities defined in (4.3) and (4.4). 

The proof is given in Section 7. This theorem implies that the stability of the 
equilibrium solution is determined by the eigenvalues of the limiting system. 

In the next section, we apply Theorem 2 to consider the stability of the planar 
equilibrium solution of (1.2)-(1.4) for some specific forms of x(v)- 

6. Applications 

For the stability of the 1-dimensional equilibrium solution, we know 

Corollary 1. Let 77* > 0 be defined by H(r]*) = 0 (see (3.3)). The 1-dimensional 
symmetric equilibrium solution o/(1.2)-(1.5) for small e > 0 is stable if -^H(rf) < 0, 

while it is unstable if ^-H(rj*) > 0. 

Proof. Since the disturbance is only the case of m = 0, that is, K = 0, it immediately 
follows from Theorem 2 that Av(0) = ^#(r7*) and Az(0) = 0. Therefore, the stability 

is determined by the sign of ^#(77*). □ 

Remark 2. Corollary 1 and Theorem 2 say that the 1-dimensional equilibrium solu- 
tions corresponding to the branches of Figures 1, 2(i), and the lower one of Figure 2(ii) 
for small e > 0 are stable in R, while the solutions to the upper branch of Figure 2(ii) 
are unstable. 

Next, we consider the stability of the planar equilibrium solution. When the width 
of the strip domain is small, stability is determined by the 1-dimensional stability 
which is valid independently of the form of x(^)- 

Corollary 2. There exists a positive constant UJ such that when I satisfies 0 < £ < 
True1/2, for sufficiently small e > 0, the planar equilibrium solution is stable (resp., 
unstable) if ^H(^) < 0 (resp., > 0). 

Proof. If K > 0, that is, m > 0, it follows from (4.3) and (4.4) that 

A
V
{JY) =-^

2
 + G + O(1)    and   A* (^) = -SK

2
 + G + o(l)    for large * > 0 

where 

xV)e-W _ X>*)(l-e-W)2- 

Therefore, there exists a positive function uj(e) with (JJ(S) = 0(1) as e —> 0 such that 
A$ < 0 and A$ < 0 (m > 0) if a;-2 < en2, that is, it is enough that 0 < £ < 7rue1/2 

holds because of K, = m7r/£. By Corollary 1, this corollary is completely proved.      □ 

0-i 

The case when the width £ is not so small is not simple. The stability depends 
on the form of x(v). Fix £ arbitrarily, (i) With x(v) = vi the planar equilibrium 
solution is always stable for sufficiently small e > 0 because it follows from (4.3) and 
(4.4) that Av and Az are negative for £ > 0. (ii) With x(v) = sv2/(s + v2), the 
stability of the planar equilibrium solution changes depending on the width £ > 0 as 
well as the other parameters s > 0 and k > 0. When 5 is small, that is, the case of 
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Figure 2(ii), the solution corresponding to the lower branch is stable for any k > k 
and £ > 0 for sufficiently small e > 0 where k is the turning point of the branch. 
But, for suitable large fixed 5 > 0 and £ > 0, that is, the case of Figure 2(i), when k 
decreases, the instability primarily appears with respect to zig-zag disturbances and 
secondarily appears with respect to varicose ones as in Figure 3. We note that a 
similar bifurcation structure is demonstrated for a class of reaction-diffusion systems 
with activator-inhibitor interaction (Ohta, Mimura, and Kobayashi [21]). 

50 

25 

| 1\\  uhstable /W n 

| m/V    / Z's// 

^V^VV-VnT)   /' /z/s/ 

|   V\<Jx'   / /Z,i 

rz^^^'-y'y 
stable '^^S^""' 

3.0 4.0 5.0 

FIGURE 3. For the equilibrium solution corresponding to the branch 
in Figure 2 (i), at the lines Zm and Vm the solution is neutrally stable 
with respect to m-mode zig-zag and varicose disturbances, respec- 
tively. 

7. Proofs 

Here we prove Theorem 1, Proposition 1, and Theorem 2. 

Proof of Theorem 1. We first construct a solution of (3.6), (3.7) in two subintervals 
(0,77) and (ry, 00) with the following boundary condition at x = 77: 

(u(f7),«(!,)) = (C, a) (7.1) 

where C and a are arbitrary constants to be determined later. In order to do that, we 
construct an outer solution of (3.6), (3.7) in (0,77) and (77,00) and an inner solution in 
a neighborhood of x = rj (see [7, 14], for instance). 

Outer solutions. When e = 0, (3.6) becomes 

0 = /(u), 

0 = vxx + u- jv, 
X £ (0,Oo). 
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Solving the first equation in the above system, we take 

■c Uo^        in r- ( \ 0    X € (77,00), 

and put it into the second equation with the boundary conditions (3.7) and (7.1). Then 
the solution v§(x) is represented by (3.5). We call {u§(x), vo(^)) the outer solution of 
(3.6), (3.7) in the limit e I 0. It follows from (3.2) that 

d d (       1 \       e2^7? — 1 
-gxAn + 0) = -aV7       and       -tfcfo - 0) = [a - -J ^l^^^- 

We remark that when G = a* = 1~e
2 

7T? , t;o(^) belongs to C1(R). 

Inner solutions. Since vo(x) is continuous in R_j_, but uo(x) is discontinuous at 
x = 77, we look for an approximate solution to (u(x),v(x)) in a neighborhood of re = rj. 
To do so, we use the usual stretched variable £ = (x — rj)/s so that (3.6) is rewritten 
as 

0 = V££ +e2(u — jv). 

We look for an approximate solution of (7.2) in the form 

v(0 = M^ + v) + V0(0^e2V2^). 

Substituting (7.3) into (7.2), we have 

(7.2) 

(7.3) 

0 = £%(£) - *|tfoe(Ox/Me£ + n) + V0(0 + e2V2(0) 

x (voM + l) + jVosit) + eVvit)) + e(u0(eZ + r,) + U^)) 

x [x'(«d(^ + T?) + ro(0 + e2y2(£)) («tex(ee +»?) + ^^(0 + V2«(0) 

+ £x"(^o(^ +»?) + VbK) + eVaCO) K(^ +»/) + \v^) + ^(0)2] } 

+ /(tio(ee + »/) + ^o(0)+0(e), 

0 = t;oxx(£e +»?) + ^0€C(0 + ^(0 + «o(e€ + v) + MO 

- i{M^ + v) + VbCO + ^^(O) + 0{e) 
(7.4) 
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for small e.  Noting that the interval Ie becomes the whole interval R in the limit 
£ i 0, we impose the boundary conditions for UQ, VQ, and V2, 

lim Uo(O = 0, lim [/<,(£) = 0, 
^-0O **" (7.5) 
limUo(0 = C-h limoU0(0 = <;, 

and 

limyo(0 = 0, ]imV2(t) = 0, 

yo(0) = 01 Vr2(0) = 0. 

When e tends to zero in (7.4), the second equation implies Vb^ = 0 so that Vo(£) = 0 
by (7.6), and then the first equation of (7.4) is 

0 = [%(£) + XUodO + f(Mv) + Uo(0) (7-7) 

where A = -fcx'^ofa^Oxfa)- By putting 

it follows from (7.5), (7.7) that Wo satisfies 

0 = Wbtf + AWbe +/(Wb),       £eR±, 

Urn   Wo(0 = 1, lim Wo(£) = 0, Wo(0) = <. 
^—>•—oo ^->oo 

(7.8) 

Lemma 1. (i) There is a c > 0 s^/cft ^fta^ when X = c, (7.8) /ms a unique monotone 
decreasing solution WQ (£) in R. 

(ii) T/iere exists 6 > 0 s^c/& that for any X (|A—c| < 5), (7.8) ftas a unique monotone 
solution W^fa X) in R±, which satisfy W^fcc) = WQ (^) m R± anrf 

d_ 
dX 

Wo+(0;A)-^(0;A) >0. 

A proof is in Hosono and Mimura [11]. 
Thus, we have obtained (E/o(£), Vo(£))• We next consider V^), which satisfies 

y2(±oo) = o,     vr2(o) = o. 

Obviously the solution of (7.9) except for the boundary condition at £ = 0 is given 

by V2 (£) = - /^ ^ /s ^ ?7o(^) dtds in Rj-. In order that V£(f) satisfy the boundary 
condition at ^ = 0, we let 

v m = i^^ ~ v*(0)e+^'     e e R-' 
2W      l^(O-^2

+(0)e-^,        ^R+, 

with some constant JJL > 0. 
Thus, we can construct an approximate solution (u(£),v(£)) of the form (7.3), 

which is called the inner solution of (3.6), (3.7), (7.1) with the stretched variable 
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We now construct the classical solution on (0,77) by using the outer and inner 
solutions. By the new variable y = x/rj, (3.6) is rewritten as 

0 = £2Uyy - ekuyx'(v)vy - eku{x'(v)vy}y + T)2 f (u), 

0 = %2/ + 772(^-7^)5 

2,        x ye (0,1).       (7.10) 

We look for a solution of (7.10) with (3.7), (7.1) in the form 

ix(y; £, 77, a) = uo(w) + Uo(r)(y - l)/e)6(y) + p(y), 

v(y; e, rj, a) = voiw) + ^^(viv - l)le)0(y) + q(y) 

where (p(y),q(y)) is a remainder term with respect to small e and 0(y) is a smooth 
monotone function satisfying 

%)a{0' !'e(0'i)' U  »e(i.i)- 

Substituting (7.11) into (7.10) with t = (p,q), we have 

P(t] e, ri, a) = rfUoztO + 2erjUQ^9y + e2Uo0yy + e2pyy 

-efc{(5^ + Dbtfy+py)x'(«b + e2%« + ?) 

x (ryuox + er/T^e^ +.e2^0y + qy) 

+ (MO + Uo0 + p) [x^^o + e2V29 + g)(^ox + et?^^ + e2^^ + %)2 

+ x'(^o + e2V^fl + g) (v2voxx + r/2^^ + 2^^^ 4- e2V^,, + 

+ ^
2
/(MO + C/O^ + P), 

Q(t; e, ry, a) = ^vorrrr + rfV^O + lerjSfazOy + e2 V^yy + ^ 

+ ^{^o + UQO + p - 7(i;o + e2!^ + g)} 

n — 1 
= 2£rjV2^0y + e2^2^y + Qyy +  (e^^fl + e^Oy + gy) 

+ V2{P - l{e2V2e + q)} 

for j/ e (0,1). The boundary conditions axe 

P»(0) = gw(0)=p(l) = «(l) = 0. 

We prove that there exists a solution (p(2/), <z(y)) by applying the usual implicit func- 
tion theorem to P(t\ e, 77, a) = 0 and Q(t; e, 77, cr) = 0. We first note that the following 
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six properties hold for small e 

P(0; e, 77, a) = 2er)Uo(9y + s2U06yy 

- eki^-Uoid + Uoey)x'{vo + e2V2^)(77Vox + eij^fl + e^Oy) 

- ek(uo + Uoe){x"(v0 + e2V2e)(r)Vox + erfV^B + e2^^)2 

+ x'C^o + e?V29) (v2voxx + rpYwe + lenV^Qy + £ViQm 

+ e7?y2^ + e2F2^)} + »?2{/(uo + f/o^) - /MO) + Ob)} 

+ /(uo + C/o^) - /MO) + C/o)} + 0(e) 

= 0(6), 

Q(0; e, ??, a) = 2^^^ + e2^^ - tf^Vrf = 0(e), 

and 

Pp(0; e, r?, a) = e2^ - efcx'^o + £2^)(^0x + eJ?^ + e2^)^ 

- £fc{x'>o + e2^2^)(»7Vox + eriVieO + e2^^)2 

+ x'(vo + £2^2^)(r?2f0xx + rj2^^ + TeTV^y + e2^^)} 

+ »?2/'(«o + ^) 

= e2^ - e^x'^o)^^ + »72/'K + U06) + 0(e), 

d_ 
dy 

+ e(uQ + Uo^) x"'(«o + e2V26)(rrvox + eijl^e + e2^^)2 

Pg(0; e, 17, a) = -fcj^C/o^ + e^ofltf)x"(*to + e^d)^ + eV^ff) + x'(vo + e^O) 

+ x"(^o + e2V2e)2e('nvQx + erjV^ + e2^,)^- 

+ x'>o + e2^2^)(»72^x + ifVixe + 2^^^ + £^2^) 

'%2 + x'(fo + e2^)^2 

= -fci/^oc^ Ux"(vo)vox + X'(^o)^-} + 0(e), 

Qp(0;e,r),a) = r]2, 

cP 
Qq(0;e,r},(j) = j-2-71

2f 

where Pp, Pq, Qp, and Qq mean the derivatives of P and Q with respect to p and 
g. We note the following: (i) Qq(Q;e,rj,a) is invertible in a suitable function space 
with (7.13); (ii) Pq(0; e, rj, a) = 0(e?) holds for small e with respect to the L1— norm; 
and (iii) since /'(UQ + UQ) < 0 in (0,1) for any fixed £ close to 1, Pp is invertible by 
the maximum principle of elliptic equations. Then, it turns out that the linearized 
operator ( Q

P
 o' ) at (P» 9) = (0> 0) is invertible for small e and fc.  It follows from 
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the implicit function theorem in [7] that there is a solution (p(y; £,7/,cr), q(y',e, 77, cr)) 
of P = Q = 0. Therefore, we have a solution (u(y]e,rj,a)1v(y]e, 77, a)) of (3.6), (3.7), 
(7.1) on (0,77) of the form (7.11). 

Next, we construct a solution of (3.6),(3.7), (7.1) in (77,00).   By using the new 
variable p — x — r]^ (3.6) is rewritten as 

0 = e2UpP - skupx'(v)vp - eku{x,{v)vp}p + f(u), 
■ p e R+. (7.12) 

0 = VpP + u- 7V, 

The boundary conditions are 

(ti(0),t;(0)) = (C,^)        and lim (u(p),v(p)) = (0,0). (7.13) 
p—too 

We look for a solution of (7.12), (7.13) on R+ in the form 

u(p; e, 77, a) = uo(p + 'n)-\- Uo{r}/e) + pirj), 

v(p; e, 77, cr) = vo(p + 77) + e*V2(p/e) + g(p) 
(7.14) 

where (p(p),q(p)) is a remainder term with respect to small e. Substituting (7.14) 
with < = (p,g) into (7.12), (7.13), we have 

P(t; e, r], a) = UQK + e2pm - ke(-%■ + pp)x'(^o + e2V2 + q)(vor + eV^ + qp) 

- ke(uo + Uo+ p){x"(vo + e2V2 + q)(vox + eV^ + qp)2 

+ X'ivo + e2V2 + q){v0xx + V2ii + qpp)} + /(«<> + U0 + p), 

Q(t; e, r], a) = v0xx + Vitf + qPp + uo + Uo+p- ^(vo + £2Vi + q) 

= 9w+p-7(£2^2 + 9). 

The boundary conditions are given by 

p(0) = 9(0) = p(±oo) = q{±oo) = 0. 

Therefore, we will prove that P(t;£, 17,(7) = 0 and Q{t\ e, 77, a) = 0 has a solution 
(p(p)i lip)) by using the implicit function theorem, as usual. To do that, we show the 
following six properties with respect to P and Q for small e: 

P(0; s, r), c) = -kUotx'(vo + £2V2)(v0x + eV^) 

- ek(uo + Uo){x"(vo + e2V2)(vQX + eV^)2 

+ X>o + e2V2){v0xx + y2«)} + kx'(vQ(0))v0x(0)Uot 

= -k{x'(vo)v0x - x'(M0))vox(0)}Uoi + 0(e) 

= 0(s), 

Q(0;e,r),(T) = -'re
2V2 = O(e), 
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and 
d2 d 

Pp(0; e, 77, a) = e2 —^ - ekx'(vo + e2V2)(v0x + sV^) — 

-ek{x"(v0 + e2V2)(v0x + eV2i)
2 

+ x'{vo + e2F2)(i;oxx + ^2«)} + /'(«o + ^0) 

d2 d 
= e2j2 - ekx'Mvoxj- + f{u0 + C/Q) + 0(e), 

iyt); e,»?, a) = -A;x>o + e2^)^ + eV^Utu + x'^o + e2^)^ j- 

- e*(tio + C/o)!^"^ + £2^)(^0x + e^)2 + x>o + e2V2) 

x 2(vox + sV^)— + x"(«o + e2y2)(^oxx + V2«) 

Qp(0;£, 77,(7) = 1, 

dp2 

We note that Pg(0;£:,ry,cr) = 0(5:2) for small e with respect to the L1-norm, and 
<2g(0;£:, 77, a) is invertible. In a way similar to the proof of Lemma 4 in Hosono and 
Mimura [11], we can show that Pp is invertible. Thus the linearized operator of (P, Q) 
at {p, Q) = (0,0) is invertible, so that the implicit function theorem implies that there 
exists a solution (p(p; e, 7/, cr), g(p; e, 77, cr)) of P = Q = 0. Therefore, (7.12), (7.13) has 
a solution of the form (7.14) on the half line R+. 

Note that the solutions of the forms (7.11) and (7.14) for (3.6), (3.7), and (7.1) are 
continuous but not continuously differentiable at x = 77. So, we show the existence 
of functions rj(e) and cr(£:) for small e such that each solution on (0,77) and (77,00) is 
continuously differentiable at x = 77. By the form of VQ(X)1 (7.11), (7.14), (3.4), and 
(ii) in Lemma 1, we find that at a = cr*, 77 = 77*, and A = c, 

^Hv + 0)-v(V-0)}=0, 

Km ^ [vm(v + 0) - VX(V - 0)] = ^(^ + 1) < 0, 

lime— [u(r) + 0) - ufa - 0)] = WQ^O + 0) - WoS(0 - 0) = 0, 
cj'"   ax 

Km ^- {e [ux (t/ + 0) - ux (n - 0)]} 

= *^ [X'^o^))^^)] J^ [W^(0; A) - W0-f (0; A)] 
Q ,    -j poo 

and 
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By using the implicit function theorem, it follows that there exist cr(€) and 7](e) such 
that for small e, a solution (u£(x), v£(x)) of the forms (7.11), (7.14) constructed on each 
interval becomes a solution of (3.6), (3.7) on R+. Therefore, the proof of Theorem 1 
is completed. □ 

Next, we prove Proposition 1 and Theorem 2. To do that, we first consider the 
following two eigenvalue problems: 

T£(f) = C<j>       inR+, 

0.(0) = 0,      lim (i)(x) = 0, (7.16W 
x—yoo 

and 

T£(j) = C^       inR+, 

0(0) = 0,       lim (f>(x) = 0. (7.16)D 
x—too 

For each problem, the following lemma holds. 

Lemma 2. Let (Te(T
£) be the essential spectrum ofT£. Then cre(T

£) C (-oo,/'(0)] 
holds, and all eigenvalues of T£ are real and simple. 

The proof of this lemma is in Coddington and Levinson [5] and Henry [10], for 
instance. 

Let {Cn}n>o, {Cb,n}n>o be the eigenvalues of the problems (7.16);v, (7.16)^ and 
{^nln^o? {0D,n}n>o be the corresponding orthonormal eigenfunctions, respectively. 

By using the stretched variable £ = (x — r)(e))/s,    T£ is rewritten as 

f £ = IF " fex'({ie)^| -ek M5")5^+x"^)^)2 - fivw}+rm 
in [-rf(e)/e, oo), where us(£) = u£(7?(e) + eg) and i;£(^) = fe(r?(e) + eQ. Note that 

where lim^o^e) = ry* and lime4.o^(0 = v2(^*). Putting 0£(f) = ^(f)£
n(rj(€) + e^). 

we find that 0^ is the eigenfunction corresponding to the eigenvalue Cn 0f ^'e with the 
Neumann boundary conditions. 

Remark 3. — ^ Wo is a constant multiple of the positive normalized eigenfunction 

0o corresponding to the principal eigenvalue 0 of the Sturm-Liouville operator T0, and 

-l^"*-1^       (=-|w.)       ase^O 

where K*'
1
 = ||^Wo||La(R)- Moreover, the eigenvalues of T0 are all simple and the 

remaining spectrum, except for the zero eigenvalue, is in the parabola {A G C|—Re A > 
a(Im A)2 + b} for some positive constants a, b (see Sattinger [23], for instance). 

Let 0o* be the eigenfunction corresponding to the principal eigenvalue Q* of the 
adjoint operator T£* of Te, which is represented by 

T£*=£2i+ek*w»i+ekuex'(ve)+/'(««). 
Lemma 3. (Nishiura and Fujii [19, Lemma 1.3]) It holds that 

&0       (= Ve&o) -*• 0o        in the Clu{R)-sense       as   e | 0 

limf£ = f0 = -JL _ fc/^*)^^*)^ + /'(^^   in R 
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and 

0o* "^ 7*eC^o       in the C^uCR)-sense       as   e 10 

where 7* = l/\\ec^2^\\2L2. 

Corollary 3. [19, Corollary 1.3] 
poo poo 
/     (j)l(x)dx = L(e)>Je        and I     (j)Q*(x)dx = L*(£)y/e 

Jo Jo 

where He) = /~(e)/e y/effiivie) + eZ)d£ and L*(e) = f™i£)/£Ve(l)£0*(v(e) + eOd£. 

Moreover, L(0) = K* and L*(0) = -7*/^* JZo ec^Wo^. 

Lemma 4. 
r ^     poo Oply/lV*        r0 

{x'(^) + a YV)} J JWot)2e«dt - X'i^f^^r j jWuf&dl- * 0 

where Wo is the traveling front solution of (2.4). 

Proof. Put VFo(O) = 0  Thus /^(W^e^df -^ 0 as C -> 1, so the proof of this 
lemma follows from (3.4). □ 

Using Lemma 4, we have the two lemmas: 

Lemma 5. [19, Lemma 1.4] Let Co be the principal eigenvalue ofT£ with the Neumann 
or Dirichlet boundary condition. Then, we have Q = e£o(e) + 0(5:2) for small p and 

xVKs + x'V)«)2-xV)- 

7tf*{xV) + *W)}-xV)- 

limCo(e) =Co =fc ,.^2    ,,,_^<(^)2,ec«>R_ 
<(Wbe)2,e«>R 

((W0t:)*,e<*)n_ 
#0 

where v* and v*x are the values ofv® and v^x atx = rf and (•, • )R and (v )R± mean, 
respectively, the Z,2(R)- and L2(R±) -inner products. Moreover, there is a positive 
constant fi independent of e such that other eigenvalues (j^ of Te satisfy ^ < —fi for 
any integer n > 0. 

Lemma 6. The principal eigenvalue Co ofT£ does not belong to the spectrum (?/(5.4)o, 
(5.6) for small e > 0. 

This lemma will be proved at the end of this section. 
Let Ai = {A 6 C I Re A > — min{/x, 7, b}}. We note that the constant 6 > 0 in 

Proposition 1 is determined by 8 — min{/x,7,6}. For A G Ai, we decompose Wm into 
two parts as follows: 

ii;m = (re-e2/6
2-A)-15e(A)zm 

s <gg(-X^r ^+(T£ -gV - ^s£^^     (7-17) 
Here the first term in the right-hand side means the projection of the space spanned 
by the eigenfunction corresponding to the principal eigenvalue Co 0f T£. By using 
Lemma 6, it is easy to show that (Te — A)t is a uniformly L2- bounded family of 
operators for A G Ai; more precisely, we have 
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for some p > 0. By the argument in the proof of Lemma 6, we have Co - e2^2 — A ^ 0. 
Substituting (7.17) into the second equation of (5.4)m, we have 

Azro = zmxx + ^'M^'f^ti + (T* - S2
K

2
 - A)tS£(A)zro - (K

2
 + 7)zm. 

(7.19) 

Proof of Proposition 1. We prove this proposition by using the proof of Nishiura and 
Fujii [19]. Since the proof of Proposition 1 for the Dirichlet boundary conditions (5.6)1) 
is the same as that for the Neumann boundary conditions (5.6)^, we only consider the 
problem (7.19) with (5.6)JV. In order to do that, we introduce the following bilinear 
form associated with (7.19): 

0 = -<*rn*,^>R+ + —ZT—2-2—y±<<#)^>R+ 
SO — t   l\i    — A 

+ ((T£ - e2K2 - A)t5£(A)2;m, ^>R+ - (7 + ^ + A) < z^ $ >R+       (7.20) 

for j2?m, if) G Hlf(Ji.+) where Zm is normalized as ||2m||£,2 = 1. 

Lemma 7. There is a positive constant Mc independent of0<e<l and K > 0 such 
that any eigenvalue A e Ai^ = {A e Ai | \e2K2 + A| > 5} of (5.4)m; (5.6)iv satisfies 
|£2tt2 + A|<Mc. 

Proof Setting ip = 2m in (7.20), we have 

(7 + X + K2)\\Zm\\h + [Mb = ^^Nfl.Olt,. 
so — — 
+ {(Ts - e2K2 - \)tS%\)zm, zm)K+.     (7.21) 

For the real part of (7.21), it follows from (7.18) that 

(7 + ReA + /c2)||zm||22 + ||Zmx||22 

= Re |M^±^t(^,m)R+ + {(r - eV - A)t^(A),m, zm)R+ } 

< ^lyf0^ m^m)R+\ + |<(T« -eV - A)t^(A)2m),m)R+| 

< C|km||z,2{|kmx||L2 + e(7 + K2 + |A|)||Zm||L2 + Ikmll^j 

X{|a_e2/c2_A| + |Cf_£2K2_A|) (7-22) 

where C is a positive constant independent of 0 < e < 1 and « > 0. Since ll^mlU2 = 1? 
the left-hand side of (7.22) is larger than the right side as \e2K2 + Re A| —> oo. This is 
a contradiction and therefore \e2K,2 + Re A| < -f oo. 

On the other hand, we have 

T       XII       112 T       f(^£(A)^m?0r)R+/.£ x Im AH^Hia = Im |     ^_£2K2_X     (</>0>zm)ll+ 

+ ((r£ - e2^2 - A)t5£(A)^m, ^m)R+1 

from (7.20). By using the same argument as above, we find that the left-hand side of 
the above equation has upper bound equal to the right-hand side in (7.22). Therefore, 
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H^mxIlL2 —> oo as Im A —► oo.   We note that there is a small positive constant Ci 
independent of 0 < e < 1 and K > 0 such that 

(7 + K? + Re A) + 1    ^lia-^^-AI + ICf-e^-AI/J11 7    II2 

<(7^+g(7 + «2 + |A|) + l)<!,A£       ' .,+■ j{|a_£2K2_. 
As |Im AI —> 00, the left-hand side term becomes larger than the right side for small 
e > 0, which is a contradiction. Hence, |Im A| < 00, that is, there is a positive constant 
Mc such that \e2K2 + A| < Mc for each eigenvalue A G Ai^. D 

Corollary 4. // Zm is the eigenfunction corresponding to an eigenvalue A G Aij 
satisfying \e2K2 + A| < Mc of (5.4)m, (5.6)JV? then there is a positive constant C such 
that 

1 < WzmWm < C. 

Proof. Prom (7.21), there is a positive constant C3 satisfying 

ZmxWh <(7 + K   +|A|) + c2^2_ \    ■(^0>«m)Rf 
(Se(X)zm,<j>e0*}R+ 

Q - £2K2 - A 

+ |((T£ - eV - A)t5£(A)zm,2m)R+| 

<(7 + K2 + |A|) + C3{||zm:c||L2+£(7 + «2 + |A|) + l} 

l|Co£-e2K2_A| + |Cf-£2K2_A|}- 

By using ||zm||L2 = 1? we have 

1" ^ {leg - A2 - AI 
+ iff - ^ - AI }] IMk £ 7+K2

 
+ |A| 

for a small positive constant C4. Thus, it turns out that there is a positive constant C5 
satisfying H^majH^ < C5. Moreover, it follows from (7.19) that Hzmzzllz,2 < Celkmll/f1 

with some positive constant Ce. Therefore, there is a positive constant C satisfying 
1 < \\Zm\\H2 <C. D 

To show the distribution of the eigenvalues of (5.4)m, (5.6)JV in {  A G Ai^   | 
\e2K2 + AI < Mc }, we need the two lemmas: 

Lemma 8. [19, Lemma 2.2] Let F(u,v) be a smooth function of u and v. Then, for 
Fe = F{u£(x),v£(x)) and F* = F(U*(x):V*(x)) 

F*h 
(T£ - A)t(Fe/i) —»• —-        strongly in the L2-sense as   e \. 0 

for any h G L^(R+) fl L00(R+). Moreover, for any finite A G Ai, 

{Te — Xf{eue
x-) —> 0    uniformly on any bounded set in jEf1(R+) fl L00(R+) as e 10. 

Lemma 9. There is an eo > 0 such that any A G Aij satisfying |£2«2 + A| < Mc is 
not an eigenvalue of (5.4)m, (5.6)JV for any 0 < e < eo- 
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Proof. Let A be an eigenvalue of (5.4)m, (5.6)JV. Prom Corollaries 3 and 4, we find 
positive constants Ci, ^2? Cs? and C^ independent of e and K such that 

and 

|(5£(A)zm)C>R+l < ll^(A)^||L2|ldlL2 < C3||5£(A)^m||L2 < C4(1 + 5|A|) 

for small e > 0. By using Corollary 4 and Lemma 8, we see that the left side of (7.21) 
is larger than the right side for small e > 0, which is a contradiction. □ 

We thus find that there is no eigenvalue of (5.4)m, (5.6)JV in { A E Ai | \£
2
K

2
 + A| > 

5 }. Since the same argument as the above also can be used for the eigenvalue of 
(5.4)m, (5.6)D, Proposition 1 is completely proved. □ 

Proof of Theorem 2. Hereafter, we may assume that there exists a positive function 
6(e) with lim£4,o 6(e) = 0 such that 

\e2K2 + \\<6(e). (7.23) 

We now consider the distribution of eigenvalues satisfying (7.23). To do so, we 
define the bilinear form 

BK'x(z\ z*) = (zl z2
x)R+ + (7 + K2

 + X)(z\z2)R+ (7.24) 

for z1, z2 E £r^(R+). It is easy to see that there are two positive constants C5 and 
CQ such that 

|B"'V>*2)l<tf5ll*lfHI*2l|jfi 
and 

\B^(z,z)\>C4z\\2
m 

for any A and K satisfying (7.23). 
By the Lax-Milgram theorem, we find that for any h € iJ~1(R+), there exists 

z G jffjy-(R+) such that 

B">x(z,il>) = (h,^)R+        for any ^ e H1
N(R+). 

Then a linear operator KK'X from JEir~1(R+) to iJjy(R+) can be defined by z = KK>xh. 

Lemma 10. For any A and K satisfying (7.23), KK>X satisfies an estimate ||ifK'A|| < 
^- where || • || means the operator norm from if~1(R_l_) to iI^(R+). 

By (7.20) and (7.24), it holds that for any ^ € fl^(R+), 

^'A(^^) = ^£fA)^-f^(^^)R+ + ((T« - s2/,2 - A)t^(A),m^)R+ 

where 2m is the eigenfunction corresponding to the eigenvalue A. Therefore, it follows 
from Lemma 10 that 

zm = ^"Tf^K^m + K^dT* - eV - A)t5£(A)^) 
(^Q — £  K   — A 

= {*}X)^;¥/^K^(&)+K^((T'-e*#\)tS'Wzm).      (7.25) 
(Cn — e K>  — A)/e \\/e/ 

Put 

Zm = aK^x (-^) + K^x(b) (7.26) 
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with (6,^*>R+ = 0. Then, (7.25) and (7.26) imply that 

a(a - eV - A) = tt(y(A)Ji^(&)t gj^ +{s'W*(b), ^|)R+, 

b=(Te- S2
K

2
 - A)t5£(A)(ai<rK'A^) + KK'X(b)). (7.27) 

Then, the second equation of (7.27) is rewritten as 

[/ - (T£ - eV - \)*Se(\)KKX]b = a{Te - eV - X^Se(X)KK'x^y 

We remark that KK'X is also a bounded operator from L2(R+) to H%(K+). Therefore, 

KK'X(^) € fl^'(R+) because *£ e L2(R+) holds for smaU e > 0. Moreover, 

||S£(A)J^(^)||L? = C>(e) 

and 

||(Te - e2*2 - A)t5e(A)^'A||L2^L2 = 0(e)       for small   e > 0. 

Therefore, the operator / - (T£ - e2K,2 - X)j[S£(X)KK^ has a bounded inverse from 
L2(R+)toL2(R+). Wehave&= [I-(T£-e2K2-X^S£(X)K^x]-1aSe(X)K^x(^) = 

0(e) in L2(R+), which implies that KK>x(b) = 0(e) in -ff^(R+) for small e > 0. If 
a = 0, we know 6 = 0, that is, (wm,zm) = (0,0). This contradicts the fact that 
(wm, Zm) is an eigenfunction, so that a ^ 0 holds. 

Next, we consider the limiting form of the first equation in (7.27) when e tends 
toO. 

Lemma 11. [19, Lemma 2.3] 

(b£ (h£* 
lim —p = K*5O        and       lim -^ = tt*7*5o        in £fte J?~1(R+)-sense, 

hmv^^x'^)^* = -^7*X,(^*)((^)2,e^)R5o        in ^fte fir-1(R+)^ense, 

and 

UmViulx'VKC = -«*7*x"(^*)<((^)2
)e

c«)R<5o    in tfte ff-^R+J-senae 

where SQ is the Dirac S-function at x = rj*. 

By Corollary 3, we have a positive constant C such that 

\(S%\)KK'x(b),cf>l*)R+\ < CVS||081LI(R+) = CX*(e)e (7-28) 

for small e > 0 where C is a constant independent on K. 

We first assume that K, is large to be 0(e~i) for small e > 0. Then, the following 
equation is obtained by (7.27), (7.28): 

a(Co* " ^2 - T£) - aliin(5e(er)^-(4), %) eiO \ \ y/e /    y/e I R+ 

for A = er where lim^o % = Co and lime;o T = r^. Putting 5 = aXK'eT(^|), we have 

(^,V>*)R+ + (7 + K
2
 4-£r)(z,^)R+ = OLA^\ for any    ^ € ^(R+J, 

\ \je    I R+ 
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by the definition of KK>£T'. Thus, it follows from the above equation and Lemma 11 
that z* = lim^o z satisfies z* G C2((0,77*) U (77*, 00)), 

W-0)-z:(77*+0) = cm*, (7.29) 

and 

Cx-(7 + «2)^ = 0       in    (O,f7*)u(»7*>oo), 

z*(V*) = v,        2*x(0)=0,    z*(oo) = Q, 

for some positive constant u satisfying ||^*||L
2
 = 1- Then, the solution z* of the above 

problem is represented by 

ey/~f+K2x   1   e-y/i+K2x 

z*(x) = i 
;   x 6(0,7?*), 

Thus, we have 

[^]=z:(i7*+0)-f*(i7*-0) 

— VyJ^ + K2\   - 1 - 

21/1/7 + /€2 

1 + e-2V/^+^'^ ' 

e\/7+«2'71,t + e-\fr^ ~f+K2V*   / 

(7.30) 

Since iir/6'er(6) = 0(e) in H%(R+) for small e > 0, it follows from (7.26) that z^ = 
Irnieio^m = z* in iyrl(R+). By using the first equation in (7.27) and Lemma 11, we 
have 

a(C0* - SK
2
 - T) = -HK* [^'(^K^^XCWoe)2, ec«>R 

+ xV)Kl*(>7*-0)<a%)2,ec«> 

+ ^x(^+0)((WoC)
2,e^)R+}]. (7.31) 

We next consider the case of the Dirichlet boundary conditions. The same argu- 
ment as the one for the Neumann boundary conditions implies that the eigenfunction 
z*D corresponding to the principal eigenvalue with the Dirichlet boundary conditions 
satisfies 

Z*DXX-(I + K
2
)Z*D = Q       in    (0,77*)U(77*,oo), 

zh{'n*) = v,    3b(0) = 0,    3&(oo) = 0 

and 

&DxW-b)-ZbxW+Q) = <*DK* (7.32) 

where OLD satisfies (7.26) corresponding to the Dirichlet boundary condition.   The 
solution z*D(x) of (7.32) is represented by 

3D(*) = < 
v    > ,     ,    a;E(0,77*), 

ve -y/lf+Kpix-ri*) x € (77*, 00). 
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Thus, we obtain 

[z*DX} = z*nx(v*+0)-z*Dx(r]*-0) 

= V\/l + K2< -1 - 
^ 

2VyJ*i + K2 

Summarizing the above results, we have 

v 1 + e-2v/7+«277* ^ 1 _ e-2v/7+/c2r7* 
and 

It follows from (7.31) that 

^D«* 2^/7 + «2 

r = Co - e«2 + ■ 
a 

-2^/7+^ 

{(r77^+1)^)V^--^p} 
>* 2 ^ -^x"(^)V7 + X,(^)\/7+^ 

{i^^^'v-1}: 
Co - e«2 + 

i + e-2V7+: 

fc(1 + e-2V^+^'/*) 
-^x"(^)V7 

Co "— £K — * 

(7.33) 

2v7 + ^ 

1 + 6-2^/7+^^'" 
+ x'(^)i±1-^  

Prom Lemma 5 and (4.3), it is easy to see that 

TN =T 

= —SK2 + k 
I A/I + K2 J 

e-2V7IJ*+e-2V7+«2^ " 
 2 X(0 

= ^(K). 
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Since (7.31) also is satisfied by z^ and a^, it similarly follows from (7.32), (7.33), and 
(4.4) that 

TD = r 

= Co* - £K2 + 
OLD 

11 _ e-2v/^v ^^)2'eC^R-    7*(«*)2 } 

= —en +k 
|VYV)r 

=-2%/7'!* _ NA 
\/7 + K2 J 

o-ijin* - g-V-r+KV 
-x'(^) 

= A2
(K). 

Define ^"(e, r, K) by 

^(e, T, «) = r + £/c2 - Co(£) + (5£(er)^'-(^), ^) 
\ v ^    ve / R+ 

We find that the critical eigenvalues of (5.4)m, (5.6)JV satisfy T{e,T,K) = 0. (7.27) 
implies 

T(e, r, /c) = r + £K2 - Co(e) + (5e(£r)ii:«'£T(^:), %\      + ij(e) 

where i?(£:) = 0(e) for small e > 0. Then, it follows from Lemmas 9 and 10 that 

T(0,T,K)=r + n*-Co-k1*(K*)2[x"(a*)v:((Woi)
2,e^)R(KK'0(So),So)R+ 

+ xVHC^'Vo) W - 0) <(Wo«)2, e'V 

+ (^0(«5o))x(^+0)((Tyoe)2,ec«>R+}] 

where lim^o e^2 = /x*. Therefore, it holds that ^(0, r, K) = 0 if and only if 

r = £ - /*• + fc7*(«*)2 [x"(^)«; ((Wot)2, e*)R (K*>0(60), S0)R+ 

+ X'(a*){(K"'0(8o)Uv* - 0) ((Wotf, ^)R_ 

+ (K^(8o)Uv* + 0) <(Wo?)
2, ec«>R+ }]. 

There exists a unique solution rj^ satisfying ^"(O,^,/^) = 0 and ^^"(O,^,^) = 1. 
Since F^^T,*) is a real operator, there exists a solution r = r(£:, K) € R such that 
lime^o ^(e, /c) = rjy and ^"(e, T(£:, K), AC) =0 for small e > 0. The above argument also 
holds for the Dirichlet boundary conditions. 

On the other hand, in the case lime>j,o^^2 = 00, it easily follows from the above 
argument that lim^o r = —oo. 

By using the same argument as given in [19], it is easy to show that these eigenvalues 
are simple. Therefore, the proof of Theorem 2 is completed. □ 

Finally, we prove Lemma 6, that is, the principal eigenvalue Co 0^ T£ is not an 
eigenvalue of (5.4)o, (5.6).   Assume that there exists a sequence en > 0 such that 
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£n I 0 and Con is an eigenvalue. Let (wnizn) be the eigenfunction corresponding to 
the eigenvalue Co^ that is, (T£n - (on)wn = S'en(Con)^n. Since Con is the eigenvalue 
of ren*, we have 

0 = K,(Te»*-Co£")^"*>R+ 

- ((2*- - Coe"K,</>r>R+ - (^"(Co^n.^V • (7-34) 

Because wn = knffi + (T£» - Con)t'S'£n(Con)^. 'lt follows from (5.2)o that 

Znxx + Ktff + (Te" - ^S^itl^Zn - 1zn = C0»zn. (7.35) 

By using Lemma 10, we find that zn satisfies 

Zn = KK0'^^ + K0'^ (T£« - ^"^(CS")**. 

If kn = 0, then zn = K0'<on (Te» - Co")^8-^")^, which implies that ^ € ^2(R.+). 
Since ||.fir0'<on (Te» -CB")^

8
*^")!!^^^ = 0(e) for small e > 0, zn = 0 and u;n = 0, 

which contradicts the assumption that (wn, zn) is the eigenfunction. If kn ^ 0, we set 

^n — 

Therefore, (7.35) is rewritten as 

Zn** + 41 + (Te» - Cg")^"(C5w)«n " 7^ = Co"^. (7.36) 

It foUows from (7.34) that 

0 = nlim (^"(Co^n, ^)R+ = -*7*«'{x»; (in^o>R+ ((^)2,ec«>R 

+ X'(^*) [znX(v* - 0) <(Wo«)2, ec«)R_ + znx(V* + 0) ((Wof)2, e<*>R+ ]}. 

Hence, we have 

o = X'VK ^n, So}n+ ((Woe)2, ec«)R 

+ X'(^) [znx(r,* - 0) ((Wo^)2, ec«>R_ + z^fa* + 0) ((Wo^)2, ec«)R+ ].   (7.37) 

Prom (7.36), zn satisfies 

/ <t>£n      \ 
\ V en       / R+ 

+ <(!*- -Co£n)+^(Co£n)^^>R+ -7<^>R+ 

for each ^ G iJjv(R+). Since linin^oo in = z* in JT^(R+), it follows that 

0 = - (z*x^x)n+ + K* (So, ^)R+ - 7 (^^>R+ (7.38) 

by Lemma 11. The solution z* of (7.38) is represented by 

z*(x) = { + e-VW" - " " (7.39) 

ae-v^*-"*), x€(77*)oo), 
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where {z*,5o)n.+ — a. It follows from (7.37) and (7.39) that 

1 _ e-2VT'7* 
Q = as/j 

-x"(<r*)°*((Wot)2,e'% . 

By Lemma 4, we have a = 0, that is, z*(x) = 0. This contradicts (7.38), so that the 
lemma is proved for (5.4)o, (5.6)JV. By using the above argument, Lemma 11 also 
holds for (5.4)o, (S.e)^. Thus, Con 'ls not an eigenvalue of (5.4)o, (5.6), so Lemma 6 is 
proved. 

8. Concluding remarks 

We have shown that the location of critical eigenvalues of the linearized problem 
around the symmetric planar equilibrium solutions (u£,v£) for (1.2)-(1.5) in the strip 
domain is determined by the eigenvalues corresponding to the singular limit eigenvalue 
problem obtained as e I 0. Particularly in the 1-dimensional symmetric equilibrium 
solution, Corollary 1 implies that stability is determined by the sign of -£-H{r)*). 
We emphasize that there is a close relation between the stability condition in the 
1-dimensional domain and the matching condition (7.15) of the singular perturbation 
method, which already was pointed out for reaction-diffusion systems [12, 20]. Theo- 
rem 2 says that the analysis of the interface equation, which is called the singular limit 
analysis, is essential to show the stability of the equilibrium solution of (1.2)-(1.5) with 
small e > 0. 

In this paper, we have considered the equilibrium solutions of (1.2)-(1.5) in the 
strip domain. We also know that for any k > 0, there is a planar traveling front 
solution under the boundary condition 

lim  (U(T, x, y), v(r, z, y)) = (1, -)    and     lim (U(T, Z, y), V(T, X, y)) ■= (0,0) 
x—¥—oo \      '-y/ x—>-oo 

where (1,1/7) and (0,0) are stable constant equilibrium solutions of (1.2). The exis- 
tence and stability of planar traveling front solution will be shown in a forthcoming 
paper [17]. 

The existence and stability of radially symmetric localized equilibrium solutions in 
the whole domain R2 with the boundary condition 

lim    (u(r, x, y), V(T, X, y)) = (0,0) 
|(a;,y)|->oo 

are also interesting problems. It is shown in [15], [16] that the stability is revealed by 
solving the linearized problem of the limiting system. Numerical simulation suggests 
that the theorem corresponding to Theorem 2 holds, but this remains unsolved. 
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