
Methods and Applications of Analysis © 1996 International Press 
3 (2) 1996, pp. 273-284 ISSN 1073-2772 

SQUARE-SUMMABLE STABILITY IN PARABOLIC 
VOLTERRA DIFFERENCE EQUATIONS 

B. Shi, Z. C. Wang, and J. S. Yu 

ABSTRACT. We consider some linear and nonlinear parabolic Volterra difference 
equations of the forms 
(OO s oo 

Um,n — 2^ <ijum,n-rj J + ^JPt^m.n-fci = R^lUm-l,n+l 
j=l '       i=l 

and 
OO -] oo 

A2   h(Um,n) - Y^qjgiUm^n-rj)    + Yl Pif^m^n-ki ) = RAiF(Um-l,n+l) 
'- i=l -I        t=l 

for 771 = 0,1,..., M—1 and n = 0,1,..., and we obtain several sufficient conditions 
for the square-summable stability and ^-square-summable stability of the zero 
solution. 

1. Introduction 

Consider the linear parabolic Volterra difference equations of neutral type 
• OO \ CO 

A2( Um^n - 22qJUrn^n-rJ ) + 22PiUm>n-ki = ^^l^m-l^+l 

for    m = 0,1,...,M — 1    and    n = 0,1,..., 

with homogeneous von Neumann boundary conditions (NBC): 

Aiiio.n = AiUM.n = 0    for    n = 0,l,..., (2) 

and initial conditions (IC): 

^m,z = Mm,z    for    m = 0,1,...,M-1    and    % = ..., -2, -1,0, (3) 

and nonlinear parabolic Volterra difference equations of neutral type 
00 -1       00 

A2   ft(wm,n) - X^j^m.n-r.,)    + ^Pi/^m.n-fci) = ^A^(um_ijn+i)        (4) 
j=l J 2=1 

for    m = 0,1,... ,M — 1    and    n = 0,1,..., 

with IC(3) and NBC: 

AiF(tXo,n) = AiF^M.n) = 0     for     71 = 0,1,..., (5) 

where Ai, Af, and A2 are forward partial difference operators (see, for instance, Kelley 
and Peterson [11]) such that Ait^n := um+i,n - wm>n, Afum>n := Ai(Ai itm,n) and 
A2 ^m,n  := ^m.n+l - ^m,n for 771 = 0, 1, . . . , M - 1, 71 = 0, ±1, ±2, . . . ; p,, ^  G R = 

(1) 
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(-00,00), ki,rj € {0,1,...} for i, j = 1,2,...; fim^ G R for m = 0,1,... ,M - 1 and 
i = ...,-1,0; R E [0,oo) and f,g,h,F € C(R,R) such that /(0) = #(0) = h(0) = 
F(0) = 0. Thus, Um^n = 0 for m = 1,2,..., M -1 and n = 0, ±1, ±2,..., is a solution 
of (4), which we call the zero solution. Throughout this paper, let P := YliLiPi > 0, 

P* == ZZM ?' '•= ZZikilPil P" := E.~i*?lwl. Q* == EJli l«il and Q' := 
EjLi ^'kili and suppose that P, P*, P7, P7', Q*, Q' < 00 and that 

||/x|| :=sup{ |^m,i|     I     m = 0,l,...,M-l    and   i = ..., -1,0 } < 00.       (6) 

For the sake of convenience in proving the (unique) existence of solutions of (1) with 
the initial-boundary conditions (2) and (3), we let Um^ = 0 for m < 0, m > M + 1, 
andz = 0,±l,±2,.... 

By a solution of (l)-(3) or (4), (5) and (3), we mean a sequence {wmjn} which is 
defined for m = 0,1,..., M + 1 and n = 0, ±1, ±2,... and which satisfies (1) or (4) 
for m = 1,2,..., M — 1 and n = 0,1,..., satisfies NBC(2) or (5) for n = 0,1,..., and 
satisfies IC(3) for m = 0,1,..., M - 1 and i = ..., -1,0. 

By using the method similar to that in Zhang, Liu, and Cheng [12] or simply by 
iterative calculation, it is easy to show that (1) or (4) has a unique solution for the 
given boundary and initial conditions satisfying (6) (see Appendix). 

In the sequel, we only consider the solutions of (1) and (4) with the initial conditions 
satisfying (6). 

Recently, the oscillation (see [4-6, 17, 21], also Yu and Cui's survey paper [20]) of 
delay partial differential equations has been widely studied, while Xie [16] considered 
the stability of partial differential equations. The oscillation (see [1, 13]) and the 
stability (see [9, 10, 15], see also Burton's books [2, 3]) for Volterra integrodifferen- 
tial equations also have been extensively approached, while Gopalsamy and Weng [8] 
considered the stability of a neutral integrodifferential equation. It is well-known that 
the behavior of a differential equation and its discrete analogue can be quite different. 
For example, every solution of the logistic equation 

x(ty 
x'(t) = rx(t) 

K 

is monotonic. But its discrete analogue 

xn+i = mxn(l - Xn) 

has a chaotic solution when m = 4 (see [11]). In addition, there is a difference between 
the oscillation of delay differential equations and discrete analogues; for example, 
see [18]. In the last few years, many mathematicians have been studying difference 
systems. But only a few studies (see [7, 14, 22]) are devoted to partial difference 
equations and Volterra difference equations; we [14] considered the stability for neutral 
Volterra difference equations. 

Our aim in this paper is to obtain sufficient conditions, which are "sharp" in some 
sense, for the square-summable stability and (^-square-summable stability in parabolic 
Volterra difference equations of neutral type. Our results generalize the corresponding 
results in [14, 19]. 

We now give some definitions which will be needed in this paper. 

Definition 1.1. The zero solution of (1) or (4) is said to be asymptotically stable 
(AS) if every solution {^m,n} of (1) or (4) with IC satisfying (6) has the property 

lim wm,n = 0       for   m = 0,1,..., M + 1. (7) 
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Definition 1.2. The zero solution of (1) or (4) is said to be square-summably stable 
(SSS) if every solution {um^} of (1) or (4) with IC satisfying (6) has the property 

oo 

5^ti^in<oo       for   m = 0,l,...,M + l. (8) 
71=0 

It is easy to see that SSS implies AS. 

Definition 1.3. The zero solution of (1) or (4) is said to be </>-square-summably stable 
((/>-SSS) if every solution {umin} of (1) or (4) with IC satisfying (6) has the property 

oo 

Y^ </>2(wm,n) < oo       for   m = 0,1,..., M + 1 (9) 
71=0 

where 0 € C(R, R)    and   0^0. 

Note that SSS implies <£-SSS, and 0-SSS implies SCS if |0(a:)| > \x\ for x G R. It 
also is obvious that (j)-SSS implies AS if (j)(x) = 0 implies x = 0. 

2. Equation (1) 

For (1), we have the following 

Theorem 2.1. Assume that 

Q* + ip + P/<l. (10) 

Then the zero solution of (1) is SSS. 

Proof. It is easy to show that 
oo / oo n v 

/, PiUm,n-ki = PUm,n+l - A f ^ Pi     2^     Um,sJ' 
i=l ^i=l       s=n—ki ' 

Hence, we can rewrite (1) as 
• oo oo n \ 

^ j = l 2=1 8=71 —ki ' 

1^771 —1,71+1 • 

Define a Liapunov sequence by 

M+l M+l  • 00 00 n \  5 

•"n      ==   /  y I ^TrijTi       / ^ Qj^m^—rj       / JPi     / ^    um,s J 

Tn=0 ^ JI=1 2=1       s=n—fci ' 

Then we have 
Af+l 

^^n15 =:::   Yl (-Pum,n+1 + iiAi^m_i,n+i) f Wm,n+1 + ^m.i 
m=0 ^ 

00 00 

/ ^ Qj ,^,77i,n+l—rj        /,Qj'U"m1n—rj       ■* ^TOJTI+I 

i=i i=i 
OO 71 OO \ 

2=1       s=n+l — ki 2=1 ' 

(We define ^ClLm * = 0 if m > n). 
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First, let us consider 

M+l / oo oo 

-P 2^ ^m,n+l f ^771,71+1 + ^m,n - /J Qj ^m.n+l-rj " ^ Si ^m.n-r^ 
m=0 J=l J = l 

oo n oo >. 

- P ^m,n+i - 2 ^ Pi        ^       Urn,s - ^ P* ^m.n-ki ) 

M+l / oo oo 

m=0 J = l 

i=l       s=n4-l — fcf 
c>o OO v 

~ Z-yft ^m^+l-r,- + Ylqi Um,n-rj - R A? Um_l,n+1 ) 

M+l / 

=   X! ( ~2P Wm,n+1 + 2P ^2 % ^m,n+l iZm,„+l-rj. + P2 W^.n+l 
m=0 V 

J = l 
oo n 

"^ 2jP X/        S        ^m,n+l^m,S + PP^m,n+l A? Um_ijn+1 j 
2=1 s=n+l-ki ' 

M+l r OO 

<   E    -2P<n+l+P£M(<„+1+<n+1_^ + P2<n 
m=0 

i=l s=n+l—fci 

M+l JVJ-|-±   f 

l-^(Q* + P + P') 
1,n+l+-PEl*lUm,«+l-rJ. 

J=l 
oo n 

+ ^E^I        E        t&,, + J>Jium,n+iA? «m-l,n+l }• 
i=l 8=71+1 — ^1 J 

Let us now consider 
M+l  / oo oo 

# 2^ ( ^m.n+l + ^m.n " ^ ft ^m.n+l-r,- " ^ Qj Wm.n-rj " -P ^m,n+l 

J = l m=0 J = l 
oo n oo v 

i=l       s=n+l — ki i=l ' 

M+l   , oo oo 

= RlL, ( Um,n+1 + U^n -^Qj iXm^+l-r,- - ^ ft Um1n-rj " P^m,n 
m=0 J=l J=l 

- 2 JJpi        2^        wm,s + ^m,n+l - ^m,n - ^ Qj ^m^+l-r,- 

i=l       s=n+l—fej j=l 

oo v 

+ 53 * ^m.n-r,- ~ ^ Al ^m-l,n+l ) A? ^m-l,n+l 
J = l ' 
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M+l oo        M+l 

m=0 j = l       m=0 

M+l oo n M+l 

- PR Yl ^m,n+lA? Wm_ijn+i - 2R^2Pi        Yl Yl U
^S^\ ^m-l,n+l. 

m=0 i=l       s=n+l —fci m=0 

Therefore, we get 

A1C(1) < - 2P l-2W* + P + p/) 

M+l  oo 

M+l M+l   oo 

/ j Um,n+l + -P JL^ 2-> l^inm,n+l-r 
m=0 7n=0 j = l 

M+l 

+ ^ XI IZ 1^1        S        Wm,fl + 2i? X ^m,n+lk\um-l,n+l 
m=0 z=l s=n+l — fci m=0 

CXD M + l 

~ R^^Qj  21^ ^m.n+l-rjA! Wm_ijn+i 
j = l 7^=0 

oo n M+l 

i=l       s=n+l — hi m=0 

By using a summation-by-parts formula and NBC(2) (here, we define Ai^jri = 0 for 
i < 0 and i > M + 1), we get 

M+l M+l 

2i? 2L, ^m,n+lA1Wm_i5n+i = — 2R 2^ (AiWm,n+i) 
m=0 m=0 

oo        M+l 

"~ ^R/^Qj'^, ^m.n+l-rjAi^yn-i^+i 

j=l       m=0 

oo        M+l 

^=1       m=0 

M+l   oo 

< i? 53 X) kjl [(Aium,n+i)2 + (Ai^m)n+i_-rj.)
2 ] 

m=0 ,7=1 

M+l M+l   oo 

= RQ* 53 (Aittrmn+l)2 + ^ 53 53 kjKAi^^+l-^)2 

771=0 771=0 j = l 

oo n M+l 

-2i?53^  5Z   53/Um'sAi'Um-i'n+i 

i=l       s=n+l—fcf 7n=0 

oo n M+l 

= 2^53^  5Z   5Z Ai?/m'sAit/m'n+i 

i=l       s=n+l—/:z- 7n=0 

M+l   oo n 

< -R Yl J2 M       S        [^l^,*)2 + (AlWm,n+l)2 

m=0 «=1 s=n+l-fei 

M+l M+l   oo n 

m=0 m=0 z=l s=n+l—fci 
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1-I(Q* + P + P') 

2R 

M+l   oo 

i-^{Q* + P') 

1 M+l 

X v Wm,n+1 
m=0 

M+l 

5^(Ait4m|n+i)2 

m=0 

  M+l    OO 71 

+j,EEi*K^i-ri+^EEifti  £  <• 
m=0 j=l m=0 i=l s=n+l-fci 

M+l   oo M+l   oo n 

771=0 j — 1 m=Q i=l s=n+l —fef 

Now, define another Liapunov sequence by 

M+lr OO n n 

K^E^EM  E <S+^£W  E  E<« 
m=0 L     i=l s=n+l-r 

oo 
i=l s=n+l —A:, *=s 

oo n n 

+tfX>i  E (Aium,s)
2+i?Ei^i  E  E(Aiu-,t)2 

.7=1 s=n+l-rj- 2=1 s=n+l-fci t=s 

Then, we obtain 

M+l ,       oo M+l •        oo oo 

A^ =   E     PE l^l«n+l " <„+l-Pi) + ^E bil(^"m,n+l 
m=0 ^     i=l 2=1 

E  O+^E^i 
s=n+l — ki j=l 

(AilXm>n+i)    - (Ai'M^n+i-^.)' 

OO r Tl -i    x 

+ Rj2\Pi\ Ai(Ait»m,n+i)2 -     E     (AiWm.s)2    | 
j=l ^ s=n+l-fci -I  -' 

M+lj- 

= ^  PQ*u2
m>n+1 + PP'u2

m!n+1 + RQ'iAmm,*)2 + iW"(A1«m,n+i)5 

-^Ei^K™+i-^-pE^i  E  ^-^EI^I^I^^+I)
2 

j=l i=l s=n+l-fci j=l 

oo n 

-^Ei^i  E (Aium,sy 
2=1 s=n+l—fej 

Finally, we take the following Liapunov sequence 

By using (10), we finally get 

/ 1 \ M+1 

AVn < -2P li-cr - oP-p') E <n+l- 
^ ^ / m=0 

(11) 



SQUARE-SUMMABLE STABILITY IN VOLTERRA EQUATIONS 279 

Therefore, {V^} is decreasing and has a nonnegative limit of {V^} because Vn > 0 for 
n = 0,1, Now, summing the two sides of (11) from n = 0 to n = oo, we have 

/ -. x     oo   M+l 

^ ^ n=0 m=0 

< OO. 

or 
oo   M+l M+l 

Z-f 2-^ Wm.n — Z^ ^.0 "*" opTi     n^     rs     DA 
n=0m=0 m=0 ^^V1       V 2^      ^ ^ 

The proof is complete. □ 

Remark 2.1. Let Um^be independent of m and xn = Um^, qj = fcj = 0 for i, j = 
1,2,... and -R = 0. Then (1) becomes an ordinary difference equation: 

Axn + Pxn = 0       for       n = 0,l,..., (12) 

and (10) becomes 

±P<1. (13) 

One can easily prove that the condition (13) is a necessary and sufficient condition for 
SSS in (12) (in fact, the absolute summable stability, i.e., its solutions {xn} with IC 
Xi = jii for i — ...,—1,0 satisfying 

||/x|| = sup{|/Xi|    for   i = ...,-1,0} < oo 

has the property: X^^Lo lxn| < oo)- Therefore, in this sense, the condition (10) is a 
"sharp" condition. 

As a special case, we consider a linear parabolic Volterra difference equation of 
retarded type 

oo 

A2Wm,n + ^PtWm^-fei = -RAi^m-l.n+l (14) 
2=1 

for   m = 0,1,..., M — 1    and   n = 0,1,..., 

with NBC(2) and IC(3). By Theorem 2.1, we have 

Corollary 2.1. // 

ip + P'<l, (15) 

then the zero solution of (14) is SSS. 

3. Equation (4) 

For (4), we have the following 

Theorem 3.1. Let (10) be true. And suppose that 

f{x)h(x) > max{f2(x),g2(x) } ,        x £ R, (16) 

and 
[h(y)-h(x)}[F(y)-F(x)}> 

max{[F(y) - F(x)}2, [g(y) - ff(x)]2, [/(») - /(x)]2} (17) 

for y, x G R. Then, the zero solution of (4) is /-SSS and g-SSS. 
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Proof. It is easy to show that 

A2 

oo n 

j=l i=l       s=n—ki J 

= -Pf(umjn+l) + RAlFiUm-^n+x). 

One can define a Liapunov sequence as follows 

M+lr oo n l2 

m=0 L .7=1 i=l       s=n—ki •* 

As in the proof of Theorem 2.1, one gets 

M+l Af+1 

AV^1) < - 2P J2 /(^m,n+l)/l(^m,n+l) + P(Q* + P + P')  £ /'(^n+l) 
7n=0 m=0 

M+l M+l 

- 2i? ^ Ai/i(^m,n+i)AiF(^m)n+1) + E(g* + P') ^ [AiP(wm,n+1)]2 

m=0 7n=0 

M+l   oo M+l   oo n 

+p £ X) tei$2(«m.»+i--i)+-p X X ifti  X  z2^.-) 
m=0 j=l 7n=0 2=1 s=n+l — ki 

M+l   oo M+l   oo n 

+ ^ X X M[A10(«m.»+l-r,)]a + « X X IP«I       X      [Al/(WTO,S)]2. 
771=0 j = l 771=0 2=1 s=n+l — ki 

Then, one can take another Liapunov sequence as follows 
M+l •       oo n oo n n 

^(2) = E{pEi*i  E flWJ+i'Eiwi  X  X/2(^) 
m=0 ^      ,7 = 1 s=n+l—rj 2=1 a=n+l —fc* *=s 

oo n 

+ i?Xl^l     X    [Ai<?(tw)]2 

j=l s=n+l—rj 
OO 71 71 N 

+JRX^I  X  £[
A
^KM)]

2
}- 

2=1 s=n+l-fci t=fi ^ 

It follows that 
M+l 

A^»(2) = X 1 W52(«m,»+i) + PP'f2(um,n+i) + i?g*[Al5(nm,n+1)]2 

771=0   ^ 

OO 

+ flP'[Ai/(um,n+i)]2 - PX l^l^^m.n+l-r,) 
j=l 

PX IP<I     X    Z2^.*) " ^X l^l[Aig(wm,n+i-r,)]2 

2=1 s=n+l — ki j=l 

OO 71 N 

-^Xl^l     X    [Ai/K,.)]2}- 
2=1 S=71+l —fcj ^ 

Finally, one takes the Liapunov sequence as follows: 

Yn        vn       '    K7i 
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Then, one obtains from the above and (17) 
M+l , 

AVn<Y,\ -2P/(umin+i)fe(um>n+i) + P(Q* + P + P')f2(um,n+1) 
m=0 ^ 

+ PQ*9* (nm.n+l) + PP'/2 (Wmfn+l) + ^Q* AlC7(lim,n+l) 

2iiAi/i(iAm|n+i)AiF(tim(n+i) + i?(Q* + P') 

T2 

AiF(ixm,n+i) 

+ i^p, 
Ai/(wm,n+l) 

M+l 

m=0 
'-2P/(TAmjn+i)fe(wm>n+i) 

+ P(g* + P + 2P')f2(um,n+1) + PQVKn,n+l) 

-2P ^   Q:/(wmjn+i)ft(wm,n+i) - f — + — + P' J /2(^m,n+l) 
m=0 

Q*    2, 
+ (1 - ^/(Wm.n+lJfcCWm.n+l) o"^   (^m,n+l) 

M+1 /      n*     p       \ 
<-2P^(a-^--|-P')/2(Um,n+1) 

m=0 
M+l 

-2P53(l-a-^)9
2(Uro,n+1). 

m=0 

Then, 

and 

AK < -2P   1 - Q 
p \ M+i 

7   m=0 
/^(wm.n+i)    for    a = 1 - — 

M+l 

AVn<-2Ph-Q*---P'\'£/g
2(umtn+1)    for    a = ^- + - + P'. 

^ /    771=0 

Since /(#) and ^(x) are continuous functions and ||/x|| < oo, one has 
oo   M+l M+l v 

J2  E  ^(^.n) <   Yl ^(^,0) + ( 
0   ! ,   < OO, 

where ^(x) = f(x) or (j)(x) = g(x). This completes the proof. □ 

We now give two corollaries. 
Consider the nonlinear parabolic Volterra difference equation of neutral type: 

00 -1       00 

A2   Um,n - ^qjgiUm^-Tj)    + ^Pi/^m.n-ifeJ = PAi^m_i,n+i (18) 
L j=l -I 2=1 

for m = 0,1,..., M - 1    and    n = 0,1,..., 

with NBC(2) and IC(3). By using Theorem 3.1, we obtain the following 
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Corollary 3.1. Let (10) be true, and assume that 

xf(x) > max {f2(x), g2(x)} ,        x G R, (19) 

and that 

(y-x)2>m<ix{[f(y)-f(x)}2, [g(y) - g(x)]2},        y,xeR. (20) 

Then, the zero solution of (18) is f-SSS and g-SSS. 

More specifically, we consider the nonlinear parabolic Volterra difference equation 
of retarded type: 

oo 

A2^m,n + Y2Pif(Urn>n-k^ = -R^l^m-l,n+l (21) 
i=l 

for m = 0,1,..., M — 1    and    n = 0,1,..., 

with NBC(2) and IC(3). Again, by Theorem 3.1, we get 

Corollary 3.2. Let (15) be true, and assume that 

xf(x) > f2(x),        x e R, (22) 

and that 

(y-x)2>[f(y)-f(x)}2,        y,xeR. (23) 

Then, the zero solution of (21) is f-SSS. 

4. An example 

Consider the generalized first equation of Open Problem 6.8.1 in Kocic and Ladas [12]: 
oo 

^2Um,n + ^2Pi [exp(um>n_fci) - 1] = i2A?ttm-i>n+i (24) 
i=l 

for   m = 0,1,..., M — 1    and    n = 0,1,... 

and 
oo 

&2Um,n + ^Pi [1 - exp(-nmjn_fci)] = iiAjum_i,n+i (25) 

for   m — 0,1,..., M — 1    and    n = 0,1,..., 

with NBC(2) and IC(3), respectively. 
For (24) (resp. (25)), we know that f(x) = ex - 1 (resp. f(x) = 1 - e-x). It is 

easy to prove that (22) (resp. (23)) is satisfied for x < 0 (resp. x > 0). Hence, we can 
choose <f)(x) = ex — 1 (resp. 0(a;) = 1 — e-*) which satisfies 

(l){x) = 0   implies   x = 0. 

Hence, if (15) is true, then every negative (or positive) solution which satisfies (6) 
must satisfy (7) where a negative (or positive) solution means /xm,2, i£m,n < (or >) 0 
for m = 0,1,..., M — 1, i = ..., -1,0, and n = 0,1,  

Combining (24) with (25), we consider the following equation: 

^2Um,n + 7^ Pi 
i=l 

1 - exp(-i/m>n_fci sgnttmfn_fc.) SgliUm^n-ki = RA^m-ltn+l 

for   m = 0,l,...,M-l    and    n = 0,l,..., (26) 

with NBC(2) and IC(3) and obtain the following result. 
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Theorem 4.1. // (15) holds, then the zero solution of (26) is AS. 

Appendix 

On the (unique) existence of solutions of initial-boundary value problem (1), (2), and 
(3): rewrite (1) as 

oo oo oo 

^771,71-1-1   — ^771,71 /   v Qj ^771,71+1 — 7*j   "T   /   ^ Qj ^771,71 — ^   T"   /  ^ Pi ^m^n—ki 

j = l j = l 2=1 

= i?Ai Um^n+i — RAi Um-iin+i 

= -R(^m+l,n+l ~ 2iZm>n+i + Wm_i>n+i). 

We may assume that R^O and rj G {1,2,... }. Then, for m = 0 and n = 0, we have 
Ai WQ,! = 0, so 

oo oo oo 

^0,1 -^0,0 - Z^QjUQA-rj +y%2<lju0-rj +^Pi'Uo,-fci = -RUQ^. 

j=l j=l i=0 

It follows that 

y>o,i = 

and 

- • OO OO OO v 

i"+"iXV i=l i=l t=0 ^ 

^1,1 = ^0,1- 

For m = 1 and n = 0, we have Ai UQ^ = 0, so 

1      / CO OO OO v 

7X2,1 ::= !R(M1,1 " Wl'0 "" 5Z *'Ml'1-r> +X^*'Ul-ri +lLfPiUl>-ki) +WM- 
^ i=l j=l t=l ^ 

For m = M — 1 and n = 0, we have 

^    • oo oo 

V i=l i=l 
oo v 

+ 22PiUM-l,-ki) +2UM-1,1 -UM-2,1- 

Finally, for m = M and n = 0, we have Ai iiM,i = 0, so we have 

In this way, we can successively calculate 

^0,2,   ...,  UM,2,  WM+1,2, ^0,3?   .••»  WM,3»  ^M+1,35 • • • • 
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