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ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS AND 

CHRISTOFFEL FUNCTIONS ON A BALL 

Yuan Xu 

ABSTRACT. We derive the asymptotics for a sum of squares of orthonormal poly- 
nomials in several variables with respect to the weight function (1 — Ixl2)^-1/2 

on the unit ball in Rd; the asymptotics for the corresponding Christoffel functions 
proved in [3] by Bos follow as a consequence. We also obtain an upper bound for 
the Christoffel functions with respect to a large class of radial weight functions 
on the unit ball. 

1. Introduction 

Let No be the set of nonnegative integers.   For a = (ai,...,ojd) G NQ, we write 
|a|i = aiH \-ad. For a e N$ andx= (xi,...,Xd) e Md, we write x" = x"1 •••xj*, 
monomials of degree |a|i. Let U.d be the space of polynomials in d variables and 11^ be 
the subspace of polynomials of degree at most n. For a nonnegative weight function 
W on a compact set Q C Ed, we can use the Gram-Schmidt orthogonalization process 
on the sequence of monomials to obtain a sequence of orthonormal polynomials which 
forms a basis of Iid. The Gram-Schmidt process depends on the ordering of the 
monomials; different orderings will lead to different sequences of orthonormal bases. 
The nonuniqueness of the bases is one of the essential difficulties in dealing with 
orthogonal polynomials in several variables. We denote by {-P^}? a ^ ^o* lali ^ n5 
and n € No, one family of orthonormal polynomials, where the superscript n means 
that P£ e Ud. Setting rd = (n+^"1), which is the cardinal of the set {a € N$ 
: \oi\i = n}, we arrange the polynomials P^, |a|i = n, according to the lexicographical 
order: Pai,..., Pa d, where cti G NQ . A useful vector notation rn 

IP>n = (Pa
n
i,Pa"2l...,^JT (LI) 

is introduced in [9]. The nonuniqueness of the orthonormal basis can be seen easily 
from the fact that for any orthogonal matrix Qn the components of QnPn are also 
orthonormal polynomials. Moreover, any two sequences of orthonormal polynomials 
are related in this way. It turns out that many results concerning orthogonal polyno- 
mials in several variables can be stated independent of the choice of the bases, which 
is the starting point of our recent investigations in [9] and a number of subsequent 
papers (cf. [10] and the references therein). In particular, the n-th reproducing kernel, 
defined by 

Kn(x,y) = £  ^  Pa
fe(x)Pa*(y) = f>nx)Pfe(y), (1-2) 

fc=0|a|i=fc fc=0 
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is independent of the choice of the bases. In this regard, a more basic quantity is 
P^(x)Pn(y). One main result of this paper is the asymptotics of P£(x)Pn(x) for the 
weight functions W^(x) = 1^(1 - Ixl2)^-1/2 defined on the unit ball in Rd where w^ 
is a constant chosen so that W^ has integral 1. We shall prove that for d>2, 

*s, (TO) F"(x)Pri(x) = ^w'    0 < |x| < lt (L3) 

and results will be stated for |x| = 0 and 1 as well. It is well-known that such a 
limit does not exist for d = 1, where the orthogonal polynomials are the classical 
ultraspherical polynomials. 

For d = 1, limit relations of this type have been proved for the function Kn(x,x) 
and the result often is stated in terms of the inverse of Kn(x, x), called the Christoffel 
function, which plays an important role in the theory of orthogonal polynomials in 
one variable (cf. [7]). The Christoffel function satisfies an important property that we 
state below for d > 1, 

An(x) := [Knfrx)]-1 -       min        / P2(y)W(y)dy. (1.4) 

The asymptotics of the Christoffel function for d = 1 have been established for general 
measures (weight functions) supported on [—1,1] (cf. [7]). For d > 1, however, little 
seems to be known in general (cf. [11]; we should mention that the notation Kn in [11] 
corresponds to Kn_i here). For the weight function W^, the asymptotics of Kn(x,x) 
have been established recently by Bos [3]. His proof depends heavily on (1.4). Since 
Kn(x,x) is just a sum of P^(x)Pfc(x)'s, we will deduce its asymptotics from those 
of (1.3). Our proof depends on a compact formula for P^(x)Pn(x), which we proved 
recently and used to study the summability of the Fourier orthogonal series [12]. The 
compact formula takes a particularly simple form for the radial Chebyshev weight 
function Wo(:x), which allows us to establish the limit 

hmsup An(x  < -TfiHr, x < 1, 

for a large family of radial weight functions W on Rd. 
The paper is organized as follows. In the next section, we fix notation and recall the 

necessary preliminaries. The result on the asymptotics of Pj(x)Pn(x) for W^ is stated 
and proved in Section 3. The asymptotics of the Christoffel functions are presented 
in Section 4. In Section 5, we deduce several additional properties of orthogonal 
polynomials with respect to W^ that are relevant and seem to be of independent 
interests. 

2. Notation and basic formulae 

Throughout this paper, we use Bd to denote the unit ball in Rd and Sd~l to denote 
the unit sphere in Rd; that is, 

Bd = {x e Md : |x| < 1}        and        S^1 = {x G Md : |x| - 1}, 

where the notation | • | stands for the Euclidean norm |x|2 = y/xj H h x^. We also 
write x -y = xiyi -\ f- XdVd for the standard inner product of Rd. We use Ud-i to 
denote the surface area of 5,d~1; it is known that uJd-i = 27rd/2/r(d/2). The weight 
function that we will deal with in this paper is the normalized function 

W^(x) - WM(x) = ^(1 - |x|2y-2,    M > 0,        x G Bd, (2.1) 
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where w^ is a constant chosen so that the integral of W^ is 1: 

w-w d-^Iit±^L-Ik±^L (22) 

For d = 1, the orthogonal polynomials with respect to the weight function VF^ are 

the ultraspherical polynomials, customarily denoted by Cn , which is why we use 
the exponent JJL - (1/2) instead of fi in the definition of W^. We denote orthonormal 

polynomials with respect to W^ by Pa and Pn with respect to Wfj, by Pn , and 

denote the reproducing kernel by Kn  (•, •). 
One family of orthonormal polynomials with respect to W^ can be given explicitly 

using the ultraspherical polynomials. For d = 2, they are given in [6, (3.8), p. 449] by 

PZM(x,y) = [hl2]-ic£%\x){l - ^)k/2ciX-%{l - xYh    0 < k < n, 

where /ij? 2 are constants chosen so that P™ ' are normalized. In this case, it is more 
convenient to index the polynomials by k instead of a = (k,n — k). We follow the 
standard normalization for the ultraspherical polynomials as in [8, p. 80]. They are 
orthogonal with respect to (1 — a?2)**-1/2 on [—1,1], and they satisfy 

(2.3) 

where, for A = 0, the above relation holds under the limit relation 

A + rc^m/      -.       f 1, for n = 0, /r> JX lim—— C^(cose) = \   ' ' 2.4 
A->O    A I2cosn0,    torn = 1,2,.... 

For this paper, we do not need the explicit formula for Pa (cf. [12]). What we need 

is the following compact formula for [Pn (x)]TPn (y), which we proved in [12] with 
the help of the explicit formula for Pa      . 

Theorem 2.1. For W^ on Bd, fi > 0, 

[pW(x)]Tpy(y) = n + /'t-71 r^+"fl)(x-y + V^n^vTH^fcos^) 
fJ'+ -o-        ^0 

x (simpf^drp / f (smip)2^-1dtp,        x,y € Bd, 

(2.5) 

and, for /x = 0, 

+ Ci2 ^(x-y-vTH^V^Iyi1)],        x,y€Bd.   (2.6) 
The compact formulae (2.5) and (2.6) have been used to prove in [12] that the 

expansion of a continuous function in the Fourier orthogonal series with respect to 
Wn is uniformly (C, 6) summable on the ball if and only if 6 > /i + (d — l)/2. That 
was proved by using the addition formula and the product formula satisfied by the 
ultraspherical polynomials [5, Vol. I, Sec. 3.15.1, (19) and (20)]. In fact, for d = 1, 
the formula (2.5) reduces to the product formula for the ultraspherical polynomials 
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which, in consideration of the normalization constants in (2.1), states that ([5, Vol. I, 
Sec. 3.15.1, (20)] or [2, p. 30, (4.10)]) 

C^Ccos^C^cou^) 
= c\ I   C^(cos 0 cos <(> + sin 9 sin <j) cos ip)(sin ip)2X ldip 

Jo Ckx)(l) 
(2.7) 

where A > 0 and 

Jo J-i A   2'i 

Moreover, using the limit (2.4) for ji —> 0, the formula reduces to the well-known 
formula for cosine, 

cos n6 cos n(j)= - [cos n(9 + </>) + cos n(0 — </>)]. 
z 

Later in the paper, we will need the product formula (2.7) and the following connection 
formula of Gegenbauer (cf. [2, p. 59]), 

" ^ r(A)r(A - M) w r(n - fc + /i +1) c"-^x)- ^^ 

Other properties of the Gegenbauer polynomials that we shall need are ([8, (4.7.3) 
and (4.7.4), p. 80]) 

Cf >(1) = (n + ^ " ^,        CfH-x) = (-l)n^(x). (2.9) 

We also will need the asymptotic formula for Cn    from [8, Theorem 8.21.8, p. 196], 
which we state as 

Lemma 2.2. For A > 0, x = cos 8, 

„m, x       r(A+i)r(7i + 2A)2A   r     i l ATT,     ^,     3, 
c^x) = r(2A)r(n + A + |)r(i) [W&T^cos((n + A)'" T>+ 0(n"5) 

(2.10) 

/or 0 < 6 < IT; in particular, 

Cix)(x) = O^"1),        0 < 9 < TT, (2.11) 

where the bound for the error term holds uniformly in [e,7r — e]. 

The asymptotic formula (2.10) is stated in [8] for the Jacobi polynomials, while 
we have incorporated here the normalization constants as in [8, p. 80, (4.7.1)]. The 
estimate (2.11) is derived by using the following asymptotic formula for the Gamma 
function [13, p. 77], 

^±A+1) =^(1 + 0(0),        A>0. (2.12) 

To end this section, we note that by setting y = x in the compact formula (2.5) 

and (2.6), it follows readily that the polynomial [Pn (x)] Pn (x) is a radial function. 

So is the function Kn   (x,x), by (1.2). This allows us to define 

l*BlV) = [ff^Wf P^x),        K^r) = K(f>(x,x),        r = |x|,    x G Rd. 

We may omit the subscript d when it will not cause any confusion. 
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3. Asymptotics of orthogonal polynomials 

We start with a simple but important result. 

Theorem 3.1. For fi > 0 and d > 1, 

It^c^'^cy)! < iiwa) = ""^^lydr^a) 
M+^ 

x,y€Bd,     (3.1) 

and 

|KW(x,y)| < KW(1) = C^^^l) + Cl^\l)       x,y G Bd. (3.2) 

/n particular, both |Pn   |(| • |) and Kn   (| • |) attain their maxima on Bd at the boundary. 

Proof. Since the absolute value of the ultraspherical polynomial Cn    attains its max- 
imum on [—1,1] at the boundary, the inequality (3.1) is an immediate consequence of 

(2.5) and (2.6). Moreover, since |Pi/i) |2(1) = [P^) (e)]TP^) (e) where e is any point on 

the boundary of Bd, we see that |Pn   |2(*) attains its maximum on Bd at the boundary. 
By [8, <p. 83, (4.7.29)], we have 

k^ci^) = c^%)-c£_+
2%),     k>0, 

where C_^~    — C_1
+    — 0, from which it follows readily that 

fc + A 

(3.3) 

E^c<*A)(*) = c<»A+1)(a!)+c<»-+i1)(«)- 
k=0 

n Using this formula and (1.2), the inequality (3.2) follows from (3.1). 

The asymptotics of |P^|2 are stated in the following two theorems. The first one 
deals with the case // = 0. 

Theorem 3.2. For Wo,d, d>2, the following limit holds 

lim n+d-l\ I   n,d rr1) 
2(|x|) = 

1, i/0 < |x| < 1 andd> 3, 

2, tf|x| = l, 

while for d = 2 and 0 < |x| < 1, the above limit does not exist; moreover, 

l*&.Mla(0) = 0,     and    nlim7^^|Pg/(0) = 2. 
V      2n      ; 

Proof Setting y = x in (2.6), we obtain that 

iCi2(ixi) = ^^[^W - i)+c^)(i); • 

(3.4) 

(3.5) 

Prom (2.11) and the fact that 

c^\i) = (n + dn-
2 d-1    fn + d-l 

n n + d- 1 

the limit (3.4) follows easily; moreover, for d = 2, it is readily seen that 

(^ry IPS^IXI) = ^f [i + ^)(2|x|2 -1)], 

which does not have a limit for 0 < |x| < 1 according to (2.10). Finally, for |x| = 0, 
the equation (3.5) follows from the above formula and (2.9). □ 
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We note that P2n+i,d(0) = 0 holds not only for WQ but for every centrally symmetric 
weight function ([10, Theorem 3.1.2]). 

Theorem 3.3. For W^d, fi > 0 and d>2, 

{Wo(x) 
W^V    W<W<^ (3.6) 
oo, tf|x| = l. 

Moreover, 

^)
+Ml2(0) = 0)     and    ilim_^_|lft)j(|»(0) = ^. (3.7) 

Proof. Since W^ is a radial function on Rd, we also write W^d{r) = w^dO- — r2)^—1/2. 
This slight abuse of notation will be used in this proof only. We always write r = |x|. 
Setting x = y in (2.5) leads to 

^iWr) = c/^ty  r Ot+^V + (1 - r2) cos ^(am^"1^.    (3.8) 
A* H—2~-     Jo 

Using (3.3) with A = fj, + ^=^ as an iteration formula, we obtain 

2 

k=0 r ^   2 

It then follows from (3.8) that 

^(M+^f1) _ V^ n-2fc + /x+^^ 
0n — Z^ ,,   ,    rf-3 0n-2A; 

  2 

|pai2(0 = n-r^t E IP^2M-2I
2
W. (3.9) 

This formula allows us to do a dimension reduction in proving (3.6).   Indeed, it is 
known that if bn —► oo as n —► oo, then 

lim ^ =  lim  ^ ~ ^-1 (3.10) 

(cf. [4, p. 414] — I'm grateful to a referee for providing this reference). Hence, assuming 

that (3.6) has been proved for |P^^|2(r)> we then can derive from (3.9) that 

fn l 

i 7^TKI«+2I2W = ^^J" J^t I^2MI2W 
V     n     / ^^     2 V     n     ) k=0 

^ ^    2     \  n  ) k=0 

,.     d+i      IPSIV) 
= lim  

"—M+^m-(n:-22) 

d + i    ,. IIPSIV) hm 
2/X + d + 1 n-oo (n+d-1) (! + 0(n-l)) 

_        rf + 1       Wo|(j 1 _ ^0,^+2 1 
_ 2(1 + d + 1 w^d (1 - r2)" _ w^d+2 (1 - r2)^ 
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where, in the last step, we have used the fact that 

wo,d+2 = r(^)r(/x + i) =    d +1   w0>d 

w^d+2    r(i)r(/x + ^)    2/x + d + iuv/ 

Therefore, by induction, we only need to prove (3.6) for the cases d = 2 and d = 3. 
By the connection formula (2.8) with A = ^ + (d — l)/2 and the product formula 

(2.7), it follows from (3.8) that 

l«2(r) = n + ^+^gl, _ d=r- ]Lbk'n 
c M 

n-2k (r) 

A* + k=0 ^2,(1) 

with 

&fc,n 
r(M)(n - 2k + M)r(fc + ^Qiy - fc + ^ + ^) 

r(M + d=i)r(^=i) fe! r(n - k + » +1) 

Using the Lemma 2.2, (2.12), and the identities (cf. [1, p. 256, (6.1.18)]), 

02*1-1    /        iX 

r(2M) = -s-r(M + -Jr(M), r(^=v^ 
^ 

(3.11) 

(3.12) 

(3.13) 

we obtain, as m —► oo, 

l2 

[^(O]  _r(i)r(^ + i)2   i 
^(i) r(M) IT 171 + [I 

1 
(sin^^^ + ^-f^^"1"^ 

(3.14) 

Therefore, from (3.11), we obtain that 

n + /i + ^r(i)r(M + i)2    i 
!(r) = 

M+^i r(/x)        ^(sin^)2^ 
[f] 

^fc,n 

2/c + /i)2' 

Using the half-angle formula for cosine, we see that to prove (3.6) for 0 < |x| < 1, it 
suffices to show that the following three limits hold true: 

1 
lim   ,   . ,  ,. ,  1 

n + p + ^ir(i)r(M + i)i [t 

r(M) E; bk,n 
TT t—f n — 2k + fi 

(A) 

and 

n      x^ ,      cos(2(n — 2A: 4- M)0 — /iTr) 
n->oo (n+c(  i) f-^ n-2k-\- LL 

[f] 
bfc.n 

n!™o fn+d-U 2^ (n - 2k + tf 
\     n     I fc=0 

= 0. 

(B) 

(C) 

Moreover, we only need to deal with the cases d = 2 and d = 3. It turns out that the 
case & — 3 is easier than the case d = 2. 
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To prove (A), we denote the expression on the left-hand side of (A) by Jn,d- Setting 
d = 3 in (3.12) leads to the fact that the summation in Jn^ is equal to ^ 1. Therefore, 
we have 

i r(i)iv + |)       (n + M + i)[f]      rp+i)      wo,3 
hm Jn,3 = =T——zr*- lim  — — —— 

TT       rOi + 2)        n^oo (»+2) ro* + 2)r(i)    «v,3' 
The case d = 2 is not so simple as the above one; setting d — 2 in (3.12) and using 
(2.12), we end up with 

Jn,2 = 
1 [?] 

TTE 
r(fc+i)r(n-fe + At+i) 

7r(M+5)^r(fc + 1)r(n-fe + Ai + 1) 2-' fe=0 

[f] 

=     1    yJ- l + O 

1 

\k)\ Vn^T. 

logn 

1 + 0 
71 — fe 

+ 
(M + Dife Vfc(^-fc)      Vv^ 

We may assume that n is even, say, n = 2m.   Then, it follows from a change of 
summation index k \-> m — k that 

1 m 
Jn'2 = w^TTT 13 

1        | ~(lo&n\ 

1        1 ^ + o log n \ 

The summation above is a Riemann sum for the integral of (1 — a;2)-1/2; we obtain 
that 

Thus, we have proved the limit (A) completely. 
To prove (B), we first observe that by the addition formula for the cosine function, 

it suffices to prove that for 0 < 6 < TT, both 

[f] cos 2k6 sm2ke 
n

1™7^rn2.6Mn_2fe+       and    J^m __ ^ 6M n _ ^ 
V     n      /  fc=0 ^ \      n     /  fc=0 ^ 

are equal to zero. Again, we only need to deal with d = 2 and d = 3. For d = 3, the 
two limits become 

[f] 

hm   ,   , ov Y^ cos 2fc0       and lim 
\   n   ) k=0 

>   sin 2k0. 

That the limits are zero for 0 < 8 < TT follows readily from the well-known identities 

1 ^       _     sin(ra+^)0 A .   ,,     cos§-cos(m+i)0 
- + >   cos kv = ^— "■"      — 
2 ^ 2 sin! 

y^ sin A;0 = 
fc=i 2sinf 

(3.15) 

which shows that the two sums are bounded independent of m for 0 < 0 < TT. The 
case d — 2 is a little more complicated. Following the reduction in the proof for the 
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case (A), it amounts to proving that 

and 

265 

v~^    cos2k0 
lim   > j — 0 

m—l 

lim y 
m—too   '    ^ 

sin2/ce 
^ yjm2 — k2 m~>oo ^ \/m2 — fc2 

Using summation by parts, we see that the first sum becomes 

o, o < e < TT. 

771—1 

k=0 

cos2k0 

\/m2 — k2 

771 — 2    / - - \ fc 

y ( ^JL= - -=J=) y cos 2j6 

m—1 

+ 
V^2 - (m - I)2 p(> Y^ COS2J0' 

Therefore, for 0 < 6 < TT, we obtain from the boundedness of the cosine sums as shown 
by (3.15) that 

m—1 
E_cos2A^ = c?(1) 

r m-2 

fc=0 Vra2 — fc2 
v-f   /      

1 #   
1 

+ ■ -a> ^/m2 - (m - I)2 

which verifies the sum of cosines, the sum of sines is verified similarly. That completes 
the proof of (B). 

To prove (C), we note that by (3.12), the left-hand side of (C) is equal to 

'-=<?(1)7^TT£ 
r(fc + ^)r(n - k + n + 4=i) 

/n+d-n Z-,     r(fc + l)r(n - fc + At + 1)     (n-2fc + M)2' 
\ 7x /    AC—— U 

Since n - k ~ n for 1 <-A; < [|], we have by (2.12) that 

1       [f] , 1^3 
/n = (P(1)^?£(n-2fc + Ai)2- 

To show that In goes to zero as iV —► oo, we split the summation into two parts, 

In = 0(1)-^ 
n 2 E +   E 

fe=o     fe=[f]-yiti/ 

fc     2 

(n - 2fc + /x)2' 

For the first sum, we use the fact that n — 2fc + [i > cv^n, and for the second one, we 
use the fact that 2fc ~ n; it follows readily that 

In = 0(1) d-1 
n 2 

n 2 ^-3   i 
 \-n 2 n2 = O(l)_->0. 

This proves (C). Together with (A) and (B), we have established (3.6) for 0 < |x| < 1. 
The proof of (3.6) for |x| = 1 follows easily from (2.9), (2.12) and the fact that 

Finally, to prove (3.7), we set x = y = 0 in (2.5) to obtain 

|p(M)[2(0) = n + ^+-f1   f C^+^WV<)(sinV')2'i~1#/ f (sinV)2"-1^ 
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M\2(n\ _ Prom (2.9), it follows readily that |Pn |2(0) = 0 for odd n. For even integer n, we 

use the formula (2.8) to connect Cn ~^~ and Cn , using the orthogonality, the 

coefficient of C0     
2   in the connection formula gives 

|P(M)|2ro) = n + n+^      T{n+\)      r(^)r(f + M + ^) 
,nlw      n + ^   r(M + ^)r(f)r(f + i)r(f + M+|)' 

By (2.12) and (3.13), it follows readily that 

ph^-^ra(1+0(:))-^(1+0(=))- 
Thus, we have completed the proof of the theorem. □ 

4. Asymptotics of the Christoffel functions 

First, we derive the asymptotics of the Christoffel functions with respect to W^, which 
we denote by A^. 

Theorem 4.1. For W^d, /x > 0; d > 2, 

lim 
71—>00 (n:>SM=^- «<..      <«) 

and 

IimfB + £ri^(l)=(?'    i//X>0' (42) 

Proof. From (3.10), it follows readily that 

,. K^dxi)      ipapdxD      IPSI^W) 
lim —.   . ,.— =  lim -—T-T^ ;—rrir =:  hni — '   ,  1N—. n^oo       (^+^ n->oo  (n+d) _ (n-l+d\ n_&00      /n+d-l\ 

Thus, except for the case /z = 0 and d = 2, the desired limit for 0 < |x| < 1 follows 
from that of Theorems 3.2 and 3.3. So does the limit at |x| = 1 for the case fi = 0 
and d = 2. For // > 0, |P^|2(0) = 0 for odd integers n, which allows us to write 

,.     IQO) _ .. IP^PW        ^  ..      I^Pdxl)      Wo(x) 
niS,     (»+-) ni^ (^Hl) _ (^OJ-)        ni^    2(^-1) ^(x) 

where the last step follows from (3.7). The only remaining case is the limit for 0 < 
|x| < 1 in the case of d = 2 and /J, = 0, for which the limit of |F^^l2 does not exist. 
However, setting x = y in (2.6) gives 

K (o) _ ilW^rOm -L/n^^a^m A. nt^ho^fi _ n J.^^^1) 
'n,d        o a 2 '(1) + C^'(l) + Cn 2 ;(2|x|^ - 1) + ^T;(2|x|2 - 1) 

from which the desired limit follows easily from (2.9) and (2.11). □ 

As we mentioned in the introduction, the limit (4.1) has been proved by Bos in [3] 
using a different method. 

Next, we derive an upper bound for the Christoffel functions with respect to a 
general class of radial weight functions.   For a weight function W, we denote the 
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Christoffel functions associated with it by An(W). The result depends on the following 
compact formula for Kn (x,y) ([12]): 

Ki0)(x,y) = 

i [d^x • y + v^T^^r^p) + C7^)(x • y + yTH^yTHyF)] 

+1 [c^i* ■ y - ^/rq^V^H^2) + ciTi* ■ y - V^WV^W)], 
(4.3) 

which is derived from (2.6) using (3.3). For a radial function / on Rrf, we denote by 
/ : R+ -> R the function such that /(x) = /(|x|). 

Theorem 4.2. Let W be a nonnegative radial function on Rd, such that W/WQ is 
continuous in the interior of Bd and is bounded on Bd. Then, 

limsup ( )An(Wr;x) < 
n—*oo     \    71     / 

x   ' X   < 1. 
Wb(x)'. 

Proof. Because of (1.4), we have 

'n + dW;x) < (n + d) 1 /        [K(0)(x)y)]^(y)dy. 

By (4.1) with /x = 0, it follows readily that the desired result is the consequence of 
the limit 

lim * f        [K(l
0)(x,y)]2W(y)dy = ^l |x| < 1, 

which is a corollary of the theorem below. □ 

Theorem 4.3. Let f be a radial function on Rd such that f is continuous in the 
interior of Bd and bounded on Bd. Then, 

n1™ ^(0)7— /      [^0)(x,y)]2/(y)Wo(y)c/y = /(x),      |x| < i. 
n^TOKr(x,x)./[-i,i]d 

Proo/. By the definition of Kn(-, •) in (1.2), it follows readily from the orthogonality 
that 

/        [KW(x)y)]2^o(y)dy = KWfox). 
^[-1,1]" 

Therefore, it follows readily that 

)— f       [Kl0)(x,y)]2/(y)Wo(y)dy - /(x) 
(X.X)^-!,!]" 

^ ^wT—T /      ^(x.yJl'l/Cy) - /(x)|Wo(y)dy. 
Kk^X.x)^-!,!]11 

Since / is a radial function on Bd, the function / is defined on [0,1]; moreover, by 
assumption, / is continuous on [0,1). For the following, fix x inside Bd. Let e > 0 be 
chosen such that 

Be(x):={yeB'':||y|-|x||<e}cB''. 

/»(*) := 
K 
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Let uj(f) be the modulus of continuity of /, and let ||/||oo denote the uniform norm 
of / on Bd. We have 

In(x)<w{f,e): [K^^y)]2Wo(y)dy 
K}!

))
(X,X)./B.(X) 

+ 7^—1 I [K^(x,y)]2|/(x) - /(y)|Wb(y)«r 

<a;(/» + 2|l/||00        * / [K(l
0)(x,y)]2Wb(y)«r. 

By the definition of Kn in (4.3) and the limit (4.1) with ji = 0, it suffices to prove 
that 

lim —L- / [C^x • y ± ^/r^y/r^\^)]2Wo(y)dy = 0. 

Moreover, it follows from a change of variable y i—► — z that we only need to deal 
with the case of x • y + y/l — \x\2y/l — |y|2. We use the asymptotics of ultraspherical 
polynomials in (3.14), which imply, by (2.9), that 

ci2 \t) 2   r(i)r(^±2)2    i 
Ercos2(;V0 + 7) + e>(n-1) 

where iV = n + (d + l)/2, 7 = (d + l)7r/4, i = cos0. Using the identities 

2x-y=|x|2 + |y|2-|x-y|2    and    2x-y = |x + y|2 - |x|2 - |y|2, 

it follows that for y e Bd \ B£(x), 

1 - x • y - V^WV^W = liV^W - V^W)2 + ||x - y|2 > 1 

and 

1 + x • y + ^TWV^W = liV^W + V^yf)2 + ||x + y|2 > |. 

Let t = x • y + -^1 — |x|2^l — |y|2. Then, the above inequalities imply that 

l-t2 = (l-t)(l + t)>j,        yeBd\B£(x). 

Hence, it follows that 

= 0(1)^ + 0^),    y€B-\B.(x). 

Therefore, we have that 

( 
n:d) JB<\B.I* 

. T2 

= 0(1)—■TXT +0\    1 v 'n£<i+1 \n2 

CL2 '(x-yiVl-lx^vTHyF)] Wo(y)dy 
1 

which clearly goes to zero as n —> 00. This completes the proof. □ 
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For orthogonal polynomials in one variable, the limit process in the theorem has 
been studied for general weight functions (cf. [7]). We remark that, under more 
restricted conditions on W/Wo, we can use an approach of Freud as in [11, Theo- 
rem 4.3.1] to prove 

^<IimmffB + V(W;»),        |x|<l, (4-4) 
Wb(x)      TI-+OO  \   n   J 

with a constant c less than 1 (say, c = 2~d). However, it is almost certain that such 
a relation should be true with c = 1 and without additional restrictions, which means 
that the limit as in Theorem 4.1 holds. For this reason, we do not include a proof of 
the weaker result (4.4). 

5. A recurrence relation 

From the formulae (3.8) and (2.7), we see that the polynomial jP^I2^) acts like 
a square of an ultraspherical polynomial. In this section, we derive an interesting 

relation among |Pi/x) |2(r) of different n and /x's. 

Theorem 5.1. For fi > 0 and n>0, 

(l-|x|2)(l-|y|2)[p(f+1)(x)]TP^+1)(y) 
1    ■ H + f n + 2 r w      , 1 r (M) W^wrp^Cy) 

2(71 + ^+^) 
(5.1) 

In particular, 

(l-|x|2)2|ll^1)|2(|x|) = -^i|r ^W^CM) 2(n + M+^) 

+ yf + ^ipypdxi) - ixpr&Vi) 
2(n + jU+-2-) 

(5.2) 

Proo/. Let A = x • y and B = y/1 - W2^! - |y|2. We start with the formula 

—C^jAA + Bcos^) = -2\BsmjjCix+1)(A + BcosTP), 
dip 

which follows from the fact that [C^x)}' = 2XC{n+1)(x) (cf. [8, p. 81, (4.7.14)]) and 
a simple change of variable. Using this formula and integration by parts, we have 

^ C^^iA + Bcosij)(sinip)^+1d7p 
Jo 

= fo    r}   ,,„ r^+
+i"fl)(^ + ^cos^)(sin^)2^ 

(2/x + d - 1)B JQ   dip 
2/i 

(2/x + d-l)B 

Writing cos ip as 

r C^+^iA + BcosiP) cos^(sin^)2^"1^. 
Jo 

1 A 
cos^ = — (A + Bcosip) - — 

JD ±3 
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and applying the three-term relation for the ultraspherical polynomials ([8, p. 81, 
4.7.18]), we conclude that 

/" ./o 
Cr+ 2 ^A + Bcos^ism^^di/j 

2/i 

(2/i + d - 1)B 
n + 2 

(2n + 2fi + d + 1)B I  Cj^d2l)(i4 + Bc08^)(sin^)2/A"1# 

Using the formula (2.5) and the fact that 

<3,-j[W'«#-s^I.s 
the desired formula follows. □ 

For the case /z = 0, the identities in Theorem 5.1 take a different form. 

Theorem 5.2. For n>0, 

\ Pd (x)] TP£!>! (y) ± £±i yiH^vTH^^1) (x)] V^) (y) 

= -^rr ^""^(x •y T vT-WviHyF)- (5.3) 
In particular, 

^|P^1|
2(|x|) + ^(l-|x|2)|Fl1)|2(|x|) = ^^ciSi)(l)- (5-4) 

Proof. The proof is similar to that of the previous theorem, but the special value of 
the parameter allows us to integrate directly instead of doing integration by parts. It 
follows that 

y/r^y/T=\rt[WgHx)]TW(y) 

- cij^x • y - yrq^Fv^q^F)] • 
Together with (2.6), the above formula implies the desired results. □ 

The formula (5.2)  and  (5.4)  allows us to deduce the asympotic formula for 

iPi+i^lV) from that of lFi+il2(r)- Therefore, in the proof of the limit (3.6) in 
Theorem 3.3, we could have restricted the parameter fi to 0 < fi < 1. In particular, 
since the limit relation is easily established in the case of fi == 0, it follows that the 
limit (3.6) for the integer values of fi can be established effortless, by the use of (5.2) 
and (5.4). 

We denote by Cn    the orthonormal polynomials with respect to W^i, which is a 

constant multiple of Cn. Then, in particular, for d = 1 and n > 0, 

^)(x) = mx)=M^e
1)e,    ^l1^)-C^1(x) = coS(n + m    x = coS0. 
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Taking the limit (2.4) in the right-hand side of (5.3), we obtain the elementary trigono- 
metric formula 

cos(n + l)0cos(n + 1)0 ± sin(n + l)0sin(n + 1)0 = cos(n + 1)(0 qp (/>)- 

The formula (5.4) for d = 1 becomes 

cos2(n + 1)0 + sin2(n + 1)0 = 1. 

We also can sum up the identities in Theorem 5.1 and Theorem 5.2 to obtain 
identities involving Kn  .  Instead of presenting the formula for general ^, we state 
only the following special case. 

Theorem 5.3. For n>0, 

J^KSlfoy) + v^M^\/iHyFK(l
1)(x,y) 

= dh K^f)(x •y + V^WV^W) 
+ C^^x • y + yrq^/fH^p)]. (5.5) 

In particular, 

5lIKg:i(x>x) + (1 -|x|2)KW(xly) = -^ [cffiil) + C^l)].      (5.6) 

We remark that the formula (5.6) has appeared in [3, Lemma 1], where the proof 
is rather complicated but nevertheless interesting. The constants in the formula in 
[3] appear to be different from ours, which is due to a different normalization of the 
weight function. 
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