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A CHARACTERIZATION OF HlLBERT SPACES AND THE 
VECTOR-VALUED LlTTLEWOOD-PALEY THEOREM 

Y.-S. Han and Y. Meyer 

ABSTRACT. In this note we prove that the existence of the Banach space-valued 
Littlewood-Paley theorem implies that a Banach space is isomorphic to a Hilbert 
space. 

1. Introduction 

Suppose that a function tp is in S(Rn) with supp^ C {£ E Rn : ^ < |£| < 2} and 

1^(01 ^ c > ^ if I ^ 1^1 ^ f- Then one form of the classical Littlewood-Paley theorem 
on Rn says 

ilp< <C\ (1.1) 

where 1 < p < oo, ^(a;) = 2knilj(2kx), and c, C are constants independent of /. 
In this note, we study the vector-valued Littlewood-Paley theorem. To be precise, 

let B be a Banach space and Lp
B(R

n) be the space of strongly measurable B-valued 
functions / for which \f\B £ Lp(Rn). It is well-known that if B is a Hilbert space, 
then the classical Littlewood-Paley theorem still holds: 

II' < {EI^*/I
2
V <C \L'B 

(1.2) 

where 1 < p < oo and ip is the same function as in (1.1). 
We first prove that if B is a Banach space and (1.2) holds for one function ip 

mentioned above, then (1.2) holds for a more general family of operators. More 
precisely, we need the following definition. 

Definition 1.1. A family of operators {Sk}kez is said to be an approximation to the 
identity if for 0 < e < 1 and 6 = e — e' > 0 there is a constant C such that for all 
k G Z and all x, xf, y, and yf G iZn, Sk{x,y), the kernels of Sfc, satisfy the following 
conditions: 

(i) \Sk{x,y)\<C- 2~ e 

{2-k + \x-y\)n+*, 

(ii) |5fc(x,») - Sk{x',y)\ < g^-J + ijly,)' 
9—kc 

(2-k + \x - y\)n+e 
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ior\x-xf\ < i(2-fc + |:z-y|), 

(iii) \Sk(x,y) - Sk(x,y')\ < c(2J^ 
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-fee 

y\J   (2-k + \x-y\)n+* 

for|2/-2/,|<i(2-fc + |x-2/|), 

(« [5fc(a;,y) - SkM)] - [Sk(x
f,y) - 5fc(x^2/,)] 

<c( |a?"g/| VV '^"^ V 
i-fc(5 

^2-^ + |a; - 2/| y   V2"fc + k - y\ J    (2~k + \x - y\)n+6 

for \x - x'| < i(2-fc + |x - T/|) and \y - y'l < i(2-fc + \x - y|), and 6 = e - e' > 0, 

(v) / Sk{x,y)dy= / 5fc(a:,y) dx = 1       for allk e Z. 

All of the conditions (i)-(v) on the approximate identities are needed for the 
Calderon reproducing formula, namely Theorem 2.1. See [1] for the details. 

In this note, we prove 

Theorem 1.1. Suppose thatB is a Banach space. Suppose {Sk} is an approximation 
to the identity and Dk = Sk — Sk-i, and the Littlewood-Paley theorem holds for {Dk}, 
that is, for 1 < p < oo, 

< 
"B 

<C||/||LP (1.3) 

Then the Littlewood-Paley theorem holds for {Ek} where Ek = Rk — Rk-i ctnd {Rk} 
is an approximation to the identity, that is, for 1 < p < oo, 

{£lW)l2} 
^ k€Z ) LPB 

<CII/IIL'. (1.4) 

The main result in this note is the following: 

Theorem 1.2. Suppose that B is a Banach space. If the B-valued Littlewood-Paley 
theorem in (1.3) holds for some 1 < po < oo and {Dk} where Dk = Sk — Sk-i and 
{Sk} is an approximation to the identity, then B is isomorphic to a Hilbert space. 

To prove Theorem 1.2, we will prove a result on general Banach spaces, Theorem 
3.1, in Section 3 and then Theorem 1.2 will be obtained by reducing to Kwapien's 
well-known characterization of Hilbert spaces. 

2. Proof of Theorem 1.1 

To show Theorem 1.1, we need a Calderon-type reproducing formula. More precisely, 
we first need the following definition. 

Definition 2.1. Fix two exponents 0 < (3 < 1 and 7 > 0. A B-valued function /, 
where B is a Banach space, is said to be a test function of type (/?, 7) centered at 
#0 £ Rn with width d > 0 if / satisfies the following conditions: 

(i) I/(Z)|B < c7 
d" 

'(rf+|x-Xo|)n+T' 

(") \nx)-f(x,)\B<c (    l»-*,|    V 
\d + \x-xo\J 

dP 
(rf+|a;-a:o|)n+T 



230 HAN AND MEYER 

for \x - xf\ < 7j,(d+ \x — rcol), 

(iii) /    f{x)dx = 0. 

The collection of all test functions of type (/?, 7) centered at XQ with width d > 0 

will be denoted by M^'7)(xo,d). If / € M^n)(x0,d), the norm of / in M^^^d) 
is defined by 

\\f\\M(0n){xo d) = inf{c > 0 :  (i), (ii) and (iii) of Definition (2.1) hold}.        (2.1) 

We denote the class of all / e M^'7)(0,1) by M^'7). It is easy to see that M^,7) is 

a Banach space under the norm ||/||M(/3,7) < 00• It is also easy to see that MgP     = 

Mg®    (xo,d), for XQ G Rn and d > 0, with equivalent norms. 
We now can state the following Calderon-type reproducing formula for Mjj     . 

Theorem 2.1. Suppose that {Sk} is an approximation to the identity defined in (1.3). 
Set Dk = Sk — Sk-i- Then there exists a family of operators {Dk}kez such that for 

allfeM^, 

f=J2^kDk(f) (2.2) 
kez 

where the series converges in the norm of M^ '7 ^ with ft < 0 and 7' < 7. Moreover, 
Dk(x,y), the kernel of Dk, satisfy the following estimates: for e'', 0 < e' < e, where e 
is the regularity exponent of Sk, there exists a constant C > 0 such that 

« l^(^y)l<C(2-fc + |^y|)n+^ 

(ii) \Dk(x,y) - Dk(x^y)\ < ^J^J {2_k +^ y|)t>+€, 

/orlx"^!^ |(2-fc + |x-2/|), 

(iii) / Dk(x,y)dy = / Dk(x,y)dx = 0       /or a// fc E Z. 

The proof of this theorem is similar to the scalar case and can be found in [1]. 
Since Y^kez-^kU) = / in the strong topology of L2

B(R
n), it is easy to see that 

M^'7) is dense in L2
B(R

n) for all 0 < /? < 1 and 7 > 0. So to prove Theorem 1.1, we 

only need to show (1.4) for all / G M^'7). 
We are ready to prove Theorem 1.1. Suppose (1.3) holds and Ek = Rk — Rk-i 

where {Rk} is an approximation to the identity. By Theorem 2.1, for all / G MJf'7) 

with 0 < /3 < 1 and 7 > 0, we have 

Ek{f) = Y,EkDJDJ(f). 
jez 

It is easy to check that EkDj(x, y), the kernel oiEkDj, satisfies the following estimates 
(see [1]): 

2-(fcAj)e" 

I2SWM*,*)! < ^k-jlt {2-(kAJ) + lx_yl)n+<» (2-3) 

where 0 < e" < ef < e and a A 6 denotes the minimum of a and b. 



VECTOR-VALUED LITTLEWOOD-PALEY THEOREM 231 

Hence 

||{£lW)|2}i   <c||{£[£2-I^N"|M(JD,(/))|]  }5|| (2.4) 
kez p kez jez p 

Uftz J llp 

<J{Ei^(/)i2}"|| 
3£Z p 

where M is the Hardy-Littlewood maximal function; the last inequality follows from 
the Fefferman-Stein vector-valued maximal inequality. 

The proof of the inverse inequality of (2.4) is the same, and, hence, this completes 
the proof of Theorem 1.1. 

3. Proof of Theorem 1.2 

To prove Theorem 1.2, we first observe that if (1.3) holds for some 1 < po < oo, then 
(1.3) holds for all 1 < p < oo. To see this, we define the operator T on Lp^(Rn) by 
T(/) = {Dk(f)}keZ' The fact that (1.3) holds for po means that T is a bounded 
operator from Lp^(Rn) to Z£0

2 (R
n) where 

L%(ir) = {(/*(*))*=* : ||{£ lAWIl}*!     < oo}. 
kez po 

It is easy to check that T is a vector-valued C alder on-Zygmund operator. Here we say 
that an operator T is a vector-valued Calderon-Zygmund operator if T is a continuous 
linear operator from LPQ(Rn) to Lp^2 (R

n) for some 1 < po < oo, with the kernel 

K(x,y) mapping Rn x Rn to the space of all bounded operators from B to £% and 
satisfying the following conditions: for some e > 0, there is a constant C > 0 such 
that 

\\K(x,y)\\ < C\x - y\-n    for all x,y e Rn with x ^ y, (3.1) 

\\K(x,y)-K(x,y')\\<C\y-yf\*\x-y\-^    for all    \y - j/j < ±\x - yl    (3.2) 

\\K(x,y) - K(xf,y)\\ < C\x - xf\e\x - y\~{n+e)    for all    \x -x'\<hx- y\.    (3.3) 

By the Calderon-Zygmund real-variable theory, T also is bounded from £p
B(R

n) to 
L%(ir)foralll<p<oo. 

^B 
Now the proof of Theorem 1.2 follows from a result on general Banach spaces. 

In the following statement, which is implicit in the literature, we will be using the 
well-known fact that lacunarity implies statistical independence. 

Theorem 3.1. Let B be any Banach space, n > 1, ao G B,..., an G B. Let 1 < Ai < 
• • • < An < An+i < ..., Xj be integers for all j and 

/Ai      A1 + A2 ,  Ai + A2 + --- + An  |       \ 
r< — H 1 1 1 } < a < 1. 

IA2 A3 An+i J 

Let Fn(0u... ,0n) = ao + a^ + • • • 4- aneie", 0 < 6k < 2ir for I < k < n, and 
fn(t) = ao + aieait + • • • + aneiXnt, 0<t<27v. Then, 

(1 - a)||Fn||2 < ||/n||2 < (1 + <*)\\Fn\\2 (3.5) 
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where,  and below,  the LP-norm will always be the normalized L2[0,27r]n norm or 
I? [0,27r] with respect to all the variables. 

To prove Theorem 3.1, set 

Fntk(t,0k+i,... A) = ao + axe^1' + ■ •. + akeiXkt + ak+1e
iek^ + • • • + ancw». (3.6) 

We will prove 

WFnt-ih - ek\\Fn\\2 < \\Fnik\\2 < II^A.-ilb + ek\\Fn\\2 (3.7) 

where 1 < k < n and ek = 27rAl+",+Afe-1. 
Observe first that once (3.7) is proved, we obviously obtain 

(1 - 6i en)||Fn||2 < ||/n||2 <(! + €! + ... + €n)||Fn||2, (3.8) 

which yields Theorem 3.1. 
The second observation is that the inequality in (3.7) for 1 < k < n follows from 

the inequality in (3.7) for k = n. Indeed, let us freeze 9k+i,..., 9n and write 

ao = ao + ak+1e
iek+1 + • • • + anei9n. 

We now apply (3.7) with n being replaced by fc, and then obtain 

||5o + aie*Alt + • • • + afc-ie***-1* + akei0k \\mdtdBk) 

- ek\\ao + aie^1 + • • • + akei0k||L2(<Wl...^fc) 

< ||ao + aie^1* + • - • + ake
iXkt\\L2{dt) 

< \\ao + axe^1* + • • • + afc-ic^*"1* + akeie* \\L2{dtdek) 

+ 6fc||ao + aieidl + • • • + afce^
fc ||La(^1...*wfc)- 

Writing 0 for (flfc+i,..., 6n) and using symbolic notation, we have obtained 

A{<l>) - ekB(<t>) < CM) < A(<t>) + ekB(<l>). (3.9) 

Now we take L2 norms with respect to (j) and obtain 

WAmL'M) - ekWBmvW) < IICWII^W) 
<P(0)llLW) + efe|TO)IU2W).        (3.io) 

Here we use the following observation:  f(x) > 0, g(x) > 0, h(x) > 0, and h(x) > 
f(x) - g(x) imply \\h\\2 > Wfh - Wgh, since h(x) + g(x) > f(x) obviously implies 
||fc||2 + y|2>||fc + ^||2>||/||2. 

Since \\A(<I>)\\L2W)  =  ||Fn,fc_x||2,  \\B((t))\\L2{d(t))  =  ||Fn||2, and ||C(^)||L2W)  = 
ll-Fn.fclta* the inequalities of (3.7) for 1 < k < n follows from (3.10). 

It remains to prove the inequality of (3.7) with k = n. Note first that 

,  /      2k'K\       .      /      2A;7r\ iX t 

f#(t, k, s) = /n_i It + — + — J + anel 

We now introduce 

JXnt if0<5<l. 

Then 

fn(t+24^)-mt,k,s) i    i   27rAi , .   27rAn_i 
< |fll|B—7 1 r Fn-l|B r  

<SUp(|ai|j3,...,|on_i|B)Cn. 
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We obviously have 

MB< ||Fn||2       for l<A;<n 

since a^ are the Fourier coefficients of Fn. Therefore, 

2/c7r 
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An 
< €n||-Pn||2- (3.11) 

Taking the L2 norm with respect to all the variables £, k € {0,1,..., An — 1} and 
s € [0,1], we obtain 

fn[t + 
XnJ L2(dt) k=0 

< fnll^nlb- (3.12) 

But 

I 'f E\fi(t^,s)\2ds 
0    An k=0 

An-1      -1. 1   v-   TL      f      2fc7r     27r5\ 
^^   fc_0 ^0   I \ An An / 

= 2^^       l/n-l^ + ^ + One'^1 

= ^ j^ \fn-l(0) + One""'| 

,iAnt ds 

'2d0. 

Then (3.12) yields 

^      -| r27T    p2ir 

d6irfi }! < en||Fn||2, 

(3.13) 

(3.14) 

which is the required estimate. 
We are ready to prove Theorem 1.2. Let tp, <f). £ S(Rn) with supp ip C {£ G Rn 

: i < 1^1 < 2}, |^(0| > c > 0 if f < K| < |, and supp 0 C ^ € ^ : |£| < 
IjjSuPa.^fo^Tr] l(/>(:c)|2 > ^ > 0. Suppose that we accept the B-valued Littlewood-Paley 
theorem in (1.3) for some 1 < po < oo and {Dk} where Dk = Sk — Sk-i and {5^} 
is an approximation to the identity. By Theorem 1.1 and the first observation above, 
we may assume the following inequalities hold: 

ell/llij < £ iww^^ (3.15) 
kez 

where the constants c and C are independent of /. 
Now consider the function f(x) = fn(x)(j){x) = [die1*1* -\ h ane'lXnX](j)(x) where 

Xj = 33J for 1 < j < n. Then (3.15) implies 

£lMl*ll/nlliB 

See [3] for the equivalence of the above norms. 
We now apply Theorem 3.1 and obtain 

^[0,2*-]- 

ll/^llL|[0,27r] \\aielUl H h ane i9n\\2 
lL^[0,27r]»- 
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By a result of [4] (Theorem 4.5 on page 313), we have 

Haie^1 + • • • + aneie"H^^n « — ^ ||ciai + • • • + cnon||| 
e 

where the series is extended over all sequences e = (ei,..., en) with e^ being indepen- 
dent Bernoulli random variables, that is, e^ = ±1 for 1 < k < n. 

This shows that for any n > 1 and ai, a2,..., an G 5, there exist constants c and 
C such that 

n w n 

which, together with a result of [2], implies that B is isomorphic to a Hilbert space, 
and hence, Theorem 1.2 is proved. 
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