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A NOVEL UNIFORM EXPANSION FOR A SINGULARLY PERTURBED 

PARABOLIC PROBLEM WITH CORNER SINGULARITY 

Shagi-Di Shih 

ABSTRACT. A linear singularly perturbed parabolic equation defined in a quarter 
plane possesses internal layer behavior when there is an incompatible relationship 
between the initial data and the boundary data. A novel expansion for the solution 
is obtained in the form J2kZo ^lu2k(x, <; £)-fefc/:W+i(z, t; £)]+£nu(n+1)(x, t; e) 
by applying Temme's technique [1982] along with the device of splitting and 

combining the integral representation. The expansion ]Cfc=o £k[u2k{xit\£) + 
£k^2U2k+i(x,t]£)] is shown to be the exact solution when the initial function is 
a polynomial of degree n and the boundary function is a polynomial of degree 
[n/2\ + 1. Moreover, a comparison is made with some known results in the 
literature. 

1. Introduction 

Numerical solutions of boundary value problems of partial differential equations often 
use a variety of finite difference/element formulations of differential equations. On the 
other hand, it is also quite common to convert given problems into integral equations, 
from which one employs boundary element methods, see, for example, Chen and Zhou 
[6], to obtain numerical approximations. 

For singularly perturbed problems of differential equations, methods of matched 
asymptotic expansions have been very popular in constructing composite expansions 
which are uniformly valid in the domain under consideration. Typically, a composite 
expansion consists of an outer expansion and an inner expansion; the outer expansion 
gives an excellent approximation to a given problem except for some narrow regions 
of a rapid variation, either near part of the boundary or along some internal curve, at 
each of which one is required to construct an inner expansion based on some stretched 
variable in the region of non-uniformity. It has been traditional to apply methods of 
matched asymptotic expansions or methods of multiple scales to obtain such theoret- 
ical approximations for singularly perturbed differential equations. 

Sometimes, there is a necessity to adopt different approaches when methods of 
matched asymptotic expansions fail to give satisfactory results for constructing a uni- 
form approximate solution. To gain the asymptotic behavior of a singularly perturbed 
problem, one often constructs an integral representation for the solution in terms of 
Green's function, from which one analyzes the asymptotic behavior by using asymp- 
totic approximations of integrals; see, for example, Grasman [8] and Temme [14] on 
investigating parabolic boundary layer and corner layer structures, respectively, aris- 
ing from some singularly perturbed problems for the elliptic differential equation in 
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the form 

(d2u     d2u\     du_ 
6 \dx* + dy*J * dy ~0' 

in the domain x > 0, y > 0. 
The goal of this study is to unveil internal layer structures of some linear singu- 

larly perturbed parabolic problems with corner singularity by finding the asymptotic 
behavior of an integral form of its solution. An integral representation for the solu- 
tion of a linear singularly perturbed parabolic differential equation involves the spatial 
variable #, the temporal variable £, and the small parameter e satisfying 0 < e <C 1. 
Thus, it is important to derive an asymptotic expansion which is uniformly valid in x, 
t.asel 0. One obtains the outer expansion of the singularly perturbed problem if the 
classical Laplace's method is employed. Our method of obtaining a uniform expansion 
has the following major steps: 

(i) obtain an integral representation for a given singularly perturbed problem; 
(ii) transform each integral appearing in the solution representation obtained in (i) 

into a standard form; 
(iii) construct a formal uniform expansion for each canonical integral; 
(iv) construct an error bound for the expansion; and 
(v) investigate the asymptotic properties of the expansion and compare with meth- 

ods of matched asymptotic expansions. 

There is a large class of parabolic problems which have solutions in integral form. 
For example, the equation 

du        d2u        du      _,    fN 

with p(x, t) = x q(t) can be converted into the heat equation via a transformation in 
both independent variables. But, for the sake of clarity of illustrating our techniques, 
in this paper, we consider only the case where p is a positive constant. Moreover, 
without loss of generality, we choose F(x,t) = 0 since the function F(x,i) gives its 
contribution only to the first outer function uo(x,t) defined by 

duo        duo        f     . 
— +p— = F(X,t), 

and to other higher-order outer functions but not in the structure of the inner expan- 
sion. One standard form of the transformed integrals related to the initial data of the 
given singularly perturbed problem is 

o2^ 

I{x,t) =  /   f(s;x,t) exp I 1  ds 

where a may be finite or — oo and b finite or oo. A uniform asymptotic expansion of 
the integral of this type was studied by Temme [15] using a technique of subtraction 
and integration by parts. Specifically, one writes I(x, t) as 

J(M)= /   /(0;M) expT-—J ds+ I  [f(s;x,t)-f(0;x,t)] exp (-— J ds. 

Then integrating the second integral by parts gives the resultant integral of the same 
form as /(#, t). Repeating this process of subtraction and integration by parts gives an 
asymptotic expansion of the integral I(x,i) in e. The technique of repeated integra- 
tions by parts is a simple and often effective way of deriving the asymptotic expansion 
of an integral containing a parameter.   For instance, in determining the asymptotic 
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behavior of the complementary error function erfc(x) as x approaches infinity, one 
may employ integration by parts to derive 

For x G (0,DO), the error term does not exceed the first neglected term in the series in 
absolute value and has the same sign; see, for example, Olver [11, p. 67]. The other 
standard form of integrals associated with the boundary data of the given singularly 
perturbed problem requires additional manipulations of splitting and combining after 
employing the process of subtraction and integration by parts. The device of splitting 
a difficult integral into two to derive its asymptotic behavior in this paper is similar 
to the one in Olver [12]. 

Now, we define the complementary error function erfc by 

2      f00 

erfc(a;) = -7=   /     exp(—s2) ds, 
VTT Jx 

ierfc(x) =  / 
Jx 

with the following properties 

erfc(O) = 1,        erfc(-x) = 2 - erfc(x), 

*( \        1 (     2N t C1-1) erfcfz) ~ —;=- expf— x ),        as x \ 00. 

Next, the first iterated integral of the complementary error function ierfc is defined by 
1 1 
erfc(s) ds = -7= exp(-x2) - x erfc(a;), (1.2) 

which has the properties 

ierfc(O) = 4=>        ierfc'(0) = -1,        ierfc(-aO = 2x + ierfc(z), (1.3) 

ierfc(a;) ~ ^ r-  2 exP(~a;2)        as x T o0?        ierfc(a;) ~ —2x       as x | -00. 

In general, the nth iterated integral of the complementary error function in erfc is 
defined by 

poo -1 

in erfcfr) = /     i71"1 erfc(s) ds = — i71"2 erfc(x) - - i71"1 erfc(x), (1.4) 

for n = 2,3,4,... . Moreover, we have 

i2 erfc(a:) ~ A   ,-   Q  exp(-x2)    as x | 00,    i2 erfc(-x) = x2 + - - i2 erfc(x),   (1.5) 
Ay/nx6 I 

1 X X 
i3 erfc(x) ~ 0 /-  A exp(-a;2)    as x t 00,    i3 erfc(-x) = — + - + i3 erfc(x). (1.6) 

Oy/TT X* 6 2 

For more information on these functions, see Abramowitz and Stegun [1]. 
Linear singularly perturbed parabolic problems with corner singularity have been 

studied by Bobisud [4], Howes [9], and Joseph [10]. Bobisud investigated a linear 
singularly perturbed parabolic problem defined in the square domain 0 < x < 1, 
0 < t < 1 when x = 0 and t = 0 are the inflow boundaries, so that there is a 
boundary layer at x = 1 and an internal layer along the characteristic curve of the 
reduced problem, emanating at the origin. The asymptotic expansion constructed with 
the boundary layer term was shown to be of the order y/e under the assumption of 
continuity between the initial data and the boundary data at the origin. To improve 
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the order of validity, one is required to construct an internal layer term. Howes 
obtained some exponential upper bound for the internal layer function of a linear 
singularly perturbed problem under the same assumption for the initial and boundary 
functions. As far as we know, an explicit construction of internal layer functions is 
not available in the literature. 

The organization of this paper is as follows. Section 2 provides an integral rep- 
resentation of the solution for a singularly perturbed parabolic problem defined in a 
quarter plane. An expansion is constructed in Section 3 from the obtained integrals. 
Some properties of this expansion are given in Section 4. A comparison is made with 
some related results of Howes and Joseph in Section 5. 

2. Integral representation of solution 

Assume that the function f(x) and g(t) are smooth in their respective domains x > 0, 
t > 0 and satisfy the growth conditions 

\f(x)\ < d exp(C2Z1+a)        x > 0, (2.1) 

IsWIfCCi exp(C2*1+«)        *>0, (2.2) 

where Ci and C2 are positive constants and 0 < a < 1. From Cannon [5, p. 50], we 
have the following theorem. 

Theorem 2.1.  The heat equation 

du        d2u ^     _ 
-m=£w     x>0>  t>0' 

with a parameter e satisfying 0 < e <^ 1, subject to the initial condition 

u(x,0) = f(x)        x>0, 

and the Dirichlet boundary condition 

u{0,t)=g(t)        t>0, 

has the solution of the form 
poo rt  QQ 

u(x,t) = J     G(x,Ti,t)f(ri)dTi + e J   j-(x&t - r)^(r) dr (2.3) 

where G(x,r},t) is the Green's function of the heat operator d/dt — e d2 jdx1 over the 
quarter plane defined by 

G(x,Ti,t) = K(x-Ti,t)-K(x + ri,t)i (2.4) 

with the fundamental solution K(x,t) of the heat operator d/dt — e d2/dx2 given by 

*M=^exp(-C>- (2-5) 
Now this result can be extended to a convection-diffusion problem. 

Theorem 2.2.   The convection-diffusion equation 

du du d2U r, , r, /«  ^ 
m+pte=£M     x>0'  t>0> (2-6) 

with a constant p > 0 and a parameter e satisfying 0 < e <C 1, subject to the initial 
condition 

u{x,0) = f(x)       £>0, (2.7) 
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and the Dirichlet boundary condition 

u(0,t)=g(t)       t>0, 

has the solution of the form 
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(2.8) 

+ s J*^x,0,t-T)g(T)exp(^p) dr} (2.9) 

where G(x,r),t) is the Green's function of the heat operator d/dt — e d2/dx2 over the 
quarter plane defined by (2.4). 

Proof. Making the substitution 

u(x,t) = v(x,t) exp 
px     p2t 
2e      4e 

converts the initial boundary value problem (2.6), (2.7), (2.8) to the problem 

dv _    d2v 
x > 0,    t > 0, 

v(x10) = f(x) exp (-—J ,        v(Q, t) = g(t) exp 

The desired result follows from (2.3). 

p2t 
IF 

□ 

To study the asymptotic behavior of u(x, t) given by (2.9) for small values of e, we 
reduce it to the following form. 

Theorem 2.3.  The solution u(x,t) of the initial boundary value problem (2.6), (2.7), 
(2.8) can be expressed as 

u(x,t) = hfat) - hfat) exp(—) + I3(x,t) + htx^t) exp(—) (2.10) 

where 

Ii(x,t) = —== / f(x - pt — 2y/ia) exp I I dcr, 
V^ J-oc \    e J 
If00                                               (    cr2\ 

hix, t) = —F= /       f(-x -pt + 2\/ia) exp f J da, 

r (    4\       C   n      \ X+Vs \   (x-ps)2' h(x,t)= /   g(t-s)—=== ex- 
Jo AVTTS^C 

h{x,t)= /  g{t-s)^yJ^ ex 
Jo 4v7rs6e 

ise 

(x + ps)2 

ds, 

ds. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Proof. First of all, from (2.9), the contribution of the initial data f{x) is 

'px 
Ui(x,i) = exp I g - ^-j   /    G(x,ri,t)f(ri) exp (-^) d»7 

= eXP(f "S) /V^-^-^ + f?, *)]/(»?) exp (-g) dT, 

= exp (-^) ^ ^(^t)/^ - s) exp (g) dS 

-exp(?-§) Jx
00K(s,t)f(s-x)e^(-^) ds 

—J, 
with 

/l(M)= r /(»- *) 
7_oo   2\/7rte 

Jx 

exp 

exp 

4te 
(s + pt)21 

Ate 

ds, 

ds. 
2v/7ri£ 

A change of variable gives the desired form for these two integrals. 
Next, we reduce the contribution of the boundary data g(t) to a simpler form: 

,     , fpx    pH\   f1 dG,   n w ,        {P
2
T\  J uh(x,t)=e exp I — -— 1 y   — (x,0^-r)^(r)expl — I dr 

= £exp(£) I ^^0'S)^-S)exp(-1F) d5 

/pxx    f1 dK (   p2s\ = _& e^pf-j ^ _(I,,)9(t-8)exp(i- —j 

xg(t - s) 
exp   - 

dx v  '  ^v 

(x — ps)2 

ds 

ds. 
Jo   2Virs3e   ""Jr L        45£ 

To make Ub(x,t) more tractable, we now split it into two integrals: 

Ub(x,t) f Jo 

(x+ps)g{t-s) 
AV7rs3€ 

exp 
(x — ps)2 

+ I 
1 (x-p«)y(t-«) 

W: /jrs0e 
exp 

45£: 

(x — ps)2 

4se 
ds 

(vx \ —J hix.t), 
with /3(:E,£), I±(x,t) given by (2.13), (2.14), respectively. This completes the proof. 

□ 
3.  Construction of an expansion 

To investigate the asymptotic behavior for the solution u{x, t) of the singularly per- 
turbed problem (2.6), (2.7), (2.8) for small values of £, one analyzes the integrals 
ii(#,£), J2(#,£), l3(x,t), hfayi) for small values of e. Laplace's method is known to 
give only the outer expansion of w(x, £), which is not uniformly valid in a neighborhood 
of the curve x = pt with t > 0. In the terminology of the asymptotics of integrals, we 
have a classic problem. For example, along the curve x = pt of the non-uniformity for 
the singularly perturbed problem (2.6), (2.7), (2.8), the end point (x — pt)/{2y/t) of 
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the integration in a in the integral /i(x,t) coalesces with the saddle point at a = 0, 
while the end point t of the integration in 5 in the integral Is(x, t) coalesces with the 
saddle point at s = p/x. Several contributions in the literature deal with this aspect, 
for instance, Bleistein [2], Bleistein and Hadelsman [3], Erdelyi [7], Olver [11], and 
Wong [16]. Our method of obtaining a uniform expansion in each integral Ik(x,t), 
k = 1,2,3,4, is motivated by Temme [15] with additional manipulations of splitting 
and combining for Ik(x,t), k = 3,4. We illustrate our technique by obtaining an ex- 
pansion with an arbitrary number of terms. Now, we obtain some preliminary integral 
results. 

Lemma 3.1. 
1      f          f   <r2\   J        ,      1     r   / * \ —== /     exp da = 1 - - erfc   —=   , 

V^J-oo       \    £ J                 2        VVe/ 
(3.1) 

,— \    exp            \ da =     erfc   -p   , 
s/re}x          \    e)           2        \Ji) 

(3.2) 

f* x + ps  ("   (x-ps)2" 
Jo  Wns3e     P [        4se     J 

,       1      ,  fx-pt\ 
ds — — erfc     =-    , 

2         \2Vte)' 
(3.3) 

rtx2-p2s2 PY r (x-ps)2i j       0  /te         [   (x-pt)2] 
ds = 2\— exp  -v 

Jo    2Vns3s       P [       4s£     J 

Proof. The first two equations (3.1), (3.2) are obtained easily.   The third equation 
(3.3) follows from the substitution 

da x + ps 

ds Ay/s^e 
For (3.4), noting 

sexp 

__ x — ps 

(a: - ps)2 

ise 
p2s2 

4:S26 
exp 

(x — ps)2 

Ase 
(3.5) 

we integrate by parts to get 

I 
tx2-p2s2 

2V: /irs0e 

= 2 

exp 

exp 

(x — ps)2 

Ase 

(x-pt)2 

ds 

tte Jo 
exp 

(x - ps) 21 

4se 

To evaluate the new integral, we split it into two integrals as follows: 

x+ps 
exp 

(x — ps)2 

Ase 

ds. 

ds 

Then, we have (3.4) by virtue of (3.3). □ 

To make our techniques clearer, some integral results are listed in the following 
theorems under the assumption that the function ty(s]x,t) satisfies the growth con- 
dition for (2.1) or (2.2) when s is large. The next theorem can be employed as often 
as necessary to obtain a higher-order expansion for the integrals associated with the 
initial data of the given problem. 



210 SHIH 

Theorem 3.1.  The integral Ia(x,t) defined by 
X — Pt fy 

Ia(x,t) = -= I     * y{cr;x,t) exp f J do- 

can be expanded as 

where the terms are given by 

41/2)(x,t) 
x — pt |*(0;M)-tt( 

x — pt 

2Vi '-> xi t -Kw) 
J(')(1,i)=2^j/^*(1)(<';«,()e=<p(-y) <to. 

with 

¥1\a;xit) = g -{V(v',x,t)-V(0;x,t)} 

The integral hix^) defined by 

If00                          (   a2\ 
Jfe(M) = -7= /       ^{<J\x,t) exp da 

can be expanded as 

Ib(x,t) = J2S^lik/2\x,t) 
k=0 

where the terms are given by 

r(l/2) (x,t) 
x + pt  I    \ 

x+pt 
x,t} -y(0;x,t) ierfc 

(x + pt\ 
\2Vte J 

1 C00 rr2 

I^\x,t) = —= \      ^W,*) exp(—-) da. 
2Vi 

(3-6) 

(3.7) 

(3.8) 

(3.9) 

Moreover, if^(a')x,t) is a polynomial of degree n in a, then ^^(a^x^t) is a polyno- 
mial of degree n — 2 in a. 

Proof Rewrite the integral Ia{x,t) as 

+ -j= j2^ [y(a;x,t)-y(0;x,t)} exp (~ j da, 
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due to the fact that the main contribution of the integral /a(£, t) takes place at a = 0. 
Using the integral formula (3.1) in the first integral and performing integration by- 
parts in the second integral give 

Ia = tf(0;M) - o*(0;M) erfc 

'lylL 
\2Vte / 

2Vi  9((r;x,t) -y(0;x,t) 
d exp 

-^ 

= ¥(0;*,*) - ^(0;*,*) erfc (j^jf) 

+ 
te^(0;x,t)-^(^;x,t) 

exp 
(x-pt)2 

tie 
+ eli1\x,t), 

TT X — pt 

with I^fat) defined by (3.7). The desired result (3.6) follows by using (1.2). 
Applying the above procedure of subtraction and integration by parts to the integral 

Ib(x,i) along with the use of (3.2) yields 

7>=i*(0;I,()e,tc(!±f) 

+ tey{Z±%;x,t)-mx,t) 
x + pt 

exp 
{x + pt) 

Ate 

21 

+ f#)(M), 
rd) n with Il^x.t) given by (3.9). Using (1.2), we then have (3.8). 

The integrals associated with the boundary data are difficult to expand. One needs 
to use the next theorem to obtain the first expansion. 

Theorem 3.2.  The integral Ic(x,t) defined by 

Ic(x,t)= I   #(s;M) 
./o 

can be expressed as 

x-\-ps 

4^7 
exp 

'KS0€ 

(x — ps)2 

4ss 
ds 

Ic(x,t) = Y/e
k/2I{

c
k/2)(x,t) 

k=0 

where the terms are defined by 

i<0)(M) = i*(t;M)arfc(!^)f 

(3.10) 

I?/2)(x,t) = St nt;x,t)-^f,X,t)]ierio{^) 

WM-Mfa 
x — pt 

exp 
(x — ps)2 

ise 
ds.   (3.11) 

x — ps 

Proof. The main contribution of the integral Ic(x,t) comes from a neighborhood of 
the point s = x/p, so we then express Ic(x, t) as 

= /   * [ -',x,t] —T-^— exp 
Jo      \P       J 4v/^i 

+ J  U>{s]x,t)-y(-'}x,t 

Ase 

x-\-ps 

Avirsh 

ds 

exp 
(x — ps)2 

Ase 
ds. 
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Noting (3.5), we use the integral formula (3.3) in the first integral and perform inte- 
gration by parts in the second integral to give 

'-MH-fef) 
+fjy^ t)-y(xlp-x,t) 

x — ps 
d exp 

(x — ps) 21 

4S£ 

x — pt 
exp 

(x-pty 

Ate 
+ elW{x,t). 

D with J^OM) defined by (3.11). Then (3.10) follows by using (1.2). 

From this theorem, we then have the following result. 

Corollary 3.1.  The integrals associated with the boundary data can be expanded as 

h(x, t) + h{x, t) exp (^) = J2e*/2 44/2)(*> *) (3-12) 
fc=0 

where the terms are given by 

&)(x,t) = 

r(l/2) 
i34 (x,t) 

m 
2 

Vt 
{-(^l)+-(f)-(w)}' 

•pA 

1 P^   /7 

^(^O = -7^ /   ^{v^^34(s;^,t)} exp 
(x — ps)2 

4S£ 
ds, 

with 
g(t-x/p)-g(t-s)   i  g(t + x/p)-g(t-s) 

934(8, X,t) = h 
x — ps x + ps 

Furthermore, if g is a polynomial of degree n, then #34(5; rr, t) is a polynomial of degree 
n — 2 in s. 

2 - p2s2 f   (x - ps)2 

exp ' ds 

Lemma 3.2.  The integral M(x,t) defined by 

M(x,t)= f 9(8; x,t)-  _ 
Jo 2V7rs3s L        *se 

can be expressed as 

i/(M)-|_.(^.){-.(^)-p(f)-fc(^)} 
(x-p<)2' 

+ 2W— *(f;x,i) exp 
4te 

'^na^ [*(-^.*)-*(f^.')]} ^ (x - ps)2 

4ss: 
ds. 

(3.13) 
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Proof. We split M(x,t) into two integrals 

(x — ps)2 
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M -Mv ,  x2 — p2s2 

x,t )        ^^   exp 

+  /    *(«;a:,t)-*f-;a:,* 

456: 

x2 -p2s2 

ds 

exp 
2v/7r53e: 

Integrating the second integral by parts with (3.5) gives 

(x -ps)2 

(x — ps)2 

Ase 
ds. 

I    tf(s;x,t)-tf f-;M ^ x2 — p2s2 

2V:^£ 
exp 

4S£ 
(is 

TTJO 
y(s;x,t) -V [ -;x,t d exp 

(x — ps)2 

Ass 

= 2Vf  *(*;*.')-*(|;*,* exp 
(X-P*)

2 

4te 

-2yiits{^[*(fl;aj'')-*&x'')]}exp.' 
With the use of (3.4), we obtain the result (3.13). 

(x — ps)2 

Ase 
ds. 

□ 

Theorem 3.3.  The integral N(x, t) defined by 

N(x,t) = -=      — {v^(s;M)}exp 
y/ire JQ  as 

can be expressed as 

N{x,i) = Yje
kl2N^I2\x,t) 

where the terms are given by 

{x — ps) 
Ase 

21 
ds (3.14) 

(3.15) 
fc=0 

^0)(*,t) = !*c(t;M) erfc (1^1) + \i>d{t^t) exp (^) erfc (|±|) , 

iV^OMH St 
x — pt 

*c(t;x,t)-*c ( -;M ierfc 

+ 
x -{-pt 

4 

#d(*;M)-^d ( 5^,* 

{x-ptf 

(x — pt 

2Vte 

exp f — 1 ierfc I 
(x + pt\ 

2y/te J 

Ate 
jj- ^i(t;x,t) exp 

*.><„,> - ^^ {», (1^) - e.p (=) erfc (|±|) } 
+ A'(1°)(M), 
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tfi(*;z,t) = —*(s;M), 

1 2x 

—1 2x 
yd(s', x, t) = — 9(8] x, t) + -jtf i(s; x, t), 

(x — ps)2 

4s£: 
ds, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

and 

^(rx t) = ^c{x/p;x,t)-9c{s;x,t) + Vd(-x/p;x,t) - *d(s;x,t) 
x — ps x+ps 

4 
*i(s;a:,t)-*i f-;^M 

Moreover, if9(s] x, t) zs a polynomial of degree n in s, then 9^ (s; x, t) is a polynomial 
of degree n — 1 in s. 

Proof Differentiation gives 

where 

N(x,t) = Na(x,t) + Ntfat) 

Na = -±=[t± 9{8;x,t) exp f-^^" 

If1 f   (x-vs)21 

Nb = -7=      y/s^faxtt) exp —-^ 
456 

ds, 

with *i(s; x, t) defined by (3.16). The device of splitting yields 

1   /** 
Na(x,t) = - /   ^(5;x,t) 

x + ps 

4:Virs3s 
exp 

(x — ps)2 

+ — exp(^) /   V(six,t) 
P v £ ' Jo 

Ase 

x —ps 

ds 

exp 

and 

-2   f x   - V s 
Nb(x,t) = — /   #i(s;x,*)        JL^   exp   - 

P2 Jo 2V7rs3€ 
x + ps 

4\/7rs3£: 
+ -2 /   *i(«;x,t) 

P2 Jo 

+ ?! exp(^) /   ^i(s;x,0 
P2 ^     ^0 

4\/7rs3£: 

(x-ps)2 

4s£: 

(x — ps) 

x — ps 

Ay/ns^e 

Ase 

exp 

(x + ps) 
4s£: 

ds 

ds 

(x + ps)2 

21 
ds, 

4s£ 
ds. 

It then follows that 

Ar(x,t) = iVi(x,t) + iVc(x,t) + iVd(x,t) exp(—) 
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where we have 

N1 = —      *i(8;x,t)       Z—   exp  -v      ^ ; 

P2 ./o 2\fK^e L       45^ 

Nc=fvc{8;x,t)f^expt   {X ' ^ 
Jo AyTTs^e 

Nd=      9d(8\x,t)  * ZlL. exp 
Jo Avirs^e 

ds. 

Ase 

(x + ps)2 

ds, 

ds, 

with ^c(s;x,t), ^d(s]x,t) defined by (3.17), (3.18), respectively. The desired result 
(3.15) follows with the use of (3.10) and (3.13). □ 

Based on Theorem 3.1, Corollary 3.1, and Theorem 3.3, we obtain the following 
important result. 

Theorem 3.4. For each positive integer n, the solution u(x, t) of the initial boundary 
value problem (2.6), (2.7), (2.8) can be expressed as 

n-l 

u(xit) = J2^k [u2k (x,t)e) + y/e U2k+i (x, t; e)] + en uM (x, t; e) 
k=0 

where the terms in the expansion are given by 

x — pt\ 
U2k(x,t;e) = il>2k(x,t) + ^(x,t) erfc 

2Vt€ J 

U2k+i (x, t] e) = Vil ^fe+i fa t) ierfc ( ^ri=- ) 

+ 

with 

tfrZhfat) = ^k ^^(^^Oi 

1>2kfat)= < 

^^)(^5x>*)+^)(*;x>*)f    fc = 0>l> 

-i <j> 
3*34 

(fe-1) k>2, 

^2k(x,t)= i 

gsx.i), 

^(jh'i. A;>2, 

(3.20) 

(3.21) 

^2fc+l(*.*) exP (Y)  
ierfC ( |~^ ) 

+ ^2fc+i(g,«)«*p[-(3!4ff
)2   }> (3-22) 
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^2fc+l(*.*) 

^2*+l(»i*) 

^afc+l^i*) 
-4    ^W 

p2^ 

2k(x+pt) x -hpt 

and 

cf>[k)(s;x,t)={ 
'f(x-pt-2Vts), 

d Fl 

4*)(a;x,t)=< 
7(-x-pi + 2v/ts), 

j{^fc-1)(*;a:,t)-4
fc"1)(0;«,t)} 

k ds 

4>ik)(s;x,t)={ 
9(t - s), 

<t>lk)(s;x,t) = < 

K  P P 

9(t-s), 

4k
4>(s-,x,t) = ±4k

4>(S]x,t), 

<pi3
k

4>(s;x,t)= < 

0, 

+ 

x — ps 
(fJf'Vj-x/pix^) - 4>{k~l)(s;x,t) 

x+ps 

k = 0, 

k>l, 

k = Q, 

k>l, 

k = 0, 

k>l, 

k = 0, 

k>l, 

k = 0, 

+ ^ [*34_1)(«; *, t) - ^"^ (x/p; X, t)},     k> 1. 

The remainder u^ (x, t; e) is given by 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

2   ,(„-!) 
uw(x,t;e) = -$3i (;-')f*(w)--^erfJl+P" 

+ I- {lin\x,t) - 4n)(x,t) exp (^)} + 4")(x,i) (3.29) 
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where i^   (:r,t), J2   (#,£), and J34 (x,t) are defined by 

l[n)(x,t) = -j= /     * ^n)(o-;x,t) exp f-— j dcr, 

^^'^ = vfe/^ ^W,') exp (-y) AT, 

45£: 
(is, 

217 

(3.30) 

(3.31) 

(3.32) 

respectively. 

Proof. To obtain an expansion of u(x,t) defined by (2.10), one is required to carry 
out an expansion for each of integrals /i(x, t), hi?, t), h(x, £), and hix, t). There are 
three steps. 

Step One: Prom (3.6) and (3.8), we obtain 

(7)X \ —J 
= f(x-Pt) 

+ s/ie 

'Mi^VM*) >*(%£) J \-  '     «~+« 1  t__ 1 

V 2Vte J        - v e 
f(x-pt)-miaiJx-pt\ 

x-pt V 2\/te / 

V2v/tey. 

/(-x-^)-/(0) .pxx .^ /x+ptV 

x + p< KVe/ \2VteJ 

i[l?\x,t)-I?\x,t)eXP(^)} (3.33) 

where ij   (x,t) and /^   (x,t) are given by (3.30) and (3.31), respectively, with n = 1. 
Next, putting (3.33), (3.12) into (2.10), we have 

u(x,t) = uo(x,t;e) + \/i^i(x,t;e) H-e^1^,^) 

where zto(^,^e) and ui(x,t,e) are defined by (3.21) and (3.22), respectively, with 
A: = 0. The remainder u^fe,t]e) is defined by 

ti(1)(M;e) = I {tfHxit) - iPfat) exp (y)} + J^M) 

where /^(a?,*), /^(a;,*), and J^OM) are defined by (3.30), (3.31), and (3.32), 
respectively, with n = 1. 

5^ep Two; To obtain a higher-order expansion for u(x,t) in £, the remainder term 
■u(l\x,t;£) is expanded in e similarly. First, since the function /{^ (:£,£) defined by 

(3,30) is of the same form as Ii(#,£), and I^1 {x,t) defined by (3.31) is of the same 
form as J2(#,£), they can be expanded in e analogously. Thus, we obtain from (3.6) 
and (3.8) 

i {/<«(*,,)-/^W) exp (f)} 

= itf»(0;M)-itf»(^ ; x, t) erfc ( —=- ) 
J \2Vte J 
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4 

+ 
1 2(x-pi) 12^7 

+ |{^(a;)i)-4
2)(x)f)exp(^)} (3.34) 

where we have 

^(Ojrct) = lim^1)(<T;x,<),        ^(Ojx,*) =lim^1)(a;x>*), 

and /{2)(a;,t), lf\x,t) are defined by (3.30), (3.31), respectively, with n — 2. 
Moreover, the function J34 {x,t) defined by (3.32) is of the same form as N(x,t) 

defined by (3.14). It then follows from (3.15) that we have 

JSW) = \^\t^t) erfc (|^|) + \ti\t^t) exp (f) erfc (|±| 

+ ^/fcf ^^;^^^ ~ ^^/^x'^ ierfc (x~lpt\ 
I a? - P* V 2^ / 

^(^^i*) exP 

+ )4     (t, u,, 1,; — ^4 

(x - ^)S 

4te 

tPfrxi^-^i-x/p-Xit) 
-(T)-^)} 

+ p < (I;,,,) {erfc(|Z|) -exp(?) „,c (|±|) } + . ^ „,,, 

(3.35) 

where ^(sjx,*), ^^(sja:,*), ^^(s;^,*) are defined by (3.25), (3.26), (3.27) with 
k = 1 and J^4\x,t) by (3.32) with n = 2, respectively. 

It follows from (3.34), (3.35) that 

tr1)(£,£;£) = U2(:r,£;£) + ^^(x,^;^) + e u^(x^t;e) 

where U2(x,t;e) and us(x,t;€) are defined by (3.21), (3.22), respectively, with k = 1. 
The remainder i^2) (#,£;£) is given by (3.29) with n = 2. 

Sfep Three: We continue as in Step Two to expand u^2\x, t] e) in e. We first use (3.6) 
and (3.8) to obtain 

i{/f>(x,()-/<2>(x,()eXp(f)} 



SINGULARLY PERTURBED PARABOLIC PROBLEM 219 

+ ^| W^() ,eifC \ V5 ) 

A(x + pt) v\e) \2VteJ) 

+ | {li3)(x,t) - I<3>(M) exp (^)} (3.36) 

where we have 

^2)(0;x,<) ^lim^i^x^),       ^2)(0;x,<) - lim^^x,*), 

and /{   (a:,t), /^   (x,£) are defined by (3.30), (3.31), respectively, with n = 3. 
Next, from (3.15), we obtain 

J£W) - ^fcM) -fc (|^) + ^(t;^*) exp (f) erfc (|±|) 

/T- f 42) ft; a. *) - 42) (g/p;«.«) :prfr /g-pA 

4        ^(2) 

V^ypi 
*w(*;^*)exp    (x   pt)2 

4te 

(j)f\t\x,t) - (j){p{-xlv\x 

^-(?)-<i^)} 
HWi£)-*(?Mi£)} 

+ e J^Ca:,*) (3.37) 

where (j)^\s]x,t), ^(s-.x.t), ^(s]x,t) are given by (3.25), (3.26), (3.27) with 

k = 2, and J34 (#,£) by (3.32) with n = 3, respectively. 
It follows from (3.29) with n = 2, (3.36), and (3.37) that 

i^2)(£,£;£) = u^x^t'.e) + \/i ^(rr,^) + e t/3)(£,£;£) 

where U4(x,t;£) and ^5(0;, t;e) are defined by (3.21) and (3.22), respectively, with 
fc = 2. The remainder uW(x,t;e) is given by (3.29) with n = 3. This third step can 
be continued as many times as necessary. □ 

4. Properties of the expansion 

Note that the expansion (3.20) is valid not only in a neighborhood of x = pt but 
also in the whole domain x > 0, t > 0 for all values of e. More precisely, it is 
identical to the exact solution, and thus it can be differentiated as many times as one 
wishes. Moreover, it gives a uniform approximation to the given singularly perturbed 
problem for small values of e since the function u^ (x, t; e) in the expansion is bounded 
uniformly in e. 
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Theorem 4.1.  The solution u(x,t) of the initial boundary value problem (2.6), (2.7), 
(2.8) has an expansion 

n-l 

u(x,t) = ^2£k [u2kfatie) + y/e U2k+i(x,t]e)] + 0(en)        as e | 0, 
k=0 

which is uniformly valid inx>0,0<t<T for some T > 0. 

Proof The function u^fa, t; e) is bounded uniformly in e due to the following facts: 
(i)    The function 

-(w) -*(?)•* {%£) 
is bounded uniformly in e for all x > 0, t > 0. 

(ii)    By using the boundedness of ^^    and ^r,   » we have 

/f'^O-Z^^^exp^)! 

< - max 
" 2 {inwiMf^M?) •*(!£)}■ 

which is bounded uniformly in e for all x > 0, t > 0. 
(iii)    The function J34 (x,t) is bounded uniformly in e for all x > 0, 0 < t < T 

since 
rt       " r   (x-ps)2' I 

I 
0  2v/7rs3£ 

5" 

0  2V7rs3e 

exp 

exp 

45£: 

(x -ps)2"1 
]^iH(w)--(?)-fc(w)} 

4S£ 
,       pa: + 2£        (x-pt\ 

ds = ——^— erfc     pz^ 
2p3 V 2\/^ ) 

+ -2£exp(f)erfc(^) 

2 A/      " eXP PZ V   TT 

e / V 2^ / 

(^-pt)2" 
Ate 

D 

Theorem 4.2.  Tfte solution u(x,t) of the initial boundary value problem (2.6), (2.7), 
(2.8) is of the form 

Ln/2j 

u(x,t)= Yl £k [u™(x>*>€) + V^ ^2ik+i(^,*;e)] 
fc=0 

w;/ien /(x) Z5 a polynomial of degree n, and g(t) is a polynomial of degree [n/2\ + 1. 
The symbol [x\ denotes the greatest integer less than or equal to the number x. 

Proof. The degree of 0^ (<7; #, t) in cr decreases by two after every step of the expan- 
sion. So does that of 02 (cr',x,t) in cr. On the other hand, the degree of (jy^{a\x^t) 

in cr drops by two from that of g{t) in t. Moreover, the degree of 034
;(cr;x,t) in cr 

drops by one after each step of the expansion. □ 

As an example, consider the initial function 

f{x) = arx
3 + brx

2 + crx + dr, (4.1) 



w 
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and the boundary function 

g(t) = cat3 + kt2 + at + di. (4.2) 

We then obtain the following theorem. 

Theorem 4.3.  The solution u(x,i) of the initial boundary value problem (2.6), (2.7), 
(2.8) with (4.1), (4.2) can be expressed as 

1 5 

u(M) = ^ ^(M) + 2>fc/2 ^(x^se) (4.3) 
fc=0 k=0 

where the functions are given by 

vl{x, t) = ar{x- pt)3 + br(x- pt)2 + cr(x - pt) + dr, (4.4) 

vlfat) = 2t[3ar(a; - pt) + 6r], (4.5) 

<-"■» - (* + 7) ^{^ (w) " - (?) « (w)}'     <«> 
5(„1;^4(||-6r)i{.erfc(|z|)+exp(?)^rfc(|±|)},   ,4.8, 

-!<-"" "24(? + «') '3/2 ^M) -»(?) '••* (151)} 

<(..*., - -^ {!»* (i^) +exp (=) ^ (1±|)} , (4.0, 

Proo/. From ^2)(5;a:,*)   =   0,   ^2)(s;a:,*)   =   0,  and <l>$(s\x,t)   =   0,  we have 
u^(x,t;e) = 0 and 

2 

ufo *) = Yl£k \.U2k (x> *;e) + V^ ^fc+i (a;, *; e)] 
fc=0 

where the functions U2fcOM;e)> W2fc+i(a?,t;e) defined by (3.21), (3.22), respectively, 
become 

UQ = ar(x - pt)3 + br(x - pt)2 + cr(x - pt) + dr 

di + -{-(w)+-(?)»fc(w)}' 2  x 

2 
/r i .xo . ,   / .x 11/        a: i 

ui = \rt\ar(x-pt)2+ br{x-pt) + cr + - \ai it- -j   +M£--J+Q   i 

x ierfc f        *!. j + V^< -ar(a; + p^)2 + 6r (a: + pt) - cr 

«'(-;)2^«(-;)-]}-(f)-c(w)- 
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U2 = 2t [3ar{x - pt) + br] + I -t[ar(x - pt) 4- br] - -^ [2at(x - P*) " M [ 

x erfc (^fij + {* M* + P*) " ftr] - 4 CM* + P*) + M } 

(-)erfc^ x exp | 
2y/te J ' 

ierfcf ^L ) + —Aart+ ^3 = V^ <   Aart + —|- 
2a£X 

U4 = 

x 

6a£X 

(x-pty 
Ate 

6a£X 
_    erfc ( —7=- ] H jr- exp 

p5 V 2Vte J       P5 ^ e (?)^(w)- 
Then, we obtain 

5 

I 
A;=0 

^efc/2 uk(x,t;e) = ^V t;j[(x,«) + ^efc/2 ^(a:,*^) 
fc=0 A;=0 

4- £3/2 {ar i4r(a;, t; e) + a^ ^(rr, t; e)} 

where v5(a;,t), vi;(a:,t), tt;5(a;,t;5), and wl{x,t;e) are defined by (4.4), (4.5), (4.6), and 
(4.7), respectively, with 

fpt-x     . (x-pt\     x + pt 
(?)-(w)} 
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Sxy/t 
+ -1-7=exp 

p4V7r 

(x-pt)2 

tte 

^MwH(?Mw)}- 
By using the identities 

pt- x .       ( x -pt\ 
 ==- lerfc     =- 
4V^ 
x +pt. 

V 2y/te ) 

A^/te ^ C V 2>/te / 

=»-(w)-Hw)' 
= — i erfc l^rj + i^n^rj' 

(4.12) 

(4.13) 

we obtain 

s--«{i2^(w)+-(?)l2"fc(w)}- 

{^^(^^"(f)'"-*^)} Ar = 4^ =—=- r 

+«"1'-(w)--(?)'-(w)}' 

+ i('te_t\P_t-^        (x-£\_ 
I VP4     P3 

2x 

vreric \^M) - \¥ 
(x+pt'W      2xy/t (.        fX — pt\ 

+ ^ 
t \ x + pt 

exp (?) 
x "* IwJ I+^ iierfc li^J+ exp (T) 

ierfc (w)} 
+ -r7= exP 

(l-P,,ai-^{e*(|^)--(f)^(^|)}- 4te 

Moreover, with the use of the identities 

pt-x        fx-pt\      .        (x-pt\        1 
erfc     7=r-    = ierfc     ^^ = exp 

2y/ts 
x + pt 

(x - pt)2 

erfc 
2Vte \ 2y/te ) 

(x-±£\ = -^iAx-±£\ + ± 
\ 2y/ie )      V* 

■. exp 

Ate 

{x + pi) 
Ate 

(4.14) 

(4.15) 

we have 

- ^ {ierfc (|^) " exp (f) ierfc (|±|) } 
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M (pt-x .2        fx-pt\     x+pt (px\ .2        /a: 
L* = -^ i      ^    r erfc   —^    + —p- exp   —    i2 erfc   - 

+^{-fc(w)+-(f)ie'fc(w)} 
^h(^l)--(?)-(^)}- 

le identities Finally, with the identities 

we get 

is evic(!zfi\=\ ierfc (£-*) _ iz^p erfc (fLzg) , 

13erfc fid^) = 1 ierfc (<Z±*\ _ ^i^erfc f^) , 
v 2Vte ye     V 2^ y    ev/fe       v 2^ y 

'«v,{'>'*(i^)-*(?)"*(^)}- 

+ —r {ix - pt)ierfc f iTT^-) + (x+
P*) 

exP (y) ie 

24i3/2 

p6     { \ 2Vte y V e ) V 2Vte ) J 

By virtue of (4.12), (4.13), we have 

^Mw)--(?)i8-(^)} 
-^{i2»fc(i^)+-(?)i2»fc(^)} 
+ M{(j)(.l)elfc(|^)+(I+Pt)exp(f)erfc(-|)}. 

One more substitution with (4.14), (4.15) gives 

^TM!iO--(?)i3«*(i7#)} 

+^Mt^)+-(?)Ki^)}- 
It follows that the constructed expansion is given by (4.3). 
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Note that the function (4.3) is also checked by Maple V release 3 to be the exact 
solution of the singularly perturbed problem (2.6), (2.7), (2.8) with (4.1), (4.2). Thus 
the contribution of the initial data to the exact solution is 

Ui = ar(x -ptf + br(x - pt)2 + cr{x - pt) + dr + 2te [Sar(x - pt) + br) 

-IMw)+-(?Hw)} 

-MMW)+-(T)MW)} 

+^M*"{Mi^)-«'(!r)1,'*(i£)}- 
while the contribution of the boundary data to the exact solution is 

+ 

+ 4 

- ^he-fe {ierfc (^g) - eXp (f) ierfc (|±|) } 

+ ^,(t,-{i»erfc(|z|)-eSp(?)13erfc(|±|)} 

V°'^H(w)--(?)ierfc(w)}- 
We then conclude that the internal layer structure of the initial boundary value prob- 
lem is more complicated than that of the initial value problem. Contrary to the initial 
value problem studied in Shih [13], we are not aware of any method of matched as- 
ymptotic expansions which is able to construct the internal layer function WQ{X, t;e) or 
wl(#, t; e) precisely. For example, using the variables (£, t) with the stretched variable 
£ = (x — pt)/y/e to replace the given independent variables (x, t) in the internal layer 
region, one finds by using (1.1) that 

wfaAe) = ^^ erfc (J^j + Ofc/i) 

in a neighborhood of x = pt for alH > 0. 
On the other hand, the constructed solution gives rise to a close relationship between 

internal layer functions and corner singularity conditions for the reduced problem. For 
example, the first layer function w^x^t^e) is nonzero if /(0) ^ #(0), while the second 
layer function wl(x, t; e) is nonzero if #'(0) + p/'(0) ^ 0. 
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5. Historical survey 

Two papers related to this work are Howes [9] and Joseph [10]. In studying the 
development of boundary layers for the linear singularly perturbed parabolic system 

du      .,     . du        d2u 

Joseph first considered the scalar equation 

du     du        d^u .     . 

in the first quadrant x > 0, t > 0 with a parameter e satisfying 0 < e -C 1. Equation 
(5.1) is subject to the auxiliary conditions 

ufa 0) = 0,        u(0, t) = ub(t), (5.2) 

with a smooth function Ub(i) satisfying ^(0) = 0. Then, the outer function u0(x,t) 
is defined by (5.1) with e = 0 and (5.2). It is claimed that the relation 

u(x,t) = u0(x,t) + O(e) 

is uniformly valid in x > 0, 0 < t < T for some T > 0. It is clear that this result 
is inconsistent with ours of adding an internal layer function of order 0(y/e) to the 
outer function u0(x,t). For instance, from (4.3) and (1.3), the exact solution of the 
problem (5.1), (5.2) with Ub(t) = t is 

u(x,t) = u0(x,t) + y/e wi(x, t;e), 

with 

u0(x,t) 
\t — X,     X < t, 

0, x>t, 

Wi(x,tl£) =  < 
y/t < ierfc [ —= ) — exp ( — ) ierfc ( —■= ) > ,    x < t, 

y/t < ierfc ( —7= J — exp ( — ) ierfc ( —7= ) > ,    x > t, 
I        \2y/teJ \eJ \2y/ieJ) 

and wifat\e) = 0(1) in x > 0, 0 < t < T as e | 0. 
Howes studied the internal layer behavior for the parabolic equation (5.1) defined 

in0<a:<l,0<t<T subject to the initial condition 

ufaG) = <pfa) (5.3) 

for 0 < x < 1 and the boundary conditions 

u(0, t) = A(t),        ufa t) = B(t), (5.4) 

for 0 < t < T with smooth functions ^(z), A(t), B{t) satisfying ^4(0) = ^(0). Under 
the assumption ^'(0) + ^4/(0) 7^ 0, Howes found that the internal layer function of this 
problem is of the order 

x-ty 
y/i\<p'{G) + A'm exp. 

As a comparison, it is found in the present work that the quarter-plane problem (5.1), 
(5.3), (5.4) satisfying A(Q) = <p(0) has the dominant internal layer function 

y/te \ci(x,t) ierfc f—^J + C2fat) exp ^-J ierfc f—F=J \ 
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with 

ClM = VJx-t)- ^(0) + A(0) - A(t - x) 

C2(x,t) = 

x — t 
<p(-x -t)- (p(0) + A(0) - A(t + x) 

x + t 
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