A SINGULARLY PERTURBED SEMILINEAR SYSTEM

John S. Jeffries

ABSTRACT. A constructive existence proof is given for solutions of boundary-layer type for the singularly perturbed semilinear system $\varepsilon^2 d^2 x/dt^2 = H(t,x,\varepsilon)$ subject to either Dirichlet or general Robin boundary conditions. The required assumptions involve only natural conditions that are induced by the O'Malley construction.

1. Introduction

We consider the following second-order system

$$\varepsilon^2 \frac{d^2 x}{dt^2} = H(t, x, \varepsilon) \tag{1.1}$$

for solutions $x = x(t, \varepsilon)$ on the interval 0 < t < 1 for small values of ε ($\varepsilon \to 0^+$) subject either to the Dirichlet boundary conditions

$$x(0,\varepsilon) = \alpha(\varepsilon), \qquad x(1,\varepsilon) = \beta(\varepsilon)$$
 (1.2)

where x, α , β , and H are n-dimensional real vector-valued functions, or to the general Robin boundary conditions

$$B(x(0,\varepsilon), x(1,\varepsilon), x'(0,\varepsilon), x'(1,\varepsilon), \varepsilon) = 0$$
(1.3)

where B is a given 2n-dimensional vector-valued function of $x(0,\varepsilon)$, $x(1,\varepsilon)$, $x'(0,\varepsilon)$, $x'(1,\varepsilon)$, and ε .

The scalar case (n=1) of the problem (1.1)–(1.2) has been considered by many authors including Brish [2], Vasil'eva and Tup̃ciev [23], Boglaev [1], Vasil'eva and Butuzov [22], Fife [4, 5], Yarmish [24], Smith [20, 21], O'Malley [19], Howes [8–10], van Harten [6, 7], Chang and Howes [3], and others. The vector case has been considered in Kelley [13, 14], Howes and O'Malley [11], and O'Donnell [16]. O'Donnell [16] assumes that H has a special structure which permits the system to be decoupled, and then the scalar theory can be applied to each component of the system. Kelley [13, 14] and Chang and Howes [3] assume stability conditions which imply, in particular, that all the eigenvalues of $H_x(t, X_0(t), 0)$ have positive real parts for $0 \le t \le 1$ for a suitable outer solution $X_0(t)$.

The scalar case (n = 1) of the problem (1.1)–(1.3) is considered in O'Malley [17, 18] and van Harten [6]. The vector problem is considered in Chang and Howes [3]; however, their assumptions impose certain restrictive conditions on the structure of H and B, and spatial coupling of the boundary conditions is excluded.

For both the Dirichlet and Robin problems, we use the O'Malley construction to obtain an approximate solution; then we linearize the original problem about the proposed approximate solution and apply the Banach-Picard fixed point theorem to prove the existence of a locally unique exact solution along with error estimates between the

Received November 1, 1994, revised June 5, 1995.

Key words and phrases: singular perturbations, semilinear.

exact solution and the approximate solution. We employ natural conditions induced by the O'Malley construction. The matrix $H_x(t, X_0(t), 0)$ is assumed to be nonsingular and its eigenvalues are excluded from lying on the negative real axis for a suitable outer solution $X_0(t)$. This requirement is necessary so as to exclude strictly oscillatory solutions to the associated linearized system and thus allow the construction of an approximate solution that exhibits boundary-layer behavior (see equations (4.1), (5.9), (5.13), and (6.5)).

Sections 2 and 3 contain discussions of our assumptions for the Dirichlet and Robin problems, respectively. Section 4 contains a proof of Lemma 1 which is needed to construct certain fundamental solutions satisfying appropriate exponential dichotomies. The approximate solutions for the Dirichlet and Robin problems are constructed in Sections 5 and 6, respectively. Section 7 contains the statements and proofs of existence and local uniqueness. Examples are provided in Section 8.

2. Assumptions for the Dirichlet problem

Assumption D1. There exists a continuous solution $X_0(t)$ to the reduced equation

$$H(t, X_0(t), 0) = 0 (2.1)$$

such that the $n \times n$ matrix $H_x(t, X_0(t), 0)$ is nonsingular and its eigenvalues do not lie on the negative real axis.

Assumption D2. There exist decaying solutions \hat{X}_0 and \tilde{X}_0 to the boundary-layer differential equations

$$\frac{d^2 \hat{X}_0}{d\tau^2} = H(0, X_0(0) + \hat{X}_0(\tau), 0),
\hat{X}_0(0) = \alpha(0) - X_0(0),$$
(2.2)

$$\frac{d^2 \tilde{X}_0}{d \sigma^2} = H(1, X_0(1) + \tilde{X}_0(\sigma), 0),
\tilde{X}_0(0) = \beta(0) - X_0(1).$$
(2.3)

For our next assumption, we consider the following two linear systems

$$\frac{d}{d\tau}\hat{\xi} = \begin{pmatrix} 0 & I_n \\ H_x(0, X_0(0) + \hat{X}_0(\tau), 0) & 0 \end{pmatrix} \hat{\xi},$$
 (2.4)

$$\frac{d}{d\sigma}\tilde{\xi} = -\begin{pmatrix} 0 & I_n \\ H_x(1, X_0(1) + \tilde{X}_0(\sigma), 0) & 0 \end{pmatrix} \tilde{\xi}.$$
 (2.5)

It follows from Assumption D1, Lemma 1 (see Section 4), and Lemma 6.1 of Jeffries and Smith [12] that there exist fundamental solutions $\hat{\xi}(\tau)$ and $\tilde{\xi}(\sigma)$ satisfying the exponential dichotomies

$$\left| \hat{\xi}(\tau) P \hat{\xi}^{-1}(u) \right| \le K e^{-\nu(\tau - u)} \qquad u \le \tau,$$

$$\left| \hat{\xi}(\tau) (I - P) \hat{\xi}^{-1}(u) \right| \le K e^{-\nu(u - \tau)} \qquad \tau \le u,$$
(2.6)

$$\left| \tilde{\xi}(\sigma)(I - P)\tilde{\xi}^{-1}(u) \right| \le Ke^{-\nu(\sigma - u)} \qquad u \le \sigma,$$

$$\left| \tilde{\xi}(\sigma)P\tilde{\xi}^{-1}(u) \right| \le Ke^{-\nu(u - \sigma)} \qquad \sigma \le u$$
(2.7)

where K and ν are positive constants and $P := \begin{pmatrix} I_n & 0 \\ 0 & 0 \end{pmatrix}$. Given two such fundamental solutions, we make the following assumption.

Assumption D3. The columns of $(I_n \ 0)\hat{\xi}(0)P\hat{\xi}^{-1}(0)$ span \mathbb{R}^n , and the columns of $(I_n \ 0)\tilde{\xi}(0)(I-P)\tilde{\xi}^{-1}(0)$ span \mathbb{R}^n .

Note that this assumption is independent of the particular choice made for the fundamental solutions $\hat{\eta}$ and $\tilde{\eta}$, as long as they satisfy the corresponding exponential dichotomies (2.6) and (2.7).

Assumption D4. There exist positive constants ε_1 and δ_1 such that for $0 < \varepsilon \le \varepsilon_1$, $H(t, x, \varepsilon)$ is of class C^{N+1} with respect to (t, x) on \mathcal{N}

$$\mathcal{N} := \left\{ (t, x) : 0 \le t \le 1, \ \left| x - \left(X_0(t) + \hat{X}_0(\frac{t}{\varepsilon}) + \tilde{X}_0(\frac{1-t}{\varepsilon}) \right) \right| \le \delta_1 \right\}, \tag{2.8}$$

and its derivatives are uniformly bounded. Furthermore, we assume that $H(t, x, \varepsilon)$, $\alpha(\varepsilon)$, and $\beta(\varepsilon)$ possess expansions in ε of the form

$$\begin{pmatrix} H(t, x, \varepsilon) \\ \alpha(\varepsilon) \\ \beta(\varepsilon) \end{pmatrix} = \sum_{k=0}^{N} \begin{pmatrix} H_k(t, x) \\ \alpha_k \\ \beta_k \end{pmatrix} \varepsilon^k + \begin{pmatrix} H_{N+1}(t, x, \varepsilon) \\ \alpha_{N+1}(\varepsilon) \\ \beta_{N+1}(\varepsilon) \end{pmatrix} \varepsilon^{N+1}$$
(2.9)

where the coefficient functions $H_k(t,x)$ are of class C^{N-k+1} , and $H_{N+1}(t,x,\varepsilon)$, $\alpha_{N+1}(\varepsilon)$, $\beta_{N+1}(\varepsilon)$ are uniformly bounded.

3. Assumptions for the Robin problem

Letting q, r, s, z represent the boundary values $x(0,\varepsilon)$, $x(1,\varepsilon)$, $x'(0,\varepsilon)$, $x'(1,\varepsilon)$, respectively, we may regard B as a function of q, r, s, z, and ε . As an example, consider the following set of boundary conditions (n=2)

$$x_{1}(0,\varepsilon) - x'_{1}(0,\varepsilon) = 2,$$

$$x_{2}(1,\varepsilon) + x'_{2}(0,\varepsilon) = 3,$$

$$x_{1}(1,\varepsilon) + x'_{1}(1,\varepsilon) = 1,$$

$$x_{2}(0,\varepsilon) - x'_{2}(1,\varepsilon) = -1.$$
(3.1)

In this case, $B = B(q, r, s, z, \varepsilon)$ would have the form

$$B(q, r, s, z, \varepsilon) = \begin{bmatrix} q_1 - s_1 - 2 \\ r_2 + s_2 - 3 \\ r_1 + z_1 - 1 \\ q_2 - z_2 + 1 \end{bmatrix}.$$
 (3.2)

Note that spatial coupling of the boundary values is allowed. We now are ready to state our assumptions.

Assumption R1. Same as Assumption D1.

Assumption R2. There exist n-dimensional vectors α_0 and β_0 such that

$$B(X_0(0), X_0(1), \alpha_0, \beta_0, 0) = 0, (3.3)$$

and the following $2n \times 2n$ matrix is nonsingular

$$\left[B_s(X_0(0), X_0(1), \alpha_0, \beta_0, 0) \mid B_z(X_0(0), X_0(1), \alpha_0, \beta_0, 0) \right].$$
(3.4)

Assumption R3. There exist positive constants ε_2 and δ_2 such that for $0 < \varepsilon \le \varepsilon_2$, the given data function $H(t, x, \varepsilon)$ is of class C^{N+1} , $N \ge 2$, with respect to (t, x) on \mathcal{N}_1

$$\mathcal{N}_1 := \{ (t, x) : 0 \le t \le 1, |x - X_0(t)| \le \delta_2 \}, \tag{3.5}$$

B is of class C^{N+1} with respect to (q, r, s, z) on \mathcal{N}_2

$$\mathcal{N}_2 := \left\{ (q, r, s, z) : |q - X_0(0)| \le \delta_2, |r - X_0(1)| \le \delta_2, \\ |s - \alpha_0| \le \delta_2, |z - \beta_0| \le \delta_2 \right\},$$
(3.6)

and the derivatives of H and B are uniformly bounded. Furthermore, we assume that H and B possess an asymptotic expansion in ε of the form

$$\begin{pmatrix}
H(t, x, \varepsilon) \\
B(q, r, s, z, \varepsilon)
\end{pmatrix} = \sum_{k=0}^{N} \begin{pmatrix}
H_k(t, x) \\
B_k(q, r, s, z)
\end{pmatrix} \varepsilon^k + \begin{pmatrix}
H_{N+1}(t, x, \varepsilon) \\
B_{N+1}(q, r, s, z, \varepsilon)
\end{pmatrix} \varepsilon^{N+1}$$
(3.7)

where the coefficient functions H_k and B_k are of class C^{N+1-k} , and H_{N+1} and B_{N+1} are uniformly bounded.

4. Lemma 1

Lemma 1. There exist fundamental solutions $\hat{\eta}$ and $\tilde{\eta}$ to the following linear systems

$$\frac{d}{d\tau}\hat{\eta} = \begin{pmatrix} 0 & I_n \\ H_{0,x}(0, X_0(0)) & 0 \end{pmatrix} \hat{\eta},$$

$$\frac{d}{d\sigma}\tilde{\eta} = \begin{pmatrix} 0 & -I_n \\ -H_{0,x}(1, X_0(1)) & 0 \end{pmatrix} \tilde{\eta},$$
(4.1)

satisfying the exponential dichotomies

$$|\hat{\eta}(\tau)P\hat{\eta}^{-1}(u)| \le Ke^{-\nu(\tau-u)} \qquad \tau \ge u,$$

 $|\hat{\eta}(\tau)(I-P)\hat{\eta}^{-1}(u)| \le Ke^{-\nu(u-\tau)} \qquad u \ge \tau,$ (4.2)

$$|\tilde{\eta}(\sigma)(I - P)\tilde{\eta}^{-1}(u)| \le Ke^{-\nu(\sigma - u)} \qquad \sigma \ge u,$$

$$|\tilde{\eta}(\sigma)P\tilde{\eta}^{-1}(u)| \le Ke^{-\nu(u - \sigma)} \qquad u \ge \sigma$$
 (4.3)

where K and ν are positive constants and $P = \begin{pmatrix} I_n & 0 \\ 0 & 0 \end{pmatrix}$. Furthermore, the columns of each of the following two matrices span R^n

$$\begin{pmatrix} 0 & I_n \end{pmatrix} P_1, \qquad \begin{pmatrix} 0 & I_n \end{pmatrix} P_2 \tag{4.4}$$

where $P_1 := \hat{\eta}(0)P\hat{\eta}^{-1}(0)$ and $P_2 := \tilde{\eta}(0)(I - P)\tilde{\eta}^{-1}(0)$.

Proof. We first consider $\hat{\eta}$. Since $H_{0,x}(0,X_0(0))$ is nonsingular and its eigenvalues do not lie on the negative real axis, they may be expressed as $\lambda_1^2,\ldots,\lambda_n^2$ where $Re(\lambda_i)>0$ for $i=1,\ldots,n$. Let S transform $H_{0,x}(0,X_0(0))$ into its Jordan canonical form, i.e., $S^{-1}H_{0,x}(0,X_0(0))S=J=$ diagonal $\{J_1,J_2,\ldots,J_r\}$ where J_i is of size $m_i\times m_i$ and has the form

$$J_{i} = \begin{pmatrix} \lambda_{q_{i}}^{2} & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{q_{i}}^{2} \end{pmatrix}$$

$$(4.5)$$

where $q_i = m_1 + \cdots + m_{i-1} + 1$. It follows that if S^j is the j^{th} column of S then

$$HS^{1} = \lambda^{2}S^{1},$$

 $HS^{j} = \lambda^{2}S^{j} + S^{j-1} \text{ for } j = 2, ..., m_{1}$ (4.6)

where, for notational purposes, we have set $H = H_{0,x}(0, X_0(0))$ and $\lambda^2 = \lambda_{q_1}^2$. We will now construct an eigenvector V^1 with eigenvalue $-\lambda$ and $m_1 - 1$ general eigenvectors such that

$$\begin{pmatrix} 0 & I_n \\ H & 0 \end{pmatrix} V^1 = -\lambda V^1,$$

$$\begin{pmatrix} 0 & I_n \\ H & 0 \end{pmatrix} V^j = -\lambda V^j + V^{j-1} \quad \text{for } j = 2, \dots, m_1.$$

$$(4.7)$$

Defining V^1 and V^2 by

$$V^{1} := \begin{pmatrix} S^{1} \\ (-\lambda)S^{1} \end{pmatrix} \text{ and } V^{2} := \begin{pmatrix} 2(-\lambda)S^{2} \\ 2(-\lambda)^{2}S^{2} + S^{1} \end{pmatrix}, \tag{4.8}$$

it can be verified easily that they satisfy (4.8). To construct the remaining general eigenvectors, we assume that we have constructed eigenvectors V^l for $l=2,\ldots,k$ such that

$$V^{l} = \begin{pmatrix} \sum_{i=1}^{l} C_{l,i}(-\lambda)^{i-1} V^{i} \\ \sum_{i=1}^{l} D_{l,i}(-\lambda)^{i} V^{i} \end{pmatrix}$$
(4.9)

and $C_{l,l} = D_{l,l} > 0$. We now will show that we can construct V^{k+1} with the same properties. Let V^{k+1} have the following form where the coefficients $C_{k+1,i}$ are to be determined

$$V^{k+1} = \begin{pmatrix} \sum_{i=1}^{k+1} C_{k+1,i} (-\lambda)^{i-1} V^i \\ \sum_{i=1}^{k+1} C_{k+1,i} (-\lambda)^i V^i + \sum_{i=1}^{k} C_{k,i} (-\lambda)^{i-1} V^i \end{pmatrix}.$$
(4.10)

It follows that V^{k+1} will satisfy

$$\begin{pmatrix} 0 & I_n \\ H & 0 \end{pmatrix} V^{k+1} = -\lambda V^{k+1} + V^k \tag{4.11}$$

provided

$$\sum_{i=2}^{k+1} C_{k+1,i}(-\lambda)^{i-1} V^{i-1} = \sum_{i=1}^{k} [C_{k,i} + D_{k,i}](-\lambda)^{i} V^{i}.$$
(4.12)

Re-indexing the sum on the left, we have

$$\sum_{i=1}^{k} C_{k+1,i+1}(-\lambda)^{i} V^{i} = \sum_{i=1}^{k} [C_{k,i} + D_{k,i}](-\lambda)^{i} V^{i}.$$
(4.13)

The above equation can be solved, and we find that $C_{k+1,k+1} = C_{k,k} + D_{k,k}$. By induction, we have $C_{k+1,k+1} = 2C_{k,k} > 0$. These vectors generate m_1 independent exponentially decaying solutions $U_1Y_1(\tau)$ where $U_1 := [V^1, \ldots, V^{m_1}]$ and

$$Y_{1}(\tau) = e^{-\lambda_{q_{1}}\tau} \begin{pmatrix} 1 & \tau & \frac{\tau^{m_{1}-1}}{(m_{1}-1)!} \\ & \ddots & \ddots & \\ & & \ddots & \tau \\ & & & 1 \end{pmatrix}.$$

$$(4.14)$$

Note that span $\{(0 I_n)[V^1,\ldots,V^{m_1}]\}$ = span $\{S^1,\ldots,S^{m_1}\}$. In a strictly analogous fashion, we can construct an eigenvector \bar{V}^1 and m_1-1 general eigenvectors \bar{V}^j corresponding to the eigenvalue λ_{q_1} . These generate m_1 exponentially increasing solutions $\bar{U}_1\bar{Y}_1(\tau)$ where $\bar{U}_1:=[\bar{V}^1,\ldots,\bar{V}^{m_1}]$ and

$$\bar{Y}_{1}(\tau) = e^{\lambda_{q_{1}}\tau} \begin{pmatrix} 1 & \tau & \frac{\tau^{m_{1}-1}}{(m_{1}-1)!} \\ & \ddots & \ddots & \\ & & \ddots & \tau \\ & & & 1 \end{pmatrix}$$
(4.15)

such that span $\{(0 I_n) [\bar{V}^1, \dots, \bar{V}^{m_1}]\}$ = span $\{S^1, \dots, S^{m_1}\}$. This can be done for each block J_i to produce m_i exponentially decreasing solutions $U_iY_i(\tau)$ where $U_i := [V^{q_i}, \dots, V^{q_{i+1}-1}]$ and

$$Y_{i}(\tau) = e^{-\lambda_{q_{i}}\tau} \begin{pmatrix} 1 & \tau & \frac{\tau^{m_{i}-1}}{(m_{i}-1)!} \\ & \ddots & \ddots & \\ & & \ddots & \tau \\ & & & 1 \end{pmatrix}$$

$$(4.16)$$

such that span $\left\{\left(0\;I_n\right)\left[V^{q_i},\ldots,V^{q_{i+1}-1}\right]\right\} = \operatorname{span}\left\{\left[S^{q_i},\ldots,S^{q_{i+1}-1}\right]\right\}$, and m_i exponentially increasing solutions $\bar{U}_i\bar{Y}_i(\tau)$ where $\bar{U}_i:=\left[\bar{V}^{q_i},\ldots,\bar{V}^{q_{i+1}-1}\right]$ and

$$\bar{Y}_{i}(\tau) = e^{\lambda_{q_{i}}\tau} \begin{pmatrix} 1 & \tau & \frac{\tau^{m_{i}-1}}{(m_{i}-1)!} \\ & \ddots & \ddots & \\ & & \ddots & \tau \\ & & & 1 \end{pmatrix}$$

$$(4.17)$$

such that span $\left\{ \left(0 \ I_n \right) \left[\bar{V}^{q_i}, \dots, \bar{V}^{q_{i+1}-1} \right] \right\} = \text{span} \left\{ \left[S^{q_i}, \dots, S^{q_{i+1}-1} \right] \right\}$. Setting $\hat{\eta}(\tau) = \left[U_1, \dots, U_r \left| \bar{U}_1, \dots, \bar{U}_r \right| \text{ diagonal } \left\{ Y_1(\tau), \dots, Y_r(\tau) \left| \bar{Y}_1(\tau), \dots, \bar{Y}_r(\tau) \right| \right\},$ (4.18)

it follows that the fundamental solution $\hat{\eta}$ satisfies an exponential dichotomy and, since

$$\operatorname{span} \left\{ \left(0 \ I_n \right) \hat{\eta}(0) P \hat{\eta}^{-1}(0) \right\} = \operatorname{span} \left\{ \left(0 \ I_n \right) \left[U_1, \dots, U_r \right] \right\} = \operatorname{span} \left\{ S \right\}, \tag{4.19}$$

the columns of $(0 I_n)\hat{\eta}(0)P\hat{\eta}^{-1}(0)$ span \mathbb{R}^n .

For $\tilde{\eta}$, we construct a fundamental solution Q to the linear system

$$\frac{d}{d\tau}Q = \begin{pmatrix} 0 & I_n \\ H_{0,x}(1, X_0(1)) & 0 \end{pmatrix} Q, \tag{4.20}$$

just as we did for $\hat{\eta}$, such that

$$|Q(\sigma)PQ^{-1}(u)| \le Ke^{-\nu(\sigma-u)} \qquad \sigma \ge u,$$

$$|Q(\sigma)(I-P)Q^{-1}(u)| \le Ke^{-\nu(u-\sigma)} \qquad u \ge \sigma,$$
(4.21)

and the columns of $(0 I_n)Q(0)(I-P)Q^{-1}(0)$ span \mathbb{R}^n . It follows that $\tilde{\eta}(\sigma) := Q(-\sigma)$ satisfies (4.2) and (4.3).

5. The approximate solution for the Dirichlet problem

In this section, we construct an approximate solution to the problem (1.1)–(1.2) using the O'Malley construction. We write the approximate solution $X^N(t,\varepsilon)$ as the sum of an outer solution and boundary-layer correction functions

$$X^{N}(t,\varepsilon) = X(t,\varepsilon) + \hat{X}(\tau,\varepsilon) + \tilde{X}(\sigma,\varepsilon)$$
(5.1)

where $\tau := \frac{t}{\varepsilon}$, $\sigma := \frac{1-t}{\varepsilon}$, and X, \hat{X} , and \tilde{X} possess expansions in ε of the form

$$\begin{pmatrix} X(t,\varepsilon) \\ \hat{X}(\tau,\varepsilon) \\ \tilde{X}(\sigma,\varepsilon) \end{pmatrix} = \sum_{k=0}^{N} \begin{pmatrix} X_k(t) \\ \hat{X}_k(\tau) \\ \tilde{X}_k(\sigma) \end{pmatrix} \varepsilon^k.$$
 (5.2)

The outer solution coefficient functions X_k are determined by requiring that the outer solution satisfy the differential equation up to $O(\varepsilon^N)$, i.e.,

$$\varepsilon^2 \frac{d^2 X}{dt^2} = H(t, X, \varepsilon) + \bar{\rho}(t, \varepsilon) \quad \text{for} \quad 0 < t < 1$$
 (5.3)

where $\bar{\rho}(t,\varepsilon)$ is a continuous function of t and is uniformly of $O(\varepsilon^{N+1})$. Inserting the expansion for $X(t,\varepsilon)$ and expanding about $\varepsilon=0$, we find that the higher-order terms X_k for $k=1,\ldots,N$ must satisfy linear (algebraic) equations of the form

$$H_{0,x}(t, X_0(t))X_k = P_{k-1}(t)$$
(5.4)

where $P_{k-1}(t)$ is a suitable function that is known in terms of the preceding coefficient functions. Since $H_{0,x}(t, X_0(t))$ is nonsingular (see Assumptions D1 and D4) the linear system (5.4) is uniquely solvable.

The boundary-layer correction functions \hat{X} and \tilde{X} are determined by requiring that $X^N(t,\varepsilon)$ satisfy the full problem to $O(\varepsilon^N)$, i.e.,

$$\varepsilon^{2} \frac{d^{2}}{dt^{2}} X^{N}(t, \varepsilon) = H(t, X^{N}(t, \varepsilon), \varepsilon) + \rho(t, \varepsilon),$$

$$\alpha(\varepsilon) - X^{N}(0, \varepsilon) = \phi_{1}(\varepsilon), \qquad \beta(\varepsilon) - X^{N}(1, \varepsilon) = \phi_{2}(\varepsilon)$$
(5.5)

where $\rho(t,\varepsilon)$ is a continuous function of t and is uniformly of $O(\varepsilon^{N+1})$, and $\phi_1(\varepsilon)$ and $\phi_2(\varepsilon)$ are of $O(\varepsilon^{N+1})$. Because each of the boundary-layer functions is negligible where

the other is not, we may consider them separately. Hence, we require that $X + \hat{X}$ satisfy the differential equation and the left boundary conditions to $O(\varepsilon^N)$

$$\varepsilon^{2} \frac{d^{2}}{dt^{2}} (X + \hat{X}) = H(t, X + \hat{X}, \varepsilon) + \hat{\rho}(t, \varepsilon),$$

$$\alpha(\varepsilon) - (X(0, \varepsilon) + \hat{X}(0, \varepsilon)) = \hat{\phi}_{1}(\varepsilon)$$
(5.6)

where $\hat{\rho}(t,\varepsilon)$ is a continuous function of t and is uniformly of $O(\varepsilon^{N+1})$, and $\hat{\phi}_1(\varepsilon)$ is of $O(\varepsilon^{N+1})$. In a like manner, we require that $X + \tilde{X}$ satisfy the differential equation and the right boundary conditions to $O(\varepsilon^N)$

$$\varepsilon^{2} \frac{d^{2}}{dt^{2}} (X + \tilde{X}) = H(t, X + \tilde{X}, \varepsilon) + \tilde{\rho}(t, \varepsilon),$$

$$\beta(\varepsilon) - (X(1, \varepsilon) + \tilde{X}(0, \varepsilon)) = \tilde{\phi}_{2}(\varepsilon)$$
(5.7)

where $\tilde{\rho}(t,\varepsilon)$ is a continuous function of t and is uniformly of $O(\varepsilon^{N+1})$, and $\tilde{\phi}_2(\varepsilon)$ is of $O(\varepsilon^{N+1})$. We first consider the left boundary-layer coefficient functions. Using the results for the outer solution, writing in terms of τ , and expanding about $\varepsilon = 0$, we find that the leading left boundary-layer function \hat{X}_0 must satisfy

$$\frac{d^2}{d\tau^2}\hat{X}_0 = H_0(0, X_0(0) + \hat{X}_0(\tau)),
\hat{X}_0(0) = \alpha(0) - X_0(0),$$
(5.8)

and the higher-order boundary-layer correction functions must satisfy

$$\frac{d^2}{d\tau^2}\hat{X}_k = H_{0,x}(0, X_0(0) + \hat{X}_0(\tau))\hat{X}_k + \hat{P}_{k-1},
\hat{X}_k(0) = \alpha_k - X_k(0)$$
(5.9)

for suitable functions \hat{P}_{k-1} that are known successively in terms of the preceding coefficient functions \hat{X}_j for $j \leq k-1$. Furthermore, if the preceding coefficient functions are exponentially decaying, then \hat{P}_{k-1} also is exponentially decaying. An exponentially decaying solution to (5.8) is given by Assumption D2. Using the fundamental solution $\hat{\xi}(\tau)$ and imposing the matching condition $\hat{X}_k(\tau) \to 0$ as $\tau \to \infty$, we can solve for \hat{X}_k to find

$$\begin{pmatrix}
\hat{X}_k \\
\frac{d}{d\tau}\hat{X}_k
\end{pmatrix} = \hat{\xi}(\tau)P\hat{\xi}^{-1}(0)\hat{\gamma}_k + \int_0^{\tau} \hat{\xi}(\tau)P\hat{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du$$

$$- \int_{\tau}^{\infty} \hat{\xi}(\tau)(I-P)\hat{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du \qquad (5.10)$$

where $\hat{\gamma}_k$ is an arbitrary real 2n-dimensional vector. Imposing the initial condition $\hat{X}_k(0) = \alpha_k - X_k(0)$, we require that

$$(I_n \quad 0) \hat{\xi}(0) P \hat{\xi}^{-1}(0) \hat{\gamma}_k = \alpha_k - X_k(0)$$

$$+ (I_n \quad 0) \int_0^\infty \hat{\xi}(0) (I - P) \hat{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du.$$
 (5.11)

It follows from Assumption D3 that there exists a solution $\hat{\gamma}_k$. Furthermore, since $\hat{\xi}(\tau)$ satisfies an exponential dichotomy and \hat{P}_{k-1} is exponentially decaying, \hat{X}_k and $\frac{d}{d\tau}\hat{X}_k$ are exponentially decaying.

We now consider the right boundary-layer correction function. Using the results for the outer solution, writing in terms of σ , and expanding about $\varepsilon = 0$, we find that the leading right boundary-layer function \tilde{X}_0 must satisfy

$$\frac{d^2 \tilde{X}_0}{d\sigma^2} = H(1, X_0(1) + \tilde{X}_0(\sigma), 0),
\tilde{X}_0(0) = \beta(0) - X_0(1),$$
(5.12)

and the higher-order boundary-layer correction functions must satisfy

$$\frac{d^2}{d\sigma^2}\tilde{X}_k = H_{0,x}(1, X_0(1) + \tilde{X}_0(\sigma))\tilde{X}_k + \tilde{P}_{k-1}, \tilde{X}_k(0) = \beta_k - X_k(1)$$
(5.13)

for suitable functions \tilde{P}_{k-1} that are known successively in terms of the preceding coefficient functions \tilde{X}_j for $j \leq k-1$. Furthermore, if the preceding coefficient functions are exponentially decaying, then \tilde{P}_{k-1} also is exponentially decaying. An exponentially decaying solution to (5.12) is given by Assumption D2. Defining $\tilde{Y}_k := -\frac{d}{d\sigma}\tilde{X}_k$, we convert the second-order system (5.13) to the following first-order system

$$\frac{d}{d\sigma} \begin{pmatrix} \tilde{X}_k \\ \tilde{Y}_k \end{pmatrix} = \begin{pmatrix} 0 & -I_n \\ -H_x(1, X_0(1) + \tilde{X}_0(\sigma), 0) & 0 \end{pmatrix} \begin{pmatrix} \tilde{X}_k \\ \tilde{Y}_k \end{pmatrix} + \begin{pmatrix} 0 \\ \tilde{P}_{k-1} \end{pmatrix}. \tag{5.14}$$

Using the fundamental solution $\tilde{\xi}$ and imposing the matching condition $\tilde{X}_k(\sigma) \to 0$ as $\sigma \to \infty$, we can solve the linear system (5.16) to find

$$\begin{pmatrix}
\tilde{X}_{k} \\
\tilde{Y}_{k}
\end{pmatrix} = \tilde{\xi}(\sigma)(I - P)\tilde{\xi}^{-1}(0)\tilde{\gamma}_{k} + \int_{0}^{\sigma} \tilde{\xi}(\sigma)(I - P)\tilde{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \tilde{P}_{k-1}(u) \end{pmatrix} du - \int_{\sigma}^{\infty} \tilde{\xi}(\sigma)P\tilde{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \tilde{P}_{k-1}(u) \end{pmatrix} du$$
(5.15)

where $\tilde{\gamma}_k$ is an arbitrary real 2n-dimensional vector. Imposing the initial condition $\tilde{X}_k(0) = \beta_k - X_k(1)$, we require that

$$\begin{pmatrix} I_n & 0 \end{pmatrix} (I - P_2) \tilde{\gamma}_k = \beta_k - X_k(1) + \begin{pmatrix} I_n & 0 \end{pmatrix} \int_0^\infty \tilde{\xi}(0) P \tilde{\xi}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du. \tag{5.16}$$

It follows from Assumption D3 that there exists a solution $\tilde{\gamma}_k$. Furthermore, since $\tilde{\xi}(\sigma)$ satisfies an exponential dichotomy and \tilde{P}_{k-1} is exponentially decaying, \tilde{X}_k and $\frac{d}{d\tau}\tilde{X}_k$ are exponentially decaying. Finally, defining

$$\rho(t,\varepsilon) := \varepsilon^2 \frac{d^2}{dt^2} X^N(t,\varepsilon) - H(t, X^N(t,\varepsilon), \varepsilon),
\phi_1(\varepsilon) := \alpha(\varepsilon) - X^N(0,\varepsilon),
\phi_2(\varepsilon) := \beta(\varepsilon) - X^N(1,\varepsilon),$$
(5.17)

it follows that ρ is a continuous function and is uniformly of $O(\varepsilon^{N+1})$, and $\phi_1(\varepsilon)$ and $\phi_2(\varepsilon)$ are of $O(\varepsilon^{N+1})$.

6. The approximate solution for the Robin problem

In this section, we construct an approximate solution to the problem (1.1)–(1.3) using the O'Malley construction. We write the approximate solution $X^N(t,\varepsilon)$ as the sum of an outer solution and boundary-layer correction functions

$$X^{N}(t,\varepsilon) = X(t,\varepsilon) + \varepsilon \hat{X}(\tau,\varepsilon) + \varepsilon \tilde{X}(\sigma,\varepsilon)$$
(6.1)

where $X(t,\varepsilon)$, $\hat{X}(\tau,\varepsilon)$, $\tilde{X}(\sigma,\varepsilon)$ possess expansions in ε of the form

$$\begin{pmatrix} X(t,\varepsilon) \\ \hat{X}(\tau,\varepsilon) \\ \tilde{X}(\sigma,\varepsilon) \end{pmatrix} = \sum_{k=0}^{N} \begin{pmatrix} X_k(t) \\ \hat{X}_k(\tau) \\ \tilde{X}_k(\sigma) \end{pmatrix} \varepsilon^k.$$
 (6.2)

The outer solution coefficient functions, $X_k(t)$, are determined as in the Dirichlet problem (see (5.3)–(5.5)). The boundary-layer correction functions are determined by requiring that the approximate solution $X^N(t,\varepsilon)$ satisfy the full problem (1.1)–(1.3) up to $O(\varepsilon^N)$, that is,

$$\varepsilon^{2} \frac{d^{2}}{dt^{2}} X^{N}(t, \varepsilon) = H(t, X^{N}(t, \varepsilon), \varepsilon) + \rho(t, \varepsilon),$$

$$B(X^{N}(0, \varepsilon), X^{N}(1, \varepsilon), \frac{d}{dt} X^{N}(0, \varepsilon), \frac{d}{dt} X^{N}(1, \varepsilon)) = \phi(\varepsilon)$$
(6.3)

where $\rho(t,\varepsilon)$ is a continuous function of t and $\rho(t,\varepsilon)$ and $\phi(\varepsilon)$ are of $O(\varepsilon^{N+1})$. As before, we may consider the left and right boundary-layer correction functions separately. $\hat{X}(\tau,\varepsilon)$ must satisfy

$$\varepsilon^2 \frac{d^2}{dt^2} (X + \varepsilon \hat{X}) = H(t, X + \varepsilon \hat{X}) + \hat{\rho}(t, \varepsilon)$$
(6.4)

where $\hat{\rho}(t,\varepsilon)$ is a continuous function of t and is of $O(\varepsilon^{N+1})$. The left boundary-layer correction functions, $\hat{X}_k(\tau)$, must satisfy

$$\frac{d^2}{d\tau^2}\hat{X}_k = H_{0,x}(0, X_0(0))\hat{X}_k + \hat{P}_{k-1}(\tau)$$
(6.5)

for suitable functions $\hat{P}_{k-1}(\tau)$ that are known successively in terms of the preceding boundary-layer correction functions. Furthermore, if the preceding boundary-layer correction functions are exponentially decaying then so is $\hat{P}_{k-1}(\tau)$. Using the fundamental solution $\hat{\eta}(\tau)$ and imposing the matching condition $\hat{X}_k(\tau) \to 0$ as $\tau \to \infty$, we may solve for $\hat{X}_k(\tau)$ to find

$$\begin{pmatrix}
\hat{X}_k \\
\frac{d}{d\tau}\hat{X}_k
\end{pmatrix} = \hat{\eta}(\tau)P\hat{\eta}^{-1}(0)\hat{\gamma}_k + \int_0^{\tau} \hat{\eta}(\tau)P\hat{\eta}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du$$

$$- \int_{\tau}^{\infty} \hat{\eta}(\tau)(I-P)\hat{\eta}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du \tag{6.6}$$

where $\hat{\gamma}_k$ is an arbitrary 2n-dimensional vector. Imposing the initial condition $\frac{d}{d\tau}\hat{X}_k(0) = \alpha_k$ where α_k is an arbitrary n-dimensional vector, we have

$$\begin{pmatrix} 0 & I_n \end{pmatrix} P_1 \hat{\gamma}_k = \alpha_k + \begin{pmatrix} 0 & I_n \end{pmatrix} \int_0^\infty \hat{\eta}(0) (I - P) \hat{\eta}^{-1}(u) \begin{pmatrix} 0 \\ \hat{P}_{k-1}(u) \end{pmatrix} du.$$
(6.7)

It follows from Lemma 1 that there exists a solution $\hat{\gamma}_k$. Furthermore, since $\hat{\eta}(\tau)$ satisfies an exponential dichotomy and \hat{P}_{k-1} is exponentially decaying, \hat{X}_k and $\frac{d}{d\tau}\hat{X}_k$ are exponentially decaying. A similar construction may be done for the right boundarylayer correction function $\tilde{X}(\sigma,\varepsilon)$ such that $\tilde{X}_k(\sigma)$ and $\frac{d}{d\sigma}\tilde{X}_k(\sigma)$ are exponentially decaying and $-\frac{d}{d\sigma}\tilde{X}_k(0) = \beta_k$ where β_k is an arbitrary *n*-dimensional vector. We now must choose α_k and β_k , k = 1, ..., N, such that

$$B(X^{N}(0,\varepsilon), X^{N}(1,\varepsilon), \frac{d}{dt}X^{N}(0,\varepsilon), \frac{d}{dt}X^{N}(1,\varepsilon), \varepsilon) = \phi(\varepsilon)$$
(6.8)

where $\phi(\varepsilon)$ is of $O(\varepsilon^{N+1})$. By Assumption R3, there exist constants α_0 and β_0 such that

$$B_0(X_0(0), X_0(1), \alpha_0, \beta_0) = 0. (6.9)$$

Expanding about $\varepsilon = 0$, we find that

$$B_{0,q}(\zeta)X_k(0) + B_{0,r}(\zeta)X_k(1) + B_{0,s}(\zeta)\left(\frac{d}{dt}X_k(0) + \alpha_k\right) + B_{0,z}(\zeta)\left(\frac{d}{dt}X_k(1) + \beta_k\right) = \gamma_{k-1}$$
(6.10)

where $\zeta = (X_0(0), X_0(1), \alpha, \beta)$, and γ_{k-1} is known in terms of the previous values $\alpha_0, \beta_0, \ldots, \alpha_{k-1}, \beta_{k-1}$. It follows from Assumption R3 that there exists a unique solution α_k, β_k to the linear equation (6.10).

7. Existence and local uniqueness

Theorem 1. Given Assumptions D1-D4, there exist constants ε_D and D_N such that the Dirichlet problem (1.1)-(1.2) has an exact solution $x(t,\varepsilon)$ satisfying the estimates

$$\left| x(t,\varepsilon) - X^{N}(t,\varepsilon) \right| \le D_{N}\varepsilon^{N+1},$$

$$\left| \frac{d}{dt}x(t,\varepsilon) - \frac{d}{dt}X^{N}(t,\varepsilon) \right| \le D_{N}\varepsilon^{N}$$
(7.1)

uniformly on the region $0 \le t \le 1$, $0 < \varepsilon \le \varepsilon_D$ where $X^N(t,\varepsilon)$ is the approximate solution constructed in Section 3. Moreover, $x(t,\varepsilon)$ is unique subject to the estimates of (7.1).

Theorem 2. Given Assumptions R1-R3, there exist constants ε_R and C_N such that the Robin problem (1.1)-(1.3) has an exact solution $x(t,\varepsilon)$ satisfying the estimates

$$\left| x(t,\varepsilon) - X^N(t,\varepsilon) \right| \le C_N \varepsilon^{N+1},$$

$$\left| \frac{d}{dt} x(t,\varepsilon) - \frac{d}{dt} X^N(t,\varepsilon) \right| \le C_N \varepsilon^N$$
(7.2)

uniformly on the region $0 \le t \le 1$, $0 < \varepsilon \le \varepsilon_R$, where $X^N(t,\varepsilon)$ is the approximate solution constructed in Section 4. Moreover, $x(t,\varepsilon)$ is unique subject to the estimates of (7.2).

We give the proof for Theorem 2. Theorem 1 is proved in a like manner.

Proof. Defining $\bar{x}(t,\varepsilon) := x(t,\varepsilon) - X^N(t,\varepsilon)$ and $\bar{y} := \varepsilon \frac{d\bar{x}}{dt}$, we find that \bar{x} and \bar{y} must satisfy the first-order system

$$\frac{d}{dt} \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \frac{1}{\varepsilon} \begin{pmatrix} 0 & I_n \\ H_x(t, X^N(t, \varepsilon), \varepsilon) & 0 \end{pmatrix} \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} + \frac{1}{\varepsilon} \begin{pmatrix} 0 \\ E(t, \bar{x}, \varepsilon) + \rho(t, \varepsilon) \end{pmatrix}$$
(7.3)

subject to the boundary conditions

$$L(\varepsilon) \begin{pmatrix} \bar{x}(0,\varepsilon) \\ \bar{y}(0,\varepsilon) \end{pmatrix} + R(\varepsilon) \begin{pmatrix} \bar{x}(1,\varepsilon) \\ \bar{y}(1,\varepsilon) \end{pmatrix} = -\varepsilon [\phi(\varepsilon) + F(\bar{x},\bar{y},\varepsilon)]$$
 (7.4)

where

$$E(t,\bar{x},\varepsilon) := \int_0^1 (1-s) \frac{d^2}{ds^2} H(t,X^N(t,\varepsilon) + s\bar{x},\varepsilon) ds, \tag{7.5}$$

$$F(\bar{x}, \bar{y}, \varepsilon) := \int_0^1 (1 - s) \frac{d^2}{ds^2} B(\zeta^N(\varepsilon) + s\zeta(\bar{x}, \bar{y}, \varepsilon)) ds, \tag{7.6}$$

$$L(\varepsilon) := \left[\varepsilon B_q(\zeta^N(\varepsilon), \varepsilon) | B_s(\zeta^N(\varepsilon), \varepsilon) \right],$$

$$R(\varepsilon) := \left[\varepsilon B_r(\zeta^N(\varepsilon), \varepsilon) | B_z(\zeta^N(\varepsilon), \varepsilon) \right],$$
(7.7)

$$\zeta^{N}(\varepsilon) := (X^{N}(0,\varepsilon), X^{N}(1,\varepsilon), \frac{d}{dt}X^{N}(0,\varepsilon), \frac{d}{dt}X^{N}(0,\varepsilon)),
\zeta(\bar{x}, \bar{y}, \varepsilon) := (\bar{x}(0,\varepsilon), \bar{x}(1,\varepsilon), \frac{1}{\varepsilon}\bar{y}(0,\varepsilon), \frac{1}{\varepsilon}\bar{y}(1,\varepsilon)).$$
(7.8)

It follows from Assumption R3 that there exist positive constants |E| and |F| such that for all sufficiently small \bar{x} and \bar{y}

$$|E(t, \bar{x}, \varepsilon)| \le |E| |\bar{x}|^2, |E(t, \bar{x}_1, \varepsilon) - E(t, \bar{x}_2, \varepsilon)| \le \max\{|\bar{x}_1|, |\bar{x}_2|\} |E| |\bar{x}_1 - \bar{x}_2|,$$
 (7.9)

$$|F(\bar{x}, \bar{y}, \varepsilon)| \leq |F| \Big\{ |\bar{x}(0, \varepsilon)| + |\bar{x}(1, \varepsilon)| + \frac{1}{\varepsilon} |\bar{y}(0, \varepsilon)| + \frac{1}{\varepsilon} |\bar{y}(1, \varepsilon)| \Big\}^2,$$

$$|F(\bar{x}_1, \bar{y}_1, \varepsilon) - F(\bar{x}_2, \bar{y}_2, \varepsilon)| \leq M|F| \Big\{ |\bar{x}_1(0, \varepsilon) - \bar{x}_2(0, \varepsilon)| + |\bar{x}_1(1, \varepsilon) - \bar{x}_2(1, \varepsilon)| + \frac{1}{\varepsilon} |\bar{y}_1(0, \varepsilon) - \bar{y}_2(0, \varepsilon)| + \frac{1}{\varepsilon} |\bar{y}_1(1, \varepsilon) - \bar{y}_2(1, \varepsilon)| \Big\}$$

$$(7.10)$$

where $M:=\max_{i=1,2}\left\{|\bar{x}_i(0,\varepsilon)|,|\bar{x}_i(1,\varepsilon)|,\frac{1}{\varepsilon}|\bar{y}_i(0,\varepsilon)|,\frac{1}{\varepsilon}|\bar{y}_i(1,\varepsilon)|\right\}$. From Lemma 6.2 of Jeffries and Smith [12], there exists a fundamental solution $Z(t,\varepsilon)$ to the linear system

$$\frac{d}{dt}Z = \frac{1}{\varepsilon} \begin{pmatrix} 0 & I_n \\ H_x(t, X^N(t, \varepsilon), \varepsilon) & 0 \end{pmatrix} Z \tag{7.11}$$

satisfying the exponential dichotomy

$$|Z(t,\varepsilon)PZ^{-1}(s,\varepsilon)| \le K_1 e^{-\nu_1 \frac{(t-s)}{\varepsilon}} \quad \text{for} \quad 0 \le s \le t \le 1,$$

$$|Z(t,\varepsilon)(I-P)Z^{-1}(s,\varepsilon)| \le K_1 e^{-\nu_1 \frac{(s-t)}{\varepsilon}} \quad \text{for} \quad 0 \le t \le s \le 1$$

$$(7.12)$$

where K_1 and v_1 are positive constants. Applying Lemma 6.3 of Jeffries and Smith [12], we may conclude that there exist fundamental solutions $\hat{\eta}_1(\tau, \varepsilon)$ and $\tilde{\eta}_1(\sigma, \varepsilon)$ to the following linear systems

$$\frac{d}{d\tau}\hat{\eta}_1 = \begin{pmatrix} 0 & I_n \\ H_x(0, X_0(0) + \hat{X}_0(\tau), 0) & 0 \end{pmatrix} \hat{\eta}_1 \quad \text{for} \quad 0 \le \tau \le \frac{1}{\nu_2} \ln \frac{1}{\varepsilon}, \tag{7.13}$$

$$\frac{d}{d\sigma}\tilde{\eta}_1 = -\begin{pmatrix} 0 & I_n \\ H_x(1, X_0(1) + \tilde{X}_0(\sigma), 0) & 0 \end{pmatrix} \tilde{\eta}_1 \quad \text{for } 0 \le \sigma \le \frac{1}{\nu_2} \ln \frac{1}{\varepsilon}, \quad (7.14)$$

satisfying the exponential dichotomies

$$\left| \hat{\eta}_{1}(\tau, \varepsilon) P \hat{\eta}_{1}^{-1}(u, \varepsilon) \right| \leq K_{2} e^{-\nu_{2}(\tau - u)} \quad \text{for} \quad u \leq \tau,$$

$$\left| \hat{\eta}_{1}(\tau, \varepsilon) (I - P) \hat{\eta}_{1}^{-1}(u, \varepsilon) \right| \leq K_{2} e^{-\nu_{2}(u - \tau)} \quad \text{for} \quad \tau \leq u,$$

$$(7.15)$$

$$|\tilde{\eta}_{1}(\sigma,\varepsilon)(I-P)\tilde{\eta}_{1}(u,\varepsilon)| \leq K_{2}e^{-\nu_{2}(\sigma-u)} \quad \text{for} \quad u \leq \sigma, |\tilde{\eta}_{1}(\sigma,\varepsilon)P\tilde{\eta}_{1}(u,\varepsilon)| \leq K_{2}e^{-\nu_{2}(u-\sigma)} \quad \text{for} \quad \sigma \leq u,$$

$$(7.16)$$

and the estimates

$$\hat{\eta}_1(0,\varepsilon)P\hat{\eta}_1^{-1}(0,\varepsilon) = Z(0,\varepsilon)PZ^{-1}(0,\varepsilon) + O(\varepsilon\ln\frac{1}{\varepsilon}),$$

$$\tilde{\eta}_1(0,\varepsilon)(I-P)\tilde{\eta}_1(0,\varepsilon) = Z(1,\varepsilon)(I-P)Z^{-1}(1,\varepsilon) + O(\varepsilon\ln\frac{1}{\varepsilon})$$
(7.17)

where ν_2 and K_2 are positive constants. From Lemma 6.4 of Jeffries and Smith [12], we may conclude that there exist bounded nonsingular matrices $\hat{S}(\varepsilon)$ and $\tilde{S}(\varepsilon)$, with bounded inverses, such that

$$\hat{\eta}_1(0,\varepsilon)P\hat{\eta}_1^{-1}(0,\varepsilon) = P_1\hat{S}(\varepsilon) + O(\varepsilon),$$

$$\tilde{\eta}_1(0,\varepsilon)(I-P)\tilde{\eta}_1(0,\varepsilon) = (I-P_2)\tilde{S}(\varepsilon) + O(\varepsilon).$$
(7.18)

Using the fundamental solution $Z(t,\varepsilon)$, we may write (7.3) as an integral equation

$$\begin{pmatrix}
\bar{x} \\
\bar{y}
\end{pmatrix} = Z(t,\varepsilon)PZ^{-1}(0,\varepsilon)C_L + Z(t,\varepsilon)(I-P)Z^{-1}(1,\varepsilon)C_R
+ \frac{1}{\varepsilon} \int_0^t Z(t,\varepsilon)PZ^{-1}(s,\varepsilon) \begin{pmatrix} 0 \\ E(s,\bar{x}(s,\varepsilon),\varepsilon) + \rho(s,\varepsilon) \end{pmatrix} ds
- \frac{1}{\varepsilon} \int_t^1 Z(t,\varepsilon)(I-P)Z^{-1}(s,\varepsilon) \begin{pmatrix} 0 \\ E(s,\bar{x}(s,\varepsilon),\varepsilon) + \rho(s,\varepsilon) \end{pmatrix} ds$$
(7.19)

where C_L and C_R are to be determined. Imposing the boundary conditions, we find that C_L and C_R must satisfy the linear system

$$M_L(\varepsilon)C_L + M_R(\varepsilon)C_R = b(\bar{x}, \bar{y}, \varepsilon) \tag{7.20}$$

where

$$M_L(\varepsilon) := L(\varepsilon)Z(0,\varepsilon)PZ^{-1}(0,\varepsilon) + R(\varepsilon)Z(1,\varepsilon)PZ^{-1}(0,\varepsilon),$$

$$M_R(\varepsilon) := L(\varepsilon)Z(0,\varepsilon)(I-P)Z^{-1}(1,\varepsilon) + R(\varepsilon)Z(1,\varepsilon)(I-P)Z^{-1}(1,\varepsilon),$$
(7.21)

$$b(\bar{x}, \bar{y}, \varepsilon) := -\varepsilon [\phi(\varepsilon) + F(\bar{x}, \bar{y}, \varepsilon)]$$

$$+ \frac{1}{\varepsilon} L(\varepsilon) \int_{0}^{1} Z(0, \varepsilon) (I - P) Z^{-1}(s, \varepsilon) \begin{pmatrix} 0 \\ E(s, \bar{x}(s, \varepsilon), \varepsilon) + \rho(s, \varepsilon) \end{pmatrix} ds$$

$$- \frac{1}{\varepsilon} R(\varepsilon) \int_{0}^{1} Z(1, \varepsilon) P Z^{-1}(s, \varepsilon) \begin{pmatrix} 0 \\ E(s, \bar{x}(s, \varepsilon), \varepsilon) + \rho(s, \varepsilon) \end{pmatrix} ds.$$

$$(7.22)$$

From the estimates of (7.17)–(7.18), we have

$$M_{L}(\varepsilon)\hat{S}^{-1}(\varepsilon)\hat{\eta}(0) = \left\{ [0|B_{0,s}(\zeta)] \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} + O(\varepsilon \ln \frac{1}{\varepsilon}) \right\},$$

$$M_{R}(\varepsilon)\tilde{S}^{-1}(\varepsilon)\tilde{\eta}(0) = \left\{ [0|B_{0,z}(\zeta)] \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix} + O(\varepsilon \ln \frac{1}{\varepsilon}) \right\}$$

$$(7.23)$$

where

$$A := \begin{pmatrix} 0 & I_n \end{pmatrix} \hat{\eta}(0) \begin{pmatrix} I_n \\ 0 \end{pmatrix}, \qquad B := \begin{pmatrix} 0 & I_n \end{pmatrix} \tilde{\eta}(0) \begin{pmatrix} 0 \\ I_n \end{pmatrix}. \tag{7.24}$$

Assumption R2 and Lemma 1 imply that the linear system

$$\left[M_L(\varepsilon)\hat{S}^{-1}(\varepsilon)\hat{\eta}(0) + M_R(\varepsilon)\tilde{S}^{-1}(\varepsilon)\tilde{\eta}(0)\right] \begin{pmatrix} u \\ v \end{pmatrix} = b(\bar{x}, \bar{y}, \varepsilon) \tag{7.25}$$

is invertible. The boundary conditions are satisfied by letting

$$C_L = \hat{S}^{-1}(\varepsilon)\hat{\eta}(0) \begin{pmatrix} u \\ v \end{pmatrix}, \qquad C_R = \tilde{S}^{-1}(\varepsilon)\tilde{\eta}(0) \begin{pmatrix} u \\ v \end{pmatrix}.$$
 (7.26)

We now may apply the Banach-Picard fixed-point theorem to conclude that there exists a unique fixed point to the integral equation (7.19) satisfying the estimates of (7.2). For the details of such a proof, see Jeffries and Smith [12, pp.26–30].

8. Examples

We now consider the following second-order system

$$\varepsilon^{2}x_{1}^{"} = 2x_{2} + t(1-t)x_{1}^{2},$$

$$\varepsilon^{2}x_{2}^{"} = -8x_{1} - 16t$$
(8.1)

on the interval $0 \le t \le 1$ subject to the Dirichlet boundary conditions

$$x_1(0) = 1,$$
 $x_1(1) = 3,$ $x_2(0) = 2,$ $x_2(1) = 0.$ (8.2)

The reduced system

$$0 = 2X_{2,0} + t(1-t)X_{1,0}^{2},$$

$$0 = -8X_{1,0} - 16t$$
(8.3)

has solution $X_{1,0}(t) = -2t, X_{2,0}(t) = -2t^3(1-t)$. $H_{0,x}(t, X_0(t))$ is given by

$$\begin{bmatrix} -4t^2(1-t) & 2\\ -8 & 0 \end{bmatrix} \tag{8.4}$$

and has eigenvalues $-2t^2(1-t)\pm 4i\sqrt{1-.25t^4(1-t)^2}$. The boundary-layer differential equations are given by

$$\frac{d^2 \hat{X}_{1,0}}{d\tau^2} = 2\hat{X}_{2,0}, \qquad \hat{X}_{1,0}(0) = 1,
\frac{d^2 \hat{X}_{2,0}}{d\tau^2} = -8\hat{X}_{1,0}, \qquad \hat{X}_{2,0}(0) = 2,
\frac{d^2 \tilde{X}_{1,0}}{d\sigma^2} = 2\tilde{X}_{2,0}, \qquad \tilde{X}_{1,0}(0) = 5,
\frac{d^2 \tilde{X}_{2,0}}{d\sigma^2} = -8\tilde{X}_{1,0}, \qquad \tilde{X}_{2,0}(0) = 0,$$
(8.5)

with solutions

$$\begin{pmatrix}
\hat{X}_{1,0}(\tau) \\
\hat{X}_{2,0}(\tau)
\end{pmatrix} = \begin{pmatrix}
\cos(\sqrt{2}\tau) - 2\sin(\sqrt{2}\tau) \\
2\cos(\sqrt{2}\tau) + \sin(\sqrt{2}\tau)
\end{pmatrix} e^{-\sqrt{2}\tau}, \\
\begin{pmatrix}
\tilde{X}_{1,0}(\sigma) \\
\tilde{X}_{2,0}(\sigma)
\end{pmatrix} = \begin{pmatrix}
5\cos(\sqrt{2}\sigma) \\
10\sin(\sqrt{2}\sigma)
\end{pmatrix} e^{-\sqrt{2}\sigma}.$$
(8.6)

The fundamental solution $\hat{\xi}(\tau) = A\hat{Z}(\tau)$ where A equals

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & -2 \\ -\sqrt{2} & -\sqrt{2} & \sqrt{2} & -\sqrt{2} \\ 2\sqrt{2} & -2\sqrt{2} & -2\sqrt{2} & -2\sqrt{2} \end{pmatrix}$$

$$(8.7)$$

and $\hat{Z}(\tau)$ equals

$$\begin{pmatrix}
e^{-\sqrt{2}\tau} \begin{bmatrix}
\cos(\sqrt{2}\tau) & -\sin(\sqrt{2}\tau) \\
\sin(\sqrt{2}\tau) & \cos(\sqrt{2}\tau)
\end{bmatrix} & 0 \\
0 & e^{\sqrt{2}\tau} \begin{bmatrix}
\cos(\sqrt{2}\tau) & \sin(\sqrt{2}\tau) \\
\sin(\sqrt{2}\tau) & -\cos(\sqrt{2}\tau)
\end{bmatrix}, (8.8)$$

satisfies the appropriate exponential dichotomy, as does $\tilde{\xi}(\sigma) := \hat{\xi}(-\sigma)$. We therefore may conclude that the problem (8.1)–(8.2) has an exact solution $x_1(t,\varepsilon), x_2(t,\varepsilon)$ satisfying the estimates

$$\begin{pmatrix} x_1(t,\varepsilon) \\ x_2(t,\varepsilon) \end{pmatrix} = \begin{pmatrix} -2t \\ -2t^3(t-1) \end{pmatrix} + \begin{pmatrix} \cos(\frac{\sqrt{2}t}{\varepsilon}) - 2\sin(\frac{\sqrt{2}t}{\varepsilon}) \\ 2\cos(\frac{\sqrt{2}t}{\varepsilon}) + \sin(\frac{\sqrt{2}t}{\varepsilon}) \end{pmatrix} e^{-\frac{\sqrt{2}t}{\varepsilon}} \\
+ \begin{pmatrix} 5\cos(\frac{\sqrt{2}(1-t)}{\varepsilon}) \\ 5\sin(\frac{\sqrt{2}(1-t)}{\varepsilon}) \end{pmatrix} e^{-\frac{\sqrt{2}(1-t)}{\varepsilon}} + O(\varepsilon). \tag{8.9}$$

Next, we consider the following second-order system

$$\varepsilon x_1'' = -2x_1 + x_2,$$

 $\varepsilon x_2'' = (1 - x_1)x_2$
(8.10)

subject to the Robin boundary conditions

$$x_{1}(0,\varepsilon) - x'_{1}(0,\varepsilon) = 2,$$

$$x_{2}(1,\varepsilon) + x'_{2}(0,\varepsilon) = 3,$$

$$x_{1}(1,\varepsilon) + x'_{1}(1,\varepsilon) = 1,$$

$$x_{2}(0,\varepsilon) - x'_{2}(1,\varepsilon) = -1.$$
(8.11)

The reduced system

$$0 = -2x_1 + x_2,
0 = (1 - x_1)x_2,$$
(8.12)

has two sets of solutions

$$X_{1,0}(t) = 1,$$
 $\bar{X}_{1,0}(t) = 0,$ $X_{2,0}(t) = 2,$ $\bar{X}_{2,0}(t) = 0.$ (8.13)

However, only the first solution satisfies Assumption R1. The boundary-layer differential equations are given by

$$\frac{d^2 \hat{X}_{1,0}}{d\tau^2} = -2\hat{X}_{1,0} + \hat{X}_{2,0}, \qquad \frac{d\hat{X}_{1,0}}{d\tau}(0) = -1,
\frac{d^2 \hat{X}_{2,0}}{d\tau^2} = -2\hat{X}_{1,0}, \qquad \frac{d\hat{X}_{2,0}}{d\tau}(0) = -3,$$
(8.14)

and

$$\frac{d^2 \tilde{X}_{1,0}}{d\sigma^2} = 2\tilde{X}_{1,0} - \tilde{X}_{2,0}, \qquad \frac{d\tilde{X}_{1,0}}{d\sigma}(0) = -2,
\frac{d^2 \tilde{X}_{2,0}}{d\sigma^2} = 2\tilde{X}_{1,0}, \qquad \frac{d\tilde{X}_{2,0}}{d\sigma}(0) = 5.$$
(8.15)

They have solutions

$$\begin{pmatrix} \hat{X}_{1,0}(\tau) \\ \hat{X}_{2,0}(\tau) \end{pmatrix} = \frac{e^{-\mu_1 \tau}}{\sqrt{2}} \begin{pmatrix} (\mu_1 + \mu_2)\cos(\mu_2 \tau) + (\mu_1 - \mu_2)\sin(\mu_2 \tau) \\ -2\mu_2\cos(\mu_2 \tau) - 2\mu_1\sin(\mu_2 \tau) \end{pmatrix}$$
(8.16)

and

$$\begin{pmatrix} \tilde{X}_{1,0}(\sigma) \\ \tilde{X}_{2,0}(\sigma) \end{pmatrix} = -\frac{3e^{-\mu_1\sigma}}{\sqrt{2}} \begin{pmatrix} \mu_2 \cos(\mu_2\sigma) + \mu_1 \sin(\mu_2\sigma) \\ (\mu_1 - \mu_2) \cos(\mu_2\sigma) - (\mu_1 + \mu_2) \sin(\mu_2\sigma) \end{pmatrix}$$
(8.17)

where $\mu_1 = \sqrt{\frac{\sqrt{2}-1}{2}}$ and $\mu_2 = \sqrt{\frac{\sqrt{2}+1}{2}}$. We may conclude that the problem (8.9)–(8.10) has an exact solution $x_1(t,\varepsilon), x_2(t,\varepsilon)$ satisfying the estimates

$$\begin{pmatrix} x_1(t,\varepsilon) \\ x_2(t,\varepsilon) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \varepsilon \begin{pmatrix} \hat{X}_{1,0}(\frac{t}{\varepsilon}) \\ \hat{X}_{2,0}(\frac{t}{\varepsilon}) \end{pmatrix} + \varepsilon \begin{pmatrix} \tilde{X}_{1,0}(\frac{1-t}{\varepsilon}) \\ \tilde{X}_{2,0}(\frac{1-t}{\varepsilon}) \end{pmatrix} + O(\varepsilon^2). \tag{8.18}$$

References

- Y. P. Boglaev, The two-point problem for a class of ordinary differential equations with a small parameter coefficient of the derivative, USSR Comp. Math. Phys. 10 (1970), 191-204.
- 2. N. I. Brish, On boundary value problems for the equation $\varepsilon d^2 y/dx^2 = f(x,y,dy/dx)$ for small ε , Dokl. Akad. Nauk. SSSR 95 (1954), 429-432.
- 3. K. W. Chang and F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer, Berlin, 1984.
- P. C. Fife, Semilinear elliptic boundary value problems with small parameters, Arch. Rational Mech. Anal 52 (1973), 205-232.

- 5. ______, Singular perturbation by a quasilinear operator, Lecture Notes in Mathematics 322 Springer-Verlag, Berlin, 1973, 87-100.
- A. van Harten, Nonlinear singular perturbation problems: proofs of correctness of a formal approximation based on a contraction principle in a Banach space, J. Math. Anal. Appl. 65 (1978), 126-168.
- 7. _____, Singular perturbations for nonlinear second-order ODE with nonlinear b.c. of Neumann or mixed type, J. Math. Anal. Appl. 65 (1978), 169–183.
- 8. F. A. Howes, Effective characterization of the asymptotic behavior of solutions of singularly perturbed boundary value problems, SIAM J. Appl. Math. 30 (1976), 296-306.
- 9. _____, Differential inequalities and applications to nonlinear singular perturbation problems, J. Diff. Equations 20 (1976), 133-149.
- 10. _____, Boundary-interior layer interactions in nonlinear singular perturbation theory, Memoires Amer. Math. Soc. 203 (1978), 1-108.
- F. A. Howes and R. E. O'Malley, Jr., Singular perturbations of semilinear second order systems, Lecture Notes in Mathematics 827, Springer-Verlag, Berlin, 1980, 130-150.
- J. S. Jeffries and D. R. Smith, A Green's function approach for a singularly perturbed vector boundary-value problem, Advances in Applied Mathematics 10 (1989), pp.1-50.
- W. G. Kelley, A nonlinear singular perturbation problem for second order systems, SIAM J. Math. Anal. 10 (1979), 32–37.
- Boundary and interior layer phenomena for singularly perturbed systems, SIAM J. Math. Anal. 15 (1984), 635-641.
- 15. M. Nagumo, Ueber die Differentialgleichung y'' = f(x, y, y'), Proc. Phys. Math. Soc. Japan 19 (1937), 861-866.
- 16. M. A. O'Donnell, Boundary and corner layer behavior in singularly perturbed semilinear systems of boundary value problems, SIAM J. Math. Anal. 15 (1984), 317-332.
- R. E. O'Malley, Jr., On multiple solutions of a singular perturbation problem, Arch. Rational Mech. Anal. 49 (1972), 89-98.
- 18. _____, Introduction to Singular Perturbations, Academic Press New York, 1974.
- Phase-plane solutions to some singularly perturbed problems, J. Math. Anal. Appl. 54 (1976), 449-466.
- D. R. Smith, The multivariable method in singular perturbation analysis, SIAM Review 17 (1975), 221-273.
- 21. _____, Singular Perturbation Theory: An Introduction with Applications, Cambridge University Press, Cambridge, 1985.
- 22. A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973. (in Russian)
- 23. A. B. Vasil'eva and V. A. Tupciev, Asymptotic formulae for the solution of a boundary value problem in the case of a second-order equation containing a small parameter in the term containing the highest derivative, Soviet Math. Dokl. 1 (1960), 1333-1335.
- J. Yarmish, Newton's method techniques for singular perturbations, SIAM J. Math. Anal. 6 (1975), 661-680.

DEPARTMENT OF MATHEMATICS, NEW MEXICO HIGHLANDS UNIVERSITY, LAS VEGAS, NEW MEXICO 87701, U.S.A.