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A SINGULARLY PERTURBED SEMILINEAR SYSTEM 

John S. Jeffries 

ABSTRACT. A constructive existence proof is given for solutions of boundary- 
layer type for the singularly perturbed semilinear system e2d2x/dt2 = H{t,x,e) 
subject to either Dirichlet or general Robin boundary conditions. The required 
assumptions involve only natural conditions that are induced by the O'Malley 
construction. 

1. Introduction 

We consider the following second-order system 

d2x 
£2-M=H(t,x,e) (1.1) 

dt2 

for solutions x — x{t,e) on the interval 0 < t < 1 for small values of e (e —> 0+) 
subject either to the Dirichlet boundary conditions 

■ a:(0,e) = a(e),        x(l,e) = /?(e) (1.2) 

where #, a, /?, and if are n-dimensional real vector-valued functions, or to the general 
Robin boundary conditions 

B(x(0,e), *(!,£), a;'(0,£), a/(M), e) = 0 (1.3) 

where B is a given 2n-dimensional vector-valued function of x(0,e), x(l,£), ^(O,^), 
x^lje:), and e. 

The scalar case (n = 1) of the problem (1.1)-(1.2) has been considered by many 
authors including Brish [2], Vasil'eva and Tupciev [23], Boglaev [1], Vasil'eva and 
Butuzov [22], Fife [4, 5], Yarmish [24], Smith [20, 21], O'Malley [19], Howes [8-10], van 
Harten [6, 7], Chang and Howes [3], and others. The vector case has been considered in 
Kelley [13, 14], Howes and O'Malley [11], and O'Donnell [16]. O'Donnell [16] assumes 
that H has a special structure which permits the system to be decoupled, and then 
the scalar theory can be applied to each component of the system. Kelley [13, 14] and 
Chang and Howes [3] assume stability conditions which imply, in particular, that all 
the eigenvalues of Hx(t,Xo(t),0) have positive real parts for 0 < t < 1 for a suitable 
outer solution Xo(t). 

The scalar case (n = 1) of the problem (1.1)-(1.3) is considered in O'Malley [17, 
18] and van Harten [6]. The vector problem is considered in Chang and Howes [3]; 
however, their assumptions impose certain restrictive conditions on the structure of 
H and By and spatial coupling of the boundary conditions is excluded. 

For both the Dirichlet and Robin problems, we use the O'Malley construction to 
obtain an approximate solution; then we linearize the original problem about the pro- 
posed approximate solution and apply the Banach-Picard fixed point theorem to prove 
the existence of a locally unique exact solution along with error estimates between the 
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exact solution and the approximate solution. We employ natural conditions induced 
by the O'Malley construction. The matrix ^(t,Xo(t),0) is assumed to be nonsingu- 
lar and its eigenvalues are excluded from lying on the negative real axis for a suitable 
outer solution Xo(t). This requirement is necessary so as to exclude strictly oscilla- 
tory solutions to the associated linearized system and thus allow the construction of 
an approximate solution that exhibits boundary-layer behavior (see equations (4.1), 
(5.9), (5.13), and (6.5)). 

Sections 2 and 3 contain discussions of our assumptions for the Dirichlet and Robin 
problems, respectively. Section 4 contains a proof of Lemma 1 which is needed to con- 
struct certain fundamental solutions satisfying appropriate exponential dichotomies. 
The approximate solutions for the Dirichlet and Robin problems are constructed in 
Sections 5 and 6, respectively. Section 7 contains the statements and proofs of exis- 
tence and local uniqueness. Examples are provided in Section 8. 

2. Assumptions for the Dirichlet problem 

Assumption Dl. There exists a continuous solution Xo(t) to the reduced equation 

H(t,Xo(t),Q) = 0 (2.1) 

such that the n x n matrix Hx(t,Xo(t),0) is nonsingular and its eigenvalues do not 
lie on the negative real axis. 

Assumption D2. There exist decaying solutions XQ and XQ to the boundary-layer 
differential equations 

-J-± = H(0,X0(0) + X0(T),0), 

Xo(0) = a(0)-Xo(0), (2.2) 

a a' 
Xo(0) = 0(0) - Xo(l). (2.3) 

For our next assumption, we consider the following two linear systems 

dr1-     \HX(0,XO(0) + X0(T),0)    or' 

< = - 
0 In 

da- \HX(1,XO(1) + XO{<T),0)     0 
£■ (2.5) 

It follows from Assumption Dl, Lemma 1 (see Section 4), and Lemma 6.1 of Jeffries 
and Smith [12] that there exist fundamental solutions £(T) and £(cr) satisfying the 
exponential dichotomies 

< Ke-^T-u) 

|(T)(J - P^'Hu)  < Ke-V{u-^ 

U < T, 

r < u, (2.6) 

i((r)(I - Ptf-^u)  < Ke-*"-**        u<<7, 

(2.7) 
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where K and v are positive constants and P := (^ Q)- Given two such fundamental 
solutions, we make the following assumption. 

Assumption D3. The columns of (Jn 0)^(0)P^'"1(0) span i?n, and the columns of 

(Jn 0)|(0)(I - P)r ^O) span Rn. 
Note that this assumption is independent of the particular choice made for the 

fundamental solutions fj and 77, as long as they satisfy the corresponding exponential 
dichotomies (2.6) and (2.7). 

Assumption D4. There exist positive constants £1 and 61 such that for 0 < e < £1, 
H(t, x, s) is of class C^"1"1 with respect to (£, x) on Af 

AT := {(*,x) : 0 < t < 1, \x - (Xo(t) + Xo(|) + ^o(i^))| < «i} , (2.8) 

and its derivatives are uniformly bounded.  Furthermore, we assume that H(t,x,e), 
a(e), and (3(e) possess expansions in e of the form 

^H(t,x,e)\ 

a{e) 

\ m ) 

'HN+i(t,x,ey 

®N+I{£) 
.iV+l (2.9) 

where the coefficient functions Hk{t,x) are of class CN fc+1, and HN^I^^X^E), 

®N+I(£), /3N+I(£) are uniformly bounded. 

3.  Assumptions for the Robin problem 

Letting 9, r, 5, z represent the boundary values #(0,6:), £(1,6:), £'(0,6:), x^l^e), re- 
spectively, we may regard B as a function of g, r, s, 2, and £. As an example, consider 
the following set of boundary conditions (n = 2) 

a;i(0>e)-a:i(0,e) = 2, 

x2(l,£) + x^(0,£) = 3, . 

£i(l,6:)+ :zi (1,6:) = 1, 

£2(0,£) -£2(1,6) = -1. 

In this case, B = B(q1 r, s, 2,6:) would have the form 

B(g,r,5,2,£) (3.2) 

qi-si-2 

7*2 + 52-3 

ri+zi — 1 

_q2 -Z2 + l_ 

Note that spatial coupling of the boundary values is allowed.  We now are ready to 
state our assumptions. 

Assumption Rl. Same as Assumption Dl. 

Assumption R2. There exist n-dimensional vectors oio and /?o such that 

B(Xo(0)>Xo(l),ao,A)>0) = 0, 

and the following 2n x 2n matrix is nonsingular 

JBa(Xo(0),Xo(l),ao,A>,0)     Bx(Xo(O),Xo(l),ao,0o,Q) 

(3.3) 

(3.4) 
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Assumption R3. There exist positive constants e^ and 62 such that for 0 < e < 62, 
the given data function H(t, x, e) is of class C^4"1, N > 2, with respect to (£, x) on Mi 

M :={(*,a): 0<t<l, |a:-Xo(*)|<«2}, (3.5) 

JB is of class C^4"1 with respect to (g, r, s, z) on A/2 

^2:={(^r,5^): k"Xo(0)|<(52, |r-Xo(l)|<52, 

Is-aol < 62, \z- Po\ < 62}, 

and the derivatives of H and B are uniformly bounded. Furthermore, we assume that 
H and B possess an asymptotic expansion in e of the form 

(3.6) 

N Hk(t,x) 

t^o \Bk(q,r,s,z)/ 

6k + 
f   HN+i(t,x,e)   \N+I        /37X 

\BN+i(q,r,s,z,e)J 

f   H(t,x,e)   ' 
\B(q,r,s,z,e)j 

where the coefficient functions Hk and Bk are of class CN+1~k, and HM+I and JB^+I 

are uniformly bounded. 

4. Lemma 1 

Lemma 1. There exist fundamental solutions f) and 77 to the following linear systems 

d ,                  0              JB\ A 

*P={ ]r,' 
d . 

(4.1) 
^o,x(0,Xo(0))    0 

0 -In" 

^-tfo,x(l,*o(l))      0 / 

satisfying the exponential dichotomies 

ITK^PTTV)! < Ke-^T-u) 

\T){T)(I-P)ri-\u)\<Ke-'l»-r) 

\rj(a)(I - P)r 1{y)\ < Ke-v{-a-u) 

where K and v are ■positive constants and P = (^ 0) • Furthermore, the columns of 
each of the following two matrices span Rn 

(0     In) Pi, (0     J„)P2 (4.4) 

where Px := ^PrTHO) and P2 := ^(0)(/ - P)^"1^). 

Proof. We first consider 77. Since Ho,x(0,Xo(0)) is nonsingular and its eigenvalues do 
not lie on the negative real axis, they may be expressed as A?,..., A^ where Re(Xi) > 0 
for i = 1,... ,n. Let S transform HoiX(0,Xo(0)) into its Jordan canonical form, i.e., 
5~1i]ro,x(0,Xo(0))5 = J = diagonal {Ji, J2,..., Jr} where J* is of size ra* x rrti and 
has the form 

T >U, 

U>T, (4.2) 

G>U, 

u > a (4.3) 

Ji = 

>& 1 
\ 

••    1 

\ w 
(4.5) 
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where qi = mi H h rrii-i + 1. It follows that if Sj is the jth column of 5 then 

iJ51 = A251, 

HSj = A25^ + S^1    forj = 2,...,mi (4.6) 

where, for notational purposes, we have set H = HojX(0) Xo(0)) and A2 = A^. We will 
now construct an eigenvector V1 with eigenvalue —A and mi — 1 general eigenvectors 
such that 

'o   V 
M    0, 

v1 =-xv\ 

0      In' 

[H   0, 

Defining V1 and V2 by 

Vj = -XVj + V-7'-1    for j = 2,..., mx. 

l(-A)Sy l2(-A)252 + 5V 

(4.7) 

(4.8) 

it can be verified easily that they satisfy (4.8). To construct the remaining general 
eigenvectors, we assume that we have constructed eigenvectors V1 for / = 2,..., k such 
that 

Vl = 2=1 

\ f=i / 

(4.9) 

and Cij = A,z > 0. We now will show that we can construct Vk+1 with the same 
properties. Let V^1 have the following form where the coefficients Cfc+i,* are to be 
determined 

It follows that Vk+1 will satisfy 

k+i 

£ Cfc+i^-A)*-1** 
i=l 

fe+1 fc 

\i=l i=l 

(4.10) 

provided 

fe+i 

J^Cfc+i^-A)'-1^-1 = ^[C^ + Dfc,i](-A)Vi 

i=2 

—■>* 

i=l 

Re-indexing the sum on the left, we have 

k k 

(4.11) 

(4.12) 

(4.13) 
2 = 1 2-1 
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The above equation can be solved, and we find that Ck+i^+i = Cfc,fc + Dk,k- By 
induction, we have Cfc+i,fc+i = 2Ck,k > 0. These vectors generate mi independent 
exponentially decaying solutions UIYI(T) where Ui := [V1,..., V™1] and 

/I 

^(^=6"^! -A01r 

T"1*-1   \ 
(m1-l)l   } 

T 

1 / 

(4.14) 

Note that span j (o !„) [V1,..., Fmi] } = span {S1,..., 5mi}. In a strictly anal- 

ogous fashion, we can construct an eigenvector V1 and mi — 1 general eigenvectors 
Vi corresponding to the eigenvalue Xqi. These generate mi exponentially increasing 
solutions Oi YI(T) where C/i := [V1,..., V™1] and 

A,,, T y1(T) = eA« 

V 
r 

i / 

(4.15) 

such that span { (o /„] [V1,..., Vmi]} = span {51,... , 5mi}. This can be done 

for each block Ji to produce m* exponentially decreasing solutions L/,FJ(T) where 
Ui — [V".....^"*1-1] and 

-A0,r yi(r) = c-A« 
r 

i / 

(4.16) 

such that span { (o /„) [V9',..., V9i+1-1] | = span {[S^,..., S9^1-1]}, and rm ex- 

ponentially increasing solutions UiYiir) where Ui := [V'9i,..., V'9i+1_1] and 

A0,r yi(r) = cA«* 
r 

i / 

(4.17) 

such that span j (o /„) [?«',..., l^+i-i] | = Span {[59*,..., s?«+i-i]}. Setting 

7?(r) = [C^i,..., C/r IC/x,..., Ur] diagonal {^(r),..., Yr(T).(^(T), ..., Fr(r) } , 
(4.18) 

it follows that the fundamental solution ?) satisfies an exponential dichotomy and, 
since 

span { (0 J^fKOjPfTHO)} = span { (o /n) [Uu •.., Ur]} = span{5} ,        (4.19) 
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the columns of (o /n]77(0)P7)-1(0) span Rn. 

For ?/, we construct a fundamental solution Q to the linear system 

0 In 
—Q = I w *7* I Q 
dr^      ^of,(l,-Yo(l))     0;^ 

just as we did for fj, such that 

|Q(<7)PQ-V)I < ATe-"^-")       a > u, 

\Q(<T)(I - P)Q-1^)\ < Ke-U{-U-^       u>a, 

and the columns of (o /n)Q(0)(/-P)Q-1(0) span Rn. It follows that 77(a) := Q{-a) 

satisfies (4.2) and (4.3). □ 

(4.20) 

(4.21) 

5. The approximate solution for the Dirichlet problem 

In this section, we construct an approximate solution to the problem (1.1)-(1.2) using 
the O'Malley construction. We write the approximate solution XN(t,s) as the sum 
of an outer solution and boundary-layer correction functions 

where r := |, a : i-t , and X, X, and X possess expansions in e of the form 

(X{t,e)\ 

X{r,e) 

\X{a,e)) 

N 

-E 
k=0 

fxk(t^ 
Mr) 

(5.1) 

(5.2) 

The outer solution coefficient functions Xk are determined by requiring that the 
outer solution satisfy the differential equation up to 0(£N), i.e., 

,d2X 
dt2 H(t,X,e) + p(t,e)       for   0<t<l (5.3) 

where p(t,e) is a continuous function of t and is uniformly of 0{eN'irl). Inserting the 
expansion for X(t,e) and expanding about e = 0, we find that the higher-order terms 
Xk for k = 1,..., N must satisfy linear (algebraic) equations of the form 

Hotx{t>Xo(t))Xk = Pk-1(t) (5.4) 

where Pk-i(t) is a suitable function that is known in terms of the preceding coefficient 
functions. Since Ho)X(t,XQ(t)) is nonsingular (see Assumptions Dl and D4) the linear 
system (5.4) is uniquely solvable. 

The boundary-layer correction functions X and X are determined by requiring that 
XN(t,£) satisfy the full problem to 0(eN), i.e., 

£2^xN{t'£) = H{t'xN^£)'£)+/9(*'£)' 
a(e) - XN(0,e) = M^,       m - XN(l,e) = fo{e) 

(5.5) 

where p(t, e) is a continuous function of t and is uniformly of 0{eN'¥l)^ and (j)i(e) and 
02 (e) are of 0(e:iV+1). Because each of the boundary-layer functions is negligible where 
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the other is not, we may consider them separately. Hence, we require that X + X 
satisfy the differential equation and the left boundary conditions to 0(eN) 

e2^(X + X) = H(t,X + X,e) + f>(t,e), ^ 

a(e)-(-Y(O,e) + -X'(O>e)) = 0i(e) 

where p(t,e) is a continuous function of t and is uniformly of 0(£:iV+1), and ^(e) is 
of 0(eN"{'1). In a like manner, we require that X + X satisfy the differential equation 
and the right boundary conditions to 0(eN) 

e2^(X + X) = H(t,X + X,e) + p(t,£), 

(3(e)-(X(l,e) + X(0,e)) = h(e) 

where /3(£,£) is a continuous function of t and is uniformly of 0(eN+1), and 02(e) is 
of 0(€N+1). We first consider the left boundary-layer coefficient functions. Using the 
results for the outer solution, writing in terms of r, and expanding about e = 0, we 
find that the leading left boundary-layer function XQ must satisfy 

|^Xo = ^o(0,Xo(0) + Xo(r)), 

Xo(0) = a(0)-Xo(0), 

and the higher-order boundary-layer correction functions must satisfy 

-^Xk = tfo,s(0,Xo(0) + Xo(r))Xk + A-i, (5 9) 

Xk(0) = ak - Xk(p) 

for suitable functions Pk-i that are known successively in terms of the preceding co- 
efficient functions Xj for j < k -1. Furthermore, if the preceding coefficient functions 
are exponentially decaying, then Pfc-i also is exponentially decaying. An exponen- 
tially decaying solution to (5.8) is given by Assumption D2. Using the fundamental 
solution £(T) and imposing the matching condition Xk(T) —> 0 as r —> oo, we can 
solve for Xk to find 

f;) =i(T)Pcimk+ ri^ptHu)( o )du 
±Xk Jo \Pk-i(u)J ^dr 

i: i{T){I-P)CX{u)[ \du (5.10) 

where 7^ is an arbitrary real 2n-dimensional vector. Imposing the initial condition 
Xk(G) = ak — Xkifi), we require that 

{in    0) f(0)Pr1(0)7/b = otk - Xk{Q) 

+ {i, o)f j(o)(/-p)r'(»)(A_0
iW)^   (5.ii) 

It follows from Assumption D3 that there exists a solution 7*.. Furthermore, since 
£(T) satisfies an exponential dichotomy and Pk-i is exponentially decaying, Xk and 
-fcXk are exponentially decaying. 
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We now consider the right boundary-layer correction function. Using the results 
for the outer solution, writing in terms of cr, and expanding about e = 0, we find that 
the leading right boundary-layer function XQ must satisfy 

-r[^ = H(l,Xo(l) + Xo(a),0), (512) 

Xo(0)=/?(0)-Xo(l), 

and the higher-order boundary-layer correction functions must satisfy 

-fLxk = Ho Ah Xo(l) + Xo(v))Xk + Pk-u (5 13) 

Xk(0) = pk-Xk(l) 

for suitable functions P^-i that are known successively in terms of the preceding co- 
efficient functions Xj for j < k — 1. Furthermore, if the preceding coefficient functions 
are exponentially decaying, then Pk-i also is exponentially decaying. An exponen- 
tially decaying solution to (5.12) is given by Assumption D2. Defining Yk := —-^Xk, 
we convert the second-order system (5.13) to the following first-order system 

^ W = \-Hx(lMl) + X0(a),0)      0 ) [Yk) + {Pk-i) ' (5'14) 

Using the fundamental solution £ and imposing the matching condition Xk (c) —► 0 as 
a —> oo, we can solve the linear system (5.16) to find 

- r ii^Pt'iu) (     0      ) du (5.15) 

where ^k is an arbitrary real 2n-dimensional vector. Imposing the initial condition 
Xk(0) = 0k — Xk(l), we require that 

(/„    0) (/ - P2)7fe = 0k - Xk(l) + (jn    o) J™ mPt'in) (      0      J du. 

(5.16) 

It follows from Assumption D3 that there exists a solution %. Furthermore, since 
£(cr) satisfies an exponential dichotomy and Pk-i is exponentially decaying, Xk and 
■^pXk are exponentially decaying. Finally, defining 

p(t,e) ■.= e2^XN(t,e) - H(t,XN(t,e),s), 

Me)'=a(e)-Xff(0,e), (5.17) 

it follows that p is a continuous function and is uniformly of 0(eJV+1), and ^i(e) and 
02(e) are of 0(eN+1). 
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6. The approximate solution for the Robin problem 

In this section, we construct an approximate solution to the problem (1.1)-(1.3) using 
the O'Malley construction. We write the approximate solution XN(t,e) as the sum 
of an outer solution and boundary-layer correction functions 

XN(t,e) = X(t,e)+eX(T,e) + eX(a,e) 

where X(t,£:), X(T,£), X{(T,e) possess expansions in e of the form 

(X(t,e)\ 
X(r,e) 

\X(<T,e)J 

N 

k=0 

(xk(t)\ 
Mr) 

(6.1) 

(6.2) 

The outer solution coefficient functions, Xk(t), are determined as in the Dirichlet 
problem (see (5.3)-(5.5)). The boundary-layer correction functions are determined by 
requiring that the approximate solution XN(t,e) satisfy the full problem (1.1)-(1.3) 
up to 0(eN), that is, 

£2^XN{t, e) = H(t, XN(t, e),e) + P(t, e), 

B(XN(0, e), XN(1, e), jtX
N(0, e), jtX

N(l, e)) = <P(e) 

(6.3) 

where p(t, s) is a continuous function of t and p(t, e) and (j)(e) are of 0(eN+1). As be- 
fore, we may consider the left and right boundary-layer correction functions separately. 
X(T, e) must satisfy 

d2 

e2 -^ {X + eX) = H(t, X 4- eX) + p{t, e) (6.4) 

where p(t,e) is a continuous function of t and is of 0{eNJrl). The left boundary-layer 
correction functions, Xfe(r), must satisfy 

d2 

dr2 Xk = Ho,x(0,Xo(0))Xk + Pfc-iM (6.5) 

for suitable functions Pfc_i(r) that are known successively in terms of the preceding 
boundary-layer correction functions. Furthermore, if the preceding boundary-layer 
correction functions are exponentially decaying then so is Pk-i(r). Using the funda- 
mental solution 77(7-) and imposing the matching condition ^(r) —» 0 as r —> 00, we 
may solve for Xkir) to find 

Xk 

JL -d-xkl 
77(r)PJ7-1(0)7fc+ f  fji^Pr'iu) 

Jo 

/oo 

T)(T)(I - Pft-H") 

'      0      ' 

.Pfc-l(«)y 
du 

0 
du (6.6) 

^5b-i(u), 

where % is an arbitrary 2n-dimensional vector.    Imposing the initial condition 
jp.X'fc(O) = ctk where oik is an arbitrary n-dimensional vector, we have 

0 
(0    /„) PiJk =ak+(o   /n) J    m(I - ^"V) lp ) du. (6.7) 
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It follows from Lemma 1 that there exists a solution 7*. Furthermore, since 7)(r) sat- 
isfies an exponential dichotomy and A-i is exponentially decaying, Xk and £pXk are 
exponentially decaying. A similar construction may be done for the right boundary- 
layer correction function X(o;e) such that Xk(cr) and ^.Xfc(cr) are exponentially 
decaying and — ^Xfc(O) = /3k where (3k is an arbitrary n-dimensional vector. 

We now must choose ctk and /?&, k = 1,..., iV, such that 

B(XN(0,e),XN(l,e),jtX
N(0,e),jtX

N(l,e),e) = <f>(e) (6.8) 

where 0(e) is of 0(€N+1). By Assumption R3, there exist constants ao and (3o such 
that 

Bo(Xo(0),Xo(l),ao,/3o) = 0. (6.9) 

Expanding about e = 0, we find that 

B0,g(OXk(0) + Bo,P(C)Xk(l) + Bo,s(C)(|^fe(0) + ak) 

+ 5o,,(C)(^(l) + j8fc) = 7fc-i (6.10) 

where C = (Xo(0), A"o(l),a,/3), and 7^-1 is known in terms of the previous values 
ao? Ab • • • 5 afc-ij Pk-i- It follows from Assumption R3 that there exists a unique solu- 
tion akiPk to the linear equation (6.10). 

7. Existence and local uniqueness 

Theorem 1. Given Assumptions D1-D4, there exist constants SD and D^ such that 
the Dirichlet problem (1.1)-(1.2) has an exact solution x(t,e) satisfying the estimates 

\x(t,e)-XN{t,e)\<DNeN+\ 

!*.«>-^"fto <JW (71) 

uniformly on the region 0<t<l, 0<e<eD where XN(t,e) is the approximate 
solution constructed in Section 3. Moreover, x(t,e) is unique subject to the estimates 
of (7.1). 

Theorem 2. Given Assumptions R1-R3, there exist constants SR and CJV such that 
the Robin problem (1.1)-(1.3) has an exact solution x(t,e) satisfying the estimates 

\i:(t,e)-X'<(t,e)\<CNeN+>, 

!«<«.«>-!*"<«.«> <CNe 
(7-2) 

uniformly on the region 0<t<l, 0<e< SR, where XN(t,s) is the approximate 
solution constructed in Section 4. Moreover, x(t,e) is unique subject to the estimates 
of (7.2). 

We give the proof for Theorem 2. Theorem 1 is proved in a like manner. 

Proof. Defining x(t,e) := x(t,e) - XN{t,s) and y := e*j|, we find that x and y must 
satisfy the first-order system 

dt {y)=~e{Hx(t,X
N(t,e),e)    0 J UJ + e U(i,x,£) + p(t,e)) (7'3) 
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subject to the boundary conditions 

where 

E(t,x,e):=      (l-s)--1H(t,XN(t,e) + sx,e)ds, (7.5) 

F(x,y,e):=J (I-s)-^B(<;N(e) + s{(x,y,e))ds, (7.6) 
/o 

L(e) := [eBq(<;N(e),e)\Bs(<;N(e),e)}, 

R(e) := [eBr(CN(e),e)\Bz(CN(e),e)], 

<"(£) := (XN(0,e),XN(l,e),jtX
N(0,e),jtX

N(0,e)), 

C(x,y, e) := (x(0,s),5(1,e), -j/(0,e), -y(l,e)). 

(7.7) 

(7.8) 

It follows from Assumption R3 that there exist positive constants |i£| and l-Fl such 
that for all sufficiently small x and y 

\E(t,x,e)\<\E\\x\2, 

\E(t,xi,e) - E(t,X2,£)\ < max{|xi| ,|52|}|-E| l^i -X2I, 

\F(x,y,e)\ < \F\{\x(0,e)\ + \x(l,e)\ + ±\v(0,e)\ + ^\y(l,e)\}2, 

\F(xi,y1>e)-F(x2,y2,£)\<M\F\{\x1(0,e)-X2(0,e)\ + \x1{l,e)-x2(l,e)\ 

+ i|yi(0,£) - y2(0,e)| + j\yi(l,e) - y2(l,e)\} 

(7.10) 

where M := max^i^ {|xi(0,£)|, |xi(l,£)|, j|yt(0,£)|, j|yi(l,e)|}. Prom Lemma 6.2 of 
Jeffries and Smith [12], there exists a fundamental solution Z(t, s) to the linear system 

T^l( I In)Z (7-11) dt        e\Hx(t,X
N(t,e),e)    Oj 

satisfying the exponential dichotomy 

\Z(t,e)PZ-1(s,e)\<K1e-'/lii?1       for   0 < s < t < 1, 
(7.12) 

\Z(t,£)(I-P)Z-1(s,e)\ <K1e-
Vl* for   0<i<s<l 

where K\ and v\ are positive constants. Applying Lemma 6.3 of Jeffries and Smith [12], 
we may conclude that there exist fundamental solutions ?7I(T,£) and 7)1 (a, e) to the 
following linear systems 

-£-»h=[ 0     - In\fli       for   0<T<-ln±, (7.13) 
drn      ^(0,^0(0)+ Xo(r),0)    Q) '    ' v2     e 

4-fli = -\ 0    - JnW       for   0<C7<-ln-,       (7.14) 



A SINGULARLY PERTURBED SEMILINEAR SYSTEM 169 

satisfying the exponential dichotomies 

|^i(T>e)Pi)j:1(«,£)| < K2e-V2<-T-u)       for   u < r, 

\fk(T,e){I - Pft^iurfl < K2e-V^u-^       for   r < tt, 
(7.15) 

(7.16) 

(7.17) 

|»7i(cr,£)(/-P)7?i(w,£)|<ii'2e-''2(CT-")        for   u < a, 

|^i(ff,e)P^i(tt,e)| < K2e-v*(u-a)       for   a < u, 

and the estimates 

77i(0,e)P7?1-1(0,£) = ^(01£)PZ-1(0!e) + O(elni), 

Vi(0,e)(I-P)ri1(0,e) = Z(l,e)(I-P)Z-1(l,e) + O(£ln-) 
£ 

where U2 and K2 are positive constants. Prom Lemma 6.4 of Jeffries and Smith [12], 
we may conclude that there exist bounded nonsingular matrices S(e) and 5(e), with 
bounded inverses, such that 

rk(0,e)P^1(0,e) = P1§(e) + O(e), 
(T.lo) 

rjl(0,e)(I-P)fji(0,e) = (I-P2)S(e) + O(e). 

Using the fundamental solution Z(t,e), we may write (7.3) as an integral equation 

r) = Z(t,e)PZ-1(0,£)CL + Z(t,e)(I - P)Z-'1(l,e)CR 

+ - f Z{t,e)PZ-1{s,£) ( 0 Ids £ Jo \E(s,x(s,e),e) + p(s,e)J 

-- f Z(t)e)(I-P)Z-1(s,e) i 0 )ds      (7.19) £ Jt \E(s,x(s,£),e)+p(s,e)J 

where CL and CR are to be determined. Imposing the boundary conditions, we find 
that CL and CR must satisfy the linear system 

ML(e)CL + MR(e)CR = b(x,y,e) (7.20) 

where 

ML(£) := L(£)Z(0,£)PZ-1(0,£) + R(£)Z(1,£)PZ-1(0,£), 

MR(£) := L(e)^(0,e)(7 - P)^"^!^) + fl(e)Z(l,e)(J - P)Z-\l,£),       (7-21) 

6(x, y, e) := -£[4>{£) + F{x, y, £)} 

+ h(s) f1Z(0,£)(I-P)Z-l(s,£)( 0 )ds 
e JO \E(S,X(S,£),£) + p{s,£)J 

-\R{e) f Z{l,£)PZ-\s,£)[ 0 Xds. 
£ JO \E(S,X(S,£),£)+P(S,£)J 

(7.22) 
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Prom the estimates of (7.17)-(7.18), we have 

ML(e)S-1(e)f)(0) = \l0\BoAO}\ 
'0    0^ 

+ 0(eln-) 

where 

MzftS-HeWO) = |[0|flo,«(C)] K    IJ +0(elni) 

Assumption R2 and Lemma 1 imply that the linear system 

M^S-^m + Mfl(e)5-1(e)^(0) = b(x,y,e) 

is invertible. The boundary conditions are satisfied by letting 

(7.23) 

(7.24) 

(7.25) 

CL = S-1(e)fi(0) CR = S-1(s)m (7.26) 

We now may apply the Banach-Picard fixed-point theorem to conclude that there 
exists a unique fixed point to the integral equation (7.19) satisfying the estimates of 
(7.2). For the details of such a proof, see Jeffries and Smith [12, pp.26-30]. □ 

8. Examples 

We now consider the following second-order system 

e2x" = 2x2 + t(l-t)xl, 

eVa = -8xi - Wt 

on the interval 0 < t < 1 subject to the Dirichlet boundary conditions 

a:i(0) = 1, si(l) = 3, 

x2(0) = 2, x2(l) - 0. 

The reduced system 

0 = 2X2,o+t(l-t)X1
2
|0, 

0 = -8X1,0 - 16* 

has solution Xho(t) = -2t,X2fi(t) = -2i3(l - t). Ho,x(t, X0(t)) is given by 

-4t2{l-t)   2 

-8 0 

(8.1) 

(8.2) 

(8.3) 

(8.4) 
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and has eigenvalues —2t2(l—t)±4i^/l — .25t4(l — t)2. The boundary-layer differential 
equations are given by 

d2Xh0 

dr2 

d2X2to 
dr2 

d2Xifi        - 

= 2X2,0, 

= -8X1,0, 

rf2X2,o 
da2 -8X1,0, 

XI,Q(0) = 1, 

*2,o(0) = 2' 

^i,o(0) = 5, 

^2,o(0) = 0, 

with solutions 

fxlfi(T)\ = /COS(V/2T) -2sin(V2r)\ ^^ 

VX2,o(r)y      \2cos(V2T) + sm(V2T))e 

p^A/Scos^aA      ^ 

VX2,o(<T)y       ^lOsinCv^cr); 

The fundamental solution £(T) = AZ{T) where A equals 

/   1 0 1            0    \ 

0 2 0-2 

-y/2 -sft \/2       —v/2 

\l\f2 -2y/2 -2\/2    -2\f2J 

and Z(T) equals 

/ 

V 

-\/2T COS(\/2T)    — sin( V^T) 

sin(\/2T)      cos(\/2r) 

3\/2r 

0 

cos(\/zr) 

sin(\/2r) 

sin(v/2r) 

- COS(A/2T) / 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

satisfies the appropriate exponential dichotomy, as does £(cr) := £(—<J). We there- 
fore may conclude that the problem (8.1)-(8.2) has an exact solution x\(t,e),X2(t,£) 
satisfying the estimates 

-2t      \      /cos(4i)-2sin(^)\   _^t 

-2t3(t-l)) + l2cos(^) + sin(^)i e 

+ 5cos( V^(l-t) 
£ 

Next, we consider the following second-order system 

ex" = -2xi +X2, 

6X2 = (1 - Xi)X2 

6-^+0(e). (8.9) 

(8.10) 
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l 
subject to the Robin boundary conditions 

X2(M) + 4M = 3, 
xi(l,e) + x'1(l,e) = lJ 

X2(0,e)-x,
2(l,e) = -1. 

0 = -2a;i +^2, 

0 = (l-xi)x2, 

(8.11) 

The reduced system 

has two sets of solutions 

(8.12) 

(8.13) 

(8.14) 

Xh0(t) = 1, Xlfi(t) = 0, 

X2fi(t) = 2, X2io(t) = 0. 

However, only the first solution satisfies Assumption Rl. The boundary-layer differ 
ential equations are given by 

d2Xho - » dXito. . 
. 2    = -JAi.o + Aa.O)        —2—vUJ — -1, 

^^ - -2^.0' ^-(0) - "3' 

and 
d2xi,o __ov-       ^ ^Mrm-   9 

^^"-2Xl'0' "^(0)-5- 
They have solutions 

/XI,O(T)\      e"'*17* /(/ii +112) cos(/i2r) + (^1 - ^2) sin(/X2r)\ 

and 

\-^2,O(T)/        V^    \        -2/X2 cos(/i2T) - 2^i sinQ^T)        / 

^Xi,o(cr)\ _    3e~^1(T / /X2 cosher) + Mi sin^v) 

<X2,O((T)J V2     \(Mi - M2) cos(/i2^) - (/xi + /12) sin(^2^)y 

(8.15) 

(8.16) 

(8.17) 

where fii = y ^^ and /i2 = \/y^2~1-  We may conclude that the problem (8.9)- 
(8.10) has an exact solution xi(t,e),X2(t,e) satisfying the estimates 

Kx2(t,e)        \2 1X2,0(1)7        Ua.oC1^) 
+ H;r J     +M*     ,1.   H-O^). (8-18) 
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