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ASYMPTOTIC METHOD FOR INTERFACIAL SOLITARY WAVES
IN A COMPRESSIBLE FLUID

M. C. Shen and S. M. Sun

ABSTRACT. We justify rigorously an asymptotic method developed for two-
dimensional solitary waves at the interface between two isothermal layers of a
perfect gas under gravity bounded by two rigid horizontal planes. Assuming that
the two isothermal layers are in thermal inversion, we prove that if the reciprocal
of the Froude number is smaller than but near the larger one of two critical values,
the solitary wave solution obtained by the formal asymptotic method is indeed an
approximate solution to the exact equations, thus establishing the mathematical
existence of a solitary wave in this context.

1. Introduction

In recent years, there has been growing interest in studying interfacial progressive
waves in an incompressible fluid. These problems generate many interesting wave
patterns and require new mathematical methods to find solutions. They have been
investigated numerically in [7]-[9], [15], and the mathematical existence of the inter-
facial solitary waves has been proved in [1]-[3], [11], [12], among others. Discussion of
solitary waves in continuously stratified fluids can be found in the book on stratified
flow by Yih [16] and the references cited there. Numerical studies of atmospheric
interfacial waves, which are of much meteorological interest, also have been reported
recently in [4] and [5]. Indeed, solitary pressure jumps at the interface between two
isothermal layers in thermal inversion have long been observed to have a high correla-
tion with the formation of tornados [13]. However, at present, a rigorous asymptotic
theory of interfacial solitary waves in a compressible fluid is lacking, although some
formal results are available [10].

In this paper, we justify rigorously the formal asymptotic method developed for
two-dimensional interfacial solitary waves in a perfect gas with two isothermal layers
in thermal inversion. This physical configuration is of interest in meteorological appli-
cations. We hope that our work may stimulate further research on rigorous asymptotic
methods for progressive waves in other configurations of a compressible fluid, which
pose many challenging mathematical questions. Let the constant temperatures in the
upper and lower layers be Ty and Ti, respectively, and T} < T». For simplicity, the
upper and lower boundaries of the fluid domain are assumed to be horizontal and
rigid. However, the same method used here also could deal with a free surface as the
upper boundary without much difficulty. A coordinate system moving with a solitary
wave at a constant speed c is chosen so that the fluid motion is steady. We define
A = gh}/c® = Ao + €A1 as the reciprocal of the Froude number where g is the con-
stant gravitational acceleration, A} is the equilibrium height of the lower layer, and
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€ is a small positive parameter. Two critical values A+ of Ag have been found where
A+ > A= > 0. For X near but less than A4, our main result is the following;:

There exists an asymptotic solution, which represents an interfacial solitary
wave, of the equations governing the motion of two isothermal layers of a
perfect gas separated by an interface, bounded below and above by a rigid
boundary. The expression of the interface is given by

n(z) = ey ¥g S(e /%) + O(e?).

Here z = n(z) is the equation of the interface, —t; and 1§ are the constant
values of a stream function at the lower and upper boundaries, respectively,

S(e/2z) = (83X A1/245) sech® ((—edy Ar /Ao)/23/2),

A;, i = 1,2,3 are constants, Ay, A; > 0, A, is assumed to be nonzero,
and O(e?) is a term of order €2. Therefore, the first approximation in
an asymptotic expansion of the interface equation is a solitary wave of
elevation if A; < 0 or a solitary wave of depression if A2 > 0. In both
cases, A\; must be negative.

We also note that for A, = 0, our method fails and a solitary wave as a solution
of the so-called modified Korteweg-deVries equation could be derived by a refined
asymptotic method. We omit that rather tedious derivation, but refer the reader to a
discussion of a similar but simpler case for an incompressible fluid in [11].

The paper is organized as follows. The problem is formulated in Section 2 where
the interface is transformed into a fixed horizontal line by using the stream function
and the horizontal coordinate as independent variables, and the so-called streamline
function is used as one of the dependent variables. The density of the compressible
fluid is not a function of the stream function as in the incompressible case, so we
have to deal with a system of equations governing the streamline function and the
density. In Section 3, the approximate solution of a solitary wave is derived by a
formal asymptotic expansion and two critical values A1 of A\g are obtained. For A
near A_, the linear part of the governing equation for the lower layer in the z, -
plane becomes hyperbolic, and the method developed for Ay = A4 does not apply.
We defer this case to a further study, and will consider only Ag = A4 in this paper.
In Section 4, we reformulate the governing equations and boundary conditions as a
system of nonhomogeneous equations with linear terms as the dominant part of the
system. A solvability condition is derived for the nonhomogeneous system, which
eventually yields an approximate solitary wave solution. Some Banach spaces for
later use also are introduced. In Section 5, we derive a priori estimates for the
ordinary differential equation associated with the solvability condition and also for
the partial differential equation governing the gas motion. Furthermore, we show that
an eigenvalue problem derived from the linearized equations possesses nonpositive
eigenvalues only. Therefore, in the case considered here, the appearance of a solitary
wave with ripples at infinity {12] is excluded. The final existence result is proved in
Section 6 by means of the contraction mapping theorem.

2. Formulation

We consider a perfect gas consisting of two layers bounded by two rigid plane bound-
aries. At equilibrium the lower layer is at temperature 77 with height A7; the upper
layer is at temperature T» with height h3, separated from the lower layer by a con-
tact interface; pg is the pressure at the interface, and the densities at the sides of the
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interface are pa' , pp for the upper and lower layers, respectively. Note that 77 < T
implies p; > pi for a perfect gas. Assume that there is a wave of permanent type
moving with a constant velocity ¢ on the interface. A coordinate system moving with
the wave is chosen such that the z*-axis coincides with the equilibrium interface and
the 2*-axis passes through the crest or the trough of the wave and is positive upward
(Fig.1). In reference to this coordinate system, the wave is stationary. At infinity, the

Z*
by, T
—_— +
|- )
— h,T,
FIGURE 1. Configuration of the two-layer fluid.
gas is moving with constant speed c. The governing equations are
(P*u)ar + (p*0%)s = 0, (1)
WU+ v = —(p%) 7l (2)
u* vk + v i = —g — (p*) "ok, (3)
* * Do - Do
p*=Cyp*, Cf ==, Cj ==, (4)
Po Po
Uy —Upe =0, (5)

where p* is the density, (u*,v*) is the velocity vector, p* is the pressure, (Cg)!/2 and
(Cy)'/? are the sonic speeds of the upper and lower layers, respectively. The starred
dependent variables are defined by

* (ko k\ )+ * (ke * *
P, 2t = (f*(z*,2*))* for n*(z*) < 2* < h},
(f*(z*,2*))~ for —h} < z* < n*(z*),
and 2z* = n*(z*) is the interface. At the rigid boundaries, v* = 0. At the interface,

u*nt. —v* =0 and (p*)* = (p*)~. At infinity, u* = ¢, v* = 0, and n* = 0 where
(»*)t = (p*)~ = po. It follows from (3) that

(6)

*

Sk gz * *
e = (<L) 67 =i @
0
From (1), we can find a stream function ¥* such that
prut =Y., Pt = —.. (8)
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where ¥* = 0 at z* = 0 is assumed. Therefore, the values of ¥* at the upper and
lower rigid boundaries are

-2 (o)), o (en(8).
0 0

By (5), ¥* satisfies

At infinity,

Vgege + Wieze = (0°) 7 (W70 P50 + P1ep3e) =0
in the gas. Also, we have the following Bernoulli equation
((w")? + (v")%)/2+ 92" + C5 Inp* = (¢*/2) + Gy In(po/C§),

from (2) and (3). Now we use z*, ¥* as independent variables and the so-called
streamline function f*(z*,1*) as a dependent variable where ¥*(z*, f*) = constant
along a streamline, so that the domain of the streamline function is fixed. Thus,

P S - (11)
p P* fopx p P* [
The governing equations and boundary conditions in terms of f* become: in
-7 <yP*<0,0<yP* <y7,

P (LA (f3)?) = 2f5e fipn fanyn + Favoe (fe)?
p¢~ Ji

+ L+ (fr )= = fa(f3)? pz* =0, (12)
1+ (f3)? 2 + +
W +9f*+CyInp* = (*/2) + C5 In(po/CY); (13)
at Y* =y >0,
(f)F = h3; (14)
and at ¥* =0,
(=0, (15)

L+ ()P 1+ (f**_f*')_ 2 (L_L).
i fi GG\ o) T P\g ey )

and at ¥* =y <0,
(F*)” =—=hi. (17)
To nondimensionalize (12) to (17), we let
* * C C
f*=hof, & = hoz, ¥ = 2, o = 2L,

g
C
p* = pop = (ifog) p, CE = ghoC*, ¥7 = —ﬂ% , (18)

hy = hoh*, h} = hoh™, A = (gho/c?),
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where hg is the length scale and can be chosen as hj, and po is the scale for density
and can be set to py . Then (12) to (17) become: in 0 <17 < v, —vy < <0,

Fou(L+ £2) = 2fufyfon + foafo + L+ ) fyoy = fofio= =0, (19)

_———6_20(1;“12) L Af 4 AC0 = & — ACEInC; (20)
2fy 2
at ¥ =g <1,
f=ht=-CTIn(1 —¥7); (21)
at ¢ =0,
=7, (22)
1+(fa-:1—)2 —207F 1+(fa:_)2 —20~ _1_ _1_ +_1(__1___1_)
2o (fFR° 20-(f; )" s (C+ - c-) rey\er e ) ®
and at ¥ = =g ,
fr=—-h~=-C In(1+4y5) (24)
where o = In p*. It is straightforward to check that
fo@)=-C*In(1-¢), oo(¥)=In (10_i¢> (25)

are equilibrium solutions of (19) to (24). We shall show that near the equilibrium
solutions fo, 0o, there exists a solitary wave solution of (19) to (24). Therefore, we
write

Fz,9) = fow) +w(z,¥), oz, ¥) = o0o(¥) +{(z,¥)- (26)
We use (26) to rewrite (19)—(24) as follows: in 0 <¢ < Yg and —v5 <9 <0,
Wy — (1= 9)~Lwy + (OF/(1 =) Gy + (CF/(A = ) “we
= 2(1 + wy) "2wawey (wy + (CF/(1 =)
et x (g + (CH/-9) - (02— 9)]
— wyCy + waCo(1+w2) " wy + (CF/(1-9)))°
£ Zo(w,¢), (27)

¢= = (1- GNP = (1 = 9)/C*)wy + 2wy (1 - 9)/C%)
+(1/2)(e% — 142 + e 2w (1+ (1 - 9)/CF)wy)
+(1/2)(1-20((1+ (1 - )/CF)wy)

— 1+ 2uy((1 - 9)/C*))]
21— N w — (1 - $)/CF)wy) + Z1(w,Q) = Zis (28)
at ¥ = 97,

2

wh =0; (29)
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at ¥ =0,
wt=w", (30)
&~ (gfv e (o 7 (c}+ ci) v
=—(2/(Cc") ) +(2/(C7)?) ¢ wy
—(1/2c)(1 + (w+/c+ )2 e — 1420t +wle )
+(1/207) (14 (w5 /C7)) A€ —14+2¢" +w2e X))
= (1/20F)((1 + (wif /CH) 72 = 1+ 2(wf /CF)) (1 - 2¢F)
+(1/207)(1 = 2¢7) (1 + (wy; /C7)) % = 1+ 2(w,; /C7))
£ Zo(w,Q); (31)
and at ¥ = -y,
w” =0. (32)

Here, we remark in passing that w,( mean wt, (" in the upper layer and w=, (™
in the lower layer. We substitute (28) for (¥ into the left-hand sides of (27), (31),
which become

C*A 20%) + )2
ez St (Rro SV TR Rt (1 —p)
+
== (10_ ,(p) Zw(w,()—l—Zg(w,C) éFO('waC)y (33)
A + A - (ot -Cn)
Cri-ctn T o N T a=ctya-c N
_Zi(w, Q)  Zy(w, Q)
- oF - + Za(w, ()
£ Go(w,¢) atyp=0. (34)
Finally we use (28) to transform (33), (34), (29), (30) and (32) into
(A=9)wy)y _ Wae _ (1 —9)°
CEI=CEN) A~ ANCF? s Fo(w, Q) = Fi(w,0), (35)
¢=Z1(w,0) £ Fy(w,¢)  in0<<yf, —v5 << 0; (36)
wr=0 aty=v9¢f < (37)
wy, wy A2(C+ - C7) Go &
4 P _Goa
Cri-cny) o-(i-0-N d-cna-cnvT - Giwo, (38)
wt =w~ at ¥ =0; (39)
wo =0 aty=—v]. (40)

In the following we shall show that (35) to (40) possess a solitary wave solution under
certain conditions.
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3. Formal derivation

In this section, we use a formal asymptotic method to derive a solitary wave solution.
Let w, ¢ have the following asymptotic expansions
®=ed) +e2Dy 4,

XA = Ao + €\ and z is replaced by €~'/2z under the so-called long-wave assumption.
After substituting these expansions into (35) to (40), we obtain a sequence of equations
and boundary conditions for the successive approximations by equating the coefficients
of like powers of € on both sides of the equations. The equations for the first-order
approximations are

(L=9)wiy), =0, G =(1=C*x)"" Qowr — (1= 9)/C*)wiy)
in0<¢ <y, —vy <y <0
wi =0at ¥ =9, wy =0aty=—1g;

wiy ~ W, B N(CT-C7) v = 0
Ct(1-=CtX) C-(1-C~x) (A—=Ctx)1-=C=x) =
wi =w]  aty=0.

We can easily find a nontrivial solution w;(z,%) = n(z)eq(v)) with

_fwd - s /1 -w) for0<y <y, “
(¥) {(w LU= ) for gy <9 <0, (4D
and (1 (x,9) = (1 — C*Xo) " In(a) ()\060(1/)) - (1~ 71))/0:':)601;,) if )\ satisfies
1 1 1
)
( )+ (“(1+¢5 T U
1 1 1 1

which has two roots

N B W)+ () - ) £ VA w)

2(C+—C-)
where p = (Ct/C~) > 1, Ay > A_,
A= (1 + @)™ = (o) A~ vF) - 2)* + 4w vy) " > 0,

and (A1) ~'/2 are called critical speeds. It is easy to check that 1—C*=\y # 0 for p > 1,
¥5 >0 and ¥ < 1. Let Ao be equal to one of Ay. In order to find n(z), we need the
equations for the second-order approximations. In -9, <% <0,0< ¢ < w[)" ,

(L= ’way)y _ Wisa _ (1-9)? {_ww ()\oww B ((1 - Tlf)wlw) )
"

CEI—CEr) ~ Ao Mo(CE2(1—CExg) c*

- (oGt (3 (@ ey’
ot = emien) )2 ¢

at¢=¢ng;=w;;

at ¥ = 0,wy = wy,
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W Wy  N(Ct-c) o wiyh
CTI-—C%x) C-(1=CX) ([A=CtA)(I=C X)) > ~(A=Ctr)?
wiy AL (CT = C™)A Ao

(2= (CtT+C7)N)

T A n2 (L= C )20 —C g™
2wl (MCtuf —wiy) | 2w, (WCTwy —wiy)  3(wiy)?
(C+)3(1 = C*+Xo)do (C-B3(1=C2)ho  2(CH)3

3(wpy)? 1 </\00+wii- - wi, )2 1 (z\oC"wf - wl_¢)2

2(C-)2  (CH)B\ 1-C+X (C-B\ 1-C-X
N 1 AoCFwi —wi\? 3 ﬂ)Q 2(MCruf — wi )uwi,
CHI1=CX) [\ CH(1=C*Xp) 2\ C+ (CHZ(1=C*))
B 1 MC~w] — w;p)z N §<w_1"¢)2 2(MCwy —wiy)wy,
C-1=CXx) [\ C~(1-C ) C- (C=)2(1 = C-X)
26

at Y = -1y, wy =0.
This is a nonhomogeneous boundary-value problem. Since eg(%) is a nontrivial solu-
tion for the corresponding homogeneous problem, to solve the nonhomogeneous prob-

lem, the nonhomogeneous terms F' and G must satisfy the solvability condition

0o v .
/ e | Fres s+ Geo0) =0 (43)
~—%o
From (43), we obtain the following equation for n(z),
Aoﬂm + /\1A177 + A2772 =0 (44)
where
1 (%
o= [ i
0 J_u-

= (%) (¥9)? + 25 — 21+ 95) In(1 +97)) A5 "
+ (W5)2 (20F — (@)% +2(1 — 9 In(1 = ¥F)) " Ao >0,
g (1= C7 )2 + 9 (1 = CFX)?

T (o W TR S W

and A, is complicated and given in Appendix 1. If A3 # 0, then (44) has a solution

S(.’E) = (—%};}) SeCh2 ((—)\1A1/A0)1/2-T/2)a (45)

provided that A\; < 0. Thus the solitary wave has to move at a speed greater than a
critical speed. The first-order approximation of a solution (w, ¢) for (35) to (40) is

w(z, P) = eeo(¥)S(z) + O(%),
$(x, 1) = e (1= CFXg) ™' S(x) (Moeo(¥) — (1 = ¥)/CF)eoy) + O(e?).

Now we have formally derived a solitary wave solution (46) for (35) to (40). In the
following sections, we shall rigorously show that (46) is a first-order approximation of

(46)
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a solution of (35) to (40) for small € > 0, if A = Ag + A1 with A\; < 0 where Ao = A4.
Note that by choosing some special values of y, ¥§ < 1 and 15 > 0, we obtain

1-C*A; <0, 1-C*A_<0, and 1-C~A_>0.
Since 1 — CEAy # 0, these inequalities remain for all u > 1, ¥ < 1, and 95 > O.
From (35), we see that the linear part of (35) is elliptic if and only if 1 — C*) < 0.
If A\ = A_ in (35), the linear part of (35) becomes hyperbolic in the lower layer.
Therefore, in what follows we only choose A9 = Ay. Furthermore, 1—C~A_ > 0
implies ATV2 s (C~)Y2. 1f the wave speed is near but greater than A”Y 2 the flow

in the lower layer will be supersonic and the governing equation in the physical plane
also will become hyperbolic for small e.

4. Transformations and Banach spaces

In (35) to (40), we let A = Ao + A\je = A + Aje where A} is given in (42). Then (35)
and (39) become

((1 - ¢)2w¢)¢ Wyy _ ((1 - ’(,[1)2’(1)1/,),/,)\16 /\16
CE(1-C%EXh) o "—( (1-C%Xo) +A_0w”)+F1(w’C)
£ Fy(w,0), (47)
wi o wy  Eet-co)
CH1—-C*X) C—(1-C-X) (1=Ctx)1-C-)Xo)
_wp o wh
e R (oo vy i

(C+ — C—)(2>\0>\1 — /\%/\1(C+ + C_))
(1 — C+/\0)2(1 - C—)\o)z

2 Gy(w,¢) at v =0. (48)

Since we need to prove that (46) is an approximation of a solution of (35) to (40), we
write

+ we + G1(w, ()

w(z,9) = e(eo(¥) (S("/%2) + w(z)) + 6(z,¥)), (49)
¢z, 1) = e((1 = CFXo) ™ (Aoeo(¥) — (1 — %)/C*F)eoy)
x (S(e?2) + w(z)) + &(x, ¥)).- (50)

Then the equations (36)—(38), (40), (47), and (48) become

_ 2
éfil(—lib)c—f’;k% - % =271 (S +w)ezeo +€ ' F3 (e((S + w)eg + 6),

(1= C*30) ™ hoco — (1= 1)/0F)eoy) (S +) +6))
£ Fi(w,0,) (51)
&(z, %) = —(1 — CF o)  (Moeo — (1 — 9)/C*))eoy) (S + w)
e lF, (e((S+w)eo +9),
(1= CFX0) ™ (Moeo — (1= 1)/CF)eoy)(S +w) +€))
2 Fy(w,0,8) in 0<v <y, —y5 < <0; (52)
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07 =0 at p=9yf, 067 =0 at ¥=—y; (53)
b by M(Ct—Co)o
Ct(1—C*x) C-(1-C-X) @[@A=CHta)(1=CN)
=716y (e((S +w)eo + ),
(1= C¥20) ™ (Moeo — (1 = )/CF)eoy) (S +w) +¢))
£ G3(w,6,6), (54)
6t =06 at ¥ =0. (55)

However, we note that eg(1) is a nontrivial solution of the corresponding homogeneous
equations for (51), (563)—(55). To solve the nonhomogeneous problem, the nonhomo-
geneous terms Fy and G3 must satisfy

¥g
[ B8, 0w + Gaw,0,e0(0) =o. (56)
¥
From (56) and the expressions of Fy and G3, and some tedious but straightforward
calculations, we obtain an equation for w

Aowes + MeA1w + 2€425(e?x)w = eN(w, 6, €) (57)
where N includes all the small terms and nonlinear terms and is not presented. In
Section 6, we shall show that (51)—(55) and (57) have a solution (w,,&) for small
e>0.

We conclude this section with the definition of some Banach spaces to be used later.
Let 0 < A < 1 be fixed, m, n be nonnegative integers,

= {(2,9) |0 <P <Y, —00 <z < +00},
T ={(z,%) | ¥y <9 <0, —00o <z < +00},

HEf ) S sup (1@ +891) = (@, 62)| exp(de/?a])
“he

X (8 + (r — 92)1)?),
ctf@ )= swp_ (If(z,v) ] exp(de?a)).
(z,9)eD*

Here §’, d > 0 are fixed constants, we may choose, for example, §' = 10, and d will be
a small constant to be determined later. Then define the Banach spaces

B = { 1(0:9) € C"((=50,+9) x (145, 0) U 0.%7))

o fE
”f”B - Z Zci (6 kawm—k) + Z Hi (ammawn m) < -|-OO}

m=0 k=0
Let BY = {f(z,v) € By, | f(z,¥) = f(—x,v%)}. We note that B, and B also include
functlons depending upon z only.

5. Differential equations

First, let us consider (57). Let
L(w) = wag + (A1 A2e/Ag)w + (2426/A0)S(€'/%x)w = eN/Ay. (58)
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However, if f(z) and w(z) are even, the problem

Lw)=f 0<z< 400,
wy =0 at z =0,

has been studied in [14] and the solution can be written as w = L~!f. We have
Lemma 1. If f(z) € B forn >0 and d is small in B, then

e Fllmg,, < Ke 1 fllsg
where K is independent of € and f(z).

The proof of Lemma 1 can be found in [14]. By checking terms in N(w, 6, £) carefully
and using Lemma 1, it is quite straightforward to obtain the following result.

Theorem 1. Ifw,0 € B}, € € By_; with ||w|py < Ke'/2, |10]lpg + €]l go_, < Ke
(or Ke'/?) forn > 2, then N(w,0,€) € BS_,,

|N(w,6,8)llpo_, < Ke (or Ke/?),
and
II£7 (eN/Ao)llpo < Ke (or K€'/?).

Now let us consider the partial differential equations (51), (53)-(55). First, we
discuss the following equations: in —oco < < 400, =95 <P < 0,0 < P < 11)6" <1,

1— 2
_/\Q%:—) + Ugy = ¢1(x,¢); (59)
at ¢ =0,
ut(z,0) = v (z,0), (60)
Aou) Aoty MCH—C ) .
TGHI= ) T A= Cch) T A= o =) — s (@)
at Y = -,
u =0 (62)
at ¥ = 9y,
v =0 (63)

where ¢1(z,) € BY and pa(z) € BY ., for n > 0. We shall make use of the family of
eigenfunctions v = v(1)) satisfying

(A =)uy)y o N
C*(1—C%)) 70=0 in Yo <P <0, 0<% <ey; (64)
ot =, — Aoy + Aovy NECH-CT)w  _ 0:
T Ct1-CtXx) C~(1-C-X) (1=Ctx)(1—=C-Xo)
at ¥ =0; (65)

v"=0 aty=-—v5; vT=0 atyp=q]. (66)
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First, let us consider the space L%(—ty,%) with the usual L2-inner product.
Define an operator in L? by

A do(( =) uy)y
Alw) = - g'i(l—CiAo) ’

with domain
D(A) = {u € LA(—vy,4f) | v~ € H*(—v;5,0), vt € H2(0,97),

ut(0) = v (0), u*(vg) =u(—¢g) =0,
~ oug(0) Aoy (0) X(Ct-C)u(0) 0}
CHI—C%x)  C-(1=CX)  (I=CTax)(I1=C-Xo)

Obviously the solutions of (64) to (66) correspond to the eigenfunctions of A in L?
with eigenvalues 7 and A is closed and densely defined. Also it is easy to obtain that

0 M1 =) Puyuy vs Ao(1 — ) 2uf vl
(Au,v) = /_%- C—(1-C~X) ¥ +/0 CH(1 - C*)) i

ct-c-
20U T T - o ay

for u,v € D(A), which shows that A is symmetric and all eigenvalues of A are real.
If u € D(A), then

Vo 2 v Vg
(u+(o>>2=( / u;d«p) < [T a-wnpras [T a-wa
s 9
== [ (- v’ a,
0 2 0 0
-2 — u AT =2
(u(0)) —(/_%_ m) s/_%_((l ¥) ¢)d¢/_%_(1 ¥)~2dy
0
=+up) g [ ,(ag)ay
By 1 — C*)¢ < 0 and (42),

(Au,v) < —(

Q+vdo . _ (-9

Y5 C~(C Ao —1) 97 CH(CHho—1)
30+ _ O-
(1=C*Xo)(1 - C~ )

where the equality holds if and only if u = Kpeo(®), eo(?) is defined in (41), and Ko
is any constant. Thus all eigenvalues of A are nonpositive. In order to show that the
eigenfunctions of A form a basis of L2, it suffices to show that (A — 7)~! exists and
is compact in L? for some 7 > 0. But (A — 7)u = f is equivalent to solving

(1 = 9)%uy)y
CE(1 = C*))
B Aouf + Aoy, X(Ct-C)u
O+(1—C+/\0) C_(I—C_)\o) (1—0"')\0)(1—0_/\0)
ut =u" at ¢ = 0;

—ru=f, in —¢; <p<0, 0<v<YF;

=0,
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=0 aty=—v;, ut=0 aty=1y.
The solution of the equations is obtained easily as
W) = A3 (=9 -9y - (=) (- 9)?)
ot [P O - Ot ) (a)
O Nt - oy
s [V CT(1=CT ) fT(2)
(1= d
=¥ /wé N(rf =)L —ayi
(@) = A7 ((1+95)7 (1= )7 = (L4957 (1= )77
" —1 _ - -
)T / C(1-C X)f(2)

—v5 do(ry —ry)(1—z)rHt

’

_ v —(1=C" -
—#5 do(ry —rg)(1 —z)2 H
where
1+ A X+ (A3 +4TXCE(CEN — 1))1/2
r = ,
—2)\o
1+ A Ao — ()\(2) + 4T>\00i(0i>\0 — 1))1/2
ry = “oh .

Note that Ag' and Ay are two constants determined by the two boundary conditions
at ¢ = 0. Since 7 > 0 is not an eigenvalue of A, AJ and Ay are uniquely defined
and bounded if f(z) is bounded in L2. For f(v) € L?, it is easy to show that u¥ (%)
are continuously differentiable with their derivatives bounded by the L?-norm of f(¢).
Thus, if f(¢) is in a bounded set of L?, then () is in a compact set of L2, which
implies that (A — 7)~! is compact for 7 > 0. Therefore, there are countably infinitely
many eigenvalues, and the set of corresponding eigenfunctions is complete in L2. In
Appendix 2, the asymptotic behavior of these eigenvalues is given. We summarize the
results as follows:

Lemma 2. The system of (64)—(66) has solutions en(¥), 7 = 7, n = 0,1,2,...,
with 9 = 0 > 1, > 720 > ... . The eigenfunctions e, (¢¥), n = 1,2,3,... , form an
orthonormal basis of L*((—y ,0)U(0,%g)) together with eq(v) defined in (41). Also,
|7n| = K1n? for large n where K1 > co > 0 with ¢y a fized number.

Now we can find the solution of (59)-(63). Assume
+

0 Pg
[ et@weswiws [ ot ve)a+ @@ =0. (67

o 0
By Lemma 2,

<P1(37,'¢’) = Zai(w)ei(w)a (68)

where the convergence is in L2-norm and

0 R
a0 = [ e W) + [ et wa.
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Then multiplying (59) by e;(¢) and integrating by parts twice, we have
Cizs(7) + 7:Ci(2) = ai(z) + p2(z)e;(0)

where Cp = 0, and, for i = 1,2,...,
+

0 ¥
Ci(z) = /—¢‘ u” (z, 1b)e[(1,b)d1/)+/0 u't(z,¥)ef (v)dop.

0

If welet —r; = p2 fori =1,2,...,
Ci(z) = —(1/2Mi)/ exp(—pilz — s[)(ai(z) + pa2(z)e; (0))dz

2 G:(ai(x)) + Gi(p2(2)ei (0)). (69)
Now let

u(z, ¥) = ZC (2)ei() = ua(z,9) + ua(z, )
i=1

D ei($)Gi(aiz)) + Z ei(¥)Gi (2 (x)e:(0)). (70)
i=1
Then u(z,¥) € L?((—y,0) U (0, 1,[)[)")) for all z € R.

We first assume ¢;(z,7) € B and ¢o(z) € BY with compact supports in
(—8(¥g +v5) — 2,8(¥g + ¥y) + 2) for the z-variable. Note that

Z/ C?(z)dz < M < 400

—o0

where M is a fixed constant. Since |7;| ~ O(32),
1D%us (2, 9)[72 < Kl sg, (71)
D% ua (2, 9)lZ2 < K2l 5o, (72)

for j = 0,1. We call v(z,%) a generahzed solution of (59)—(63) if v=(z,9) €
HY(R x (=97 ,0)), v*(z,9) € H'(R x (0,47)), and

g Xo(1— )bz
/ / (C’+(C+)\o—1) +uf +)d’¢/)dx

L[ (E55

/\3(C’+ C™)ut(z,0)z(z, 0)
(1=C"x)(1-C-Xo) dz

-/ / er(o 0o Ddids+ [ pa(o)ela, 00 (73)
for all z+(x ¥) € C*(R x (—¢g,0]), 27 (z,%) € C°°(R x [0,9¢)) with 2+(z,0) =
27 (,0), 27 = 0 in a small neighborhood of ¢ = 1/10 , 2~ =0 in a small neighborhood

of ¥ = =1y, and z(-,9) € Cg°(R). If u(z,) in (70) has only finitely many nonzero
terms, then u(z, %) is a generalized solution of (73) by construction. Thus, by (71)-
(73), we have

D7 @ )l 2oy + 10747 (@ W)l (v o
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< K(llpillsg + llezlipg) — for 5=0,1. (74)

For general u(z,1)), we can use un(z,9) with finitely many terms to approximate
u(z, 1) to obtain the estimate (74). Therefore, u(z, ) defined in (70) is a generalized
solution for (73). Now we need to have the Holder estimates for u(z,). Since u(z, )
satisfies (73) and 1 (z,v) € B, the interior estimates of Hélder norms for u(z,)
and its derivatives up to second order can be obtained by classical elliptic operator
theory [6]. Also, we have Dirichlet boundary values at ¥ = —1py and 9 = 9. Thus,
since ¢1 € BY?, the Holder estimates for u(z, ) can be extended to ¢ = —t, ¥ = b
[6]. Therefore, we only need Holder estimates at 1 = 0% where 0% is denoted as the
limit when 9 — 0 from the positive or negative direction, respectively.
First, we change (73) into a more manageable form for z and ¢. Let

Lty 1/2
o = (9_(0%2_1»  y=—dtIn(l— ),
0

ut = VaE(1 —9) "M, 7 = VdE(Q1 - y)" 2", (75)
Then (73) becomes

/°° <v+(:v, 0)g*(z,0) v (2,0)g"(2,0) , A(CH - CT)d" v (, O)q"‘(:c,O))dx
(3 NERE T —1)(C o —1)

oo —d* In(1—97) 0
- / (/ +/ ) (v;,'tqyi +vEq)dydz
—oo \JO —d~ In(1+4g )

0o oo 0 —dt In(1-97)
= [" ea@)a @ 0a+ [ (/ + )
- —d— In(1+95) 0

x (viqi‘l(d*)2 + of (z,y)(dF) 72 exp(~2—g;)> ¢*(z,y)dydz (76)

—00

where ¢*(z,y) has the same properties as z%(x,1) except that at ¢ = 0,
(d*)/2q*(z,0) = (d~)/2¢™ (x,0). Now let ¢, = min(—d* In(1—27), d* In(1+1g))-
We choose different g% (x,y) so that when y is near zero, we can have local Holder
estimates with considerations of the boundary conditions at y = 0. Note that we
need ut(z,0) = v~ (z,0) or Vdtut(z,0) = vd=v~(z,0). Thus, we let g(z,y) be in
C5°(R X (—tm,0)) with

¢ (z,y) = Vdq(z,y),  q*(z,y) = —Vdtq(z,~v)

Thus, the equation (76) becomes

=) 0
—/ / (( d—v™ = Vdtvt)ygy + (Vd v~ — d+v+)qu) dydz
—00 J —Ym

oo 0 — +
. _ v v — _—y/2d~ + —y/2dt
= [, iy e et ) e
(77)

If we view Vd— v~ (z,y) — VdTvt(z, —y) as a solution of (77) in R x (=¥m,0) with
Dirichlet boundary condition at y = 0, then the Holder estimates of d-v (z,y) —
Vd*vt(z,—y) and its derivatives up to second order near y = 0 can be bounded
by the Holder norms of v* and cpf. Also Vd—v~ = Vdtvt can be obtained at
y = 0. Next we choose test functions ¢* where ¢*(z,y) = (d+)~Y/2¢(z,—y) and



150 SHEN AND SUN

( ’
( )
oo 0
‘/. /_,p (@)% + (@) 2%y,
(@) 0+ @), dyds
© /] 1 A (d+ —d) 11
+Lm(ﬂﬁﬁ_2wﬂ?+«ﬂ%in«%M—n>(ﬁ*ﬁF)
x ((d7)" Y%~ (2,0) + ()"0t (z,0))q(, 0)dz
co o) 0
~ [T oo+ [ [ (et ten/en - g teves)

y) = (d7)72q(z,y) with g(z,y) € C®(R X (~¢m,0)), 4(,y) € C5°(R), and
= 0 for y near —t,,,. Then (76) becomes

—00
v~ vt

+ 4(d-)52 4(d+)5/2>Q($, y)dydz.  (78)

This is an elliptic equation for (d~)~Y2v~ + (d*)~/2v* in the variational form with
an oblique boundary condition

3 v++v‘ 4 1_1+ A(CT—-C)
(at)/2 " (d)2 ), 2(d*+)2  2(d")?  (Ctx—1)(C~Xo—1)
1 1

* (d_+ T ) ((dH) 20 +(d7)207) = pa(z) at ¢ =0.
Thus, we have the Holder estimates of (d*)~1/2vt + (d=)~1/2v~ and its derivatives
up to second order near y = 0, and these estimates are bounded by [|pz||po and
llvllgg + lle1llgg- If we transform v and y back to u and ¢, we obtain the Hélder
estimates of u*(z,1) near ¢ = 0. Therefore, if ¢; € BY and ¢2 € BY, and o1, ¢2
satisfy (67), then u(z,v) defined in (70) is in BY, and

lu(z, )l sy < K(lle1llsg + llo2llmy + llullpg)-
Here we have used the compact supports of ¢1, @2 and the exponential decay of the
Green’s function in (70) as |z| — co. However, by checking the terms in (70),
lull gg < K(lle1llBg + llzll o),

since e;(0) is bounded (Appendix 2), and || ~ O(i?). Finally, u(z, ) defined in (70)
satisfies
lu(z, ¥)lisg < K(lleallsg + ll2llsg), (79)

if 1, o satisfy (67).

Next, let us prove (79) in the case that ¢;(z, ) and @2(z) may not have compact
supports in the z-variable. Let zo be fixed first and choose « such that |z — zo| < 1.
Define a cut-off function p(y) € C=(R) with p(y) = 1 for |y| > 8(¥¢ + 1) + 2 and
p(y) =0 for |y| < 4(vd + ¢y ) +2. Write (70) as

u(e,9) = Y en($)Gi (p(s — 20)(ails) + 2(s)e:(0)) )
=1

+ Y en(#)6i (1~ p(s = 70))(as(s) + a(s)es(0)) )

=1

Sr41I
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By the definition of p(s), the integration variable s in I satisfies |s—z| > 4(g 4+ ) +1.
Thus the differentiated series of I is uniformly convergent and derivatives can be taken
term by term. By a routine calculation [14],

Mlis; < K(llelisg + lle2llz9)

where K is a generic constant independent of zo and Bj is defined just as By except
that the sup-norm is taken only for |z — zo| < 1. For I, we write

/ " exp(—pile — s{)(1 = p(s — 20))(ai(s) + pa(s)es(0))ds

— 00

= /oo exp(—pilz — zo — Y)(1 = p(y)) (ai(y + o) + w2(y + z0)ei(0)) dy.

—00

Let o* = z — z9, aj(y) = ai(y + z0)(1 ~ p(¥)), ¢3(y) = (1 — p(y))p2(y + z0), and
©1(y,¥) = (1 = p(y))p1(y + o, %). Then

o0 oo
1= Gi(a})ei(®) + Y ei()Gi(w3)ei 0).
=1 =1
IT has the same form as (70), and ¢}, ¢} have compact supports in (—8(vg +v5) —2,
8(1g + 5 ) +2). Therefore, (79) holds, and, in particular,
11|55 < K(llei(y: ¥)llBo + I3 ()l 51)

where K is independent of zo. However, note that

sup(I(1 — p(y))¢1(y + zo)|) £ sup I11(y)
yeER YER

where I11(y) = |(1 - p(y))¥1(y + 2o)| exp(|y + zo|) exp(~|y + zo|), and
exp(—|zo| +8(yg + %) +2) = exp(~|y + o)
> exp(—|zo| = 8(¥ +%5) — 2),
since ITI(y) =0 for |y| > 8(¥g + 1y ) + 2. Thus,
I171|| 5; exp(—dlzole'/?) < K(llprllsg + llp2ll o)
where K is independent of zo. Since x¢ is arbitrary and u(z,v) is even, we have
lu(z, ¥)llsg < K(llo1ll g + lleall 5)-
By induction, we obtain
lw(z, ¥)llse,, < K(lleallsg + lezllse,,) (80)

for every positive integer n. Hence, we have

Theorem 2. If 1 € B, v € B2, and ¢1, po satisfy (67), then the solution
u(z,¥) of (59)—(63) exists in BY,, and satisfies (80).

Now let the solution of (59)—(63) be

u(z, ) = P(p1(x, %), pa()). (81)
Then, we consider (51)—(55) and write
Fy(w,0,€) = My () + Fy(w,0,€), (82)

G3(w>67§) = M2(w) + 63(“’7 67&)7 (83)
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where M1(w) and Ma(w) contain only the terms with wy,, ew, and €S(e'/?z)w in F,
and Gg, respectively, and F, and G3 are the remainders. By the derivation of (51)
from (56), we can see that the left-hand side of (57), denoted by AoL(w) in (58), i
from (My, Ms) only, and the right-hand side of (57) is from (Fy,G3). The Ieft-hand
side of (56) is equal to AgL(w) — eN. Since L1 exists by Lemma 1 and Theorem 1,
define

F(w,6,8) 2 My(L™Y(eN/Aq)) + Fy(w, 8, 6), (84)

G(w,0,€) & My(L™(eN/Ao)) + Ga(w,0,6), (85)
which are equivalent to F; and Gj for the problem. If we replace F; and Gj in (51)

and (55) by I and G, respectively, then by a similar derivation of (57) from (56) and
noting that £~! only appears in (M;, M3), we have

vy
[ P60y + co(0)G(w,6,6) = AoL(L™H e/ Ao)) ~eN = 0. (86)
~y

For such F and G, the condition (67) is satisfied automatically. If we assume that
0(z,9), w(z) € B) 45, and £(z, ) € B,y with [[6]|po , +lwllpo,, +1IEllsg,, < Ke'/?

for some K > 0, then by checking the terms in F* (w 9 &) and using Theorem 1, we
have F,G € BY and

IFllBg +IGllBy < Ke(ll6llpg,, + lwllzo

n+2

+ llelzo,, +1).
Thus, by Theorem 2, we obtain

Theorem 3. If 6(z,v), w(z) € BY,,, and £ € BY,, with ||0|]Bo + |[w[|33+2 +
I€llse,, < Ke'/?, the solution of (51) and (53)-(55) with Fy and G3 replaced by F
and G, respectively, exists and satisfies

IP(F, @)l , < Ke(ll0]l 5

n+2 n+2

+ llwl 5o

9., +1).
Finally, by checking the terms of F5(w,§,€) in (52), it can be shown that if w, 0 €

BY ., and £ € BY,, are bounded with respect to their norms, then F5 € B}, and
(5 (w,0,8)ps,, < K(I1¥]l2,, + €)- (87)

n+1
Now we are ready to obtain the existence of solutions of (51)—(55) and (57).

+ léll go

n+1

6. The existence proof

First, we invert (57) into
w = (Ao) LN (w,0,8)), (88)
by using Theorem 1. Then, we comnsider (51), (63)—(55) with F; and G replaced by

F and G in (84) and (85), respectively. By (86), F and G satisfy the condition (67).
Hence, (51), (563)—(55) can be transformed into

6(z,4) = P(F(w,6,£),G(w,6,6)) = T(w,6,€), (89)
by using Theorem 2 and (81). Finally, we have
{(z, ) = F5(w,,§) (90)

from (52). By Theorem 3, we obtain that if l]HllBo , T lwllse

n+2 + HgllBgH < Kel/2
for n > 0, then

[72(w, 6,8)|| < Ke. (91)
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In order to use (87) and Theorem 1, we transform (88) and (90) into

£(z,¥) = Fs(w, Ta(w, 0,£),€) £ To(w,6,£), (92)
w(z) = Ag' L7 (eN(w, T2(w, 8, ), Tz (w, 0,€))) (93)
2 7 (w,0,6).
Then, by (87), (91), and Theorem 1, we have
175w, 0,850, , + T2 (w,6,8)llBg,, < Ke. (94)

Define a closed convex set in the Banach space BY,, x BY,, x B),; for n >0,

Sy ={X = (,0,6) € BYy5 x BYyp x Bl

1X1 = llwl 5

n+42

+ 18]l go

n+42

+ [|€]l go

n+1

< belm}.
Let

T(wa 0, 5) = (71((.0, 8, 5)7 7—2(“-” 0, 6)’ 7?5("‘)’ 0, g))

By (91) and (94), 7 maps S, into itself if K€/ < b for € small. Also, by using similar
proofs as for Theorems 1 and 3, we have

Theorem 4. If X(U) = (0™, 00 ¢M) gnd X?) = (w?,0?) ¢@)) € S, then
I7(X®) - T(X®)| < Ke/?|x© - X .
We choose Ke'/2 < 1/2 for smaller € > 0 such that 7 maps S into S and is a
contraction in Sy. The contraction mapping theorem implies the existence of a unique

solution in S, for (89), (92), and (93), which gives the solution of (51)-(55) and (57).
Finally, we have the existence theorem.

Theorem 5. If A = A\g + A€ with Ay <0 and

\ = Bt () + (mpg) T —vg) + VA
0~ 2(C+ — C-)

where = (C*t/C~) > 1 and

A= (w1 + @)™ - () - —2) 4 ug) T > 0,
then for small € > 0, there ezists a solution of (19)—(24) in the form
fH(@,9) = =CF In(1 = 9) + ey (b —$)(1 = ¥) 7 (S(e/%2) + w(2)) + b (2, ),

G T G P N Y (C e O W e )

x (NCHug (g — ) = v5 W — 1) (5(/%2) + w(@))
+ett(z, 1) for 0<y <y <1,
F (@) = =C™ In(1 = 9) + et (¥ + 95) (1 — 9) " (S(e%2) + w(z)) + 0™ (),
o (z,¥)=lnp (z,¥) = ln(l—C__w—) + e((l —C X)C(1- d)))
x (NCvE (8 +95) - ¥5 (1+97)) (S(/20) + w(2))
+ e (2, ) for —v5 < <0,
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where

24,

Ao, A1 > 0, and Ay # 0 are defined in (44) and Appendiz 1, w(z), 6(z,0) € B,
and £(z,v) € BY,, for n >0 with

+ 1161l 5

n+2

S(e'/?z) = <3—)\1ﬁ) sech®((—eA1A1/A0)' ?z/2),

lollss,, +lellss,, < Ke,

and K is independent of e. The interface is given by
n(z) = ey vy S(€/%x) + O(€?),
and g ¥y S (€Y/2z) is a first-order approzimation to the ezact solution for small e > 0.
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Appendix 1

Here, we give the explicit expression of Ay in (44).

(%9 )(¥g +1) [(4 —C™2)(¥g)? 4 P —In(l+ %‘))}

Ay =

T X(CH)2(1=CX) 2C- 1-C-Xo
+ WP —4g) [_ (4= C* M) () | $ho(g +1In(1 - wJ))]
Xo(CH)2(1 = CH+)g) 2C+ 1—CHXo

+ufur {(CH 21 -0 a0

x (O™ 05 — vy +45) + (3/2(We — Doy (1 - O 20))’

+ 205 (¥ — D(L = CT20)MCH v — v vy +45)]

—(CT)21=C"X)3

x [QoCwdug — v o5 — ¥ + (3/2((Wg + Vg (1 — €M)’
+ 20 (45 + DoCTY ¥5 — 95 — ¥ (1 - C )] }-
We note here that As can be positive, negative, or even zero depending on the values
of C*, C*, 4y, and v . In this paper, we assume Ay # 0.
Appendix 2

We shall consider the asymptotic behavior of the eigenvalues of (64)-(66) of Lemma
2. Let || be large enough so that A2 — 4|7, [Ao(CET Ao — 1)CF < 0. If we let
+ _ (AmlAo(CFAo = 1)C* - A3)'?
By = )
2X0
then the solution of (64) satisfying (66) and e =e;, at ¥y =0 is

G 9) = 01 =) siny (1 + 5 )sin (s 1n (122 )
— %o

€5 () = O(1 = )™ ?sin(uf n(1 = i) sin (s 1n (1 j’)) ,

where C is a normalizing factor. From (65), we observe that uf must satisfy
sin(yy In(1 + 7)) sin(u; In(1 - ¥))
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1 B 1 2 ct-C- ]
X [20+(1 “C ) 20-(1=Cx) 0T =C2)d-C™x)
+
- GO =y Sk (1 +97) cos(e In(1 - i)

+ E‘(Cﬁ_i\o—nf)_ sin(u;} In(1 — ¥F)) cos(u;, In(1 +45)) = 0.

However, from the definition of p, when |1,| — +00, u go to infinity with order
|7n|Y/2. Thus
C™(C™ o ~ 1)sin(uy In(1+1q)) cos(uy In(1 — ¢g))

- CH(C* o = D)sin(uf In(1 = ) cos(iy In(1+ 7)) = Ol 7).

If we keep the lowest order terms, we have

C=(C 20 — 1)sin (('T"KC_;‘(’) —1)¢” ) v In(1 + %‘))

B 1/2
X cos <<|T"|(C+/>\(; 1)C+> In(1 - 1!’3))

—CH(Ct X - 1)sin (('T"KCUO —ner ) v In(1 — ¢g))

Ao
v y= 12
xcos((lTnl(C iﬁ; He ) ln(1+¢0_)) =0.

Hence,

(C(C™ X —1) = CH(CFr - 1)) sin((%) 1/2

X ((ﬁ———“—(c_*‘&; 1)0_)1/2 In(1+¢5) + (—(C”"A; 1)C+)l/2 In(1 — 6’)))

_ (C_(C_/\O — ]_) + C+(C+/\O _ 1))Sln<(l;—zl) 1/2

((W)”Q In(1 — o) — (W)W In1+ wa))) =0

However, the number of intersections of two sine functions is of order n. Thus |7, |'/? ~
O(n) or |1,| ~ O(n?). Therefore |1,| > K(n?) for some K > 0.
Next, we show that e, (1) is uniformly bounded as n — +o0. Since

vy
/ e2(Y)dy =1,
_¢—

0

C in e,(¢) must be chosen by
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-1/2

3 sin?(p; Llll;(j +%5)) (2“7-11- In(1 — 9F) +sin(2u; In (1 - 1/’3)))}

< K(sin2(u: In(1 — ) + sin®(u; In(1 + ¢o_))) /2a

for n large, where K is independent of n. It follows that

lef ()] < 0(1 — ) ™H?|sin(py; In(1 + 95))|
K(1-4)"Y? < Ky,

len ()] < 0(1—¢) 2| sin(pt In(1 — ¥)|
<KQ1-9)? < Ky,

where K1, K, are fixed numbers. Thus ey, (¢) is uniformly bounded in —y5 < 9 < 9.

10.

11.

12.

13.

14.

15.
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