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ASYMPTOTIC METHOD FOR INTERFACIAL SOLITARY WAVES 

IN A COMPRESSIBLE FLUID 

M. C. Shen and S. M. Sun 

ABSTRACT. We justify rigorously an asymptotic method developed for two- 
dimensional solitary waves at the interface between two isothermal layers of a 
perfect gas under gravity bounded by two rigid horizontal planes. Assuming that 
the two isothermal layers are in thermal inversion, we prove that if the reciprocal 
of the Froude number is smaller than but near the larger one of two critical values, 
the solitary wave solution obtained by the formal asymptotic method is indeed an 
approximate solution to the exact equations, thus establishing the mathematical 
existence of a solitary wave in this context. 

1. Introduction 

In recent years, there has been growing interest in studying interfacial progressive 
waves in an incompressible fluid. These problems generate many interesting wave 
patterns and require new mathematical methods to find solutions. They have been 
investigated numerically in [7]-[9], [15], and the mathematical existence of the inter- 
facial solitary waves has been proved in [l]-[3], [11], [12], among others. Discussion of 
solitary waves in continuously stratified fluids can be found in the book on stratified 
flow by Yih [16] and the references cited there. Numerical studies of atmospheric 
interfacial waves, which are of much meteorological interest, also have been reported 
recently in [4] and [5]. Indeed, solitary pressure jumps at the interface between two 
isothermal layers in thermal inversion have long been observed to have a high correla- 
tion with the formation of tornados [13]. However, at present, a rigorous asymptotic 
theory of interfacial solitary waves in a compressible fluid is lacking, although some 
formal results are available [10]. 

In this paper, we justify rigorously the formal asymptotic method developed for 
two-dimensional interfacial solitary waves in a perfect gas with two isothermal layers 
in thermal inversion. This physical configuration is of interest in meteorological appli- 
cations. We hope that our work may stimulate further research on rigorous asymptotic 
methods for progressive waves in other configurations of a compressible fluid, which 
pose many challenging mathematical questions. Let the constant temperatures in the 
upper and lower layers be T2 and Ti, respectively, and Ti < T2. For simplicity, the 
upper and lower boundaries of the fluid domain are assumed to be horizontal and 
rigid. However, the same method used here also could deal with a free surface as the 
upper boundary without much difficulty. A coordinate system moving with a solitary 
wave at a constant speed c is chosen so that the fluid motion is steady. We define 
^ = ght/c2 = AQ + eAi as the reciprocal of the Froude number where g is the con- 
stant gravitational acceleration, hi is the equilibrium height of the lower layer, and 
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contraction mapping theorem. 
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e is a small positive parameter. Two critical values X± of AQ have been found where 
A+ > A_ > 0. For A near but less than A+, our main result is the following: 

There exists an asymptotic solution, which represents an interfacial solitary 
wave, of the equations governing the motion of two isothermal layers of a 
perfect gas separated by an interface, bounded below and above by a rigid 
boundary. The expression of the interface is given by 

r?(ar) = eVo"V'o+^1/^) + 0(e2). 

Here z = rj(x) is the equation of the interface, — ip^ and ipQ are the constant 
values of a stream function at the lower and upper boundaries, respectively, 

S^x) = (SX1A1/2A2)sech2((-eX1A1/Ao)1/2x/2), 

Ai, i = 1,2,3 are constants, AQ, AI > 0, A2 is assumed to be nonzero, 
and 0(e2) is a term of order e2. Therefore, the first approximation in 
an asymptotic expansion of the interface equation is a solitary wave of 
elevation if A2 < 0 or a solitary wave of depression if A2 > 0. In both 
cases, Ai must be negative. 

We also note that for A2 — 0, our method fails and a solitary wave as a solution 
of the so-called modified Korteweg-deVries equation could be derived by a refined 
asymptotic method. We omit that rather tedious derivation, but refer the reader to a 
discussion of a similar but simpler case for an incompressible fluid in [11]. 

The paper is organized as follows. The problem is formulated in Section 2 where 
the interface is transformed into a fixed horizontal line by using the stream function 
and the horizontal coordinate as independent variables, and the so-called streamline 
function is used as one of the dependent variables. The density of the compressible 
fluid is not a function of the stream function as in the incompressible case, so we 
have to deal with a system of equations governing the streamline function and the 
density. In Section 3, the approximate solution of a solitary wave is derived by a 
formal asymptotic expansion and two critical values A± of AQ are obtained. For A 
near A_, the linear part of the governing equation for the lower layer in the x,^- 
plane becomes hyperbolic, and the method developed for AQ = A+ does not apply. 
We defer this case to a further study, and will consider only AQ = A+ in this paper. 
In Section 4, we reformulate the governing equations and boundary conditions as a 
system of nonhomogeneous equations with linear terms as the dominant part of the 
system. A solvability condition is derived for the nonhomogeneous system, which 
eventually yields an approximate solitary wave solution. Some Banach spaces for 
later use also are introduced. In Section 5, we derive a 'priori estimates for the 
ordinary differential equation associated with the solvability condition and also for 
the partial differential equation governing the gas motion. Furthermore, we show that 
an eigenvalue problem derived from the linearized equations possesses nonpositive 
eigenvalues only. Therefore, in the case considered here, the appearance of a solitary 
wave with ripples at infinity [12] is excluded. The final existence result is proved in 
Section 6 by means of the contraction mapping theorem. 

2. Formulation 

We consider a perfect gas consisting of two layers bounded by two rigid plane bound- 
aries. At equilibrium the lower layer is at temperature T\ with height h\\ the upper 
layer is at temperature T2 with height h\^ separated from the lower layer by a con- 
tact interface; po is the pressure at the interface, and the densities at the sides of the 
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interface are pj 5 Po ^or ^^ie ^PP61" and lower layers, respectively. Note that Ti < T2 
implies pQ > pj for a perfect gas. Assume that there is a wave of permanent type 
moving with a constant velocity c on the interface. A coordinate system moving with 
the wave is chosen such that the x*-axis coincides with the equilibrium interface and 
the z*-axis passes through the crest or the trough of the wave and is positive upward 
(Fig.l). In reference to this coordinate system, the wave is stationary. At infinity, the 

h2,T2 

^   VTi 

FIGURE 1. Configuration of the two-layer fluid. 

gas is moving with constant speed c. The governing equations are 

{p*u*)x.+(p*v*)z*=0, 

P  — uo P 5    Oo — "T 
Po 

Co    = 
Po_ 

Po 

(1) 

(2) 

(3) 

(4) 
Po Po 

u*z* - Vx*  = 0 » (5) 

where p* is the density, (IA*,I;*) is the velocity vector, p* is the pressure, (CQ
-
)
1
/
2
 and 

(CQ)
1
'
2
 are the sonic speeds of the upper and lower layers, respectively. The starred 

dependent variables are defined by 

'(/*(£*,z*))+    for 77*(a?*) < z* < ht, 

(/*(x*,^*))-    for -ft* < z* < ?7*(ar*), 
Z*^*,^*) (6) 

and z* — ri*(x*) is the interface. At the rigid boundaries, v* = 0. At the interface, 
u*rj** - v* = 0 and (p*)+ = (p*)_. At infinity, u* = c, v* = 0, and 77* = 0 where 
(p*)+ = (p*)- = p0. It follows from (3) that 

(P )    -Po exP(-^± (p*)± = C^(p*)±. 

From (1), we can find a stream function tp* such that 

p*u* =ip*z*, p v -rx.. 

(7) 

(8) 
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At infinity, 

(^^(l-expf-Cn (9) 

where ?/>* = 0 at z* = 0 is assumed. Therefore, the values of 0* at the upper and 
lower rigid boundaries are 

By (5), V* satisfies 

px.x.+rz-z. - (j>T1(rx.p'x.+rz.p:.) = o 
in the gas. Also, we have the following Bernoulli equation 

((u*)2 + (v*)2)/2 + gz* + C± \np* = (c2/2) + C± Mpo/C±), 

from (2) and (3). Now we use x*, ip* as independent variables and the so-called 
streamline function f*(x*,ip*) as a dependent variable where ^*(#*,/*) = constant 
along a streamline, so that the domain of the streamline function is fixed. Thus, 

The governing equations  and boundary conditions  in terms of /*   become:    in 
-ip- < ip* < 0, 0 < ^* < '0+, 

+ (i + (z:.)2)/;.^1 - rAn-f^- = o, (12) 

L^ffi + ff/* + ^ Inp* = (c2/2) + ^ InCpo/Co*); (13) 
2(/>*/I.)2 

at ip* = ip+ > 0, 

and at ^A* = 0, 

(r)+ = K; (14) 

(/*)+ = (/T, (15) 

i+rir     i+(^)2 +5fg;_ZLU(c2/2)f i    iv (16) 
2C70

+(p*+/^)2   2c0-(p*-/;:)2   aVCo+    c0->/ Vctf   Co" 

and at ip* = tpj < 0, 

(/T = -ft;. (17) 

To nondimensionalize (12) to (17), we let 

/* = hof, x* = hox, r = —^ ^t = —^, 

P* = POP = (j^) P, C± = ghoC*, fc = -^o~, (18) 

h^ = h0h
+, hi = hoh~, A = (gho/c2), 

g 

9 
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where ho is the length scale and can be chosen as fcj, and po is the scale for density 
and can be set to Po . Then (12) to (17) become: in 0 < V < Vtf, -tfo < V- < 0, 

./W(l + /*) - 2/*JVJW + /xx4 + C1 + /x2)A^ - fxffcx = 0,        (19) 
e-^(l + f2

x) c±a=l     xc±lnC±. (20) 
2/1 2 

at if; = I/JQ  < 1 

at tp = 0, 

/ = /l+ = -C+ln(l-^); (21) 

/+-r, (22) 
1 + (/,+)2 r-2g+      l + (/x-)2c-2g-     AM   _   M/+= 1 f J-- J-V   (23) 

and at V — — V'o"^ 

/- = -/i- = -C-ln(l + Vo") (24) 

where (T± = Inp11^. It is straightforward to check that 

/oW = -C±ln(l-V),    ^oW = In (^±-J (25) 

are equilibrium solutions of (19) to (24). We shall show that near the equilibrium 
solutions /o, (Jo, there exists a solitary wave solution of (19) to (24). Therefore, we 
write 

f(x,1>) = fo(il>) + wM)>    <T(.x,il>)=<To(il>) + t(x,il>). (26) 

We use (26) to rewrite (19)-(24) as follows: in 0 < ip < Vo" and -^ < V < 0, 

ww - (i - ipy'wf + (^/(i - ^c* + (c±/(l - vo)2™** 
= 2(1 + w;x)"2WxWxv(^ + (^/(l - V"))) 

-^[a+^r1  xK + ^/a-v^-^Ai-v-))2"   • 
- w^c*+^Cx(i+w2)-1!^ + (^/(i - ^)))2 

C* = (i - ^A)-1 [\w - ((i - vo/^K + 2c^((i - V')/C±) 
+ (l/2)(e-

2< - 1 + 2C + e-
2C^)(l + ((1 - V)/^)^)"2 

+ (1/2)(1 - 2C)((1 + ((1 - WC*)™*)-2 

-l + 2w4(l-il>)/C±)) 

= (1 - C±A)-1 (Aw - ((1 - VO/^H) + Zi(tu, 0 = ^i; (28) 

at V = ^o", 
W+ = 0; (29) 
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at V = 0, 

w+ = w-, (30) 

c+ -? +t+7^;+Ari-4-i» c+   (c+)2   c-   (c-)2     vc+   c 
=-(2/(C+)2)C+< + (2/(C-)2)C-^ 

- (1/2C+)(1 + (W+/C+))-2(e-2C+ - 1 + 2C+ + wle-X+) 

+ (1/2C-)(1 + K/C-))-2(e-^" - 1 + 2C- + wZe-*-) 

- (1/2C7+) ((1 + K/C+))-2 - 1 + 2(U;+/C'+)) (1 - 2C+) 

+ (1/2C-)(1 - 2C-)((1 + (^/C-))"2 - 1 + 2(w-/C-)) 

= ^2KC); (31) 

and at rp — —ipQ, 

w- = 0. (32) 

Here, we remark in passing that w,C, mean w+X+ in the upper layer and w~,C,~ 
in the lower layer. We substitute (28) for (^ into the left-hand sides of (27), (31), 
which become 

C,±A 2C±A / C*  \2 

-rr^A^ + (i-c±A)(i-v)^ + lrrv;J w-» 

= - (r?^) Zl^(w'c) + Zo(w;'c) = Fo(w'c)' (33) 

A + A A3(C+ - C-) 
C+{1-C+X)W^     C-il-C-X)^     (1-C+A)(1-C-A)W 

-—^+ ^r—+ Z2(«;,C) 

= Go(w;,C)    at^ = 0. (34) 

Finally we use (28) to transform (33), (34), (29), (30) and (32) into 

((l-VQV/,)^        WXX  _      (1 - VQ2       , ,  A        , . (     . 

C - Zi(«;, C) = F2(w, C)       in 0 < V < ^, -^ < ^ < 0; (36) 

u;+ = 0       at V = ^o" < 1; (37) 

^^       «£ A2(C+-C-)      „.._GoA 
C+(l-C7+A)     C-(l-C-A)     (l-C+A)(l-C-A)W = T^Gl(w'C)'     (38) 

tt;+ =«;-        at ^ = 0; (39) 

w~ =0       a.tip = -ipo. (40) 

In the following we shall show that (35) to (40) possess a solitary wave solution under 
certain conditions. 
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3. Formal derivation 

In this section, we use a formal asymptotic method to derive a solitary wave solution. 
Let w,£ have the following asymptotic expansions 

$ = e$i + e2$2 + • • • , 

A = AQ + eAi and x is replaced by e-1/2^ under the so-called long-wave assumption. 
After substituting these expansions into (35) to (40), we obtain a sequence of equations 
and boundary conditions for the successive approximations by equating the coefficients 
of like powers of e on both sides of the equations. The equations for the first-order 
approximations are 

((1 - V) V^ - 0,    Ci = (1 - C±Ao)-1(Ao^i - ((1 - WC^ww) 

in 0 < ip < V>o~, -^o" < ^ < 0; 

wf = 0 at ip = I/JQ,    WI = 0 at ijj = —ipg] 

f. in7, \2 WU W11> A2(C+-C-) 
-wi = 0, 

C+(l - C+AQ)     C-(l - C-Ao)     (1 - C+\Q){1 - C-Xo 

wf = w^       at ip = 0. 

We can easily find a nontrivial solution ^(x,^) = rjfyeofy) with 

0y   '     \(^ + Vo")V'o+/(l-V')    for -Vo" < 1> < 0, ^    ^ 

and Ci(x,'0) = (1 — C±\o)~1r](x)(\oeo(ip) — ((1 — ip)/C±)eo^) if AQ satisfies 

which has two roots 

A+- 2(C+-C-)  > 0 (42) 

where /x = (C*+/C-) > 1, A+ > A_, 

A = (M(l + (^o")-1) - (ptfr^l - V'o+) - 2)2 + 4(^o+^)_1 > 0, 
and (A-t)-1/2 are called critical speeds. It is easy to check that \ — C^\± ^ 0 for /x > 1, 
I/JQ > 0 and I/JQ < 1. Let AQ be equal to one of A±. In order to find ^(x), we need the 
equations for the second-order approximations. In — I/JQ. < ip < 0, 0 < I/J < I/JQ, 

((1 - ip)2W21p)1p _ wixx (l-^)2 f /\ /(1-V;)it;i^\ 

C±(l-C±Ao)"   Ao       Ao(C±)2(l-C±Ao)l   ^V      ^     V       C±       J </> 
^ 
l-^ 

A^iC^-q-^K^v    /3\ f(i-^)w1^\ 
(i-c±Ao)c±  A + UA   C± J, 

/ (1 - ^)(AoC:i=U>i - (1 - ^Wi^Wirj, \ 

V (C±)2(l-C±Ao) ^ 

at il) = il)tiwi =w2'i 

at ^ = O,^ = ^, 

^F; 
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W, 2tl) W, 2ip .A2(c+-c-) 
C7+(l-C7+Ao)     C-(l-C-Ao)     (1 - C+Ao)(l - C-Ao) 

w^Xi       i (C7+ - C-)A1Ao 

W2 = - 
W^l 

(1 - C+Ao)2 

+ + zi;1(2-(C+ + C-)Ao) 
(1-C-Ao)2     (1 - C+Ao)2(l - C-Ao)2 

2<^(AoC+< - W+,)     2^^0(7-^- - tt;^)     3(W^)2 

(<7+)3(l - C'+Ao)Ao (C-)3(l-C-Ao)Ao        2(C'+)3 

+ 3Kfr)2 

2(C-)3 

AoC+<-«;+,y l 

+ 
C+(l - C+Ao) 

1 

C-(l-C-Ao) 

(C+)3 V     1 - C+\o 

{ C+(l - C+AQ) 

AQC WJ — w lip 

AQC   W! If IV 

C-(l-C-Ao) 

(c-)3 V    1 - C-Xo 
3(wtA2     2(AoC+<-<v,K^ 

+ 2Vc+y   +     (C+)2(l - C+Ao) 

\3,m\ jiiii/"'iii> 

2\C- J (C-)2(l-C-A0) 

^G; 

at ip = —ipQ, w^ = 0. 
This is a nonhomogeneous boundary-value problem. Since eo(^) is a nontrivial solu- 
tion for the corresponding homogeneous problem, to solve the nonhomogeneous prob- 
lem, the nonhomogeneous terms F and G must satisfy the solvability condition 

rri _ 

From (43), we obtain the following equation for 77(0;), 

(43) 

(44) 

where 

A{ 

r^o 

-% 
\W)drl> 

A1 

1  n 
0 = T" / 

= (^)2((^)2 + 2V>o_ - 2(1 + %) ln(l + Vo~)) V1 

+ (Vo~)2(2^ - C^)2 + 2(1 - ^o+)Ml - ^))"1Ao > 0, 

_ Vfr (1 - C-Ap)2 + V>0
+(1 - C+AQ)

2 

(1-C-Ao)2(l-C+Ao)2 >0, 

and A2 is complicated and given in Appendix 1. If A2 ^ 0, then (44) has a solution 

3AiAi 
S{x) =    - 

2Ao 
sech2((-X1A1/A0)

l^x/2), (45) 

provided that Ai < 0. Thus the solitary wave has to move at a speed greater than a 
critical speed. The first-order approximation of a solution (w, £) for (35) to (40) is 

tv(x,il>) = eeo(il>)S(x) + 0(e2), 

ax, fp) = €(l- C±Ao)-15(a;)(Aoeo(^) - ((1 - T/O/C^) + 0(e2). 
(46) 

Now we have formally derived a solitary wave solution (46) for (35) to (40). In the 
following sections, we shall rigorously show that (46) is a first-order approximation of 



ASYMPTOTIC METHOD FOR INTERFACIAL SOLITARY WAVES 143 

a solution of (35) to (40) for small e > 0, if A = Ao + Aie with Ai < 0 where Ao = A_}-. 
Note that by choosing some special values of /x, I/JQ < 1 and ^ > 0, we obtain 

l-C±A+<0,    1-C+A_<0,    and    1 - C'X- > 0. 

Since 1 — C±X± / 0, these inequalities remain for all ji > 1, ^Q" < 1, and ^o" > 0- 
From (35), we see that the linear part of (35) is elliptic if and only if 1 — C±Ao < 0. 
If A = A_ in (35), the linear part of (35) becomes hyperbolic in the lower layer. 
Therefore, in what follows we only choose AQ = A4.. Furthermore, 1 — C~X- > 0 
implies AI ' > (C~)1//2. If the wave speed is near but greater than AI , the flow 
in the lower layer will be supersonic and the governing equation in the physical plane 
also will become hyperbolic for small e. 

4. Transformations and Banach spaces 

In (35) to (40), we let A = Ao + Aie = A+ + Aie where A+ is given in (42). Then (35) 
and (39) become 

((1 - ^fw^      wxx f((l-^)2nfy)^Ai€     Aie      \ 

CHI-C±\O)--^ 
=
 -{   (i-c±Ao)    +-A7^V

+JPI(
"

;
'
C) 

FsM, (47) 
A 

wt _ _        ._ .. % _ .. __     _      A§(C+-C-)        w 
C+(l-C+Ao)     C-(l-C-Ao)     (l-C+Ao)(l-C-Ao) 

 rAie — —  \9Aie 

(1-C-X0)
2   l      (1-C+Ao)2' 

,  (C+-C-)(2AoA1-AgA1(C
+ + C-)) 

+ (i - c+Ao)*(i - c-x0y - + ^(-,0 

= G2KC)    atV = 0. (48) 

Since we need to prove that (46) is an approximation of a solution of (35) to (40), we 
write 

w{x,il>) = e(eoW>)(S(e1/V) + W(:r)) +9(x,1,)), (49) 

C(a;, </>) = e((l - ^AQ)"
1
 (Aoeo(V) - ((1 - ^)/C±)eo^) 

x (S(e^2x) + w(x)) + Z(x, V)) • (50) 

Then the equations (36)-(38), (40), (47), and (48) become 

e((l - C±Ao)-1(Aoeo - ((1 - V)/C±)eoV,)(5 + w) + £)) 

= F4(a;,6l,0 (51) 

^(x, V) = -(1 - C±Ao)-1(Aoeo - ((1 - V)/C±))eolA)(S + a;) 

+ e-1F2(e((S + u)eo + 9), 

e((l - C±Ao)-1(Aoeo - ((1 - ^)/(7±)eoV,)(5 + w) + o) 

= F5(a;,0,O   in   0 < ^ < ^+, -^ < ^ < 0; (52) 
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<9+ = 0    at    ^ = Vo">        0~=O       at    ^ = -^; (53) 

^ ^ A(KC+-C-)fl 
C+(i - C+AQ)     C-(l - C-Ao)     (1 - C+Ao)(l - C-Ao) 

-e-1G2(6((5 + a;)6o + ^), 

e((l - C±Ao)-1(Aoeo - ((1 - ^/C^eo^S + a;) + £)) 

= 03(^,^0, (54) 

6>+ = 6>- at   ^ = 0. (55) 

However, we note that eo(^) is a nontrivial solution of the corresponding homogeneous 
equations for (51), (53)-(55). To solve the nonhomogeneous problem, the nonhomo- 
geneous terms F4 and G3 must satisfy 

F4(u,6,t)eo(1>)d<il> + G3(u,0,€)eo(0) = 0. (56) 
'-% 

From (56) and the expressions of F4 and G3, and some tedious but straightforward 
calculations, we obtain an equation for u 

AQUXX + XieAiUJ + 2eA2S(e1/2x)uj = eN{uj, 6, f) (57) 

where N includes all the small terms and nonlinear terms and is not presented. In 
Section 6, we shall show that (51)-(55) and (57) have a solution (a;, #,£) for small 
6>0. 

We conclude this section with the definition of some Banach spaces to be used later. 
Let 0 < A < 1 be fixed, m, n be nonnegative integers, 

D+ = {(x, i/)) I 0 < ip < ip^, -00 < x < +00}, 

D~ = {(x,^) I -tpQ < ip < 0, -00 < x < +00}, 

7-^/0^)=      sup     (|/(a: + (5,^1)-/(a:,^2)|exp(^1/2|x|) 

/: 

(x,ii>)eD 
\6\<6' 

(^ + (^l-«2)-A/2), 

^fM) =      sup     (\f(x,1>) I exp^e1/2^!)). 
(x,ii>)eD±v / 

Here 6f,d>0 are fixed constants, we may choose, for example, 6f = 10, and d will be 
a small constant to be determined later. Then define the Banach spaces 

Bn = h(x,il>) E Cn((-oo,+oo) x ([-^0)^(0,^1)) 

m=0/c=0 x T '        m=0 \ ^ / ^ 

Let i?° = {f(x,ip) e Bn I f(x,ip) = f(—x,ip)}. We note that j3n and B® also include 
functions depending upon x only. 

5. Differential equations 

First, let us consider (57). Let 

C(u) = "xx + {\iA2e/A0)u + (2^2eMo)5(61/2x)a; = eN/Ao. (58) 
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However, if f(x) and UJ(X) are even, the problem 

C(UJ) = f       0 < x < +00, 

UJX = 0        at x = 0, 

has been studied in [14] and the solution can be written as LU = JC
-1
/- We have 

Lemma 1. If f(x) £ B^ for n > 0 and d is small in B®, then 

where K is independent of e and f{x). 

The proof of Lemma 1 can be found in [14]. By checking terms in iV(c*;, 6, £) carefully 
and using Lemma 1, it is quite straightforward to obtain the following result. 

Theorem 1. If u>,6 e B«, £ e-B^ tottA ||a;||Bo < Kt1'2, \\9\\BI + IICIIBO^ < Ke 

(or Ke1'2) for n > 2, then N(w, 6,0 e Bl_2, 

\\N{w,e,mBl_2<Ke    (orKe1'2), 

and 

\\C-l{eNIA0)\\Bl < Ke    (orKe1'2). 

Now let us consider the partial differential equations (51), (53)-(55).   First, we 
discuss the following equations: in — oo < x < +00, — ipQ < ip < 0, 0 < ip < I/JQ < 1, 

-*%!(!-&£)+»- - Vi(x^); (59) 

at V = 0, 

u+(x,0) = u-(x,0), (60) 

Ao< Ao«; Ag(C7+-C-)u 
+ Twl—?eTT + n—T^TTTT;—TT-TT = W);        (61) C+(l-C+Ao)     C-(l-C-Ao)     (1 - C+Ao)(l - C-Ao) 

at ^ = -V'^, 

«" = 0; (62) 

at ip = V>o", 

u+ = 0 (63) 

where i^i(x, ■0) S B° and <p2(x) € ^+1 for n > 0. We shall make use of the family of 
eigenfunctions v = v(ip) satisfying 

- Xc±{^cli) -™ = 0  in   -^-<^<o,   0<^<Vo+; (64) 

«+ = „-                Ao<          ,          A^          , X3o(C+-C-)v 
'       C+(l - C+Ao) ^ C-(l - C-Ao) (1 - C+Ao)(l - C-Ao)       ' 

at V = 0; (65) 

t;~=0    at ip = -ipQ ;        v+ = 0    a,tip = ip£. (66) 
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First, let us consider the space L2{—I/JQ^Q) with the usual L2-mnei product. 
Define an operator in L2 by 

A( x A _ Ao((l-7/;)2^)^ 
^W"        ^(l-CiAo) ' 

with domain 

x>(^) = |«ex2(-^o".^) 

u+(0) = u-(0), u+(i>+) = u-(-i>o) = 0, 

Aoti^(O) Ao^(0) Ag(C+- C-)«(0) 

C+(l - C+Ao)     C-(l - C-Ao)     (1 - C7+Ao)(l - C-AQ) 

Obviously the solutions of (64) to (66) correspond to the eigenfunctions of A in L2 

with eigenvalues r and A is closed and densely defined. Also it is easy to obtain that 

iAU>V) = U  C-(l-C-l)dlP + l      C+(l-C+A0)# 

+ Agtt(0)t;(0)- C+-C- 

'(l-C+Ao)(l-C-Ao)' 

for u,v € 2?(^l), which shows that ^4 is symmetric and all eigenvalues of A are real. 
If ueV(A), then 

4#j <yo ((i-i>)u+)2d^jo (i-v)-2^ 

= (i-^)-1^/0((i-V'K)2#, 

(u-(0))2=([     u^drp)   < f     ((1-V)^)2#/     (1-Vr2# 

= (1 + Vo")~Vo" /     ((1 - ^SfW- 

By 1 - C^AQ < 0 and (42), 

^     '   ;-    Uo"C-(C-Ao-l)     Vo+C+(^+Ao -1) 

Ag(C+-C-) K.2 u2(0) = 0 
(l-C+AoKl-C-Ao). 

where the equality holds if and only if u = Koeoiip), eo(^>) is defined in (41), and KQ 

is any constant. Thus all eigenvalues of A are nonpositive. In order to show that the 
eigenfunctions of A form a basis of L2, it suffices to show that (.4 — r)-1 exists and 
is compact in L2 for some r > 0. But (.4 — T)U = f is equivalent to solving 

"^^M -™ = /'   in-^<^<0,   0<^<V0
+; 

*ov$ *(>"; \UC+-C-)u 
C+(l - C+Ao)     C-(l - C-Ao)     (1 - C+Ao)(l - C-Ao) 

u+ = u~ at V = 0; 
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u~ — 0   at ij) = —I/JQ,        u* =0   at ^ = ^o"- 

The solution of the equations is obtained easily as 

-a-TPYJ T c+(1-c+^f+^ dx M\0(rt-rl)(l-xyl+l     ' 
«-W = Ao ((i + VoT2" (i - V')rr - (i + V'oT1- (i - W) 

Hi-*)* [*    g-^-g-W^ 
«/-^o   Ao(rl   -r2 )(1-x)ri 

-(l-^-r      g-(l-C-Ao)/-(x) 
7-^0- Ao^ -r2)(l-a;)r2-t 

dx 
+i 

do;, 

where 

± A Ap + (Ag + 4TAOC
±
(C

±
AO - I))1/2 

-2Ao 
± A Ap - (A2 + ^AQC^^AQ - I))1/2 

r2 - =2^ • 

Note that AQ and AQ are two constants determined by the two boundary conditions 
at I/J = 0. Since r > 0 is not an eigenvalue of A, AQ and AQ are uniquely defined 
and bounded if /(#) is bounded in L2. For /(^J E L2, it is easy to show that ii±('0) 
are continuously differentiable with their derivatives bounded by the L2-norm of f(ip). 
Thus, if f(ip) is in a bounded set of L2, then ufy) is in a compact set of L2, which 
implies that (*4 — r)_1 is compact for r > 0. Therefore, there are countably infinitely 
many eigenvalues, and the set of corresponding eigenfunctions is complete in L2. In 
Appendix 2, the asymptotic behavior of these eigenvalues is given. We summarize the 
results as follows: 

Lemma 2. The system of (64)-(66) has solutions en{^)7 r = Tn, n = 0,1,2,... , 
with TQ = 0 > Ti > T2 > ... . The eigenfunctions en{^), n = 1,2,3,... , form an 
orthonormal basis of L2{{—^,O)U(O,'0o")) together with eofy) defined in (41). Also, 
\rn\ = Kin2 /or /arge n where Ki > CQ > 0 mi/i CQ a /zxecZ number. 

Now we can find the solution of (59)-(63). Assume 

/       ^J-(a;,^)eS"(^)#+ /      ^(ar,^)ef(^)# + eoW^Oc) = 0. (67) 
J-^- Jo 

By Lemma 2, 
oo 

ipi{x,\l)) = ^ai(x)ei (?/;), (68) 
2=1 

where the convergence is in L2-norm and 

a>i(x) = <p1 (x^)ei (^)#+ /      vT(x,il))e+(il;)dip . 
J-ii>- Jo 
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Then multiplying (59) by afy) and integrating by parts twice, we have 

Cixx(x) + Tidix) = ai(x) + (P2(x)ei(0) 

where Co = 0, and, for i = 1,2,..., 

f0 _ r^t 
Ci(x)= u  Mfe (^)#+ /      u+(x,<ilj)ef(<iP)dij. 

J-^0 Jo 

If we let -n = $ for i = 1,2,..., 
/oo 

exp(-/ii|aj - s\)(ai(x) + <P2(x)ei(0))dx 
•OO 

= Gi(ai(x)) + ft(^2(a:)ci(0)). (69) 

Now let 
oo 

A 

A      _00_ 00 

= S e* Wft(oi(*)) + Yl ei(^)^(¥'2(x)ei(0)). (70) 

Then w(a;, V) 6 L2((-Vo",0) U (0,^)) for all x e R. 
We first assume <pi(x,ip)   6   Bg and ^(a;)   G   B? with compact supports in 

(-8(^0" + ^0) - 2. SCV'o" + 0 + 2) for the ar-variable. Note that 
00     poo 

53 /     C?(x)da; < M < +00 
t=l •'-oo 

where M is a fixed constant. Since |TJ| ~ 0(i2), 

WDiMxMlh < KhiWiq, (71) 

II^^^^II^^^H^IIBO, (72) 

for j = 0,1. We call v(x,ip) a generalized solution of (59)-(63) if w_(a;,V) e 
H^R x (-Vo",0)), «+(x, V) € H^R x (0, Vo+)), and 

~ L l 0 ( C+(Jx0 - 1* + ^ ^ 

" /-«»/.^ U-(c-Ao-i) + ^ ^ J ^^ 
Z-00 Ag(C7+- C-)^^, 0)^,0) 

■""y-oo   (i-c+Ao)(i-c-Ao)   ax 

/OO       plf>£ poo 

/    _Vi(x,il})z(x1<ip)dipdx+ (p2(x)z(x,0)dx, (73) 
-OO J — TpQ J — OO 

for all z+(x,rl>) G ^-(R x (-^",0]), z-(x^) € ^-(R x [0,^+)) with z+(x,0) = 
z (x, 0), 2;+ = 0 in a small neighborhood of rp = <ip+, z~ = 0 in a small neighborhood 
of ^ = -^, and z(-,^) E C^R). If u(x,ip) in (70) has only finitely many nonzero 
terms, then u(x, I/J) is a generalized solution of (73) by construction. Thus, by (71)- 
(73), we have 

||JD^+(x,^||L2(Rx(0^+)) + \\Diu-(x, ^)||12(R x(-^,0)) 
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<m<Pi\\B°0 + \\<P2\\B°)       iov   j = 0,l. (74) 

For general u(x,il>), we can use un(x^) with finitely many terms to approximate 
u(x^) to obtain the estimate (74). Therefore, u{x^) defined in (70) is a generalized 
solution for (73). Now we need to have the Holder estimates for u(x, ip). Since u(x, ip) 
satisfies (73) and <pi{x,il>) E B°, the interior estimates of Holder norms for ufat/;) 
and its derivatives up to second order can be obtained by classical elliptic operator 
theory [6]. Also, we have Dirichlet boundary values at ip = -^ and ip = ^j". Thus, 
since tpi G B?, the Holder estimates for u(x, ip) can be extended to ^ = -^, V = ^o" 
[6]. Therefore, we only need Holder estimates at ip = 0:t where O* is denoted as the 
limit when ^ -> 0 from the positive or negative direction, respectively. 

First, we change (73) into a more manageable form for x and tj). Let 

u* 

Then (73) becomes 

r00 ^+(x,0)g+(a;,0) _ i;-(a!,0)g-(a;,0)     Ag(C+ - C-)rf+t;+(a;,0)g
+(x,0)\fc 

l^V       4(rf+p 4(d-)2 + (C+Ao - l)(C-Ao -1)        J 

roo   /   r-d+ In(l-Vj) /-O \ 
- /   (/ +/ iK^+^^rf^ 

J-ooKJo J-d-lna+Vo)/ 
/.oo /-°°  /   /,0 ^-d+ln(l-'</'J)\ 

= /     v,2(a;)(d+)1/V(z,0)da;+/        / +/ ) 
J-oo J-oo\J-d-ln(l+1>o)      JO J 

x (z;±g±4(d±)2 + vpf(x)j/)(d±)-1/2exp(-^))g
±(a:,y)^a; (76) 

where q±(x,y) has the same properties as z±(x,ip) except that at ip =^0, 
(d+)1/2g+(a;,0) = (d-)1/2g-(a;,0). Now let V™ = min(-d+ln(l-^), d+ln(H-^)). 
We choose different q'±(x,2/) so that when y is near zero, we can have local Holder 
estimates with considerations of the boundary conditions at y = 0. Note that we 
need u+(x,0) = u-(x,0) or VcFv+(x,0) = y/dFv-(x,0). Thus, we let q(x,y) be in 
CHRxt-Vm.O^with 

q-(x,y) = Vdrq(x,y),        q+(x,y) = -Vd+q(x,-y). 

Thus, the equation (76) becomes 

-  f     j      ((\/drv~ - Vd+v+)yqy + (VdFv~ - Vd+v+)xqx) dydx 
J — OO J — Tpm 

" loo Um V4(rf-)3/2        4(^)3/2 + ^ ^ J ' ^   " 
(77) 

If we view V(Fv-(x,y) - \/d+^+(x, -y) as a solution of (77) in R x (-^m,0) with 
Dirichlet boundary condition at y = 0, then the Holder estimates of VcFv-(x,y) - 
\fd^v+(x,-y) and its derivatives up to second order near y = 0 can be bounded 
by the Holder norms of v± and tpf. Also VcFv- = \/cFv+ can be obtained at 
y = 0.   Next we choose test functions q± where (?+(x,?/) = (d+)"1/2<7(£, -y) and 
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q-(x,y) = {dryWqfay) with q{x,y) 6 C00^ x (-^m,0]), g(-,y) G Q^R), and 
g(x, •) = 0 for y near — ^;m. Then (76) becomes 

/oo      /»0 

/      ((O-1^- + (^ )-1/2t;+U 
-OO J -1pm 

J-oo V2(rf+)2     2(d-)2 + (C+Ao-lKC-Ao-l)^ U+     d-J 

x ((d-)-1/2t;-(a;,0) + (rf+)-1/2v+(x,0))9(a;,0)da; 
/oo /»oo      /•O       / 

V2{x)q{x,Q)dx+ /       (^-(d-)-^-^2"")-^^)-^-^2^) 
-OO J — OO J— Ipm   \ 

+ WW ' 4{^W^q{x'y)dvdx-   (78) 

This is an elliptic equation for (d~~)~1/2v~ + (d"1")-1/2?;"1" in the variational form with 
an oblique boundary condition 

,(d+)1/2      (d-y/*Jy     \2(d+)z     2{d-y      (C+Ao-l)(C-Ao-l)y 

x (^: + ^) ((d+)-1/2t;+ + (cT)-1/2*;-) = ^2(a:)    at    ^ = 0. 

Thus, we have the Holder estimates of (d"1")-1/2^"1" + (d~)~l/2v~ and its derivatives 
up to second order near y = 0, and these estimates are bounded by ||^2||s0 and 
IMIB

0
 + ll^ill^0- If we transform v and 2/ back to u and ^;, we obtain the Holder 

estimates of ^(x^ip) near ip — 0. Therefore, if y?i G ^Q 
and ^2 "E JB?, and y?i, y?2 

satisfy (67), then u(x,7p) defined in (70) is in JB^, and 

lk(^^)b§ < ^(ll^llbg + II^2||B? + Ikllsg)- 

Here we have used the compact supports of (fi, (p2 and the exponential decay of the 
Green's function in (70) as |a;| —> 00. However, by checking the terms in (70), 

IHlBg<^(lklllBg + ll^2bo), 

since 6^(0) is bounded (Appendix 2), and \Ti\ ~ 0(i2). Finally, u(x,ip) defined in (70) 
satisfies 

\\u(x^)\\Bo < K^WBO + H^lbf), (79) 

if ipuw satisfy (67). 
Next, let us prove (79) in the case that (pi(x,ijj) and <p2(x) may not have compact 

supports in the ^-variable. Let XQ be fixed first and choose x such that \x — xo\ < 1. 
Define a cut-off function p(y) e C,00(R) with p(y) = 1 for \y\ > 8(^0" + TPO) + 2 and 

p(y) = 0 for \y\ < 4(^ + ^) + 2. Write (70) as 
00 

u(x, ip) = J2 ^WSi (p(s - xo)(ai(8) + ^We^O))) 

00 

2=1 

OO 

±1 + 11. 
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By the definition of p(s), the integration variable sin I satisfies \s—x\ > ^T/'Q'+T/^+I. 

Thus the differentiated series of / is uniformly convergent and derivatives can be taken 
term by term. By a routine calculation [14], 

\\I\\BS < K(MBO + y2\\Bo) 

where K is a generic constant independent of XQ and B2 is defined just as B2 except 
that the sup-norm is taken only for \x — £o| < 1. For //, we write 

J — c 

exp(-/^|a; - s|)(l - p(s - a:o))(ai(5) + (p2(s)ei{$))ds 

/oo 

exp(-/ii|x - zo - 2/|)(l - V{y)) My + ^0) + ^2(2/ + XQ)ei(0)) dy. 
-00 

Let x* = x - XQ, <(y) = a^y + xo){l - p(y)), ^(y) = (1 - p(y))<P2(y + ^0), and 
V*i(y,^) = (l-p(y))(Pi(y + %o,i>). Then 

00 00 

i=l i=l 

II has the same form as (70), and </>!, </?2 have compact supports in (—8(^0" +V;o") — 2, 
8(^0" + ^0") + 2). Therefore, (79) holds, and, in particular, 

I|//||BS ^^(IIVKI/.^IIBO + II^^IIBX) 

where K is independent of XQ. However, note that 

sup(|(l - p(y))ipi(y + xo)\) = sup III(y) 
yen yen 

where III(y) = |(1 -p{y))ipi(y + xo)\exp(\y + xo\)exp(-\y + xo\), and 

exp(-|xo| + 8(Vtf + ^) + 2) > exp(-|y + xo\) 

> exp(-|xo| - 8(^ + il>o) - 2), 

since III(y) = 0 for |y| > 8(^ + ^) + 2. Thus, 

II/JHBJ exp(-d|xo|61/2) < tf (|M|Boo + ||V2||Bo) 

where iiT is independent of XQ. Since XQ is arbitrary and u{x^) is even, we have 

M^VObg < ^(IklllBg + ll^lUf). 
By induction, we obtain 

\Hx,mBi+2 < ffaiHiBo + II^IIBS+1) (so) 
for every positive integer n. Hence, we have 

Theorem 2. // ^  £ B^, ¥2 € ^n+i  an^ ^1? ^2 satisfy (67), Jfterc tte solution 
u(x,ip) of (59)-(63) exists in B®+2 an^ satisfies (80). 

Now let the solution of (59)-(63) be 

u{x,1>) = V(ip1{x,'il)),ip2(x)). (81) 

Then, we consider (51)-(55) and write 

Fi(u)M = M1{u)) + hfaO^ (82) 

G3(a;,fi,0 = M2(w) + G3(a;,e,0, (83) 
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where M1(w) and M2(W) contain only the terms with Wxx , fW, and fS(f 1/2x)w in F4 
and G3 , respectively, and F4 and 0 3 are the remainders. By the derivation of (51) 
from (56), we can see that the left-hand side of (57), denoted by AoC(w) in (58), is 
from (Ml' M2) only, and the right-hand side of (57) is from (F4' ( 3 ). The left-hand 
side of (56) is equal to AoC(w) - fN. Since C-1 exists by Lemma 1 and Theorem 1, 
define 

(84) 

(85) 

which are equivalent to F4 and G3 for the problem. If we replace F4 and G3 in (51) 
and (55) by F and G, respectively, then by a similar derivation of (57) from (56) and 
noting that C-1 only appears in (Ml' M2), we have 

7ft 
[

7f
o F(w, B, E)eo( 'lj;)d'lj; + eo(O)G(w, B, E) = AOC(C-1(fNj Ao)) - fN = o. (86) 

For such F and G, the condition (67) is satisfied automatically. If we assume that 
B(x,'lj;), w(x) E B~+2' and E(x,'lj;) E B~+1 with IIBllBo +lIwllBo +IIEIIBO :::; Kf1/2 

n+2 n+2 n+l 

for some K > 0, then by checking the terms in F±(w, B,E) and using Theorem 1, we 
have F, G E B~ and 

IWIIBO + IIGllBo :::; Kf(IIBIIBO + IlwllBO + IIEllBo + 1). 
n n n+2 n+2 n+l 

Thus, by Theorem 2, we obtain 

Theorem 3. If B(x, 'lj;), w(x) E B~+2' and E E B~+1 with IIBIIBO + IlwllBo + 
n+2 n+2 

IIEIIB~+l :::; Kf1/2, the solution of (51) and (53)-(55) with F4 and G3 replaced by F 
and G, respectively, exists and satisfies 

Finally, by checking the terms of F5(W, B, E) in (52), it can be shown that if w, B E 

B~+2 and E E B~+1 are bounded with respect to their norms, then F5 E B~+1 and 

IIF5(W,B,E)IIB~+1 :::; K(IIBIIB~+2 + c). (87) 

Now we are ready to obtain the existence of solutions of (51)-(55) and (57). 

6. The existence proof 

First, we invert (57) into 

(88) 

by using Theorem 1. Then, we consider (51), (53)-(55) with F4 and G3 replaced by 
F and G in (84) and (85), respectively. By (86), F and G satisfy the condition (67). 
Hence, (51), (53)-(55) can be transformed into 

L::,. 
B(x,'lj;) = P(F(w,B,E),G(w,B,E)) = ~(w,B,E), (89) 

by using Theorem 2 and (81). Finally, we have 

(90) 

from (52). By Theorem 3, we obtain that if IIBIIBO + IlwllEO + II~IIEO :::; K c1/ 2 
n+2 n+2 n+l 

for n ;::: 0, then 

(91) 
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In order to use (87) and Theorem 1, we transform (88) and (90) into 

Z(x, V>) = Fs(w, T2(UJ, 6,0,0 = T3(w, 6,0, (92) 

w{x) = ^C^ieNfaTiiwAOMwAS))) (93) 

Then, by (87), (91), and Theorem 1, we have 

II^3(W,(?,0IIB»+1 + l|7i(w,fl,0llB0+2 < Ke. (94) 

Define a closed convex set in the Banach space B^+2 x ^n+2 x ^n+i for n ^ 0? 

5, = {X = (a;^^) G BS+2 >< ^n+2 X B° + 1 

m = iMk+a + iifliiB0+a + iifi^ 
Let 

r(a;,0,O = (71(a;,fl,O,r2(a;,e,O^3(^e,O)- 
By (91) and (94), T maps Sb into itself if Ke1/2 < b for e small. Also, by using similar 
proofs as for Theorems 1 and 3, we have 

Theorem 4. If X^ = (u^\0^\^) and X^ = {J2\0^\^) e Sb, then 

ITixW) - r(X(2))||| < Ke^WX^ - x^l 

We choose Ke1/2 < 1/2 for smaller e > 0 such that T maps S*, into Sb and is a 
contraction in Sb. The contraction mapping theorem implies the existence of a unique 
solution in 56 for (89), (92), and (93), which gives the solution of (51)-(55) and (57). 
Finally, we have the existence theorem. 

Theorem 5. // A = AQ + Aie with Ai < 0 and 

A   = M(l + (V'o")-1) + (^)"1(1 - ^) + VA 
0 2(C+ - C-) 

where fi = (C+/C~) > 1 and 

A = (M(l + (Vo-)-1) - WtrHl - V'o4") - 2)2 + 4(^Vo")"1 > 0, 

then for small e > 0, there exists a solution of (19)-(24) in the form 

f+(x, VO = -C+ ln(l - V) + qMVtf - ^)(1 - V')-1(5(e1/2a;) + OJ(X)) + e6+(x, $), 

*
+
(X,TP) = Inp+Or, V) = In^^ + c((l - C+A0)C

+(1 - V))"' 

x (AOC+VO
-
 (V'O

4
" - tf) - V'o" (^ - 1)) (5(e1/2x) + u;(x)) 

+ e^+(a;, ^) for   0 < ip < ipQ < 1, 

/-(z, V) = -C- ln(l - V) + e^0
+(V> + Vo")(l - 1>)-HS(t1/2x) + w(x)) + e9-(x,1>), 

<T-{X,II>) = lnp-(x^) = In^r^ +e((l - C-Ao)C-(l - V))"1 

x (AoC-^0
+(V + il>o) - Vtf(l + ^o")) (^(e1/2^) + w(xj) 

+ eC{x,ip) for    -i)Q<ip<0, 
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%1/2z) = (^) sech2((-eA1^1Mo)1/2a:/2), 

AQ, Ai > 0, anrf A2 ^ 0 are defined in (44) and Appendix 1, u(x), 6{x,6) G -8^+2 
and ^(a:, tj)) G B%+1 forn>0 with 

MB°+2 + \mB°+a + m\B°+1<Ke, 

and K is independent of e.  The interface is given by 

ri(x) = al>oil>tS(e1'2x)+ ()(<?), 

and tj}QtpQS(e1/2x) is a first-order approximation to the exact solution for small e > 0. 
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Appendix 1 

Here, we give the explicit expression of A2 in (44). 

A2 = 
(V>0-)3(V>0- +1) 

Ao(C-)2(l - C-Ao) 

(Vo-)3(l-^) 

(4-C-Ao)(y>0-)2 ^ 4Ao(^0--ln(l + ^)) + 

+ 
Ao(C+)2(l - C+Ao) 

2C-             ' 1 - C-AQ 

(4-C+Ao)(V>0
+)2 4Ao(V;0

+ + ln(l-^0
+)) 

2C+ 1 - C+AQ 

-3 + ^o{(c+r2(i-c+\0y 

x [(AoC+Vo+Vo" - VtfV'o" + O2 + (3/2)((Vo+ - 1)^(1 - C+Ao))2 

+ 2i,o WZ - 1)(1 - C+Ao)(AoC+Vo+V'o~ - tfto + 1>o) 

-(C-)-2(l-C-Ao)-3 

x \\oC-tl>tl>o - tfilto - ^o+)2 + (3/2)((Vo" + l)^o+(l - C-\o))2 

+ WZ(% + l)(AoC-V>0
+Vo" - tfto - V'o+)(l - C-\o)] }• 

We note here that A2 can be positive, negative, or even zero depending on the values 
of C+, C+, ipQ, and ip£. In this paper, we assume A2 7^ 0. 

Appendix 2 

We shall consider the asymptotic behavior of the eigenvalues of (64)-(66) of Lemma 
2. Let |rn| be large enough so that AQ - 4|rn|Ao(C±Ao - 1)^ < 0. If we let 

(417-^0(6^0-1)0* - Ag)1/2 

Mn 2Ao 
then the solution of (64) satisfying (66) and e^ = en at if) — 0 is 

e+(V) = C(l - V)"1/2 sin^- ln(l + %)) sin f^ In 
1-V 

l-^ 

e" W = C(l - V)-1/2sin(^ln(l - Vo+))sin (M- In (j~=)) , 

where C is a normalizing factor. Prom (65), we observe that fj,^ must satisfy 

sinfot" ln(l + Vo~)) sin(^+ ln(l - ^)) 
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F        1 1 ,2       c+-c- 
X     —-- ^-^^ - —-— Tr-r-r - A^ 

.2C+(l-C+Ao)     2C-(l-C-Ao)       0(1 - C-Ao)(l - C+AQ) 

- C+(C+A0 _ i) ^(^ In(1 + ^o")) ^n ln(l - Vtf)) 

+ ^-(c-Ao,!) sin(^ ln(l - V'o+)) cos(/i- ln(l + Vo")) = 0. 

However, from the definition of /^, when |r„| —> +00, /^^ go to infinity with order 
l^l1/2. Thus 

C-(C-Ao - 1) sin(M; ln(l + %)) cos(M+ ln(l - ^+)) 

- C+CC+Ao - 1) sin(/*+ ln(l - ^)) cos(^ ln(l + ^o-)) = Oij-^). 

If we keep the lowest order terms, we have 

|r-l(^-1)gf)'ffm-tf)) 
1/2 

X cos 

c+(cn0 - i)si» ((Mq^) ■" ln(1 _ ,o+)) 

xcos(('^°-1>C-)'/'ln(l + ^-))=0. 

Hence, 

1/2 
(C-(C-Ao - 1) - C+(C+Ao - 1)) sinf (^)I 

'<((ffi:V^)1/2'"<1 + *» + (e^)1/2'»<1-*»)) 
- (C-(C-Ao - 1) + C+(C+Ao - IJJsin^^)172 

((E^^)"2'"<-*»-(^^)"2.»<1 + *»))=o. 

However, the number of intersections of two sine functions is of order n. Thus l^l1/2 ~ 
O(n) or |rn| ~ 0(n2). Therefore |rn| > ir(n2) for some K > 0. 

Next, we show that en(^) is uniformly bounded as n —> +00. Since 

/       e2 (^)d^ - 1, 

C in en(ip) must be chosen by 
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C = {Sin2(/X"+^^0+))(2^ ^ + ^) + -^ ln(1 + ^o))) 

- ^te^ + flT)) (2^+ ln(l - ^) + sin(2M- In (1 - tf))) ^ 

< ^(sin2^ ln(l - t/;0
+)) + sin2^" ln(l + ^)))" 

for n large, where if is independent of n. It follows that 

Ic+WI < C{1 - ^)-1/2| sin^" ln(l + ^0-))| 

\e-W\ < C(l - ^)-1/2| sin(M+ ln(l - ^o+))l 

<if(l-^~1/2<if2, 

where ifi, if2 are fixed numbers. Thus en(ip) is uniformly bounded in —I/JQ  < ip < T/JQ . 
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