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HAUSDORFF'S MOMENT SEQUENCES AND EXPONENTIAL 

CONVOLUTIONS 

A. Z. Grinshpan 

ABSTRACT. We introduce some classes of exponential compositions related to 
Hausdorff's moment sequences. It turns out that one of these classes coincides 
with the known class of analytic functions defined by the ^-difference operator. 
We give sharp bounds for some functionals in the considered classes. 

1.  Some compositions related to convolutions 

Let AQ be the class of analytic functions h(z), h(0) = 0 in the unit disk E : \z\ < 1, and 
let AQ" be the subclass of AQ consisting of all functions h with nonnegative coefficients 
{h}n, n>l. The notation {h}n here and below stands for the nth Taylor coefficient 
of a function (or a formal power series) h about zero. For h € AQ, let G(h) be the 
subclass of functions LO G AQ which satisfy the condition |{ci;}n| < {^}n? n > 1. Note 
that the symbol <C has been used for such a coefficient majorization. 

For any two functions g,uj G AQ, let g * w denote the function 
oo 

(g * Uj)(z) = J2^}n{^}nZn, ZEE. 
n=l 

Clearly, g * u G AQ. It is called the Hadamard product of g and u or the convolution 
of g and u (see Ruscheweyh's book [14]). 

Lemma 1. Let /ii,/i2 £ AQ  and let ui G G(hi), 0J2 G G(/i2).  Then UJ1UJ2 G G(hih2). 

Lemma 2. Let $(z, w) = Yl™k=o an,kZn'wk be a formal power series in two variables 
with an,k > 0   (n, k = 0,1,...), and let g,h G AQ .   Then for any u G G(h) and 
iV=l,2,..., 

|{/}iv| < {F}N (1) 

where 

f(z) = $(z,(g*u;)(z)) (2) 

and 

F(z) = $(z,(g*h)(z)). (3) 

The equality in  (1)  holds for {F}^   ^  0 iff arg{(^ * uj)k}N-n   =  constant  and 
\{(g*w)k}N-n\ = {(g*h)k}N-n provided that an,k{(g*h)k}N-.n ^ 0, 0 < fc + n< N. 
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Proof. Equation (2) gives 

AT 

K/}*I < E ""Mg * u)k}N-n\,   N>I. 
n,k=0 

Hence, by Lemma 1, equation (3) and mathematical induction, the proof is completed. 
□ 

Let us call the function F, defined by (3), the envelope function for every nonempty 
set of functions / defined by (2). In Lemma 3 and below, the notation M(r, /) stands 
for max|2|=r \f(z)\ where / G AQ and r G [0,1). 

Lemma 3. Let g, h G AQ and UJ G G{h). Let $(z,w) = zew, and let f and F be 
defined by (2) and (3), respectively. Then M(r,f)/F(r) and |/(re^)|/F(r) for any 
0 G [0, 2IT) are non-increasing functions of r in (0,1). // 1/(^6^)1 = F{r) for some 
r G (0,1) and 6 G [0,27r), then f(z) = eieF(e-iez) for each zeE. 

Proof. For the given function $, equations (2) and (3) imply that 

d 
dr 

log ^—il   = Y, nMnr^tRe {ujeind}n - {h}n) < 0. 
^   ^     J        n=l 

Hence, |/(re26,)|/F(r) is a nonincreasing function of r in (0,1) for any 6 G [0,27r). 
If \f(rei9)\ = F(r) for some r G (0,1) and 0 G [0,27r), then for every n > 1 either 
{u;}n = {h(e-iez)}n or {g}n = 0. Therefore, /(z) = ei0F(e-i0z) for each z G E. 

Let 0 < n < r2 < 1 and let 9 G [0,27r) satisfy the condition MfoJ) = |/(r2e^)|. 
It follows that 

MCn,/)      \f(rieie)\      \f(r2e
ie)\ = M(r2,/) 

F(ri)    "    Ffn)     -    F(r2) F(r2)   * 

D 

See statements similar to Lemma 3 given in Goodman's book [4, Ch. 6] for univalent 
functions. 

2. Moment sequences and some integral operators 

A sequence of numbers {c^nlo0 'ls said to be a moment sequence if it is possible to 
determine a function is(t) of bounded variation in the interval [0,1] such that 

an = /   tndi/(t), 7i = 0,l,. 
./o 

(4) 

It is known that a sequence can have at most one representation (4) if u is a 
normalized function of bounded variation. That is, 

KO.o.     w-*'* «> + •«-<».     .6(0.1). 

Such a normalization of the function v does not change the value of the integral (4) 
(see e.g., [15, Ch. 1,2]). 

The statement of Hausdorff 's moment problem is as follows: Find conditions such 
that a sequence of numbers {oinlo0 is a moment sequence. This problem was solved 
completely by F. Hausdorff in 1921. The similar problem for nondecreasing and 
bounded functions i/(t) in [0,1] also was solved (see [9], [15, Ch. 3]). We formulate 
these results in Theorems A and B. 
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Theorem A. A necessary and sufficient condition that {an}o* is a moment sequence 
is that the sequence {/^njo0 ^^ 

n—k n     /   \    n—k 
'n — k 

,     ]®n-i 

k=o   v~/     /=0 

is bounded. 

According to Schur (see [9]), a sequence of nonnegative numbers {^n}m is said to 
be completely monotonic if it satisfies the condition 

^(-ir-'Q^-j+^o, 0,1,..., k = ra,ra+ 1,  

Let us call a completely monotonic sequence {c^njm minimal completely monotonic 
if for any e > 0 the sequence {Q4}5^ where a^ = am - e and a^ = an(n > m 4-1) is 
not completely monotonic. Clearly, for any minimal completely monotonic sequence, 

am = supn>1 X]r=o1(-1)/(n-ni-/)^+m+i- 

Theorem B. A necessary and sufficient condition that the sequence {ctn}1^ have the 
expression 

an= [ tndv{t),        n = 0,l,..., 
/o 

where u(t) is nondecreasing and bounded for t G [0,1], is that the sequence be com- 
pletely monotonic. 

Theorems A and B allow us to describe the set of analytic functions in the class 
AQ which generate convolutions with the simplest integral representation. It will be 
sufficient to consider Riemann-Stieltjes integrals on [e, 1], e > 0, and some of their 
limit values. In fact, only integration near zero may be not acceptable in some cases. 
In these cases we define 

f1 f(x)d„(x) := f f{x)dn{x) + \M\       ■ MaCljT 
JO J0+ L    x    ■ix=^ 

(5) 

provided that: f(x) and /J,(X) are defined for x € (0,1], [f(x)/x] and [xfi(x)] are defined 
at x = 0, the Riemann-Stieltjes integral of f(x) with respect to fi(x) from any e € (0,1) 

to 1 exists, and the finite limits lime_>o+ J€ fdn> = /0+ fdfi and 1^2.^0+ [^M^)] — 
[XIJL(X)]X=O+ exist. 

We need the following two lemmas. 

Lemma 4. (see e.g., [15, Ch. 1]) // rj(x) and (p(x) are continuous and iy(x) is of 
bounded variation in [a, 6], and if 

fb 
n(x) = — I   (p(t)dv(t), x G [a, 6], 

Jx 

then 
pb pb 

I   rj(x)dfi(x) = /   rj(x)(f(x)du(x). 
J a J a 

Lemma 5. If ^{x) is of bounded variation in [0,1], then 
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Proof. It is sufficient to prove (6) for any function v nondecreasing and bounded in 
[0,1]. For such a function i/, any e G (0,1] and x G (0,£2), let 

A{x,e) = xfe^dt. (7) 

We have from (7) 

*/(0+)(l -e)< A(x,e) < i/(e),        x 6 (0,e2). 

Hence, 

^(0+)(l -e) <   lim MA(x1e) <   lim supA(x,e) < v(e). (8) 

To finish the proof, note that we can replace A(x,e) by A(x, 1) in (8), and then let s 
go to 0+. D 

Theorem 1. A necessary and sufficient condition that the convolution of a fixed func- 
tion g G AQ and an arbitrary function f G AQ have the expression 

{f*g)(z)= /   f(zx)dn(x), 
Jo 

zeE, (9) 

where 
rl du(t) 

rtx) = -f   ^-,        ^^(0,1],     [XLL(X)}X=0 = IS(0)-IS(0+), (10) 

and u(t) is of bounded variation in [0,1], is that the sequence 

i+l-Z (ii) 

be bounded. 
Each function fi defined by (10) generates such a function g G AQ by (9) with 

f(z) = zn,n=l,2,.... 

Proof. Using Theorem A, we conclude that 

(/ * g)(z) = f;{/}n{5}n*n =   I' f{zx)^- (12) 

for any / G AQ, Z G E, and some function v of bounded variation in [0,1] iff the 
sequence (11) is bounded. For any e G (0,1), Lemma 4 with ^(x) = f{zx) and 
ip{x) = \ gives 

f1 fizx)*!W = f f{zxW{x) 
J e x Je 

where fi is defined by (10). 
It follows that (9) with (10) (see definition (5)) and (12) are equivalent if [xfi(x)]x=Q+ 

exists and equals 0. Using (10) and the formula for integration by parts, we have 

x/x(x) = u(x) - xu(l) — x /    —jj-dt,        x G (0,1). 

Hence, Lemma 5 gives 

lim[xfi(x)} = 0. 
x—»0+ 

Now let fi be defined by (10), and let the corresponding function of bounded variation 
i/ from (10) generate the moment sequence an = J0 tndv(t) (n = 0,1,...).   This 
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sequence is bounded, and therefore, the function g(z) = Xl^Li an-izn belongs to AQ. 

The above argument shows that g satisfies (9). □ 

Remark 1. Note that fi(l - x) defined by (10) is normalized in [0,1) iff v*(x) = 
u(x) - u(0) is normalized in [0,1) (see e.g., [15, Ch. 1]). It follows from the proof of 
Theorem 1 that for every n = 1,2,..., 

an=       xnd^{x) =  /   xn  1di/(x). 
Jo Jo 

As mentioned above, there is at most one such a function z/ which is of bounded 
variation and normalized in [0,1]. 

We conclude that for every admissible function g e AQ, there is at most one rep- 
resentation (9) which is valid for all functions / G AQ (or even for a fixed function / 
with {f}n 7^ 0, n > 1) if fi is defined by (10) and 

ri,)_rt«+o) + M»-o)|      „,„_„_ 

Indeed, if there exists another function 

/i(a x) = - f  ^p,    ze(0,l],     [xii{x)]x=f> = -z>(0+), 

(i>(t) is a normalized function of bounded variation in [0,1]) which satisfies (9) for 
every / e AQ and z G E, then i/(t) - i/(0) = z>(t), t G [0,1]. Hence, /2(x) = /i(z), 
x e (0,1], and [xp,(x)]x=Q = [xfi(x)]x=o = i/(0) - z/(0+). 

We shall consider a class M of nondecreasing functions fi(x) < oo in (0,1] with 

/0 xd/i(x) < oo. According to the definition (5), for each /J, G M, the finite limit 

values /0+ xdfi(x) and [xfjJ(x)]x=o+ exist and [xfi(x)] is defined at x = 0. Lemma 6 
allows us to define the class M properly. Also, this lemma and Theorem 2 show why 
we need an additional restriction at x = 0. 

Lemma 6. Let ii{x), |/x| < oo, be nondecreasing in (0,1], and let JQ xd/i(x) < oo. 

Then the limit value [X/J,(X)]X-O+ exists and equals 0. 

Proof. If fi(x) > 0 in (0,1], then 0 < xfi(x) < x/x(l) in (0,1], and the statement of 
Lemma 6 follows. 

Now let fjL(x) < 0 for 0 < x < b < 1. The formula for integration by parts gives 

rb rb 
x ix xdfi(x) = bfj,(b) - efjb(e) - /   fi(x)da 

for any e G (0, b). It follows that 

rb 

/   /jJ(x)dx > bfi(b) -  /    xdii(x) > -oo, 
Je Jo+ 0+ 

and therefore, the finite limit value /0 fi(x)dx exists. Hence, the finite limit value 
7 = [£/jb(e)]e=o+ exists also. Clearly, 7 < 0. If 7 < 0, then for some c G (0, b) and 
a G (7,0), XIJ,(X). < a for each x G (0,c). Again using the formula for integration by 
parts, we have for any e G (0, c) 

/   xdfjL(x) = 0/1(6) - efi(e) - /   iJJ(x)dx > 0/1(0) - a log (—) . 
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Hence, 

lim 
£-+0+ 

c/i(c) — a log ( — J   <  /    xdii{x) < oo. 

It follows that a > 0. We have reached a contradiction. Thus, 7 = 0. □ 

Now we can give an appropriate definition of the class M. Let M be the class of 
nondecreasing functions fi(x), \/i\ < oo in (0,1] with /0 , xdfjL(x) < oo and a given value 
[X[I(X)]X=Q G (—oo,0]. Let Mo be the subclass of functions fi G M such that xn(x) is 
right-continuous at x = 0. Lemma 6 shows that MQ = { fi G M. : [a;/z(a;)]a;=o = 0 }. 

Theorem 2. ^4 necessary and sufficient condition that the convolution of a fixed func- 
tion g G AQ and an arbitrary function f G AQ has the expression 

(f*9)(z)= I f(zx)dfi(x)i zeE, (13) 

where fi G M., is that the sequence {g}n, n>l is completely monotonic. 
Each function /i G M generates such a function g G AQ by (13) with f(z) = zn, 

n = 1,2,.... 

Proof Theorem B gives that 

(/**)(*) = Jt{f}n{g}nZn =   [lf(zx)^- (14) 
n=l ^ ^ 

for any f € AQ, z e E, and some nondecreasing and bounded function z/ in [0,1] iff 
the sequence {g}n, n > 1, is completely monotonic. 

Let g e AQ, and let the sequence {g}ni n > 1 be completely monotonic. Lemmas 4 
and 5 show that (14) implies (13) with fi defined by (10) and [xfi(x)]x=Q+ = 0 as in 
the proof of Theorem 1. Clearly, this function fi is nondecreasing and nonpositive in 
(0,1], and [xfjb(x)]x=o £ (—oo,0]. Setting f(z) = z in (13), we have 

rl 
xdfx(x) = {g}i < oo. (15) 

/o 
Hence, fi £ M.. 

Now let us assume that (13) holds with g G AQ and ii G M. Then (15) holds, 
[XII(X)]X=Q < 0, and according to Lemma 6, [x/i(x)]a;==o+ = 0. 

Let 

i/(t) = - f xdfjL(x\        t G (0,1],    i/(0) = i/(0+) + [arMaOWo- (16) 

Equations (15) and (16) give that u(t) G [ -{gji + [^M(^)]X=O5 0 ] and is nondecreasing 
in [0,1]. Let 

ttx) = -fx
d^,        * €(0,1], (17) 

[a;/i(a:)]a;=o = i/(0) - i/(0+) = [^(a:)]^^. 

Using Lemma 4 with </?(£) = t and 77(t) = 1/t in [x, 1], we obtain ji(x) = n(x)—n(l), 
x G (0,1]. Taking into account (13), we have 

(/*0)CO= /  f(zx)dii(x) (18) 

for any / G AQ and z e E. 

f 
Jo 
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Using Lemma 4 again, we show that (18) and (17) with [x[i(x)]x=o+ = 0 imply 
(14). Therefore, the sequence {gjm n > 1 is completely monotonic. 

For any function ^ G M, let v be defined by (16). As mentioned above, u is 
nondecreasing and bounded in [0,1]. This function generates some moment sequence 
an = J0 t

ndu(t), n = 0,1,..., which is completely monotonic by Theorem B. In 
particular, this sequence is bounded. Therefore, the corresponding function g(z) = 
Yl™=i an-izn belongs to AQ. The equation (18) with jl(x) = fi(x) - //(I) defined by 
(17) and the above argument show that g is generated by fi as in (13). □ 

Remark 2. According to Remark 1, for every admissible function g G AQ, there is 
at most one representation (13) which is valid for all functions / G AQ (or even for a 
fixed function / with {/}n ^ 0, n > 1), if /J, G M and (i satisfies 

MiB) = Mx + o) + Mx-o)>     xG(M))   M1) = 0 

Corollary 1. Under the conditions of Theorem 2, /i G Mo iff the sequence {g}n, 
n > 1, is minimal completely monotonic. 

Proof. Let the sequence {g}n, n> 1, be minimal completely monotonic and fi £ MQ. 

This means that fi G M with [xii(x)]x=o < 0. Let p,(x) = IJL(X), X G (0,1], and 
[xjl(x)]x=o = 0; then jl G M. The function fl generates a function g G AQ by (13) 
with f(z) = zn, n = 1,2,.... We have {^}i = {#}i + [xfjL(x)]x=Q, {g}n = {gjm n > 2. 
Since the sequence {g}n, n > 1, is completely monotonic and [xfjb(x)]x=:o < 0, we 
have reached a contradiction. Now let us assume that /x G Mo and the sequence {g}n, 
n> 1, is not minimal completely monotonic. Without loss of generality, we can assume 
that fi is normalized as in Remark 2. Let g(z) = g(z) + ez, e > 0, z G E, where both 
sequences {g}n and {g}n, n > 1, are completely monotonic. According to Theorem 2, 
{g}n = /0 x

ndji(x), n > 1, where jl G M with [xfL{x)\x=Q < 0. Therefore, {g}n = 

J0 x
ndji(x), n > 1, where fl(x) — IJ>(X), x G (0,1], and [tf/xja^o = [xjl(x)]x=o — e < 0. 

Since fl G M and // is unique, /l(x) = fi(x), x G (0,1], and [xjl(x)]x=o = e = 0. We 
have reached a contradiction again. □ 

Every admissible function #, either from Theorem 1 or Theorem 2, generates some 
linear integral operator /(/): AQ —> AQ. For example, if g{z) = log(l/(l — z)) and 
^(x) = \ogx G Mo in Theorem 2, we get the classical operator of Alexander [1] 

I{f)(z) = Jo'Xp-dC. (19) 

See Miller and Mocanu [13], for example, for material concerning various generaliza- 
tions of Alexander's operator. 

We shall consider exponential convolutions of the form 

f(z) = zexp{(g*uj)(z)} (20) 

where the function g G AQ" and has a completely monotonic sequence of Taylor coeffi- 
cients. Let £Ch(g) be the class of all functions / defined by (20) where u G G(h) for 
some fixed function h G AQ. According to Theorem 2, for every such pair of functions 
g and h, we have the corresponding exponential integral operator 

J(UJ)(Z) = ^exp <  /   u){zx)dn{x) > : G{h) —> £Ch{g) 

where fi G M. 
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If a function fj, e M with [XII{X))X=Q = — a < 0 related to some admissible function 
g by (13) is given, then we use the notation ECh(ti>\Q>) for the class £Ch(g). Let 
ECh(lJ>) — Ua>o-^^(/xla)• Clearly, each function fa e ECh(li<\a) can be represented 
in the form 

fa(z) = f(z) exp{a{ct;}iz}, z G E, 

where / G ECh{l^\0) and UJ G G(h). Thus, the case when xfifa) is right-continuous at 
x = 0 is the most important one. 

The function 

F(z) = zexp | /   h(zx)d/jL(x) \ (21) 

is the envelope function for the class ECh(fi>)> Lemmas 2 and 3 give some extremal 
properties of this function on EChi^)- 

Let fi G M and 

0 if /0 xdfj,(x) = 0, 

L(^) = i oo    if /o x2dfi(x) ^ 0, (22) 

1 otherwise. 

Note that if L(/i) < oo, then the corresponding function g(z) from (13) is a linear 
function az with a > 0. 

Theorem 3. Let h G ^4j, // G M, and let F be defined by (21). Then, for any 

f(z) = 2:exp{/0 uj(xz)dfi(x)} G ECh(^) with UJ G G(/I), 

(a) |{/(z)}iv|<{^}iv,iV>2, 
(b) \f(z)\<F(\z\),zzE. 

For some natural N > 2, let {h}n > 0 (n — 1,..., k) where k = min{A^ - 1, L(/x)} 
and L(IJL) ^ 0 is defined by (22). Then the equality in (a) holds iff {w}n = {Hze7'6)}^, 
for every n = 1,..., k and for some 9 G [0,2ir). 

If for some z = reie G E - {0} \f(z)\ = F(r), then for each z G E, f(z) = 
ei0F(e-i0z). 

Proof. According to Theorem 2 and the argument following, every function / G 
EChi^) is an exponential convolution of the form (20). We have the inequality (a) 
from Lemma 2. Let <p(z) = J0 cju(xz)dfjJ(x), ip(z) = J0 h(xz)dfi(x)1 and let the func- 
tion h satisfy the additional conditions of Theorem 3. It follows that the functions (p 
and ip can be represented in the form 

L L 
(p(z) = ^2 anZn       and       ^(z) = ^ bnz

n,    z G E, 
n=l n=l 

where \an\ < bn and bn ^ 0 for n = 1,..., fc, k < L = L(fx). We used the definition of 
completely monotonic sequences. 

Lemma 2 gives equality in (a) if and only if 

arg{^}iv_1 = constant and   {tp1}^!  ={4>1}N-1 for / = l,...,iV-1. 

Let I = N - 1. Then we get |ai| = h > 0 and 

arg{(pz}Ar_1 = (JV-l)argai 

for I = 1,..., AT-l. The case k = 1 is trivial. If k > 1, then for every 1 = 2,..., iV-2, 
W1}M-I ^S a sum 0^ Products of coefficients ai, a2,. •. and of a positive constant such 



HAUSDORFF'S MOMENT SEQUENCES AND EXPONENTIAL CONVOLUTIONS  39 

that every product has the same argument (N—l) argai. Among all of these products 
are nonzero terms of the form (N — n) (af-1-71 • an) for n = 2,..., k. It follows that 
for every n = 2,..., fc, \an\ = bn > 0 and arg[(iV - n)a]v~1~nan] = (N - 1) argai. 
Hence, argan = nargai for n = 2,... ,fc. Therefore, {u;}n = {h(ze'ld)}n for every 
n — 1,..., k and 0 = arg{uj}i. 

The inequality (b) and the statement about the equality sign follow from Lemma 3. 
Also, this inequality follows either from the inequality (a) or directly from the defini- 
tion of the class ECh (/i). □ 

Let us consider a simple example showing the importance of the additional condi- 
tions in Theorem 3. 

Let ii(x) = x e Mo, h(z) = Sz2 + Az3 e A£, and N = 6. For n - 1,2,..., we have 

Clearly, k = 5, but {h}i = {h}4 = {h}^ = 0. The representation (21) gives 

F(z) :=zexp{z2 + z3}. 

Hence, {F}6 = 1. Let u>(z) = 3e2iez2 + 4eiaz3 E G(h) for some 0,a e [0,7r/2], a ^ 3(9. 
Then 

f(z) = zexp | f u(xz)dn(x)\ = zexp {e2iez2 + eia^3} e ECh(x) 

and |{/}6| = |e*(2tf+a)| = {F}6. However, {a;}2 = 3e2ie = {/i(ze^)}2 and {a;}3 = 
4eia ^4ei3d = {^(^e^Jg. 

3. The classes EC(fi) 

Let /ji E M-Q. We denote by EC(fjL) the class of functions 

/(z) = 2;exp<  /   uj(zx)d[i(x) > (23) 

where UJ € AQ and satisfies the condition 

Re{(ju(z)} > --,        ze£. (24) 

Let VF be the class of all such functions UJ. Due to the classical result of Caratheo- 
dory [2], it follows that for every u; G W |{^}n| < 1, n > 1, or a; G G(ti;*) where 
c<;*(^) = zjil — z). Therefore, EC(/J,) is a subclass of the class ECM*(fi\0). 

For any function u G W, using the Herglotz representation formula, we have 
/»27r 

UJ(Z)= u*(eioLz)dv{a),        z e E, (25) 
Jo 

where d^ is a positive unit measure on [0,27r] (see e.g., [4, Ch. 7]). 
Equations (23) and (25) imply that for every / G EC(fi) and z G E 

f{z) = zexp | / J     w* (xeiaz) du(a)dfi(x)\ . (26) 

The function 

F^z) = zexp j / u*(xz)dn(x)\ (27) 

is the envelope function for the class EC(n). 
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We shall consider three particular classes EC{^) and estimate some traditional 
functionals on the classes EC(IJL) in general. 

Let S be the class of univalent functions / G AQ, /'(0) = 1, and let 5* be the class 
of starlike functions / E S. 

Theorem 4. EC (logx2) = 5*. 

Proof. For every function / G EC (logx2), we have from (23) and (19) 

/(2) = zexp{£^rfc} (28) 

where UJ G W and z G E. 
Equation (28) gives 

zf'(z) 
= 1 + 2LJ(Z). m 

Since u;(0) = 0 and Re{l + 2UJ(Z)} > 0, we use Nevanlinna's condition and conclude 
that / G S* (see e.g., [4, Ch. 8]). Thus, EC (logrr2) C 5*. These steps can be reversed 
to show that 5* C EC (log x2). □ 

Clearly, Fiogx2(z) is the Koebe function K(z) = z/(l - z)2. It is well known that 
this function realizes the extremal values of |{/}n| {n > 2), | axg{f (z)/z)\) and lower 
and upper bounds of \f(z)\ (z G E) in the class 5* (see e.g., [4, Ch. 8]). 

Note that if f(reie) = Re^ G 5*, then ^ > 0, and hence, #r = (R/r)<f>o > 0. 
Therefore, for any q G (0,1), the inequality 

ffa) 
/(*) 

< 1,    z G E, (29) 

holds. 
Recently Ismail et al. [10] introduced the class PSq of functions / G AQ, /'(0) = 1, 

which satisfy the inequality (29) for some fixed q G (0,1). This class was defined in 
[10] by the ^-difference operator 

(pg/)(;8)=/(f(1"_y. ^o> (^/)(o)=/'(o), 
which plays an important role in the theory of basic hypergeometric series. It was 
proved in [10] that the basic hypergeometric function of Heine with some normalization 
belongs to PSq. 

We show that for every q G (0,1), the class PSq is one of the classes EC(n). 

Theorem 5. For every q G (0,1), PSq = EC(nq) where }iq G Mo and is defined by 

'N{x) = \ogq2\ xe[q\qk-1) (30) 

/orfc = 0,l,.... 

Proof. It is easily verified that ^q G MQ for any q G (0,1). It follows from (30) that 
for n = 1,2,..., 

Hence, from (23), we have for any / G EC^q) and z G E 

/(.) = ,exp{2(logi)|;M^} (31) 
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where u £ W. 
Equation (31) gives 

oo 

= qexv{2{logq) J2{u}nzn} = exp{(2a;(2;) + l)logg}. 
n=l 

Therefore, the inequality (29) holds and / G PSq. Thus EC(/jLq) C P5g. It fol- 
lows from [10, Lemma 2.2 and Theorem 1.13] that every function / G PSq has the 
representation 

nr=o{M^)M 
where the function h satisfies the conditions: h — q G AQ, h(z) ^ 0, and h(z) G JB for 
any z E E. Here the convergence is uniform on compact subsets of E. Since every such 
function h can be represented in the form h(z) = qexp {log^2 • UJ(Z)} where LJ G W, 
our steps can be reversed to show that PSq is a subset of EC{iiq). □ 

The envelope function F^^ for the class EC(/iq) is 

It was proved in [10] that this function maximizes |{/}n|j n ^ 2, within the class PSq. 
We extend this result for PSq and the above mentioned results for the class 5* for all 
classes EC{y). Also some other extremal properties of the functions F^ will be given. 

Theorem 6. Let /JL G Mo, f G EC(ii), and let F^ be defined by (27).  Then 

(a) \{f}n\<{Ffi}n,n>2, 
(b) M(r, f)/F^(r) and \f (re19) l/F^r) for any 9 G [0,27r) are nonincreasing func- 

tions of r in (0,1). 

If\z\=r<l, 

(c) -FM(-r)<|/(z)|<^(r); 

(d) arg  < max 
|C|=r 

-.^ ^^      /      ^ nJ^  ^V,    „9„9^(^)- 
Vo   1 

xr sin 0 
^GIO^TT) J0   1 — 2xr cos 0 + :E2r2 c 

T/ie equality sign in (a) occurs iff 

f(z) = e-i$F4eiez) (32) 

/or some 6 G [0, 27r). The equality \f{z)\ = F^(\z\) for some z G E - {0} holds iff 
f is defined by (32) with 9 = — argz. T/ie equality \f(z)\ = — i?

Ai(—|z|) /or some 
z E E — {0} /io/ds zjQ^ / Z5 defined by (32) m£/i 9 = TT — argz. 

Proof The statements (a) and (b), and the right-hand inequality in (c) follow from 
Theorem 3 and Lemma 3. If J0 xdfi(x) = 0, then f(z) = F^{z) = z. Otherwise, 
according to Theorem 3, the equality in (a) for some n > 2 implies that |{u;}i| = 1, 
where u G W is defined by (23). It follows that in this case LJ(Z) = uj*(el9z) for some 
9 G [0,27r). The representation (25) implies that for each u G W 

< Re{uj(z)},        z G E, 
1 + 1  . 

with equality iff w(z) = w*(eiez) where 9 = TT - argz (see e.g., [4, Ch. 7]). Using this, 
(23), and (27), we obtain the left-hand inequality in (c). Of course, the right-hand 
inequality in (c) also can be proved in this way. 
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For every u G W, we have from (25) 

Using this inequality, (23), and (27), we get (d). □ 

Corollary 2.  The Koebe domain for the class EC(fi) is the open disk centered at zero 
with the radius 

r(M)=exp{-^  j^M*)}- 
In particular, we have the well-known value r(logx2) = 1/4 for the class 5* and a 

new result r(fiq) = exp < 2(logg) Sfclo T+^ \ for the class PSq where fj,q is defined by 

(30). 

Remark 3. Note that for all / € EC(ii) the radius of starlikeness of / is greater 
than or equal to that of F^. Equation (26) gives that the starlike radius rM of EC (/A) 

either is defined by the transcendental equation min^ Re{/0 K(xrfle'ld)d/jJ(x)} = —1 
where K is the Koebe function, or r^ = 1. Earlier, the starlike radius of PSq was 
found in [10]. 

In fact, the classes EC(ti), /i G M-o, give some natural extension of the class 
PSq, which in turn is a g-extension of the class 5*. Some properties of this natural 
extension are easier to prove than those in the g-case. It allows us to establish some 
new ^-properties and to prove known ones in a simple way. An approach based on 
a natural extension that includes a ^-extension of some mathematical object may be 
effective in other cases also. 

Let GS be the class of bounded functions / G AQ satisfying the conditions: /'(O) = 
1, f(z)/z ^ 0 (z G J5), and inf{ \w\ : w e df(E) } > 0. This class was introduced by 
the author and Saff in [8] without the normalization /'(0) = 1. Some estimates of the 
functional s\ipzeE | arg ^^| on the class GS are given in [8]. These results are related 
to the problem of estimating the argument of approximate conformal mappings of 
simply connected domains onto the unit disk. The statements (c) and (d) of Theorem 6 
and Theorem 7 provide a new stimulus for this problem. 

Theorem 7. Let /i G Mo, then EC(fi) C GS iff 

f1 ^M < oo. (33) 
Jo    1 — x 

Proof Let / G EC(ii). The formula (23) gives /'(0) = 1. According to the statement 
(c) of Theorem 6 and the inequality (33), we have 

-^-f^H^-U"^} < oo 

for any z G E. Hence / G GS. 
If for some fi G Mo, EC(fi) C G5, then FM G GS. Therefore, sup^- (logl^(r)) 

J^(xdfi{x)/(1 - x)) < oo. Note that for / G EC(^), (33) gives 

1-af 

Hence, any function / G G5 with supZeE |arg^| = oo (see [8]) cannot belong to 
EC(fi) with condition (33). Thus EC(/jb) C GS. □ 

arg^-^|<  /   T^— dfi(x) < oo,    z G E. 
Jo 
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4. Estimating some logarithmic means on the classes EC{[i) 

For every function / G 5, its logarithmic coefficients jn are defined by 

los^ = f>^"- (34) 
2 n=l 

For each natural n, a real nonzero vector Xn = (xi,..., xn) is said to be admissible if 
the Koebe function maximizes the functional 

MxJ/) = f>(%fc|
2-^) (35) 

on the class S. Thus, for every admissible vector Xn and f E S 

Mx„(/)<0. (36) 

Some admissible vectors are very important in the theory of univalent functions. It 
is well-known that Milin [11] conjectured and de Branges [3] proved that all vectors 
Xn = (n, n — 1,..., 1), n > 1, are admissible. Also, it is known that at the present time 
this is the only approach to prove the famous Bieberbach conjecture for the Taylor 
coefficients of univalent functions. We note that, in fact, Irnin^oo M^- (/) = —oo for 
every function / G S unless / is the Koebe function or one of its rotations [5]. It is 
proved in [12] that each admissible vector Xn = (xi,... ,xn) necessarily satisfies the 
condition 

n 

min Y^ Xk sm(kd) = 0. (37) 

For example, the unit vectors X^ = (1,1,..., 1), n > 2, do not satisfy (37). Thus they 
are not admissible, but sup^Mx^/) < 6 < 0.312 where 6 is Milin's constant [11]. 

For n < 2 the condition (37) describes the admissible vectors, but it is not sufficient 
for describing admissible vectors in the general case [6, 7]. It is stated in [6, 7] that 
the inequality (36) holds for each function / G 5* and for any real nonzero vector 
Xn satisfying (37). In this case only, the Koebe function and its rotations give the 
equality in (36). Theorem 8 gives an extension of the last statement for all classes 
EC(ix). 

Clearly, every function / G EC(fi) has the only zero at z = 0. Hence, the function 
log &p- is analytic in E. Let / G EC(fi) and 

los— = E/^n, *eE- (38) 
Z n=l 

Theorem 8. Let fj, G Mo and for some real numbers Xk, k = 1,..., n 

liny^Xklk      xkdfi(x))   sinfc0 = O. (39) 

For each f G EC(fi), let 
n 

M(/) = X>*|2 (40) 
k=i 

where the logarithmic coefficients /?& are defined by (38). 
Finally, let F^ be defined by (27). Then F^ maximizes the functional M(/) on the 

class EC(fi). If the sum in (39) is not identically zero, then only the function F^ and 
its rotations maximize this functional on EC(fi). 

mm 
0€p 
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Proof. Let / G EC{ii). The representation (26) gives 

iog M=f r s^dv{a)Mx) (4i) 
z        Jo Jo     ^ ■ ellxxz 

where dv is a positive unit measure. 
Using (38), (40), and (41), we obtain 

M(/)=  /     /     YlXkk\       xkMx))   cos(k{a-6))dv{a)dv(e). (42) 

The formula (27) gives 

M(FM) = Y^xkk([ xkd^x)\   . (43) 

We show that 

^) = !>**( / • 
k=i    \J° 

<p(t) = Y^xkk( f xkdfi{x)\   (1 - cos(kt)) > 0 (44) 

for |t| < 27r. 
Note that <p(—t) = (p(27r — t) = ip(t). Thus, it is enough to prove (44) for t e [0, TT]. 

We have <^(0) = 0 and according to (39), (pf(i) is nonnegative in [0,7r]. The relations 
(41)-(43) imply the statement of Theorem 8 about extremality of the function F^. 
We have that M(/) - M(FM) iff 

/     /     <P{CL- 0)dv{a)dv{p) = 0. (45) 
Jo   Jo 

It follows that if the sum in (39) is not identically zero, then (45) holds iff u is a point 
mass. □ 

Note that if ^(x) = logx2, then (39) coincides with (37). 
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