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COEXISTENCE IN REACTION-DIFFUSION SYSTEMS WITH MUTUALIST 

OR PREDATOR-PREY INTERACTIONS 

Walter Kelley 

ABSTRACT. The question of the coexistence of two species that exhibit mutualist 
or predator-prey interactions and satisfy a reaction-diffusion system is studied. 
It is shown in both cases that under favorable conditions initial populations that 
are limited in space will never fall below known positive population densities and 
will eventually extend throughout the potential region of cohabitation. 

1.  Introduction 

We consider below the asymptotic behavior as t —> oo of solutions of reaction-diffusion 
systems 

ut = e2Au + uF(u, v), 

Vt = 72 Av + vG(u, v). 

This work is motivated by its potential application to interacting populations, both of 
which are diffusing in space. The basic question to be addressed is: if the distribution 
of both species is limited to a small subregion of the potential domain of cohabitation 
(either through some natural disaster or through the limited introduction of the species 
into a new domain), under what conditions will the population densities approach some 
positive coexistence states after a period of time? 

The first type of interaction treated here is that of mutually beneficial species. We 
consider the case where the spatially homogeneous problem has at least two stable 
steady states: one at the origin and another in the first quadrant. Each population 
is permitted to satisfy either Dirichlet or Neumann boundary conditions. Hutson [9] 
and Hutson and Landes [10] provided conditions under which initially localized species 
in a one-dimensional domain with Neumann boundary conditions approach positive, 
constant coexistence states. We show that under similar conditions, the populations 
also will persist in higher dimensional domains. In the case of Dirichlet boundary 
conditions, we require that the diffusion is relatively slow and obtain coexistence 
states of boundary-layer type. 

In Section 4, we obtain similar results for predator-prey systems. Of course, for 
such systems the origin is not stable, so we do not expect mutual extinction. In fact, 
De Mottoni and Rothe [5] have shown that in the case of monotone nullclines and 
Neumann boundary conditions, a stable steady state in the first quadrant is globally 
stable. In reality, a species will die out if its population density is too small. Our 
results show that under favorable conditions, localized predator-prey populations will 
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never fall below a prescribed density and will approach positive coexistence states even 
in the case that the prey nullcline is not monotone. 

Diffusion models for predator-prey interactions with Dirichlet boundary conditions 
have been studied by Casal et al. [2], Blat and Brown [1], Li [14], Leung [13], Lopez- 
Gomez and Pardo [15], and others. These papers contain results on the existence and 
multiplicity of coexistence states. For a survey on coexistence and related issues, see 
Cosner [4]. 

2.  Preliminaries 

For the convenience of the reader, we collect here some basic facts about comparison 
for systems of reaction-diffusion equations and on properties of certain stationary 
solutions of scalar equations that will be needed to establish our main theorems on 
coexistence. 

First, consider a reaction-diffusion system 

wt = DAw + H(w) (2.1) 

where w: Rn x R1 —» i?m, H: R™ —> Rm is Lipschitz continuous, and D = [^^] is a 
diagonal matrix with each fin > 0. Let ft be a smoothly bounded domain in Rn. At 
the boundary of 0, we impose boundary conditions 

Aw + B— =0 
dv 

where A = [a^], B = [bij] are diagonal matrices with non-negative entries so that 
an + bu ^ 0 for all i and ^ is the directional derivative in the direction of the outer 
normal to the boundary of Q,. 

Continuous functions w and w on Q x /, / an open interval of real numbers, are 
called a "subsolution" and a "supersolution", respectively, if (inequalities between 
vectors indicate component-wise comparisons) 

(i) w(x, t) < w(x, t) for (x, t) G £1 x /, 
(ii) Aw + £§= < 0, Aw + £§f > 0 on the boundary of fi, 

(iii) for each point P in Q x /, there is a ball B about P and finite sets of functions 
{a;;} and {{ii} on B so that 

w3 (x, t) = max aj (x, t), 
i 

w3 (x, t) = minp3 (x, £), 
i 

for all (x, t) G B D (ft x /), and for each z, j, 

4<^A^ + tf(zV-.x,..-,^), 
/S^^A^ + ^z1,---,^,--.,^), 

for all af < zk <(3?, k^j. 

Theorem 2.1. Assume (2.1) has sub- and supersolutions w and w, respectively. If 
w is a solution of (2.1) with 

w(x, 0) < w(x, 0) < w(x, 0)        (x G H), 

then 

w(x,t) < w(x1t) < w(x,t) 

for all (x, t) etlx I. 



COEXISTENCE IN REACTION-DIFFUSION SYSTEMS 3 

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume w and w are 
independent oft. Then there exists a stationary solution wo(x) so that 

w(x) < wo(x) < w(x)        (x eCl). 

Furthermore, every solution w with 

w(x) < w(x,0) < wo{x)        (x e ft) 

converges uniformly to WQ(X) on Q as t —>• oo. 

Proofs of Theorems 2.1 and 2.2 can be found in Fife and Tang [7]. It also follows 
from their work that there is a stationary solution, say Wi(x)1 with wi(x) > wo(x) on 
Q so that every solution starting between the sub- and supersolution must converge 
to the region bounded by these two stationary solutions. Thus one can conclude 
that if the stationary solution IUQ is unique, then all solutions of (2.1) with initial 
values between the sub- and supersolutions must converge uniformly to u>o as t goes 
to infinity. 

Next, consider the stationary scalar equation 

s2 Aw + H(w) = 0 (2.2) 

on a smoothly bounded domain Q in Rn where H € C,1(J?) and e is a small, positive 
parameter. We first assume that H satisfies 

(2a) there is a number z > 0 so that H(z) = 0 and Hf(z) < 0, 
(2b) /^ H(s) ds > 0 for 0 < q < z. 

The following theorem has been proved in various forms by Fife [6], Howes [8], and 
Clement and Sweers [3]. The variational approach of Clement and Sweers also provides 
an estimate of how small e must be to obtain a solution. The solution often is called 
a "boundary-layer solution" since it exhibits a rapid change near the boundary of Q 
as e —> 0. 

Theorem 2.3. Assume H satisfies (2a) and (2b). If e is sufficiently small, then 
(2.2) has a solution w > 0 so that w = 0 on dii, and for some positive constant C 
(independent of e), z — Ce2 < w(x) whenever dist(x,9fi) > e and w(x) < z for all 
x e n. 

Now we specialize to functions H that satisfy 

(2c) there exist 0 < zx < z^ so that #(0) = E{z{) = Hfa) = 0, H'{0) < 0, 
H,(z2) < 0, and zi is the only zero of H between 0 and Z2- 

The proof of the next theorem can be found in Kelley and Ko [12] and Jang [11]. 
For small values of £, this theorem yields a "spike layer solution", that is a solution 
with a narrow spike in the interior of Q. 

Theorem 2.4. Assume H satisfies (2b) (with z = Z2) and (2c). Assume also that 
SI is a ball in Rn centered at XQ. Let h be the unique number less than Z2 so that 
f0 H(s)ds = 0. Then for sufficiently small values of e, (2.2) has a solution w > 0 
so that w = 0 on the boundary of Q, w is radially symmetric with respect to XQ, W 

is decreasing as a function of \x — XQ\, there is a S > 0 (independent of e) so that 
h + 8 < W(XQ) < Z2 — 6, and for each C > 0, diam{it;(a:) > C} = 0(e) (e —> 0). 

Finally, it will be useful to have two special versions of the "sweeping principle", 
one for Dirichlet and one for Neumann boundary conditions (see Sattinger [17] and 
Clement and Sweers [3]). This principle allows one to draw conclusions about the 
nature of positive solutions of semilinear equations and systems of equations. 
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Theorem 2.5. Let as(x) be a one-parameter family ofC2 functions for 0 < s < 1 so 
that 

(a) Ds C n where Ds = {x: as(x) > 0}, (0 < s < 1), 
(b) 0 < Aas + H(as) in Ds (0 < s < 1), H(0) > 0, _ 
(c) the function s h-» max{0, Q;S} is continuous from [0,1] to C(Ti). 

For each u G C2^!) fl C{Q) that satisfies 

l\u + H{u)<{)        (xGfi), 

u > o      {x e ft), 

u > ao     (^ G A)), 

t(;e /ia?;e u> as in Ds for 0 < 5 < 1. 

Proof. Let 

/ = { 5 e [0,1] : u > as on Ds } 

= { s e [0,1] : u > max{as, 0} on fl}. 

Now 0 e I and / is open in [0,1]. Let S be the largest number so that [0,(5) C /. 
We claim 6 e L If not, there is an x in Ds so that u(x) = as(x). By the maximum 
principle and the hypotheses, it is impossible that as(x) < u(x) for all x € Ds. Thus 
u(x) < a$(x) for some x £ Ds, contradicting the choice of 6. We conclude that 6 e I. 
Thus I =[0,1]. □ 

Theorem 2.6. Let as(x) be a one-parameter family of C2 functions for 0 < s < 1 so 
that 

(a) ^f < 0 at each point in Ds fl dft (0 < s < 1), 
(b) 0 < Aas + H(as) in Ds (0 ^5 < 1), ^(0) > 0, 
(c) the function s h-> max{0, as|ft} 25 continuous from [0,1] to C(Q). 

For any u € C2(Q) fl C(ft) that satisfies 

Au + H(u) <0        (xEft), 

w > 0        (x G fi), 

du 
— > 0 (a; G 9ft), 

^>Q:o      (X GAJH ft), 

we have u > as on Ds fl ft for 0 < s < 1. 

Proof. Let / = { s G [0,1] : n > Q;S on Ds fl ft }. Now if -u > max{Q;s, 0} in ft and 
if u(x) — as(x) for some x G 9ft, then the strong maximum principle implies that 
-^{u — as) < 0 at x. This contradiction allows us to conclude that / is open in [0,1]. 
The rest of the proof is similar to that of Theorem 2.5. D 

3. A model of mutualism 

In this section, u and v will denote densities of species that interact in a mutually 
beneficial way and that diffuse throughout some spatial domain ft C Rn. The model 
will have the form 

Ut = e2 Au + uF(u, v), 

vt=i2Av + vG(u,v), (3.1) 
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where e and 7 represent positive parameters. We consider only the case that the 
spatially homogeneous problem 

Ut = uF(u,v), 

vt = vG(u,v), 

has stable steady states at the origin and at a point (ui,vi) in the first quadrant, as well 
as an intermediate unstable steady state (^o^o)- Thus we assume that both species 
are obligate, i.e., unable to survive in the absence of the other. Typical nullclines are 
shown in Figure 1. 

F(u,v) = 0 

FIGURE 1. Typical nullclines. 

In order to describe this interaction and ensure coexistence of the species, we make 
the assumptions 

dF (3a)  ^<0,   ^>0  foru^X), du 
dG 

dv 
m < 0  for u, v > 0, (3b) if > 0,    dv 

(3c) the curves F = 0 and G = 0 intersect in exactly two points (UO,VQ) and (^1,^1) 
with 0 < UQ < ui and 0 < VQ < vi, F = 0 intersects the v-axis at A > 0, and 
G = 0 intersects the w-axis at B > 0, 

(3d) there is a C2 curve (u(w),v(w)), 0 < w < 1, so that u(0) = v(0) = 0, u(l) = ui, 
v(l) = vi, u', vf > 0, fi", ^ > 0, and an h e C^O, 1] so that 

h(w) < min 
(g2 + 72)^(it;)F('a(it;), v(w))   (e2 + 72)'i)(u')G(^(^), i)(iy)) 

£2u'(w) 

and /^ fe(r) dr > 0 for 0 < w < 1. 

72'0/(it;) 
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These hypotheses are similar to those employed by Hutson [9] for the case of one spatial 
dimension. We refer the reader to his paper and the references contained therein for 
further discussion. Although we are considering only one of several possible types of 
mutualist interactions, the remaining cases are easily treated by the same methods. 

Theorem 3.1. Assume hypotheses (3a)-(3d). Let XQ G tt. If e and 7 are sufficiently 
small, then there is a continuous function (j){x) on Q with the properties 

(a) 0(x) > 0, for each C > 0, diam{x : ^(x) > C} = 0(e + 7), 
(b) maxxeQ (/>(x) = (j)(xo) G (WQ, 1) where f™0 /i(r) dr = 0, 

so that the graph of each solution (u,v) of (3.1) that satisfies u(x,Q) > u((j)(x)), 
v(x,0) > v{(f)(x)), x G O, and Dirichlet or Neumann boundary conditions on Oft 
converges as t —> 00 to an order interval 

{ (x, a, 0) : U(x) <a<uu V(x) <f3<v1} 

where (U, V) is a pair of stationary solutions that satisfy the same boundary conditions 
as u and v, and 

u(wo) < U(x),        v{wo) < V(x) 

for x G Q. (Neumann boundary conditions) or for dist(:E, dQ) > Cie (Dirichlet bound- 
ary conditions) where Ci is a positive constant. 

Proof Choose a ball Br about XQ SO that Br C O. By Theorem 2.4, there is a 
continuous function (p that satisfies: 

(£2+72)A</> + /i((/>) = 0 

in Br for small values of 6 > 0, as well as properties (a) and (b) for small values of 
e and 7, and </> is symmetric with respect to XQ, decreasing in \x — xo\, and (/> = 0 
outside of Br. 

We claim that (u^v) = (u((f>),v(</))) is a subsolution for (3.1). Note that 
^2 

e2Au + uF(u,v) >e2 &'(0A*+ *"(*)£< + T^mu'w 
e2 

^^X-2^)^2 + 72)A0 + ^)] 
c    ~r 7 

= 0 

if e is sufficiently small. A similar calculation shows that 

l2&v + vG{u,y) > 0 

when 7 is small. 
Now let (w,v) be a solution pair for (3.1) with w(x,0) > u((j)(x))^ v{x,Qi) > v((j)(x)) 

(x G Cl). Let u(t), v(t) be spatially homogeneous solutions so that 

u(0) = mdix{ui,maxu(x,0)},    v(0) = max{vi,max v(x, 0)}. 

Then u, v are supersolutions for (3.1) and u(t) -^ ui, v(t) —>• Vi as t —► 00. From 
Theorem 2.1, 

u(Hx)) < u(x, *) < ^C0> H<t>(x)) < v(x, t) < v(t) 
for all x e Cl, t > 0. We can use Theorem 2.2 (and the remarks following) to obtain 
positive stationary solutions U and V so that the graph of (u, v) converges as t —► 00 
to the order interval { (x, a, /?) : U(x) < a < ui, V(x) < /3 < Vi }. 
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Finally, we verify the lower bound on U for the case of Dirichlet boundary condi- 
tions. The arguments for V and for Neumann boundary conditions are similar. Now 
the subsolution u defined above is of class C2 where it is positive. If we restrict u to 
the set where it is positive, then one-parameter families of subsolutions can be defined 
by translation along curves r(s): R1 —» Q with r(0) = XQ by 

as(x) = u(x — r(s)). 

Then for each s, as satisfies 

e2Aas + asF(as, V) > e2Aas + asF(as, v) > 0. 

It follows from Theorem 2.5 that U(x) > as(x) as long as {x : as(x) > 0} C Q 
and hence from the properties of 0 that U(x) > u(wo) if dist(a;, dCl) > Ci€ for some 
Ci > 0. □ 

Note that the estimates on U and V imply that in the case of Dirichlet boundary 
conditions, the coexistence states are of boundary-layer type. In the case of Neumann 
boundary conditions, it is likely that the coexistence states are constants, but we do not 
know how to prove this except for the case of one spatial dimension (see Hutson [9]). 

If both populations satisfy Neumann boundary conditions, slow diffusion is not 
essential for coexistence. However, we do need to assume that the initial populations 
are spread across a relatively larger subregion of ft. 

Theorem 3.2. Assume hypotheses (3a)-(3d). Letxy G Q and letBr be a ball about XQ 

of sufficiently large radius r.  Then there is a continuous function cj) with the properties 

(a) (/>(#) > 0, (j)(x) = 0 outside of Br, for each C > 0, diamja; : ^(x) > C} has a 
bound that is independent of r, 

(b) max^Q (j){x) = (J)(XQ) G (WQ, 1) where f™0 /i(r) dr = 0, 

so that the graph of each solution (u,v) of (3.1) that satisfies u(x,0) > u(<l)(x)), 
v(x,0) > v((j)(x)), x £ Q, and Neumann boundary conditions on <9Q, converges as 
t —> oo to an order interval 

{ (x, a, /?) : U(x) <a<uu V(x) < (5 < vx } 

where (C/, V) is a pair of stationary solutions that satisfy Neumann boundary condi- 
tions, and 

U(WQ) < U(x),   v(wo) < V(x) 

for x G fJ. 

Proof The proof follows the outline of the proof of Theorem 3.1. To obtain 0, we 
rescale by the change of variable z = x/r; then (p is to be a solution of 

e2 +^2 

Theorem 2.4 can be applied (for large enough r) to obtain a 0 with the desired 
properties, and u and v are defined as in the proof of Theorem 3.1. Now Br fl dQ may 
not be empty, but since u and v are radially symmetric and decreasing as functions 

of the radial variable, we must have g= < 0 and |= < 0 at dfl. The remainder of the 
proof is similar to that of Theorem 3.1. □ 
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4. Predator-prey problems 

In this section, we consider models for the interaction of a prey population with density 
IA(X, t) and a predator population with density v(x, t). If both populations are diffusing 
in space, then we have as in the preceding section 

ut = e2Au + uF(u, v), 

vt = 72 Av + vG(u, v). (4.1) 

The spatial domain again is denoted by Q C Rn, and it is assumed to be smoothly 
bounded. 

We are interested in studying the coexistence of predator and prey for the case that 
the spatially homogeneous problem 

ut = uF(u,v), 

vt = vG(u, v) 

has a stable steady state in the first quadrant. The nullclines then might be as pictured 
in Figure 2. 

v    A 

D K 
FIGURE 2. Nullclines for predator-prey problems. 

Specifically, we assume 

(4a) ir<0> ^ > o, iov u,v > o, 
(4b) the curves F = 0 and G = 0 intersect in a point in the first quadrant where the 

slope of F = 0 is negative, 
(4c) the curve F = 0 intersects the ^-axis at A > 0 and the w-axis at K > 0, 
(4d) the curve G = 0 intersects the u-axis at 0 < D < K and f^ < 0 along this 

curve. 
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The preceding assumptions, as well as the type of nullclines illustrated in Figure 2, 
are classical for predator-prey models (see Murray [16]). They are based on the fol- 
lowing assumptions: the density of predators needed to maintain a constant density 
of prey (for a spatially homogeneous population) is positive for small prey density and 
decreases to 0 at the carrying capacity of the prey. The density of prey required to 
maintain a constant density of predators is positive and increasing for an increasing 
density of predators. 

For our discussion, we need two additional quantities. Let q be the unique value 
of v so that G(K, q) = 0 (thus q is the number of predators maintained if the prey 
population is held at its carrying capacity). Now assume 

(4e) there   is   a   value  p    G    (D,K)   so   that   F(p,q)    =    0,    §£(p,g)    <    0, 
and f* sF(s, q) ds > 0 for 0 < u < p. 

Hypothesis (4e) is the central condition needed to establish the coexistence of predator 
and prey populations, assuming sufficient start-up population densities.   It requires 
that the average rate of change of prey population density is positive over certain 
population intervals, given that the predator population density is equal to q. 

In our first theorem, the predator and prey populations may satisfy either Dirichlet 
or Neumann boundary conditions. It establishes that if diffusion of predator and prey 
is relatively slow, then initial populations confined to Br, a ball of radius r inside the 
domain, will stabilize over time. How slow the diffusion must be depends on the size 
of r, and in fact, an elementary scaling argument shows that e and 7 are inversely 
proportional to r. 

Theorem 4.1. Assume hypotheses (4a)-(4e). Let Br C Q. If e and 7 are sufficiently 
small, then there are continuous functions u(x) and v{x) with the properties 

(a) p > u(x) > p — Ce2 for x G Br-e and some constant C independent of e, 
u{x) — 0 for x 0 Br, 

(b) w > v(x) > 0 for x £ Br-e where w satisfies G(p, w) = 0, v(x) = 0 for x £ B—r, 

so that the graph of each solution (u,v) of (4.1) that satisfies K > u(x, 0) > u{x), 
q > v(x10) > v(x), x G Q, and Dirichlet or Neumann boundary conditions, also 
satisfies these inequalities for all t > 0 and converges as t —> 00 to an order interval 

{ (x^^O) : ui(x) <(j)< U2(x), vi(x) < 0 < V2(x) } 

where (^1,^1) and (1x2,^2) are positive stationary solutions that satisfy the same bound- 
ary conditions as (u,v), and there are positive constants Ci, C2, C3 so that 

p — C\e2 < ^i(x),        w — C2S2 < vi(x) 

forx G O (Neumann boundary conditions) or/ordist(x,0fi) > C^e (Dirichlet bound- 
ary conditions). 

Proof. First, note that u = K, v = q constitute a supersolution pair for (4.1) since 

lit — eAu = 0 > uF(u, v) 

for all 0 < v < v, and 

Vt — 7AU = 0 = vG(u, v). 

By Theorem 2.3 and hypothesis (4e), there is for small values of e a function u(x) 
having the properties 

(i) u = 0 on dBr, 
(ii) u > p - CiS2 for x G Br-£ and some C\ > 0, 

(iii) u < p on jBr, 
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(iv) ut - e2Au = -s2Au < uF(u, q) for x G Br. 

Define 

for x 6 Br 

for x £ O — Br. 

Then it follows easily that u is a subsolution for (4.1). 
If e is small, then p — C\S2 > D by assumption (4e), so G(p — Cie2,0) > 0. Again 

by Theorem 2.3, for small values of 7 there is a function v(x) so that 

(i) v = 0 on dBr-e, 
(ii) w — C2e2 < v < w in jBr_£ for some C2 > 0, 

(iii) ^ - 72Ai; = -72Ai; < vG(p - Ci€2,v) < vG(u,v) 

by assumption (3a) for x in Br_£. Thus 

, N      \v(x)    for x e jBr_£ v(x) = < — 
"V  ;      [0 fora:G^-5r-£ 

is a subsolution. The behavior of solutions of (4.1) described in the statement of the 
theorem now follows immediately from Theorem 2.2, and the properties of Ui and vi 
are verified as in the proof of Theorem 3.1. □ 

For certain special systems of the form (4.1) with Dirichlet boundary conditions, 
it is known that positive steady-state solutions are unique (see Lopez-Gomez and 
Pardo [15] and Casal et al. [2]). Then solutions of the reaction-diffusion system de- 
scribed in Theorem 4.1 must converge to the steady-state solution as t —► 00. 

In the case that both populations satisfy Neumann boundary conditions, we have 
a result for predator-prey models similar to Theorem 3.2. 

Theorem 4.2. Assume hypotheses (4a)-(4e). If r is large enough, then there are 
continuous functions u(x), v(x) with the properties 

(a) p > u(x) > p — ^ for x G Br-S fl Q, (s,C independent of r), u{x) = 0 for 
x€tt\Br, 

(b) w > v(x) > 0 for x G I?r_s D Q, v(x) = 0 for x G ft \ Br, 

so that the graph of each solution (u,v) of (4.1) that satisfies K > w(a:,0) > u(x), 
q > v(x10) > v(x) x G ft, and Neumann boundary conditions, also satisfies these 
inequalities for all t > 0 and converges as t —► 00 to an order interval 

{ (x,(f),Q) : ui(x) <(/>< U2(x), vi(x) < 6 < V2(x) } 

where (^i, fi) and (^2, ^2) are stationary solutions of (4.2) satisfying Neumann bound- 
ary conditions, and there are constants Ci, C2 so that 

C1 G 
p 2" < ui(x) < U2{x) < K, w 2" < Vi(x) < V2(x) < q 

for all x eft. 

This result is easily obtained by modifying the proof of Theorem 4.1, as the proof 
of Theorem 3.1 was modified to obtain Theorem 3.2. 
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