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APPROXIMATIONS FOR THE LATE COEFFICIENTS IN ASYMPTOTIC 
EXPANSIONS ARISING IN THE METHOD OF STEEPEST DESCENTS 

W. G, C. Boyd 

ABSTRACT, We set out two kinds of calculations for estimating the behavior of 
the late coefficients in the asymptotic expansions which arise in the method of 
steepest descentsT Both are based on the reformulation of this method due to 
Berry and Howls, The first kind of calculation yields asymptotic expressions in 
which the higher-order terms diminish in inverse powers of r, while in the second 
kind of calculation, the higher-order terms diminish as in an inverse factorial 
series. We illustrate the calculations by applying them to the late coefficients in 
the asymptotic expansions of the Airy function, the modified Bessel function, and 
the gamma function. 

1. Introduction 

The purpose of this paper is to consider the behavior of the late coefficients in the 
asymptotic expansions that result from an application of the method of steepest de- 
scents, (The adjective "late" signifies that r > 1 where the coefficients are denoted 
by ar, say.) It is well known that the behavior of the early coefficients may be de- 
scribed directly in terms of the local properties of the integrand at the saddle point 
through which the steepest-descents path passes. We shall find that the behavior of 
the late coefficients may be described in terms of the local properties of the integrand 
at certain other saddle points, the so-called adjacent saddle points. We shall present 
two kinds of results; in the first, the behavior of the late coefficients is represented by 
an expansion in inverse powers of r; and in the second, by an inverse factorial series. 
In both cases, we shall exploit the reformulation of the method of steepest descents 
due to Berry and Howls [2], We shall find it convenient to refer to the exposition of 
the Berry-Howls approach given in [5, §2], 

Consider how the method of steepest descents would be used to find the asymptotic 
expansion, as \z\ -* oo, of the integral 

/V*p(,D)g(t£/)dt£7, (1) 

defined over some contour in the w-plane. The first stage in applying the method is 
to locate the zeros of p'iw) (more usually referred to as saddle points or stationary 
points in this context), and then to deform the contour to a path of steepest descents 
through one of the saddle points, We shall assume that p(w) and q(vj) are holomorphic 
functions and that pf(w) has only simple zeros, located at w^, w^2\ ..., and suppose 
that the contour of integration is deformed into the path of steepest descents through 
the saddle point t//n\ We thus are led to consider the asymptotic expansion of the 
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integral 

SM(z) = zi [ e-*b>M-Pin)] q(w) dw (2) 

where 

pW=p(w(n)), (3) 

C(n\0) is the path of steepest descents through the saddle point it/71) with the orien- 
tation specified in any particular problem, and 6 denotes ph.(z). 

In a direct application of the method of steepest descents, the integral in (2) is 
transformed to a canonical form to which Watson's lemma can be applied [13, p. 89]. 
One thus finds that S^n\z) enjoys the asymptotic expansion 

^w-ES (4) 
r=0 

where the values of the coefficients ar are expressed in terms of the local properties of 
p(w) and q(w) at w = w^n\ In this approach, the leading coefficients are found to be 

do 

Oi 
27r 5p,,,2q - Zp"p""q - l2p,,

V
mq' + l2V"2q" V ; 

24p//3 

where the various derivatives of p and q are evaluated at the saddle point w = w^n\ 
The expressions for higher coefficients are successively more complicated. (Dingle [9, 
pp. 119-121] gives expressions for the coefficients up to and including a^.) 

In the reformulation of the method of steepest descents by Berry and Howls [2], the 
coefficients ar are represented by 

r(r+i)/ q{w) 
ar = /      q-H^dw (6) 

Jrw \p(w) - pMV+i K 

ar = 

27ri     Jr(n) \p(w) - p(n)]r+i 

where r^n) is a closed contour surrounding the saddle point w^, traversed counter- 
clockwise. (This representation had been given earlier by Copson [7, p. 69] and Dingle 
[9, p. 119].) We shall discuss the precise specification of the integral (6) in §2. The 
integrand in (6) alternatively may be expressed in the form (1), that is, 

^-Tr^ /     exp(-(r + ±)ln(p(w)-pW))q(w)dw. (7) 
27ri     Jrin)        \ / 

It is natural to enquire whether techniques for the asymptotic evaluation of integrals— 
and, in particular, the method of steepest descents itself—are applicable to the rep- 
resentation (7) when r ^> 1. That is to say, can the asymptotic behavior of the late 
coefficients (the behavior of ar as r —> oo) be determined from (7)? We shall find that 
it can under a wide variety of circumstances which are described in §2. Berry and 
Howls [3, §2.1] show formally how integrals such as (7) may be evaluated asymptot- 
ically. In §3, we shall apply the results of §2 to three examples: the late coefficients 
arising in the asymptotic expansions of the Airy function, the modified Bessel function, 
and the gamma function. 

The results of §2 and §3 express the behavior of the late coefficients as expansions 
in inverse powers of r. In §4, we shall show how a different sort of expression for the 
late coefficients—as inverse factorial series—may be determined. This approach uses 
a representation for the coefficients ar which differs from (6) or (7) above.  Instead, 
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starting with the fundamental result which Berry and Howls themselves exploited in 
deriving their hyperasymptotic scheme [2], we deduce an alternative representation, 
given in (52) below, from which inverse factorial series arise naturally. In an earlier 
paper [6], we showed how this approach could be applied to the late coefficients in 
the asymptotic expansion of the gamma function; in §4, we shall show how it may be 
used for the Airy function and modified Bessel function. Dingle [9] gives many formal 
results using inverse factorial series (in particular, see Chapter VII, which discusses 
late terms). 

We conclude in §5 with a short discussion. An appendix demonstrates the equiva- 
lence of the representation (39) for the gamma function and an apparently different one 
used in a similar context by Diekmann [8]. Diekmann's analysis, which was concerned 
specifically with the gamma function, foreshadows in some respects the approach we 
set out in §2 and §3. 

2. The asymptotic behavior of the late coefficients 

The starting point for our analysis will be the representation (7) for the coefficients 
ar. But first, it is necessary to set out conditions on the functions p(w) and q(w), and 
to specify the branches in the integrands of (6) and (7). 

The conditions we shall require of p(w) and q(w) are closely adapted from those 
given in [5, p. 501]: 

Conditions 2.1 

(i) The functions p(w) and q(w) are analytic at every point in the closure of a 
domain A^n\ 

(ii) There is exactly one (interior) point of A(n) which is a saddle point of p(w). At 
this point, w^, p"(it/n)) ^ 0. 

(iii) Any point w is in the closure of A^ if and only if it can be reached by exactly 
one path of steepest descents, 

ph.(p('w) — p^) = constant, 

emanating from w^n\ 
(iv) The boundary of A^n^ in the finite tu-plane comprises the union of the adjacent 

contours C^), each of which contains exactly one adjacent saddle point w^ 
of p(w) and on which 

ph(p(w) -p(w{rn))) = ph(p(nm)). 

(The right-hand side is defined in (8) below.) Furthermore, ^'(w^) ^ 0. 
(v) As |^| —> oo in A'(n), \p(w)}~r~2q(w) = o^-1); moreover, [p(/w)]~r~2q(w) —> 0 

sufficiently rapidly so that 

Jcc 

q(w) dw 

/c(m) I \p(w)]r+2 

exists for each adjacent contour C(m\ 

In condition (iv), the right-hand side of the equation is defined by 

p(nm) =p(m) _p(n)t ^ 
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FIGURE 1. A typical domain A^ associated with the saddle point 
w(n\ in which Conditions 2.1 apply. (The domain A^n^ is shown 
unshaded.) The contour V^n\ which is traversed anticlockwise, en- 
closes the saddle point w^ within the domain A(n). The contours 
on the boundary of the domain—the figure depicts C^mi\ C^m2\ 
C(m3\ passing through the adjacent saddle points it/™1), <u;(m2), 
w(m3\ respectively—are the adjacent contours. 

We make a number of observations about Conditions 2.11* A typical domain A(n) 
is illustrated in Figure 1. The term adjacent contour was introduced in [5], following 
Berry and Howls' term adjacent saddle [2]: the saddle point w^ oip(w) is adjacent 
to w^ if it can be reached from w^ by means of a path of steepest descents given 
by condition (iii) above; condition (iv) above implicitly defines the corresponding 
adjacent contour. We remark that although Conditions 2.1 refer to p(w) itself rather 
than to the function ln(p(w) —p^) which appears in (7), the conditions are indeed 
appropriate, as we shall show below. 

Next we consider the precise specifications for the integrands of (6) and (7). The 
specification of the square root \p(w) — p(n)]? in the integrand of (6) is discussed in 
detail in [5, pp. 498-499]: we require \p(w) — p^] 2 to be positive for those values of w 
which lie on the half of the contour C^n^(0) which is traversed after the saddle point 

WW (referred to as C+ with 0 = 0 in [5]), and define it elsewhere by analytic contin- 
uation. Note that because p(w) —p^ has a double zero at w = w^n\ the integrand 
of (6) is actually single-valued. Consistently with this specification of the square root 
in the integrand of (6), we define the logarithm in (7) to have zero imaginary part for 
those values of w which lie on the half of the contour C^ (0) which is traversed after 
the saddle point w^n\ and define it elsewhere by analytic continuation. Although the 
logarithm in (7) is not itself single-valued^ the integrand is, so it is not necessary to 

1 There is an omission in the conditions given by [5, p. 501]; the requirement that 
[p('uj)]~r~'2q(w) = o^"1) as \w\ —> oo in A^n\ which is given in condition (v) above, also is 
necessary in [5]. 
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consider branch cuts or other devices to ensure that the contour integral in (7) is well 
defined. 

Now consider how to exploit the representation (7) to find the asymptotic behavior 
of the late coefficients ar. By virtue of Conditions 2.1, we may deform the contour of 
integration T^ out to the boundary of A^n\ and thus obtain 

r(r + i) V 
2m     ^ 

[      exp(-{r+l)ln(p(w)~p{n)))q{w)dw, (9) 

in which ar is represented as a sum of integrals over the adjacent contours (cf. [3, 
equation (15)]). Consider how the method of steepest descents may be applied to this 
integral for r —> oo. First, the stationary points of In (p(w) — p^) have to be located. 
These occur at the zeros of p'{w), that is, they coincide with the saddle points of 
p{w). On each contour C^ in (9), therefore, there is exactly one stationary point. 
The second stage in the method of steepest descents is to factor out the value of 
the exponential in each integrand of (9), and then to determine the paths of steepest 
descents from each saddle point. We thus find 

"^o^E    (\     J      expf-(r+I)ln(^^)),Hd.. (10) 27ri       ^ [p(nm)]r+i Jc{rn)      
FV       V 2}       V       p(™0        )JHK    ) V     } 

The square roots [p(nm)]2 in this expression are special cases of the square root of 
\p(yj) — p(n)] 2 v discussed in the previous paragraph; a fortiori, they are defined without 
ambiguity. For each value of m in (10), the argument of the logarithm is real and 
greater than or equal to 1 for values of w on C^: it follows, therefore, that the 
adjacent contours are paths of steepest descents for the integrands in (10). 

Therefore, the method of steepest descents may be applied directly to the integrals 
in (10) to yield, at leading order, 

[P"(W(™))]2 
l + 0(i)] (11) 

as r —► oo. The correct branch of the square root \pf'(w^)]* in (11) needs to be 
specified carefully. Note that, as we remarked above, the argument of the logarithm 
in (10) is real, and also that as r —> oo the value of the integral in (10) is increasingly 
dominated by the local behavior of the integrand in the neighborhood of the saddle 
point w = 'u/m). Thus, one infers that 

ph([p<nm>]2) -ph(|p,,(T£;(m))]*) (12) 

must equal the angle which the tangential direction vector at w = ii/m) makes with 
the positive real axis (with account taken of the sense in which the contour C^ 
is traversed). The square root \p,f(w^)]* in (11), therefore, must be specified by 
choosing that value which enables requirement (12) to be satisfied. (Examples are 
provided in §3.) With \pr,(w^)]^ thus specified, we may assert that 

.    r(r+i)    v^ g(™(m)) V- ^m)) h + o^l (13) 
^2iT(r+ |)  m  b(nm)]r b"(™(m))]" L 

as r —».oo. 
For some of the applications that we shall consider later we shall need also the next 

terms in the expansions appearing in (13), and, for this purpose, we may appeal to 
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the formula for ai given in (5). Now the second, third, and fourth derivatives of the 
logarithm in (10), respectively, have the values 

p"(wW) 
n2 

p(nm) 

at tt; = w^m\ so the final factor in (13)—in the square brackets—is 

(14) 

1      9p"3q + p(nmU5p"'2q - 3p"p""q - I2p"p"'q' + 12p"2q"} 1      . / 1 \ 
1 + ^q r+0bJ        (15) 

where the various derivatives of p and q are evaluated at the adjacent saddle points 
w = w^K In principle, higher-order terms than those given in (15) could be found, 
but, as we noted in §1, these become successively more complicated. However, it is 
worth remarking on the form of the higher-order terms, in inverse powers of r. Later, 
in §4, we shall find approximations of a different kind, as inverse factorial series. 

The description of the behavior of the coefficient ar as r —> oo given by (13) may 
be slightly simplified by an appeal to the result 

r(r+|)_TW,      3 l)„r(r)(l-l + 0(^)) (16) 

as r —> oo [11, p. 119]. Therefore, we find that (13) becomes 

[1 + 0(1)]. (17) . r(r) Y- g(w(m)) 
y/2lT ~ [p(nrn)]r [p"(u>(m))]: 

The next terms in the expansions appearing in (17) can be found directly from (15) 
and (16); one finds that the final factor in (17)—in the square brackets—is 

^^^g-V^-WY + iVVi + of i) (18) 
24p"3q r \r2) K    , 

where the various derivatives of p and q are evaluated at the adjacent saddle points 
w = w(m\ 

The factors [p(nm)]r, which appear in (17), can be expected to differ in magnitude 
for the various adjacent saddle points. In particular, if there is a value of m, say m, 
for which the value of |p(na)| is less than |p(nm)| for all the other adjacent saddles, 
then 

^       -iqjwW) T(r) 

as r —> oo. The constant factor aside, this is in the form of ca factorial divided by 
a power', a result we shall return to in §5. However, when the least value of |p(nm)| 
is shared by two or more adjacent saddles—as in the examples we shall consider in 
§3.2 and §3.3—the leading-order behavior of ar may be more complicated. Indeed, for 
the example in §3.3 (the gamma function), we shall find that the even and odd late 
coefficients differ substantially in relative magnitude. 
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-1 

Jm2). 

FIGURE 2. The domain A^) associated with the saddle point w^ = 
1 for the integral representation of the Airy function Ai ((§2)3) con- 
sidered in §3.1. There is only one adjacent contour, C^2K 

3. Examples 

3.1. The Airy function Ai. We shall find it convenient to consider the Airy func 

^2 tion of argument (fz)3, rather than Ai(z) itself.   Its integral representation is [13, 
p. 90] 

where 

Al((W«) = i(|»)70
,r*",d- 

p(w) = -lur + §«;. 

(20). 

(21) 

In (20), and subsequently in this subsection, fractional powers of z take their principal 
values for \0\ < TT; the contour C runs from 00 exp (i^(—TT — 6)) to 00 exp (i|(7r - 9)). 
The function p(w) has two saddle points, -u/1) = 1 and w^ = —1. Following [5, 
p. 507], we shall consider the function S^ (z), which is related to the Airy function by 

Ai((§*)S) = -12"* 3* TTW* S(1)(s), 

and which is defined by 

Jew 

(22) 

(23) 

(The contour C in (20) may be deformed to the path of steepest descents C^ through 
the saddle point w^ for \6\ < TT.) 
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The asymptotic expansion of S^(z) is readily found from the well-known asymp- 
totic expansion for the Airy function: 

S(1)(*)~£5 (24) 
r=0 

for |0| < TT where 

a^K-WE    Tfr+toi (25) 
r      V    ' V  3  54'T!r(r+i) ^    ; 

(e.g., [5, p. 507]). 
We shall illustrate the general calculation described in §2 for this example. It 

can easily be verified that Conditions 2.1 hold good with respect to the saddle point 
w^ for all r > 0; there is only one adjacent saddle point, w^2\ and the domain 
A^1) comprises all the points to the right of the adjacent contour C^2\ One readily 
finds that p^ = —2 and p,f(w^) = 3; taking account of requirement (12) and the 
orientation of C^ in Figure 2, one finds that pli(\pn(w^)]^) must satisfy, modulo 
27r, 

±7r-ph(bV2¥)=--^ (26) 
that is, phdy^2))]^) = TT, modulo 2ir. Hence, from (19), 

— ^OT <27» 
as r —> oo. It can be shown by using Stirling's formula [11, p. 88] that the asymptotic 
behavior of the right-hand side of (25) for r —> oo indeed is given by (27). 

3.2. The modified Bessel function Kj,. The modified Bessel function Ku(z) may 
be defined for \0\ < ^TT by 

Ku{z) = J /     e-*pM q{w) Aw (28) 

where 

p{z) = cosh(w),        q{w) = evw (29) 

[11, p. 250]. The function p{w) has saddle points at w^ = nTri for n = 0, ±1, ±2,..., 
and, for |0| < ^TT, the contour of integration in (28) may be deformed to C^0\ the 
path of steepest descents through the saddle point w^\ Following [5, p. 510], we shall 
consider the function S(0\z), which is related to Ku(z) by 

Kv{z) = \z-U-*SW{z), (30) 

and which is defined by 

S(0)(*) = z\ f     e-zlpM-i] q(w) dw. (31) 
Jew 

A standard appeal to analytic continuation shows that (31) is actually valid for a 
larger domain than we have indicated; it holds good for \d\ < TT* 

Only two of the infinite number of saddle points are adjacent to w^0\ namely, w^ 
and UJ(

-1
) (see Figure 3). One readily verifies that Conditions 2.1 hold good with 

respect to the saddle point w^ provided r > |Re(i/)| — ^. Since we are considering 
r > 1, this proviso involves little loss of generality (unless |Re(z/)| is very large, in 
which case different approximations are appropriate in any case). The domain A(0) 
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(£! TTi 

o" 

-TTiJ                                   c(-1) 

FIGURE 3. The domain A^ associated with the saddle point w^ = 
0 for the integral representation of the modified Bessel function K^ (z) 
considered in §3.2. There are two adjacent contours, C^-1) and C^1). 

l/TTi     p(0 -1)    _   _2? is |Im(z)| < TT. One finds p^ = -2, pf,{w^) = -1, q(w^) = e 
^"(t//-1)) = —1, and ^(tt;^"1^) = e""^71"1; taking account of requirement (12) and the 
orientations of C^ and C^"1) in Figure 3, one finds that, modulo 27r, 

^7r~ph(b/,(^1))]2)=7r 

and 

27r ■ph(|j/V"1))]*)=0> 

that is, the square roots must be chosen so that 

phflpV1))].*) =ph{\p"(w^)]i) = -ITT, 

modulo 27r. Hence, from (17), 

(32) 

(33) 

(34) 

ttr = 

as r 

V/2^( 

oo. The result (35) simplifies to 

^['+°e)]+9$M)]    <-» 

ar = ]ll cos(z/7r) r(r) r 
(-2)' 

1 + <)]• (36) 

except possibly when */=2>i>i'••• * ^^ la^^er possibility is, however, of no direct 
interest because it is known (see (37) below) that, for sufficiently large r (and in 
particular for r > z/), the coefficients ar — 0 for such values of z/. 

The coefficients ar are given exactly by [4, p. 242] 

2      ,    xr(r+| + ^)r(r+i-z/) 
cos(z/7r) — / „x   ' / f - 

TT      
v    ; (-2)7'r(r + l) 

(37) 

with the understanding that the limiting form is taken for i/ = |, |, |,... when r < z/. 
An appeal to Stirling's formula shows that the asymptotic behavior of the right-hand 
side of (37) for r —> oo indeed is given by (36). 
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2ix\ ^             ^ 

 a-  

i 
^               C<-1> 

FIGURE 4. The domain A(0) associated with the saddle point w^ = 
0 for the integral representation of the gamma function T(z) consid- 
ered in §3.3. There are two adjacent contours, C^"1) and C^. 

3.3. The gamma function. In discussing the gamma function, we follow the anal- 
ysis of [6]. Our starting point is Euler's integral 

/»oo 

T(z) = /    e'H*-1 

Jo 
dt. (38) 

which is appropriate for \0\ < ^TT.  The change of variable w = lii(t/z) transforms 
Euler's integral to 

/oo 
e-zp(w) dw ) 

-oo 
(39) 

a form which is more suitable for our purpose, again appropriate for \6\ < ^TT. Here, 
the function p(w) is defined by 

p(w) = e^ — w; 

its saddle points are at w^ = 2n7ri for n = 0, ±1, ±2,.... 
S^ (z), which is related to the gamma function by 

r(z) = zz'h-zS^(z), 

and which is defined by 

S(0)(z) = z
12 f    e-^M-i] dw 

Jew 

for |^| < ^TT (the definition differs slightly, by a factor of \/27r, from that of [6]). 
In [6] we showed that one may regard only two of the saddle points w^ as adjacent 

to w(0\ namely w^ and tf/-1). The adjacent contours C^1^ and C^-1) then pass 
through all the other saddle points for m > 0 and m < 0, respectively (see Figure 4). 

(40) 

We consider the function 

(41) 

(42) 
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It may be verified that Conditions 2.1 hold good with respect to the saddle point w^ 
provided r > 1; the domain A^0) is illustrated in Figure 4. One finds p(01>} = —27ri, 
pf,(w^) — 1, p^0'-1) = 27ri, and ^"(it/-1)) = 1; taking account of requirement (12) 
and the orientations of C^ and C^"1) in Figure 4, one finds that, modulo 27r, 

|7r-ph(b"(W
(1))]^) = |7r (43) 

and 

-fTr-phflpV-1*)]*)^, (44) 

that is, the square roots must be chosen so that 

phflyv1')]*) =o,    phflpV-1))]*) = -TT, (45) 
modulo 27r. Hence, from (17), 

^.zL-IJrLh +0(1)1 + 4= m ri+o(I)l        (46) 
\/2K (-27ri)r L Vr/J     ^/2^ (27ri)r L \rJ\ v    ' 

as r —» oo. The result (46) simplifies to 

as r —> oo when r is odd; when r is even, the contributions in (46) cancel at leading 
order. With account taken of the higher-order terms given in (18), one finds 

as r —> oo when r is even. 
There is no explicit, exact expression available in the literature for the coefficients 

ar. The asymptotic expansion of S^(z) starts 

S«)W~VS(l + i + 5i?-s^? + ...), (49) 

and, although the general form of ar is not known, very accurate approximations for 
ar when r ^> 1 are available [6, equation (71)] in the form 

ar=   (2^+1    E(-1)fa^27r)Sr(r~s) + ^'       for r = 1,3,5,... 
^    ' s=o and M even, 

(50) 
2f-lU M""2 i 

^ = ,l     **! ^(-l)"|1as(27r)sr(r-5) + AM,        for r = 2,4,6,... 
(27r) 

s odd 
s=-1- and M odd, 

where the truncation error AM can be explicitly and realistically bounded ([6, in- 
equality (70)]). Noting that ao = V^TT, one finds that (47) and (48) agree with (50) 
at leading order. 

4.  An alternative approximation: inverse factorial series 

Berry and Howls showed how the representation (2) for S^n\z) could be transformed 
into the form 

ofny-x      yV 1     v       1 [°°vN-ie-oSM(v/p(™)) 
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[2, equation (19)]. Here, the sum is taken over the adjacent saddles; the functions 
5'(m) are defined in an analogous manner to (2), but are associated with the saddle 
point w^. In [5] we showed that the result (51) was valid provided Conditions 2.1 
were satisfied with r — N (and provided the integral S^ actually existed). 

Suppose now we put iV-f-1 in place of iV in (51), and consider the difference between 
the two right-hand sides. One immediately infers that 

ar^TT-rY r ,    „    /    vr-1 e-v 5(m)(^(nm)) dv (52) 
27ri^ b(nm)]r ^o 

where we have written r in place of N. This is a second representation for ar, different 
from (6) or (7). Our derivation of this representation has similarities with that given 
by Olde Daalhuis and Olver [10] in arriving at their Lemma 3.2 (the connection is 
discussed further in §5). In many circumstances, one expects that the functions S^ 
themselves have asymptotic expansions 

oo      (m) 

S(m)(-)~£V' (53) 
8=0      Z 

similar to (4), as \z\ —> oo for some suitably restricted range of ph(z). Now if r ^> 1, 
only large values of v contribute significantly to the integrals in (52). Consequently, 
one may reasonably anticipate the use of (53) to be appropriate, and so infer the 
formal result 

«r~^EErr/r7/)   ^ (54) 27ri ^ ^ »(nm)]r-s   s K    ) 

(cf. [2, equation (21)]). Series expansions of this kind are referred to in the literature 
as inverse factorial series (see [10, 12] and [6, §3.3]). We note that since 

Am) _ 27r 
p"(w(m)) q(w(rn)), (55) 

the leading-order terms in (54) and (17) agree. 
The result (54) is formal only. One could prove its validity rigorously by first trun- 

cating the various series in (53) and bounding their remainders, thence the remainder 
in the corresponding truncated version of (54). In [6] we showed how this could be 
done for the late coefficients in the asymptotic expansion of the gamma function. Here 
we shall illustrate the process by considering the late coefficients in the asymptotic 
expansion of the Airy function. Prom [5, equation (53)], one readily infers that the 
representation (52) is, in this case, 

1        r00 

a^2^wl   ^e-S^HiOdt,. (56) 

Now [5, equations (55), (49), (60)], 

M-l 

S^(-lv) = iS^v) = i J^^ + RM (57) 
3=0 

where 

l-rtAfl  <  —-M • l5b) 
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Therefore, we find that 

^^E1^^^ (59) 
5=0 

where 

|AM|<^^#M- (60) 

One readily establishes that the least value of \AM\ occurs when M « |r. At leading 
order, (59) agrees with our earlier result (27) (noting that, from (25), ao = 1-^/271-/3). 

One may likewise show that for the modified Bessel function, 

dr » i^~ cos(i/7r) 2^    v
2r.s 

J as + AM (61) 
s=0 

where 
^ cos(i/7r) r(r - M) 

I^Ml < •— 2r_M     l^Ml- (62) 

5. Discussion 

Many results concerning the behavior of late coefficients in asymptotic expansions 
are given in the book by Dingle [9]. Dingle's derivation of his results is based on 
interpretive, rather than rigorous, methods. The analysis which we have provided in 
this paper provides a secure basis for investigation of some of the questions which he 
addresses. 

In particular, the issues considered in Chapters VII and VIII of [9] (late terms in 
general and in integral representations, respectively) can be tackled directly. Dingle 
based his derivations on Darboux's theorem [9, p. 141], but he expressed dissatisfaction 
with merely taking account of "the singular points on the circle of convergence", as 
the theorem requires; instead, he advocated expanding "about every singularity— 
both on and outside the circle of convergence". Prom our current standpoint—with 
the advantage provided by the reformulation of the method of steepest descents due 
to Berry and Howls [2]—we can express this more precisely as follows. The analogue 
of the Darboux theorem in our approach is that only those adjacent saddle points 
which share the least value of |p(nrn)| contribute to the asymptotic estimate for ar 

as r —> oo, (cf. equation (19)). However, there is a definite sense in which it is 
proper to consider also the contributions from other saddle points; the coefficient ar 

is represented exactly by a sum of terms, each of which is strongly associated with the 
local behavior at the adjacent saddle points (cf. equations (10) and (52)). We remark 
that the set of adjacent saddle points may be smaller than the set of all other saddle 
points, so that Dingle's advocacy needs to be interpreted subject to this proviso. 

The results which we have obtained in §4 may be compared directly (for the Airy 
function and for the modified Bessel function) with those which have been found by 
Olver [12] and Olde Daalhuis and Olver [10]. Olver's approach is based on exploiting 
the recurrence relation enjoyed by the coefficients ar, while Olde Daalhuis and Olver 
exploited the integral representation (via Cauchy's integral formula) of solutions of lin- 
ear second-order differential equations. Their results are consistent with ours, though 
we should remark that we have explicitly identified all of the constants used and have 
obtained explicit error bounds. 

It is of interest to note the generality of the results (17) and (19); the behavior of 
the late coefficient ar in the asymptotic expansion arising from the method of steepest 
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descents can be expected to be in the form T{r)/'pr, or a modification of this form 
as in the case of the gamma function. This behavior of 'a factorial divided by a 
power' was used to considerable effect by Dingle [9, p. 405] as the basis for the formal 
development of his theory of terminants and by Berry [1] in his explanation of the 
Stokes phenomenon. The class of integrals which we have considered in this paper is a 
fairly wide one; consequently our discussion provides some insights into the reasons for 
the success of their formal methods. It should be noted that the assumptions which 
we made about the properties of p{'w) (Conditions 2.1) are less restrictive than might 
first appear; it often is possible to make a preliminary change of integration variable 
to bring the integrand into the appropriate form. (In effect, this is what we did in the 
case of the gamma function in transforming from (38) to (39).) 

Appendix 

The purpose of this appendix is to demonstrate the equivalence of apparently inconsis- 
tent representations for the coefficients ar in the asymptotic expansion of the gamma 
function, which we considered in §3.3. The representation for the coefficients which 
we implicitly used in §3.3 was 

ar = —^  . 2    (p      r dw (63) 
27ri     Jr(o) [e™ - w - l]r+2 

where the contour r(0) surrounds the saddle point w^ = 0. 
Diekmann, in effect, considers the expression 

r(2r + l)^   W 1  
r      r(r + 1) 22-  27ri / [z - In (1 + z)Y+i {    ) 

for the coefficients [8, equations (2.1)-(2.3), (2.5), (3.2)]. (The definition of the co- 
efficients used by Diekmann differs from that used in §3.3 of this paper by a factor 
of \/27r.) The contour of integration in (64) is a closed contour surrounding z = 0. 
The transformation 1 + z = ew, together with the duplication formula for the gamma 
function [11, p. 35], yields 

r(r + ^) 
- dw (65) 

27ri      Jrco) [ew - w - l\r+i 

where I^0) is defined as in (63) above. The result (65) is similar in form to (63), but 
is nevertheless not identical with it. 

It is worth confirming that (63) and (65) are both correct, and that both may be 
derived in the same manner. By appealing to Euler's integral (38) for T(z + 1) and 
the identity T(z + l)/z = T(z), one finds that 

/oo 

e-zp(w)q(w)dw (66) 
-OO 

where p(w) is defined as in (40) and q(w) = ew. Using (66) in place of (39) leads 
directly to the representation (65) in place of (63). So, despite the difference between 
the integrands in (63) and (65), both are valid. 
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