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COMPLEX ZERO DECREASING SEQUENCES 

Thomas Craven and George Csordas 

ABSTRACT. The purpose of this paper is to investigate the real sequences 70,71, 
72,... with the property that if p(x) = 53fc=o akxk is any real polynomial, then 
Ylk=o^kakxk has no more nonreal zeros than p(x). In particular, the authors 
establish a converse to a classical theorem of Laguerre. 

1. Introduction and background information 

In the theory of distribution of zeros of polynomials, the following open problem is 
of central interest. Let D be a subset of the complex plane. Characterize the linear 
transformations T carrying polynomials into polynomials such that if p is a polynomial 
(either arbitrary or restricted to a certain class of polynomials), then the polynomial 
T[p\ has at least as many zeros in D as p has zeros in D. There is an analogous 
problem for transcendental entire functions. (For related questions and results, see, 
for example, [2], [9], [13, Ch. 2,4], [14], [15, Ch. 7], [18, Ch. 3-5], and [20, Ch. 1- 
2].) In the classical setting (D = M), the problem (solved by Polya and Schur [24]) 
is to characterize all real sequences T = {'yk}kLo,7k £ ^ such that if a polynomial 
P(

X
) 

= Sfc=o akxk has only real zeros, then the polynomial 

T\p(x)]=T  Y,a*xk   :=E^a^' (L1) 
LfcO -' A;=0 

also has only real zeros (see (1.4) and (1.5) below). The purpose of this paper is 
to attack the following more general problem. Characterize all real sequences T = 
{7fc}£Lo>7fc € M such that if p(x) is any real polynomial, then 

Zc(T\p(x)}) < Zc(p(x)) (1.2) 

where Zc(p(x)) denotes the number of nonreal zeros of p(x), counting multiplicities. 
In order to facilitate the description of our results, we will first recall some definitions 
and terminology and review some facts that will be needed in the sequel. 

Definition 1.1. A real entire function (j)(x) := Y^kL^lk^/^ is said to be in the 
Laguerre-Polya class, (j)(x) € C-T, if (j){x) can be expressed in the form 

00 

(j>{x) = cxne-ax2+(5x Y[ (l + — V* (1-3) 
*=i Xk 

where c, /?,#& G M, c ^ 0, a > 0, n is a nonnegative integer, and J^fcLi V^l < 00- If 
—00 < a < b < 00 and if </>(#) G C-V has all its zeros in (a, b) (or [a, 6]), then we will use 
the notation </> € C-V (a, b) (or </> G CV[a, b]). If jk > 0 (or (-l)fc7fc > 0 or -7* > 0) 
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for all k = 0,1,2,..., then 0 € C-V is said to be of type I in the Laguerre-Polya class, 
and we will write </> € £-7^1. 

In order to clarify the above terminology, we remark that if </> G £-7*1, then </> G 
£-7*(~oo,0] or 0 G ^T^OjOo), but that an entire function in £-7:>(-oo,0] need not 
belong to £-7*1. (Indeed, if ^(x) = p^y where T(x) denotes the gamma function, then 
<l)(x) G £-7>(-oo,0], but ^(a;) ^ £-7*1. This can be seen, for example, by looking at 
the Taylor coefficients of </>(#) = ffe) •) 

Definition 1.2. A sequence T = {j^kLo of real numbers is called a multiplier se- 
quence if, whenever the real polynomial p(x) = XIAUO 

afcxfe ^ias on^ real zeros, the 
polynomial T[p(x)] = Yl^o lk^k^k also has only real zeros. 

The following are well-known characterizations of multiplier sequences (cf. [20, 
pp. 29-47], [23, pp. 100-124], or [24]). A sequence T = {7fc}£o is a multiplier 
sequence if and only if 

00 

<£(*)= T[e*]:=£ ^r* er-PI. (1.4) 
A;=0 

Moreover, the algebraic characterization of multiplier sequences asserts that a se- 
quence T = {7fc}fcLo is a multiplier sequence if and only if 

gn(x) := J2 [' )T?
XJ

 
e C-Vl for all n = 1,2,3,... . (1.5) 

The polynomials gn(x) are called the Jensen polynomials associated with the entire 
function (t)(x) defined by (1.4). 

Definition 1.3. We say that a sequence {7A;}£Lo 'ls a complex zero decreasing sequence 
(CZDS) if 

Zc(Y, 1kakx
k\ <ZC(Y.a*xk>) (1-6) 

for any real polynomial X^o^^* C^^16 acronym CZDS also will be used in the 
plural.) 

Now it follows from (1.6) that any complex zero decreasing sequence is also a multi- 
plier sequence. If T — {"ik^kLo is a sequence of nonzero real numbers, then inequality 
(1.6) is equivalent to the statement that for any polynomial p(x) = Z^o*2*^' ^b] 
has at least as many real zeros as p has. There are, however, CZDS which have zero 
terms (cf. Section 3); consequently, it may happen that degT[p] < degp. When 
counting the real zeros of p, the number generally increases with the application of T 
but, in fact, may decrease due to a decrease in the degree of the polynomial. For this 
reason, we count nonreal zeros rather than real ones. The existence of a nontrivial 
CZDS is a consequence of the following theorem proved by Laguerre and extended by 
Polya (see Polya [22] or [23, pp. 314-321]). We remark that part (2) follows from (1) 
by a limiting argument. 

Theorem 1.4. (Laguerre [20, Satz 3.2]) (1) Let f(x) = I^AUO^
3
^ be an arbitrary 

real polynomial of degree n and let h(x) be a polynomial with only real zeros, none of 
which lie in the interval (0,n). Then Zc[Y^k=oh(k)akXk) < Zc(f(x)). 
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(2) Let f(x) = ^2^=0 akxk be an arbitrary real polynomial of degree n, let (j) G C-V, 
and suppose that none of the zeros of (j) lie in the interval (0,n).  Then the inequality 

Zc{T,nk=o<f>(k)*kXk) < Zc(f(x)) holds. 
(3) Let (j) E C-P{—oo,0]. Then the sequence {0(A:)}^:O is a complex zero decreasing 

sequence. 

One of the main results of this paper (see Theorem 2.13) is the converse of Theorem 
1.4 in the case that (f) is a polynomial. The converse fails, in general, for transcendental 
entire functions. Indeed, if p(x) is a polynomial in £-V(—oo,0), then r/x) +p(x) and 
sin(7ra;) + p(x) are transcendental entire functions which generate the same sequence 

For several analogues and extensions of Theorem 1.4, we refer the reader to Karlin 
[15, pp. 379-383], Marden [18, pp. 60-74], Obreschkoff [20, pp. 6-8, 42-47], and Weis- 
ner [27]. A sequence {j^kLo which can be interpolated by a function 0 G £-V(—oo, 0), 
that is, (f)(k) = 7*; for k = 0,1,2,..., will be called a Laguerre multiplier sequence or a 
Laguerre sequence. It follows from Theorem 1.4 that Laguerre sequences are multiplier 
sequences. The reciprocals of Laguerre sequences are examples of sequences which are 
known as A-sequences in the literature (cf. Iliev [13, Ch. 4] or Kostova [16]) and are 
defined as follows. 

Definition 1.5. A sequence of nonzero real numbers, A = {Afc}£Lo> '1S called a A- 
sequence if 

-   n -i n 

A\p(x)] = A  ^2 akxk   := ^2 ^akxk > 0 for all x G E (1.7) 
^=0 J k=0 

whenever p(x) = Ylk=o akXk > 0 for all x G K. 

Remark 1.6. We remark that if A is a sequence of nonzero real numbers, and if 
A[e_:c] is an entire function, then a necessary condition for A to be a A-sequence 
is that A[e_x] > 0 for all real x. (Indeed, if Afe-*] < 0 for x = XQ, then continuity 
considerations show that there is a positive integer n such that A[(l — x/2n)2n-\-l/n] < 
0 for x = £o-) 

In [13, Ch. 4] (see also [16]), it was pointed out by Iliev that A-sequences are precisely 
the positive definite sequences (see Theorem 1.7(2) below). There are several known 
characterizations of positive definite sequences (see, for example, [19, Ch. 8] and [29, 
Ch. 3]), which we include here for the reader's convenience. 

Theorem 1.7. Let A = {Afc}^=Q be a sequence of nonzero real numbers, then the 
following are equivalent. 

(1) A is a X-sequence. 
(2) (Positive Definite Sequences [29, p. 132]) For any polynomialp(x) = X!/b=o akxk, 

p not identically zero, the relation p(x) > 0 for all x G M implies that 

A\p}(l) = y]Xkak>0. 

(3) (Determinant Criterion [29, p. 134]) 

det(\i+j) = 

Ao      Ai      • • •      An 

Ai      A2      • • •    An+i 

An      An+i      • • •        A2n 

>0 forn = 0,1,2,... . (1.8) 
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(4)  (The Hamburger Moment Problem [29, p. 134])  There exists a nondecreasing 
function /i(t) with infinitely many points of increase such that 

/oo 

tndfi(t)     for n = 0,1,2,.... (1.9) 
-OO 

The importance of A-sequences in our investigation stems from the fact that a 
necessary condition for a sequence T = {Tfcj^o' "^ > 0' ^0 ^e a CZDS is that 
the sequence of reciprocals A = {-p}£L0 be a A-sequence. Thus, for example, the 
reciprocal of a Laguerre multiplier sequence is a A-sequence. As our next example 
shows, there are multiplier sequences whose reciprocals are not A-sequences. 

Example 1.8. Let T = {1 + k + k2}^L0. Then by (1.4), T is a multiplier sequence, 
since 

(1 + x)*e* = Y 1 + /V+fcV e C-Vl. 

Next, let A = {A/CJ^LQ = {1+fc
1
+fc2}feL0.   Then a calculation shows that det(A;+j), 

(M =0,...,3), is 

1 I I _L 
-L 3 7 13 
1 1 _!_ _1_ 
3 7 13 21 

I I. A. J_ 
7 13 21 31 

±_ l_ ±_ X. 
13 21 31 43 

55936 = _i.9739... xlO"8. 
2833723113403 

Therefore, by (1.8), we conclude that A is not a A-sequence, and, a fortiori, the 
multiplier sequence T is not a CZDS. It also is instructive to exhibit a concrete example 
for which inequality (1.2) fails. To this end, we set ^{x) := (x + l)6(x2 + \x + \). 
Then a calculation shows that 

T\p{x)] = TZ{? + l)4(730z4 + 785z3 + 306x2 + 43x + 2). 

It now can be verified that Zc(T\p(x)]) = 4 ^ Zc(jp(x)) = 2, and hence it again follows 
that the multiplier sequence T is not a CZDS. 

It should be said that the present paper supersedes our papers (cf. [4]-[8]) in which 
we claimed that all multiplier sequences are complex zero decreasing sequences. Unfor- 
tunately, our investigations were vitiated by our oversight that some of the theorems 
of our previous papers are incorrect. Piecemeal correction is not the purpose of this 
paper, and perhaps, at this distance of time, it is hardly desirable. The recognition of 
this mistake, however, has led us to develop afresh the arguments from a different point 
of view which has enabled us, in particular, to characterize completely those CZDS 
which can be interpolated by polynomials (see Theorem 2.13 of Section 2). In Section 
3, we establish the existence of CZDS which have only a finite number of nonzero terms 
(Theorem 3.1 and Proposition 3.5), and we prove that for certain functions (/) £ C-V, 
but (/> 0 C-VI, the sequence {^(k)}^LQ is a CZDS (Corollary 3.3). In Section 4, we 
establish the existence of a class of CZDS, {7fc}£io> ^0I which the sequence {gk(t)^L0} 
is a CZDS for all t > 71, where gk(t) = Y$=o (jH^ (see Corollary 4.7). To this end, 
we first prove a generalization of a classical theorem of Hutchinson [12] (Theorem 4.3 
below). This result leads us to consider multiplier sequences which are rapidly de- 
creasing but which, in general, cannot be interpolated by functions </) G C-V{—00,0). 
We also prove (see Section 5) that there are sequences for which gk{t) = ]Cj=o ('OT?^ 
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is a CZDS for each fixed t > 0 (Lemma 5.3). In particular, Lemma 5.3 shows the 
existence of a nontrivial class of CZDS, {7fc}£o' ^0I which the following geometric 
result is valid. Suppose that the polynomial f(x) = X^o^^A' € K[a;], an 7^ 0, 
has exactly r real zeros, counting multiplicities. Let F(x,y) := ^Jl^lkX1* f^k\y)Ik\. 
Then the curve F(x,y) = 0 intersects each line 2/ = E/S, s > 0, in at least r (real) 
points (Theorem 5.4). 

2. Polynomials which interpolate complex zero decreasing sequences 

The main theorem of this section (see Theorem 2.13 below) characterizes the class 
of all polynomials which interpolate CZDS. Our proof requires several preparatory 
results involving both CZDS and A-sequences. We begin with an example, which is 
generalized in Proposition 2.2. 

Example 2.1. Consider a fixed positive integer m and the sequence T = {M^OIfcLo 
where h(x) = x(x — l)(x — 2) • • • (x — m + 1). Then, for any polynomial f(x) = 
T!k=oakXk> T\P(X)} = i2l=oh(k)akXk = xmf(m\x). Thus, by Rolle's theorem, 

ZC(J2h(k)akx
k>j <Zc(f2akZk), (2.1) 

and consequently T is a CZDS. 

Generalizing Example 2.1, we have 

Proposition 2.2. Fix a positive integer m, and let 

v 
h[x) = x(x - l)(x - 2) ..• (x - m + 1) Y[(x - hi) (2.2) 

w/iere bi < m for each i = 1,... ,p.  Then the sequence {/i(^)}^lo ^s a CZDS. 

Proof. First, we note that for any nonnegative integer A;, 

1 r P 1  J< 
[[(k-bi) xk = xm   JJ((fc-m)-(6i-m)) 

"2=1 J 

ft(ife)x* = Jfe(fe-l)---(A:-m+l) 
dxr -^. 

-2=1 

Set 5f(x) = nLi(x ~ (^ ~ m))' and let f(x) = Sfc=o akxk be any polynomial. Then, 
by linearity, we have 

n n 

^2h(k)akXk = ^2 Hk)akx
k 

k=0 k=m 

dm       k = xmJ29(k-m)-—akx 
k=m 

n—m 
<F 

k=0 

n—m 

= xmY, 9(k)(k + m) ■ ■ ■ (k + l)ak+mxk 

k=0 
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where Y^ZQ
1
^ + rn)''' (& + l)Q>k+mXk is the m-th derivative of /. Now g(x) has only 

real negative zeros, so by Laguerre's theorem and Rolle's theorem 
n—m 

Zc(xm Y, 9(k)(k + m) • • • (fc + l)afc+mx*) 
k=0 

n—m 

= Zc(^^(fc)(fc + m)...(fe + l)afc+mx^<Zc(/^))<Zc(/), 
k=0 

which proves the claim. D 

Remark 2.3. We remark that the assumption in Proposition 2.2 that bi < m for 
each i = 1,... ,p is necessary. Indeed, set m = 1 and p = 1 in Proposition 2.2, so 
that h(x) = x(x - 6). If 6 > 1, then the sequence T = {M/c)}5£L0 has the form 
0,1 — 6,2(2 — 6), 3(3 — 6),..., and thus the terms of the sequence eventually become 
positive even though 1 — b < 0. It follows that T cannot even be a multiplier sequence. 
A similar claim can be made for sequences arising from polynomials of the form x(x — 
l)(x - 2) • • • (x - m + l)(x - b) with b > m. 

In the remainder of this section, we shall make considerable use of the gamma 
function T{x) = 1/{1/T{x)) defined on the whole complex plane except for the non- 
positive integers, and its associated functions r(a, x) = J^0 e-*^-1 dt (x > 0), called 
the complementary incomplete gamma function, and the incomplete gamma function 
7(a, x) = r(a) — r(a:, x) where $la > 0. We note that (via analytic continuation) the 
latter function has the representation 

7(tt,s) = X)Vl(fe + a) '        a:>0'    <*€C\{0,-l,-2,-3,...}. (2.3) 

In the proof of Theorem 2.5, we will appeal to the following lemma. 

Lemma 2.4. If {jk} is a CZDS, then so is {7^+1}. 

Proof Write T = {jkJkLo and Ti = {7fc+i}£Lo- Use the fact that Tib(^)] = 
T[xp(x)]/x to obtain the conclusion. □ 

Theorem 2.5. Let h(x) be a real polynomial of degree n. Suppose that h(0) ^ 0 and 
that h(x) has only real zeros. If the sequence {/i(A:)}^=0 is a CZDS, then all the zeros 
of h are negative. 

Proof If {7fc}fcio is a CZDS, then so is {cy^kLo for any nonzero real number c. Hence, 
we may assume that h is monic. The sequence {/i(fc)}fcL0 cannot alternate in sign since 
/i, being a polynomial, has only finitely many zeros. Since {^(A^I^Lo '1S a CZDS, it is a 
multiplier sequence, and hence it follows that h(k) > 0 for k = 0,1,2,... or h(k) < 0 
for k = 0,1,2,... (see, for example, [3, Theorem 3.4]). Without loss of generality, we 
may assume that h(k) > 0 for k = 0,1,2,.... In particular, no nonnegative integer 
can be a zero of h. Since h(x) has only real zeros, we may assume that the zeros 
of h(x) are ri < r2 < • • • < rn. We now proceed to show that if rn > 0, then the 
sequence {JJ^:} fails to be a A-sequence, and hence {h(k)}^L0 is not a CZDS, contrary 
to our assumption. Suppose that rn > 0. Then, using Lemma 2.4, we may assume 
that rn lies in an interval (2m, 2m +1) for some integer m > 0. (Indeed, suppose that 
rn lies in an interval (2m + 1,2m + 2) for some integer m > 0. Then, the polynomial 
hi(x) := h(x + 1) vanishes at rn - 1 where rn - 1 E (2m, 2m + 1). Hence, by Lemma 
2.4, the sequence {hi(k)}^L0 is also a CZDS.) 
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We begin by assuming that the zeros of h are simple. Since h is monic, the partial 
fraction decomposition of ^W is of the form 

1 1 =Y    Ai 

where Ai = [n^C^ - rj)]~ •   Note, in particular, that An > 0.   Applying the 
sequence {jttjJkLo to the positive function e~x yields 

^^E^^^E^"7^ (2-4) 

where we have used the representation (2.3) for 7. Since rj 0 {0,1,2,... } and 

iX-r^-rc^-gLji^j- 
for i = 1,..., n, it follows that 

7(—ri, a;) = r(—r*) + o(l) as re —> 00. (2.5) 

Hence, by (2.4) and (2.5), we have 

F(x) = J2 ^^ + o(l) as x -. 00 

= x 

2 = 1 

rn-l 

-f o(l) as x —> 00. 
2 = 1 -1 

E^r(-?)+ ' 
(2.6) 

Since —rn G (—2m— 1, —2m), m > 0, and since the real entire function p^y is negative 
on the interval (—2m —1, —2m), r(—rn) < 0, we conclude from (2.6) that F(x) —» —00 
as x —> 00. Therefore, the sequence {7^} is not a A-sequence (see Remark 1.6). 

Finally, if the zeros of h are not simple, then using (2.6), a limiting argument shows 
that {-frhj} again is not a A-sequence. □ 

If a polynomial h(x) e C-V, then the sequence {h(k)}^L0 need not be a multiplier 
sequence. In the following example, we find necessary and sufficient conditions for 
{/i(&)}j£Lo t0 be a multiplier sequence in the special case when h(x) is a quadratic 
polynomial whose zeros are positive. This result will be used in the proof of Proposi- 
tion 2.7. 

Example 2.6. Let h(x) = (x — r)(x — s) where r, 5 > 0. Set a = — (r + s) and b = rs. 
Then necessary and sufficient conditions for {^(fc)}^=o 

to ^e a multiplier sequence are 
that 

-1 < a < 0    and    a + 1 > 2Vb. (2.7) 

To see this, we first note that if q(x) := 6 + (1 H- a)x + x2, then 
00 f- 

qix^^Kk)^. (2.8) 
k=0 

Now, if (2.7) holds, then q(x) has only real negative zeros, and thus q(x)ex 6 C-VI. 
But then it follows from (2.8) that {/*(&)}J£10 is a multiplier sequence. Conversely, if 
{/i(A;)}£L0 is a multiplier sequence, then the transcendental characterization of multi- 
plier sequences (see (1.4)) implies that q(x)ex G C-VI. Since h(0) > 0 and h(k) > 0 for 



COMPLEX ZERO DECREASING SEQUENCES 427 

all sufficiently large positive integers k, we conclude that h(k) > 0 for k = 0,1,2... . 
Thus, (1 + a) > 0, and using the quadratic formula we see that (2.7) holds. In par- 
ticular, we note that if s = r, then {h(k)}^L0 is a multiplier sequence if and only if 
0<r<\. 

Proposition 2.7. Let h{x) = (x - r)(x - s) with r, s > 0. Then {/*(&) j^Lo Z5 not a 

CZDS. 

Proof. Since a necessary condition for a sequence to be a CZDS is that it be a multiplier 
sequence, we may assume that {h(k)}^L0 is a multiplier sequence. Thus, by Example 
2.6, we may write h(x) = x2 + ax + b where a = -(r + s), b = rs, -1 < a < 0, and 

(5 = IVa2 -4b satisfies 0 < 6 < ^. We shall apply the sequence {^)}£o to e~X 

and show that the resulting entire function takes on negative values (see Remark 1.6). 
First, we assume that 6 > 0. Then, for k > 1, a standard integral formula yields 

'p-CM^^a.p-I—. (2.9) 

In addition, for each fixed x > 0, there is a positive constant K = K(x,a,6), such 
that for all t > 0, the following inequality holds 

0 < (1 - e-^'je-'/V* < tfe-*0/2-*"1)*, (2.10) 

where a/2 - <5 + 1 > 0 since 1 + a > 0 and 6 < |o|/2. The application of the sequence 

im^oto e"* thus yields 

F(x) = Y      ^^ 

= 1     1   /•<» ~  (^^^tfc^^ s.nh(ft) df 

= ---1     (1 - e-^-'je"0*/2 sinh(ft) dt (2.11) 
6     o Jo 

where we have used (2.9), (2.10) (to establish the existence of the improper integral in 
(2.11)), and the dominated convergence theorem, to justify the interchanging of the 
integral with the summation. Next, we can find a number R = R(a, 6) > 1 such that 

/•OO poo 
/       (1 _ e-xe-^e-at/2 sinh(ft) dt >    /        (! _ e-xe-  ) ^ 

nxe~R   / -i  _/3-y\ pxe~R       -i 

= / i-^- ) dy > / 73^ dy = In(xc-fl + 1) (2.12) 
Jo      \    y    J       Jo      i + y 

where the last inequality follows from the elementary inequality 

i-e-y      1 
y        y + i 

for all y > 0. Therefore, from (2.11) and (2.12), we deduce that lim^^oo F(x) = —oo. 
To complete the proof, we consider the case when 6 = 0, so that h(x) = (x — r)2 

where 0 < r < |, by Example 2.6. Since 

poo                                                 -1 

/       te-(k-r»dt=-r rj, fc>l, 
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a calculation similar to the one used in proving (2.11) yields 

^   (-l)kxk 

-h-L (i 'yut. 
Thus, mutatis mutandis, the previous argument may be used to conclude that 
lim^-^oo F(x) = —oo. This shows that F(x) is again negative for all sufficiently large 
values of x; thus it follows that {^TJ^}^L0 is not a A-sequence, and a fortiori {/i(A;)}j£L0 

is not a CZDS. □ 

In order to prove a converse of Laguerre's theorem (see part (3) of Theorem 1.4) 
for polynomials, we now shall do a careful analysis in the special case of irreducible 
quadratic polynomials, h(x) = x2 -f ax + b where 46 — a2 > 0. 

Lemma 2.8. Fix a = a/2 + ir where r = ^y/4b — a2 and 46 — a2 > 0.  Then 

r{a,x) 
< 

2e- 
for all x > max(0, a). 

Proof. Writing (|)a = e"10^'/*) = eM2+iT)\og{t/x)^ we obtain 

r(a,x)   <iria/i-le.tdt=lr{a 
- x*/2 Jx W2   v2'   ; 

Since 

±(fa/2-lp-t/2 
dt 

(ta/2-le-tr^ 
o-t/2 

ta^-2{a-2-t), 

the function W2 1e t//2 is strictly decreasing for t > max(0, a — 2). In particular, for 
x > max(0, a), 

-^jfV-1e-t'2) 
„a/2-lp-x/2     roo 

e-t^dt<X        e 
-a/2 1 J X 

e-t/2dt = 
2e- 

D 

Lemma 2.9. Fix a — a/2 + ir where r — \^/Ab — a? and 4b — a? > 0.   Then the 
function 

f{x) = -3 
r(a) + 9 T(a,x) 

x" / V    a;" 

changes sign infinitely often in the interval (0, oo). 

Proof. A calculation shows that 

r25fta 

a: > 0, 

(2.13) 

^2 [(^(a)) sin(r log x) - (3r(a)) cos(r log x)]. 

Since r(a) 7^ 0, we have (9r(a:))2 + (5Rr(a))2 > 0. We first consider the case when 
3r(a0 ^ 0. Now, by Lemma 2.8, 

r(a,x) < Tfax) < 
2e- 

(2.14) 
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for all x > max(0,a). Since limx_+00 2e_xxa/2~1 = 0, we can find a number XQ > \a\ 
such that 

2e-xxa/2-1 < |3r(a)|       for x > XQ. (2.15) 

For x > XQ, the function cos(rlogx) alternately takes on the values —1 and +1 
infinitely many times. Hence, if xi > XQ and if cos(rloga:i) = ±1, then 

sin(rlogxi) = 0. Therefore, (2.13) yields f(xi) = ±%r(a)/xl/2 + 9f(r(Qj,xi)/a:f), 
which, by (2.14) and (2.15), is positive or negative according to the sign of the 
first term. Thus, it follows that f(x) changes sign infinitely often in the interval 
(0, oo). If QlXa) = 0, then 5ftr(a) ^ 0, and we can choose XQ > \a\ such that 
2e~XoXQ ~ < |5ftr(a)|. The function sin(rloga:) assumes the values —1 and +1 
infinitely often, so in this case the conclusion of the lemma also holds. □ 

Proposition 2.10. Let 

~        (-l)kxk 

where a and b are real numbers such that 46 — a2 > 0. Then F(x,a,b) changes sign 
infinitely often in the interval (0,oo). 

Proof. Let a — a/2 + ir where r = |\/4&- a2, so that k2 + ak + b = (k + a)(k + a). 
Then, using (2.3), we can express F(x,a,b), x > 0, as 

~        (-l)kxk 

F(x,a,b) = j: ak + 
k=0       v ' 

(-l)kxk ...  1 y(-l)' 
a — a ^      k\ 

k=0 

1     (ifax) 
xu 

-ior^')+ 

k + a     k + a 

iQ/r(^)\ 
r    V xa )      r    \    xa    J ' 

Therefore, by Lemma 2.9, F(x, a, b) changes sign infinitely often in the interval (0, oo). 
□ 

Theorem 2.11. Let h{x) = x2 + ax 4- b where a, b E M. Then the sequence T = 
{h(k)}^L0 is a CZDS if and only if either both roots of h are nonpositive or one root 
is 0 and the other is in the interval [0,1]. 

Proof Suppose that T is a CZDS. We will first demonstrate that the roots of h must 
be real. To this end, we set A = {^j}^L0. Now if the roots of h are not real, then by 

Proposition 2.10, the function Afe-*] = F(x,a,b) changes sign infinitely often in the 
interval (0, oo). But then A is not a A-sequence, so T is not a CZDS. This contradiction 
shows that the roots, call them r and 5, of h must be real. By Proposition 2.7, r and 
s cannot both be positive. So suppose that r < 0 and s > 0. If r = 0, then Remark 
2.3 shows that s is in the interval [0,1]. Therefore, we conclude that either both roots 
of h are nonpositive, or one root is 0, and the other is in the interval [0,1]. Since 
the converse implication is a direct consequence of Proposition 2.2 and Laguerre's 
theorem, the proof of the theorem is complete. □ 



430 CRAVEN AND CSORDAS 

Theorem 2.12. Let h(x) be a real polynomial. If the sequence T = {h(k)}^L0 is a 
CZDS, then all the zeros of h are real. 

Proof. Assume the contrary so that h(x) can be expressed in the form h(x) = p(x)(x2+ 
ax + b) where Ab — a2 > 0. Then the polynomial p(x) gives rise to the entire function 
J2kLoP(k)(~l)kxk/k]' = p(x)e~x where p(x) is a polynomial. We next approximate 
the entire function p(x)e~x by means of the polynomials qn(x) = p(x)[(l—x/2n)2n+en] 
where en > 0 and limn-^ooen = 0. We note, in particular, that qn(oc) has the same 
number of real zeros as p(x) has. Moreover, as n —► oo, qn(x) —> p(x)e~x uniformly on 
compact subsets of C. If we set A = {^jw }^i0, then by Proposition 2.10, the function 

AbMe--] = n*...>) = gfc!^
)Xt) 

has infinitely many sign changes in the interval (0, oo). Also, as n —» oo, /n(^) := 
A[<7n(a:)] —> F{%, a, b) uniformly on compact subsets of C. Thus, for sufficiently large n, 
each of the approximating polynomials /n(^) has more real zeros than p(x) has. Since 
T is a CZDS, Zc(T[fn(x)}) < Zc(fn(x)), and consequently, for n sufficiently large, the 
polynomial T[fn(x)] = T[A[qn(x)]] = qn(x) has more real zeros than p(x) has. This is 
the required contradiction, and thus the proof of the theorem is complete. □ 

Finally, to summarize the foregoing results, we state 

Theorem 2.13. Let h(x) be a real polynomial. The sequence T = {/i(A:)}^_o ^ a 

complex zero decreasing sequence (CZDS) if and only if either 
(1) h(0) ^ 0 and all the zeros of h are real and negative, 

or 
(2) h(0) = 0 and the polynomial h(x) has the form given by (2.2) in Proposition 2.2. 

Proof. Suppose that T is a CZDS. Then case (1) is a consequence of Theorems 2.12 
and 2.5. In case (2), set h(x) = x(x — l)(x — 2) • • • (x — m + 1) HiLiO^ ~ &*)> and let 
g{x) = /i(:r + ra). Then, by Lemma 2.4, the sequence {#(fc)}5£L0 is also a CZDS. Since 
#(0) ^ 0, by case (1), all the zeros of the polynomial g are real and negative, and 
hence we see that bi — m < 0, or bi < m, for i = 1,2,... ,p. Conversely, if h(0) ^ 0 
and all the zeros of h are real and negative, then T is a CZDS by Laguerre's theorem 
(see part(3) of Theorem 1.4). If h(0) = 0 and the polynomial h(x) has the form given 
by (2.2), then T is a CZDS by Proposition 2.2. □ 

3.  Some extensions to transcendental entire functions 

It was noted in the Introduction (see the comment following Theorem 1.4) that Theo- 
rem 2.13 is not true in general if the polynomial h(x) is replaced with a transcendental 
entire function. On the other hand, we know that sequences generated by entire func- 
tions which are limits of polynomials satisfying Laguerre's theorem (see part (3) of 
Theorem 1.4) again give rise to complex zero decreasing sequences. The sequence 
{^iJkLo is one of the classical paradigms of CZDS (see, for example, [20, p. 14]) which 
arises from the reciprocal of the gamma function. In this section, we shall establish 
some limited generalizations of the results of the previous section in the case of tran- 
scendental entire functions. The main emphasis will be on sequences with only finitely 
many nonzero terms. Sequences that end in a string of zeros are in a certain sense 
complementary to those which begin with zeros; in particular, compare Proposition 
2.2 and Corollary 3.3, and note the restrictions imposed on the positive zeros of the 
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interpolating functions involved. In addition, Corollary 3.3 provides an extension of 
part (2) of Theorem 1.4. 

Theorem 3.1. For n, r > 0, the sequence {(^"J}kLo is a CZDS where, by conven- 

tion, (7l)=0ifk>nork<0. 

Proof. To an arbitrary polynomial p(x) = X^fclo akxk we aPPly a series of manipula- 
tions, each of which leaves the number of nonreal zeros unchanged or reduced, ending 
with the desired application of the binomial sequence to p(x). 

We first consider the case when m > n and r — 0. (1) We begin by reversing 
the coefficients of p(a;), forming x'mp{x~1) — Yl1k=oam-kXk. (2) Next, we apply the 
operator xrn~ndrn~n/dxrn~n, resulting in the polynomial 

m 

Y^   k(k-l)"'(k-m + n + l)am-kx
k. 

k=m—n 

(3) To this we apply the sequence {^}kL0, which yields Y%=m-n am-kXk/(fc-ra+n)!. 
(4) Division by xm~n results in q(x) — Xlfc=o (t"n-k%k/k\. (5) Reversing the coefficients 
of q(x) gives us xnq(x~1) = Yjk=o akXk/(n - k)\. (6) Another application of the 
sequence {^j}^0 results in Ylk=o akxk/^Kn ~ k)\. (7) Finally, multiplication by n! 
yields the desired polynomial X^=o {fyukX1*- 

The second case, m < n, r = 0, is very similar. Change step (2) to multiplication 
by a;n~m and step (4) to division by xn~m, so that the final result is Xl/bLo (fcW^' 
as desired. 

Finally, if r > 0, first form X^fcLo ("/TW^ using the preceding cases. Differentiate 
r times, divide by (n + r)(n + r + 1) • • • (n + 1), and then multiply by xr to obtain 
E/bLo L-r)akxki as required. D 

Corollary 3.2. Let n be a positive integer. If {jk}kLo is & CZDS, then so is 

(70 7l 72 In 

nl'tn-l)!'^-^)!''"' 0! ,0,0,0,... 

Proof. This is proved by following the steps in the proof of Theorem 3.1 and using 
the sequence {l^kLo m place 0f {-g}kLo m steP (6)- ^ 

Corollary 3.3. Let h(z) G C-V. If h(z) has no zeros in [0,n] and if h(z) has a zero 
at every integer greater than n, then {fr(fc)}fcLo ^s a CZDS. 

Proof. Let h(z) E C-V. Suppose that h{z) has no zeros in [0, n], and suppose that 
h{z) has a zero at every integer greater than n. Set g{z) = l/T(n-\-1 - 2), so that g(z) 
satisfies the same hypotheses as h(z). By Corollary 3.2, with 7^ = 1 for all k, {5f(A;)}^=0 

is a CZDS. Then elementary considerations involving removable singularities show that 
the function (j>(z) = h(z)/g(z) = h(z)T(n + 1 — z) is an entire function. Moreover, 
it is easy to see that 0 G C-V, and none of the zeros of 0 lie in the interval (0, n). 
Therefore, by Laguerre's theorem (see part(2) of Theorem 1.4), for any real polynomial 
f(x) = Sfcloakxk where deg/ = m < n, 

zjf^m^x16) <zc(f(x)). 
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Now if deg / = m > n, then another application of Laguerre's theorem and the fact 
that the sequence {g(k)}^L0 is a CZDS shows that 

(77i \ /   m 

(   n 

= Zc[ Yl(l>(k)g{k)akx 

<Zc(^2g(k)akx
kj 

(771 

Y^9(k)akx
k 

Therefore, the sequence {/i(/c)}£0 is a CZDS. D 

A multiplier sequence {TAJ^LQ 
is a CZDS if and only if the sequence {crfc7fc}^=0 

where c and r are nonzero real numbers is a CZDS. Indeed, we simply note that if 
p(x) is a polynomial and T = {crfc}210, then T[p(a;)] = cp(rx). Of greater importance 
to us is the fact that a multiplier sequence can be interpolated (by a function in C/P 
with zeros restricted to certain intervals) if and only if the scaled sequence can be so 
interpolated. For future reference, we record a precise version of this fact, the proof 
of which is clear. 

Lemma 3.4. 7/ the sequence {7/-} is interpolated by a function (j)(x), then, for any 
r > 0, the sequence {"Yk^} is interpolated by (f)(x)exlnr. 

It is not known if all CZDS with only finitely many nonzero terms arise from a 
Laguerre interpolation, that is, one in which the interpolating function satisfies the 
hypotheses of Laguerre's theorem. However, as a partial converse to Corollary 3.3, we 
consider sequences with at most three nonzero terms. 

Proposition 3.5. (1) A sequence of the form {a, 6,0,0,... } with a, b > 0 is always a 
CZDS. All such sequences can be interpolated by functions in C-V with zeros outside 

[0,1]. 
(2) A sequence of the form {a, 6, c, 0,0,... } with a, 6, c > 0 is a CZDS if and only 

ifb2 — 2ac > 0. All such sequences can be interpolated by functions in C-V with zeros 
outside [0,2]. 

Proof. (1) The application of the sequence to any polynomial yields a polynomial of 
degree one, so the sequence must be a CZDS. A function of the proper form which 
interpolates the sequence is ((6 - a)x + a)/T(2 - x), as is easily checked since r(2 - x) 
equals 1 at zero and one, and equals 0 at all integers greater than one. 

(2) The condition for {a, 6, c, 0,0,... } to be a multiplier sequence is that a + bx + 
cx2/2\ have only real negative zeros [3]. Since applying this sequence to any polynomial 
results in a polynomial of degree at most two, this also is equivalent to being a CZDS. 
The condition given is the usual discriminant condition for real zeros. 

By Lemma 3.4, we may scale the sequence with the constant r = y2a/c. We also 
may multiply by a constant, in this case (2a)"1, resulting in the normalized sequence 
{|,d, 1,0,0,...} to be interpolated, where d > 1. In order to get the zeros in the 
sequence, we use a function of the form p(x)/T(3 — x) where p(x) is a polynomial. 
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Since l/r(3 — fc), k = 0,1,..., takes the values |, 1,1,0,0,..., the function p(x) must 
satisfy p(0) = 1, p(l) = d, and p(2) = 1. If d = 1, we can take p(x) = 1. Otherwise, 
the unique quadratic with this property is p(x) — (1 — d)x2 + (2d — 2)x +1, with zeros 
x = 1 ± Vd2 - d/(d - 1) which lie outside [0,2] for any d > 1. □ 

Remark 3.6. The interpolation problem for a sequence with four nonzero terms is 
much more complicated. It is not hard to find a CZDS which cannot be interpolated 
by a function of the form p(x)/T(4: — x) where p(x) is a polynomial of degree 3 all 
of whose zeros are real and lie outside the interval [0,3]. In this case, the sequence 
{a, 6, c, d, 0,0,...}, with a, b, c, d > 0, is a CZDS if and only if it is a multiplier 
sequence. This occurs if and only if a + bx 4- cx2/2\ + dx3/S\ only has real negative 
zeros, which is equivalent to —9a2d2 + ISabcd — Sb3d — 6ac3 + 362c2 > 0. As a concrete 
example, consider the CZDS {32,24,12,3,0,0,... }. The interpolating polynomial p 
must satisfy p(0) = 192, p(l) = 48, p{2) = 12, p(4) = 3 because of the denominator 
r(4 — x). If p has degree 3, this polynomial is determined by the conditions and has 
two of its zeros between 1 and 2. 

Proposition 3.7. Letp(x) be a polynomial, p(x)eeTX = Ylo* 7kXk/k\, where a > 0 and 
p(0) 7^ 0. The sequence {7A;}^=0 is a CZDS if and only if there exists a polynomial 
h{x) E £-;P(-oo,0) such that h(x)exln<T interpolates {7fc}£Lo- 

Proof By Laguerre's theorem, the existence of such a polynomial implies that {'y^kLo 
is a CZDS. For the converse, we write p(x) = YllLo bj&lfi and 

OO V. OO * /     \        JU 

P\a) ^ <jk k\      ^    Gk    k\ ,      _    ... „       /c! 
£=0 fc=0 

^Xk 

fc=0 

k\ bj 

jj vJ 

where 

p{x)e<"° ^gtW 

and 

j=0       KJ/ i=0 

(see [9]). Let h(x) be the polynomial Y^Lo bj (j)/^'- Now {^JkLo is a CZDS if and 

only if {>yk/vk}Z=o is a CZDS' so Mf )eX = HkLo h(k)xk/kl implies by Theorem 2.13 
that h(x) has only real negative zeros. Since 7^ = h(k)ak, the conclusion follows.    □ 

Remark 3.8. Since multiplier sequences arise as sequences of Taylor coefficients, 7*., 
of functions of the form eax Yl^O- + x/xk) (as opposed to having only finitely many 
zeros), it would be desirable to be able to prove that if {/yk}kLo is a CZDS, then so are 
the sequences obtained from approximating functions 0n(x) = earc Hi (^ + x/xk)- In 
fact, removing even one zero causes trouble. For example, let a, 6, c > 0 and assume 
that the coefficients of (a: + a)(x + b)(x + c)ex form a CZDS. By Theorem 2.13, we 
know that this is equivalent to requiring the polynomial x3 -f (c + b + a — 3)a;2 + ((6 + 
a — l)c + (a —1)6 — a + 2)x + abc to have only real negative zeros. For example, if a = 1 
and 6 = 9, this is (approximately) equivalent to c < 0.00433 or 3.5197 < c < 4.1133 
or c > 15.963. Choosing c sufficiently close to any of the endpoints of these intervals 
will yield a function in which deleting an appropriate factor, either x + a or x + 6, will 
give rise to a sequence which is not a CZDS. The reason for this is that the Taylor 
coefficients of (x + r)(x + s)ex, 0 < r < s, form a CZDS if and only if 1 + r + 2y/r < s, 
as one can check by using Theorem 2.13. 
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4.  A generalization of Hutchinson's theorem and some 
classes of zero decreasing sequences 

If T = {j^kLo is a CZDS, then for each fixed t > 0, the sequence {<7fc(£)}fcLo> where 

9k(t) — Ylj=o (JT?^> ^s a multiplier sequence because 
00 00 £ 

fe=o K- k=o        K- 

In general, the multiplier sequence {<7k(£)}S£Lo nee^ no^ ^e a CZDS for all t > 0. 
Indeed, consider 

fc=0 

for which the sequence {7fc}S£Lo = {1? 2,2,0,0,... } is a CZDS by Proposition 3.5. If we 
set h(x) = l+z+x2, then^(l) = h(k), and by Theorem 2.13, {^(A;)}^ = {^(l)}^ 
is not a CZDS. (Also see Example 1.8.) In this section, we will establish the existence 
of a class of CZDS {'ykJkLo for which the sequence {gk(t)}kLo 1S a CZDS for all t > ji 
where gk(t) = Y^j=o (k)^j^ (see Corollary 4.7). To this end, we first generalize a 
classical theorem of Hutchinson [12] (also see Hardy [10] or [11, pp. 95-99], Petrovitch 
[21], and the recent paper by Kurtz [17, p. 259]). 

Theorem 4.1. (Whittaker [28, p. 53]) Let {dfc}fcLo ^ a sequence of complex numbers 
such that liuik-^ooldk]1^ = L < 1. Then the series 

OO /    \ oo 

/(*) = E*»(j = E*' 
!(z-l)-'(z-n + l) 

nl n=0 v   / n=0 

converges uniformly on compact subsets of C, to the entire function f(z). Moreover, 
f(z) satisfies iimr_00 logM(7', f)/r < log ^ where M(r, f) = max^i^ |/(^)|. 

Lemma 4.2. Let {7A;}£o be a sequence of positive real numbers. If a > 0 and if the 
Turdn inequalities jl > a:27n-i7n+i hold for n > 1, thenjn < (7o/^n^n~1^2) (7i/7o)n 

for n > 0. Moreover, if a > 1, then f(z) = X^^=o7^(n) rePresents an entire function 
of order p(f) = lim ,,^00 log log M(r, /)/ log r = 0. 

Proof The first conclusion is a consequence of 7^ > a27n_i7n+i and an elementary 
induction argument. If a > 1, it implies that limn_>007n

/n = 0, so we see that f(z) is 
an entire function by Theorem 4.1. To check the order of the entire function f(z), we 
use the following estimates for \z\ > 1: 

00 

<£7nNn 

n=0 

00 1 / 

70 2^ an(n-l)/2   ^1 

i=0 
00 

< 
n=0 

7oM(F,r)        (|2|=r) 

where F(z) = Zn=o anZn and an = (l/a"^"1)/2) iji/iof. Thus M(r, /) < M(r,F) 
for r > 1. But F(z) is of order zero since p(F) = linin_00 - n log n/ log |an| = 0, see 
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[1, p. 9]. Thus, 

,(/) = ^JoglogMtr,/) ^ --^^loglogM^F) = ^ = ^ 
logr logr 

a 
^ Theorem 4.3. Let (j)(x) = J2n=0 ^x71, with 70 = 1, 7n > 0, and suppose that the 

Turdn inequalities, 7^ > a27n_i7n+i, hold for n = 1,2,..., N — 1 wftere 

a := max (2, ^(l + v^+^n )). (4.1) 

T/ien the polynomial <t>(x) = Sn=o 7» (n) ^a5 on^ rea^ simple negative zeros. 

Proof. Define the positive numbers &&, fc = 1,..., AT, recursively by 60 = 1 and the 
formulas 

1!      61'     2!      6162'    '"    ' N\      bib2'-bN ' 

The Turan inequalities assumed for the numbers 7n imply that 

(4.2) bn+i>a*(l + -)bn,       n = l,2,...,N-l, 

where a is defined by (4.1). Let 

Xk = -Vhk-ihk,        A; = 1,2,...,    r = 

where [^J denotes the floor function, and 

Vk = -yhkhk+i,        A; = 1,2,...,    s = 

For x ^ 0, we set 

N-l 

(4.3) 

(4.4) 

tn{x) = 7n (     1 = h       b 7rn(rg)? n = 0,l,...,i\r, 

where 7ro(a;) = 1 and 7rn(x) = (1 - ^)(1 - f) • • • (1 - IV1). Then *„(«) satisfies the 
recursion formula 

to(x) = 1,    tn(x) = tn-^x)^- (l - ^i J ,        n = 1,... ,iV. (4.5) 

(4.6) 

Evaluating (4.5) at Xk, which is negative, we obtain 

tn{xk)tn-i{xk) <0,        k = l,...,r,    n = l,...,iV. 

Now, for 1 < n < 2k — 1, we have 

ib2k \Xk\ (1_ n-l 

&n    V Fib I   / &n V 6n 

by (4.2). Combining this with (4.5) yields 

\tn(Xk)\ > \tn-i(xk)l n= l,2,...,2fc- 1. 

> 1 

(4.7) 
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Now consider 

rZk-l X21*'1 X2k 

^2k-2{xk) + ^7 n2k-l{Xk) + T ^h—^kiXk) 
bi--b2k-2 bi'-fak-i h'-hk 

I          02k-l   \ Fife I    /        02k-l02k   \ Fife I    /   V             Fife I 

where 
a.2fc-2 /        j \   /       2 \ /.     2A; - 3 

Cfe = —^-    i-_      i-_   ...   i- 
bl"'b2k-2\ XkJ   \ XkJ \ Xk 

for k > 1, and Ci = 1. Our immediate goal is to show that Tk < 0. Since Ck > 0, we 
have Tk < 0 if 

r^">A + 2*Zj2>j-
1
+/1 + 2fc-l 

y 62*5-1   v    \xk\ j     v    kfe 
From (4.2), we obtain 

> aA/l + 
yftafc-i "    V     ' 2fc-l' 

so it will suffice to show that 

2fc-2V1/ 1     \"1/2     /       2k-l\ r 1     ^"1/2 

aiV+i^r) 1
1+

2^TJ   
+ll+T5rJl1+5»rii- (4-9) 

Prom (4.2), (4.3), and bi = I/71 we obtain 

7i 

In the last term of (4.9), we replace \xk\ by this lower bound and replace 1 + ^j by 
a lower bound of 1 to obtain 

For any fixed 71 > 0, one can easily check that the positive root of the polynomial in 
(4.11) approaches 2 from below as k —> 00. Thus, we require a > 2. Also, for each fixed 
7! > 0 and a > 2, we have a4*"2 - ^2(2 - l/k)a4k-3 - (1 - l/2fc)7i > a2 - V2a - ^ 
for each k = 1,2,..., so the maximum condition on a is obtained when k = 1, yielding 
a > ^(l + yi +71). In all cases, a > max (2, ^(1 + ^/1 + 7i)) suffices to guarantee 
that (4.9) holds and hence that T^ < 0. 

Finally, we check that 

Ifeife+iOi*)! > 1^+2(^)1 >     • > M^)|. (4.12) 

For 1 < j < N - 1 and 2k + j + 1 < |_yj = 7,» we simplify the following ratio, using 
(4.3) and (4.5), 

t2k+j(Xk) 

^2fc+j+l(^fc) 

2      6|fc+J-+1  /   | 2fc + A-2_ 5| 
b2k-ib2k \ \xk\  J (^b2k-ib2k + 2k+j) 

<2k+j+l    ^1 + jft + J j        =   ^     ^ "2fc+j+l_ __ ^jgj 
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By (4.2), b2kloL > y/hk-ihk, so 

yjb2k-ib2k + 2k + j ~ W^ + 2fc + J ' 

Thus, to prove (4.12), it suffices to show that &2fc+j+i — &2fc/a > 2AJ + j. Again, using 
(4.2), 

a       \ a J 

> -^ =^^  (4.14) 
7i 

:a4*+2i/r
1    i ^ i 

a2j+3y   ^1 

Since a2 > (1 + >/l + 7i)2/2 = 1 + >/l + 7i + 7i/2 and CK > 2, we have 

^+2i (l - Jra) ^> |(1 + V/rT^ + 71/2)2fe+^ • (4.15) 

For u > 0 and any positive integer m > 2, || (l + y/l + u + u/2) > m^. Therefore, 
it follows from (4.13), (4.14), and (4.15) that (4.12) holds. 

Next, it follows from (4.6), (4.7), (4.8) (since Tfc < 0), and (4.12) that 4>(xk) = 
(1 + t^Xk)) + (t2(xk) + t3{xk)) + • • • + (t2k-4(Xk) + t2k-3{Xk)) + Tfe + (fefc+l^fc) + 
£2fc+2(Zfc)) + • ' ' + tN(Xk) < 0. 

A similar argument shows that <f)(yk) > 0, fc = 1,..., s, where yk is defined by (4.4). 
Thus the sequence 0(0), <t>(xi), 4>(yi), (frfa), • •., ending with <i>(xr) if N is even, and 
with 4>(ys) if N is odd, has AT—1 sign changes. The sign of 0 must change once more to 
the left of the last point (xr or i/s), since the leading coefficient JN/NI of 0 is positive. 
Therefore, 0 has N real, simple negative roots and the theorem is proved. □ 

Remark 4.4. Theorem 4.3 is a generalization of a classical theorem of Hutchinson 

[12] in which he shows that </>(a;) = ]Cn=o 7™xn/n,• ^as on^y real' simPle negative 
zeros. Our result shows that 4>(x) = Sn=o7^(n) kas on^ rea^ simPle negative zeros. 
Consequently, {0(A;}fcLo is a multiplier sequence, whence YlkLo <i>(k)xk/k\ = (f)(x)ex 

has only real negative zeros, which implies Hutchinson's result. 

Corollary 4.5. Let (f)(x) = Yl^Lo In^71 /n\ with 70 = 1, 7n > 0 for n — 1,2,3,..., 
and suppose that 

fK 

7n > a27n-i7n+i,     wfecne    OL > max (2, — (l + >/1 + 7i))- (4.16) 

T/ien 0(a;) and 0(a:) = X^^Lo 7™ (n) are en^re functions of order zero and 0, </> G £-PL 

Proo/. If 7JV = 0 for some N > 1, then by (4.16), 7JV = 7n+i = • • • = 0, so that both 
(j) and 0 reduce to polynomials which have only real negative zeros by Theorem 4.3. 
Thus, we may assume that yn > 0 for all n > 1. The assertion that 0 6 C-VI follows 
from a result of Hutchinson [12]. By (4.16), Lemma 4.2, and Whittaker's theorem 
(cf. Theorem 4.1), we know that 4> is an entire function of order zero. In addition, by 
Theorem 4.3, for each positive integer AT, the polynomial 4>N(X) = ]Cn=o7™(n) ^ias 

only real negative zeros. Now, another application of Whittaker's theorem shows that 
0n —► 0 as N —» 00, uniformly on compact subsets of C. Therefore, it follows from 
Hurwitz' theorem that </> has only real negative zeros. □ 
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We recall that a sequence {jkJkLo ^s caUed a Laguerre sequence if it can be inter- 
polated by a function 0 G C-V(-oo, 0), that is, </>(&) = 7* for fc = 0,1,2,... . In order 
to expedite our exposition, we also shall introduce the following definition. 

Definition 4.6. A sequence {jkJkLo 0^ nonnegative real numbers will be called a 
rapidly decreasing sequence if {7fc}£Lo satisfies inequality (4.16). 

The sequence {e~ak }j£L0 is rapidly decreasing if a > log 2 and this sequence is a 
Laguerre sequence for any a > 0. Sequences of the form {e~akP}^L0 where a > 0 and 
p is a positive integer, p > 3, are multiplier sequences, but these sequences cannot be 
interpolated by functions 0 G £-^(-00,0). Indeed, if (/> € £-^(-00,0), then 

00 

ftx) = e-ax2+(3xIl(x) := e-ax2+f3x JJ (1 + x/xn)e-x/x" (4.17) 
71=1 

where a > 0, /? e R, xn > 0, and Y^Li 1/xn < o0- Tlien from the standard estimates 
of the canonical product n(a;) (see, for example, [1, p. 21]), we deduce that for any 
e > 0 there is a positive integer fco such that 

n(fc) > e-fc2+€        (k > ko). (4.18) 

We infer from (4.17) and (4.18) that complex zero decreasing sequences which decay 
at least as fast as {e~ak }^=0 cannot be interpolated by functions 0 in C-V(—00,0). 

By way of applications of Corollary 4.5, we next show how rapidly decreasing 
sequences can be used to generate complex zero decreasing sequences. 

Corollary 4.7. Let {7fc}S£Lo> 7o = 1? 7fc > 0, be a rapidly decreasing sequence. Then, 
for each fixed t > 71, 

Moreover, ifTt = {<7fc(lA)}fcLo ^ere gk{t) = ]Cj=o (jD^i*7' ^ ^e ^^ Jensen polyno- 
mial associated with the sequence {7fc}£lo> ^en Tt is a CZDS for t > 71; that is, for 
any polynomial f{x) = ^2k==0CikXk £ R[x], we have Zc(Tt[f(x)]) < Zc(f) for t > 71 
where Tt[f(x)] = Zo akgk(l/t)xk. 

Proof. If {7fc}fc?=o is a rapidly decreasing sequence, then for any t > 71, the sequence 
{7.7 AJ}^=o is also a rapidly decreasing sequence. Thus, by Corollary 4.5, ^t{x) G C-Vl, 

so the sequence {0t(A;)}^=o is a Laguerre sequence whenever t > 71. Therefore, by 
Laguerre's theorem (see Theorem 1.4), ^c(Xlo ak<i>t{k)xk) < Zc(f) for t > 71, and 
since ^(fc) = gk(l/t), the corollary is established. □ 

Corollary 4.8. Let {7fc}^=o ^e a raP^dly decreasing sequence, and let 

A=E(*V (4-19) 
i=o u/ 

T/ien the sequence {Pk}kLo is a CZDS. 

Proof. Let 

Afc/3o = E(-l)"+i      I/?,'. (4.20) 
i=o ^^ 
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Then (4.19) and (4.20) are inverse relations in the sense that 7^ = Afc/?o [26, p. 44]. 
Since {7fc}fcL0 is a rapidly decreasing sequence, Corollary 4.5 gives that ^(x) = 

£°10 A^o(p e C-Vl. Using (4.19) and 7i = A^, we obtain 0(fc) = Ejto ©AJA) 
= 5^7=0 (7)77 = @k' This shows that the sequence {^fe}^o 'ls a Laguerre sequence 
and, consequently, also a CZDS. □ 

Remark 4.9. We remark that if {70,71,... ,7n,0,0,...} is a CZDS with 7^ > 0 

for 0 < k < n, then the sequence {gk{t)}kLo where gk(t) = ^2j=o (j)'!?^7 may 
not be a CZDS for some t > 0. To verify this claim, consider the sequence T == 
{1,1, ^, 0,0,...}. By Proposition 3.5, T is a CZDS. A calculation shows that gk(t) = 

1 + kt + t^zllt2. Let ht(x) = 1 + xt + ^^2, so that ftt(fc) = flffc(t). But ht(x) has 
real zeros (both of which are positive) if and only if t > 8. Hence, by Theorem 2.13, 
{gk(t)} is not a CZDS for any t > 0. 

5. A class of CZDS and a curve theorem 

In contrast to the previous examples, we will next exhibit a CZDS {jk}kLo for which 

the sequence {gk(t)}^=o is a CZDS for all t > 0, where gk(t) = £j=o fyjjV. To this 
end, we need some preparatory results which are of independent interest. 

Lemma 5.1. Ifp{x) = Y^j=o ^jx^ € C-V{—oo^ —1], then we obtain (j)(x) = ]Cj=o fy (y) 
e£-P{-oo,-l]. 

Proof. Let TB, Tr : R[x] 

TB 
LA;=0 

and 

CkX 

Tr 

x] denote the linear operators defined by 
n 

= ]P CkX(x - 1) • • • (x - k + 1) 
k=0 

E 
Lfc=0 

CfcX 

fc=0 

respectively. Set pi(x) := p(a; — 1), so that pi(x) = Y?k=ockxk e £-'P{—oo,0]. Since 
{^flfc^o is a CZDS, it follows that 

Tr[pi(x)] = Tr[p(ar - 1)] = £ ^^ € £-P(-oo,0]. 
fc=0 

=5in(«+i)- 

Next, a straightforward induction argument shows that 

MgOSf 
Then, by the linearity of Tg, Tr, and the above formula, we have 

r    n 

Pa(aO := TB [TT\PI{X + 1)]] = Ts Tr   £^^ + ^ 

j=i 

= TB ^cfcTr[(x + l)fe] 
fe=0 

A;=0 

n 

= TB E« E 

=E^[EC)| 
fc=o Li=o \J / J 

k=0 

k 

3=0 

k\ x3 

JJ i! 

fe=0    ' j=l 

(5.1) 
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Thus, 

k=0     ' j=0 

Since ££=0 ckx
k/k\ £ C-V(-oo,0] by (5.1), it follows from a result of [2, p. 18] or [25, 

II, Part V, Ch. 3, Problem 185] that P2(x - 1) E C-V(-oo,0]. Consequently, 

p2(x) = TB [TT\PI(X + 1)]] = TB [TvW)]] 

D 

Lemma 5.2. For each fixed t > 0, 

/t(x):=E^)e ^(-oo,-l]. 

Proo/. Fix t > 0. Then hm^ool^/kll1^ = 0, so by Whittaker's theorem (see 
Theorem 4.1), It(x) is an entire function. Next, consider the polynomial pn^(x) = 
Xlfc=o (fyx1*^/nk = (1 + xt/ri)n, whose zeros are x = —n/t < — 1 provided n > t. 
Therefore, by Lemma 5.1, for n > t, 

Since It(x) is an entire function, an argument similar to the one used in Corollary 4.5 
shows that Pn,t{^) converges as n —> oo uniformly on compact subsets of C, to It{x). 
Therefore, It(x) G C-V(-oo, -1]. □ 

Lemma 5.3. Let jk — l/kl, fc = 0,1,2,... . Then {7/Jfclo *s a CZDS, and for each 
fixed t > 0, {gk(t)}%Lo is a CZDS. 

Proof. The assertion that {l/kl}^ is a CZDS is well-known [20, Satz 5.8]. Let 

f(x) = J2k=o akxk ^ ^N be an arbitrary polynomial. Now, by Lemma 5.2, the entire 
function It(x) e C-V{—oo, — 1] and It(k) = 9k(t) for each fixed t > 0. Hence, by 
Laguerre's theorem, Zc( Y,k=o ^k9k(t)xk) < Zc(f), so that {gk(t)}kLo is a CZDS.    □ 

Theorem 5.4. Let {jkJkLo be a CZDS, and suppose that for each fixed t > 0, 

{9k(t)}kLo ^ a CZDS where gk(t) = X]j=o CDT?'^
7
- Suppose that the polynomial 

f[x) — Xlfc=o akXk/k\ G Rfrc], an ^ 0, has exactly r real zeros counting multiplicities. 
Consider the function F(x,y) := ^2k=o^^kf^(y)/kl. Then the curve F{x,y) = 0 
intersects each line y = x/s, s > 0, in at least r (real) points. 

Proof. A calculation shows that 

k=0     ' k=0 

Setting x = y and then t = x/y in this equation, we obtain 

E %9k{xlvtf = E ^f^iv) = F{z,v). 
k=0     ' k=0 
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Fix s > 0. Then the points of intersection of F(x, y) = 0 with the line y = x/s are 
the real zeros of the polynomial H(y) = Ylk^Tfkisy^f^Hy)/^ Since {#fc(s)}£L0 

is a CZDS for all 5 > 0, we have Zc(Ylk=oak9k(s)xk/k\) < Zc(f) = n — r, and 
consequently the polynomial H(y) has at least r real zeros. □ 

Acknowledgement. The authors wish to thank the referees for their careful reading 
of the manuscript. 
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