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VOLTERRA INTEGRAL EQUATIONS WITH UNKNOWN DELAY TIME 

Yuri Yatsenko 

ABSTRACT. Systems of Volterra integral equations with unknown lower limits of 
integration describe some models of developing economics. The integral equation 
with unknown upper limit of integration arises in dual problems for optimal con- 
trol by such models. The solvability of these equations is studied in the present 
paper. 

1. Introduction 

Volterra integral equations (VIE s) of the form 

x(t) = [     K(T,t,x(r))dr,    X(T) £ Mn, (1) 
Jt-T 

are used extensively in the analysis of dynamical systems. The widening range of 
applications recently has led to studying equations (1) whose delay is an unknown 
function of time, i.e., T = T(t) > 0. 

The integral equations examined below arise in the class of economic-mathematical 
models with controlled liquidation (winding-up, elimination) of obsolete production 
units (PUs) [9-13] under technological change [5, 18]. Their main novelty is the 
introduction of a new endogenous function z(t) which is the time limit for the use 
of production units, i.e., the units created before the time z(t) are not used at the 
current time t. These models are described by the systems of nonlinear Volterra-type 
equations (1) with unknown function z(t) =t — T(t) in the lower limit of integration. 
Such VIEs fall among the equations with unknown deviating arguments (especially 
with retarded ones). This paper deals with the theory of such equations. 

The paper is organized as follows. In Section 2, we prove sufficient conditions for 
existence and uniqueness of the solutions of the system of two nonlinear VIE s with 
one unknown lower limit of integration. In Sections 3 and 4, the analogous results 
are established for a similar system of the first kind as well as for the system of 2n 
VIEs with n unknown lower integral limits, n > 1. In Section 5, the integro-functional 
equation of non-Volterra type with unknown upper integral limit (with unknown fore- 
stalling argument) is studied, and the existence, uniqueness, and asymptotics of its 
solutions are investigated. It arises in the optimization problems for the VIE s consid- 
ered here. Examples of exact solutions are given in all sections. In the last section, 
we briefly describe some applications of VIE s with unknown delay time. 

2. The investigation of VIE s with unknown lower limit of integration 

If the variable lower limits of integration in VIE s are given functions, then the methods 
for investigating such equations are analogous [16] to the well-developed methods for 
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ordinary VIEs [6, 7]. The presence of an unknown limit, if only one, in the VIE 
determines the novelty of the research on the principal theoretical problems (existence, 
uniqueness, stability of solutions, etc.) brought about by these equations [10-12, 22]. 

Let us consider the system of nonlinear Volterra integral equations in the unknown 
x(t), where z(t),t E [£o,T), to < T < oo, 

x(t)= [    /(r,t,x(r))dr, (2) 
Jz(t) 

[      <p(T,t,x{T))dT = p(t), (3) 

with the initial conditions 

z(to) = ZQ <to,    x(r) = xo(r),    re(-oo,to]. (4) 

In view of automatic control theory, the expressions (2)-(3) represent the integral 
model of a nonlinear dynamical system with entry x(t) and unknown delay duration 
t-z(t). 

Assume that the given functions f(T,t,x), (p(T,t,x), p(t), xo{r) are continuous, 
non-negative at r G (—oo,T), t G [^0,^), x G [0, oo), and satisfy (2)-(3) at t = to. 

Theorem 1. Assume 

(1) /(T, t,x) and (p(T,t,x) are positive for r G (—oo,T), t G [£o,T), x G (0, oo); 
(2) the integral /J^ (^(r, t,xo(T))dT diverges, t G [to,T); and 
(3) f(T,t,x),   (f(r,t,x)y   and p(t)   satisfy  the  Lipschitz  condition  in x,   t,   and 

f(T,t,x)/(p(T,t,x) is bounded, r G (—oo,T), t G [to,T),x G [0,oo). 

Then the system of equations (2)-(3) has a unique solution x G C[to,T),z G C[to,T), 
such that x(t) > 0 and z(t) < t. 

Proof. The equations (2)-(3) can be represented in the form 

*(*)= / /(r,*,x(r))dr+ f* /(r,t,xo(r))dr, (5) 
Jto Jz(t) 

ft0 f1 df 
/     ^(r,t,a:o(r))dr = p(t)- /   ^(r,t,a;(r))dT = c(t), 

Jz{t) Jto 
(6) 

t G [to,ti]^ti < T, where the time ti will be determined later. Introduce the functions 

F(z, t) = J 0 /(r, t, xo(T))dT,    $>(z, t) = j 0 ^(r, t, xo(r)))dr, (7) 

which are defined for —oo < z < to. Under the conditions of the theorem, <&(z,t) is 
strictly increasing in z and has the unique inverse (in z) $~1(c,t), which is defined 
for c G [0, oo). Let S(c,t) = i7,[$~1(c,t),t]. If c(£) > 0, then one can determine the 
unknown z from (6) since z(t) = <I>-1(c,£), and substitute it into (5). Thus, the system 
of equations (5)-(6) is equivalent to the nonlinear Volterra integral equation 

x{t) = Ax= f /(r,*,a:(r))dr + sfp(*)- / /(r,t,x(r))dr,t], (8) 
Jto L Jto J 

if c(t) > 0, i.e., if the condition 

?(*)> / <p(T,t,x{r))dT (9) 
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is valid. Denote the set of continuous functions {:r(£),£ E [to^h] : 0 < x(t) < xo(to) + 
d = Do, d = const > 0} by fid, and introduce the norm 

11/11-    max    \f(T,t,x)\ 
T,te[to,ti] 
xe[o,D0] 

Condition (9) is fulfilled if x E £ld and 

*i - to < min ^} (10) 
[*o,ti] IbH 

(then p(t) > mmlt0itl]p(t) > Mih - to) > fiQ ^(T,t,a;(r))dr ). 
The function S(c, t) satisfies a Lipschitz condition with constant 

Ls = max |/(T, t, x)/(p(T, t, x)\. 

Denote the Lipschitz constants of the functions /(r, £, re), ^(r, t, re), and p(t) by L^, L^, 
L*,!}, and Lp. It follows from the second condition of the theorem and (9) that 
0 < to — z(t) < Cz, t E [to?ti]? where Cz is some constant. 

We now estimate the difference x*(t) — rro^o)? x* — Ax. After a standard transfor- 
mation, we find 

x*(t) - xofo) < [11/11 + LS(LP + |M|) + (L} + L^LpCj (t - to) 

= CA(t-to). (11) 

Recalling that Ax > 0, we find that the operator A is invariant with respect to the 
set Qd C C[£o,£i] for 

ti-to<^-. (12) 

Finally, it may be proved that 

||Ai?i - Ax2\\[t0tt1] < (£/ + LsL^fa - to)lki " a2||[to,ti] 

is valid for xi,X2 E fi^. Hence, the operator ^4 is contracting provided that 

Choose the time ti such that the inequalities (10), (12), and (13) are fulfilled. Then 
the equation (8) and system (5)-(6) have a unique solution x E C[£o,£i] by virtue of 
the Contraction Mapping Principle [7]. Furthermore, x(t) > 0, t E [£o,£i], in view 0^ 
the positiveness of the function 5 in (8). The unique solution z(t) < to, t E [£o,£i], is 

determined by (6). 
Since we now may take x(t) = Xo{r) to be given on (—oo, ti], we prove the existence 

and uniqueness of the solution x(t), t E [ti,^], ti < t2 < T, etc. We shall show 
that any finite interval [£o,Ti], Ti < T, may be gone through by a finite number 
of steps U+i — U determined by the inequalities (10), (12), and (13). Indeed, the 
constant <5i = !/(£? + LSL*) in the right-hand side of (13) is the same for all intervals 
[U, U+i], Next, in view of the second condition of the theorem, it follows from (5)-(6) 
that the constant Cz may be chosen as Cz = max[t0)Tl] $

_1(max[i0jTl]p(t),^) + ^0? 
independent of the interval number i. Hence, the constant 62 = CI/CA in (12) also 
may be chosen independent of i. Finally, if we take ||^|| as the norm for r, t E [to, Ti], 
then the constant 63 = min[to>Tl]p(£)/||<p|| does not depend on i. Thus, U+i -U >6 = 
min(<5i,<!)2,<!>3) for any i; hence, the unique solution x(t) exists on any finite interval 
[*o,Ti],Ti<T. 

Thus, the theorem is proved. □ 
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Remark 1. When studying the problems of optimal control by equations of the form 
(2)-(3), it often is required to study wider classes of functions / and (p measurable 
with respect to r [10-12], but the result of Theorem 1 holds true [22]. 

Example 1. Let /(r,t,a:) = boe^-^x^, (p(T,t,x) = 6iec"(T"*)a;dl, 0 < d* < 1, 
biiCi > 0, i = 0,1 (the so-called Cobb-Douglas production functions with exponential 
technological change and exponential decay [5, 13, 18]), p(') = p, xo(') = XQ, z(to) = 
to — D, where the constants p, D, and XQ satisfy the system of nonlinear equations 

1 _ p-coD _ C0X0 — , 
bo 

Then the solution of equations (2)-(3) is 

z(t) = t-D,    x(t) = xo,    te[to,T), 

When co, ci < 1,    D= [(p/b^-^b^1}1/^0^ + o(co, ci), 

XQ = (^y-J +o(co,ci). 

In applied problems, the prehistory Xo(r) of the process x(t) is usually given for 
some bounded interval [TO,£O]?— OO < TQ < ^o- Then, in view of Theorem I, the 
solution of equations (2)-(3) can cease to exist. The following theorem provides the 
conditions under which the value z(t) belongs to the interval [TQ, t]; hence, the solution 
(#(•),£(•)) exists. 

Theorem 2. If the conditions of Theorem I are fulfilled, the functions /(r, t,x) and 
(p(T,t,x) are differentiable with respect to x, then TQ < z(t) < t, t G [to,T), if and only 

if 

p(t)<m= [ <p(T,t,x(r))dT. (14) 

where x is determined by the equation 

*(*) = I f(T,t,x(T))dT+ f 0 /(r,t,rco(r))dr. (15) 
J to JTQ 

In this case, x{t) < x(t),t E [to,T). 

Proof. Varying the system (2)-(3), we obtain the system of linear integral Volterra 
equations with respect to the variations 6x(t),8z(t),8p(t), £ e [£o,T), of the unknown 
solutions #(•), £(•), and the given function p(-). Using well-known properties of Volterra 
operators [7], we obtain from this system that 8x{') > 0 and 8z{') < 0 for 8p{') > 0. 
In the case of the function p(-) given by (15), this implies the required assertion. The 
theorem is proved. □ 

The existence and uniqueness of solutions of nonlinear integral equations distinct 
from (10)-(12) with the unknowns in the limits of integration are studied in [14]. 
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3. The VIE s of the first kind with unknown limit of integration 

Let us consider the system of VIEs of the first kind in the unknowns y(t),z(i),t G 
[to,T),*o<T<oo, 

rt 

<p(Tit,y(T))dT = p{t), (16) 
z(t) 

1>(TJt,y(T))dT = q(t), (17) 

with the initial conditions 

/' Jz(: 

f 
z(to) = zo< to,    2/(r) = 2/oW,    r G (-oo, to]. (18) 

Suppose that the given functions ^(r,t,2/), il)(T,t,y), p(t), g(t), and 2/O(T) are con- 
tinuously differentiable with respect to t and y, Lipschitz continuous with respect to 
r, positive, and satisfy (16)-(18) at t — to. 

Theorem 3. Assume 

(1) (f'tiip't,!)'itf satisfy Lipschitz conditions in y and t, r G (—oo,T), t G [to,T)j 
2/G [0,oo); 

(2) J^ipir^yoir^dr and/^^t.tfoWJdr dwcrjc, t G [to,T); 
(3) v't(T,t,y)lip(T,t,y)  and il>i(T,t,y)/(p(T,t,y)  are bounded, r  G   (-oo,T), t  G 

[to,r), yG[0,oo); 
(4) the inequality <Py(t,t,x) > ^(t,t,a:)fe(r,t,2/) AoZds w;/iere 

k(T,t,y)=<p(T,t,y)/i>(T,t,y), rG(-oo,T), tG[to,T), ^2/G[0,oo); 

(5) /or u < r < t, the inequalities ^(r,t,a;)  < ip't(T)t,x)k(u,t,y) and pf(t)  > 
q'(t)k(T,t,y) hold, u,r G (-oo,T), t G [^o5^); a;,2/ G [0,oo); and 

(6) ^,*,0) > *(*,t,0)fc(r,*,y), r G (-oo,T); t G [to,T), y G [0,oo). 

Then the system of equations (16)-(17) has the unique solution y G C[to,T), z G 
C[to,T), such that y > 0 and z(t) < t. 

Proof. By differentiating (16)-(17) and eliminating z'{t), we obtain an integral equa- 
tion of the second kind, 

fifoft), *(*),*)= /    x(v(T),z(t),T,t)dT + R{z(t),t), (19) 
Jz{t) 

t G [to,^i], t\ satisfies (10), where 

0(2/, s, t) = ^(t, t, 2/)^(^, *, 2/0 W) - il>(t, t, y)(p(z, t, 2/0(2)), 

X(2/, 2,r,t) = ^(r,t,2/)^(2,*,2/0(2)) - <^(T,*,2/)V;(2, t,2/0(2)), 

flOM) = p'(t)i;(z,t,2/0(2)) -q'^ip^t,2/0(2)). 

Equation (19) and one of the equations (16)-(17) form a system of nonlinear equa- 
tions which is analogous to the system (2)-(3). In view of the fourth condition of the 
theorem, the function fi has the inverse function fi_1 in y and, thus, 

y(t) = n-1\ [    x{y{T),z(t),T,t)dT + R(z(t),t), t\. (20) 
tJz{t) J 

Reasoning as in the proof of Theorem 1, we reduce the system (2), (20) on the 
interval [£o>£i]> ^1 ^ ^J 

to one nonlinear Volterra equation which is solvable because 
of the Contraction Mapping Principle and the first three conditions of the theorem. 
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The fifth condition ensures positiveness of the right-hand side of equation (19), whence, 
in view of the last condition, positiveness of y(-) follows. The theorem is proved.     □ 

The fourth and fifth conditions of Theorem 3 seem to be very restrictive, but they 
are valid in many cases. For example, in the two-sector integral model of economic 
renovation [22, 24], ip(T,t,y) = OL{T,t)y, ip(T,t,y) = /?(T,£)[1 — y], hence, the fourth 
condition holds true for all a, ft > 0. 

Another important case arises when k(T,t,y) does not depend on y. Then the 
mentioned conditions are more easily verified; in particular, the fifth one leads to the 
inequality 

W^)<kM<W)   lf^>0- 
Example 2. Let ip(r,t,y) = CTyd, c> 0, 0 < d < 1, ^(r.t.y) = yd,p(t) = ct- cD/2, 
q(') = 1,2/o(-) = 2/O5 z(M = to — D where D = yQd. Then the solution of the equations 
(16H17) is 

z(t)=t-D,    y{t) = yo,    te[to,T). 

It should be noted that Theorem 3 represents one version of the sufficient conditions 
for the existence and uniqueness of the solution for the equations (16)-(17). The 
derivation of the necessary and sufficient conditions runs into great difficulties. 

4. VIE s with several unknown lower limits of integration 

We shall restrict ourselves to the system of 2n VIE s of the second kind with linear 
integrands in the unknowns given by #1 (£),..., xn(t)^ Zi(t),..., zn(t), t G [to, T), to < 
T < 00, 

xiw = 51/   Ki^ OSJM*-* (21) 
~\JzAt) 3=1 

rt "      pt 

Y] Qij(T,t)xj(T)dT = pi(t),    i = l,...,n, (22) 

with the initial conditions 

^(*o) = z? < to,    ^(r) = ^(r),        r G (-00, to],    j = 1,... ,n. (23) 

In contrast to the previous cases, the positiveness of the given functions proved 
insufficient for the inequalities Zj(t) < t to hold when several Zj(t) are sought, and 
therefore more restrictive relations between Pj(t) and Qij{r^t) are required. Let us 
illustrate these for the case with a triangular matrix {Qij}. 

Theorem 4. Assume 

(1) the functions K^fat), Pi{t), x?(r), Quir^i) are positive, Qikij.t) > 0 for k < 
hQik(r,t) = 0 for k > i,r G (-00,T), t G [to,T); 

(2) Kij(T,t), Qij{T,t), Pi(t), X^(T) are continuous with respect to r and satisfy a 
Lipschitz condition in t, i,j = 1,... ,n, r G (—00, T), t G [to,T); 

(3) the integrals /^ <9U(T, t)a:o(r)dr diverge, i = 1,..., n, t G [to, T); and 
(4) for each i = 1,... ,n - 1 the inequality pi+1(t)/pi(t) > Qi+u(ui,t)/Qii(uut) > 

Qi+ii-i(u2,t)/Qii-i(u2,t) > " > Qi+ii(ui,t)/Qii(ui,t) is fulfilled at ui, 
U2,...,Ui GR,r G (-oo,T), tG [to,T). 

Then the system (21)-(23) has the unique solution x^Zi G C[to,r), i = 1,... ,n, such 
that Xi(t) > 0 and Zi(t) < t. 
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Proof. The proof is analogous to that of Theorem 1. The first and third conditions of 
the theorem ensure that the equations (22) have a unique solution Zi('), i = 1,..., n, 
at the given Xi(t)  > 0, i = l,...,n.   The last condition assures that Zi(i)  < t, 
t€[to,T). □ 

Example 3. Let /^(r,*) = 60-ec«(T-*), Qufat) = fae^-V, Qijfat) = 0 at i ^ j, 
bijiCijiPuii > 0, Pi(') = pu x^(') = xj, Zi(to) = ^o -A, M = l,...,n, where the 
constants pi, A, and ^ satisfy the system of 2n nonlinear equations 

,o _ y^ 0ij bijil-e-*'*)* 
x? = y   — -x 

j' 

J 

p* = ,    z = l,...,n. 

Then the solution of the equations (21)-(23) is 

Zi(t) = t-Di,    XiitfEEx0^    z = l,...,n, te [to,T). 

If Cy,7» < 1, then 

v-i 

A = ^—g" + o(Qj,7i)? 

^o = ^ -^L + 0(c.i? 7.)j    i = l,..., n. 

i     ^ 

Analysis of integral-functional equation with 
unknown upper limit of integration 

f 

Optimal control problems usually evoke great interest among those engaged in eco- 
nomic-mathematical simulation [8, 15], which is displayed by investigations into the 
class of VIEs under discussion [10-12, 22]. When we researched the optimal control 
problems using the VIEs considered here the integral-functional equation of non- 
Volterra type for the unknown function z{t),t G [^ch oo)? 

^(r) [/?(«,T) - p{z{T)Mv))dT = p(«)7(*), (24) 
It 

arises [2, 12, 22, 24] where z~l{') is the inverse function of z(-). 
This equation plays an important role in the qualitative analysis of the solutions 

of optimal control problems. It has a clear economic interpretation, namely, the left- 
hand side of (24) describes a rollover estimate of efficiency—the incremental output 
produced by one new capacity unit (CU) during its unknown future lifetime [£, z_1(t)], 
compared with the output of the oldest existing CU. In view of (24), this value must 
be equal to the cost ^(t) of a new CU. The function t — z(t) is the optimal lifetime of 
CUs. 

In accordance with the economic interpretation of (24), we shall restrict ourselves 
to the case of monotone continuously differentiable solutions z(t): z(t) <t,te [to, oo). 
The study of (24) is carried out in analogy to that in the case p = 1 [22]. 

Suppose the p(t) = e~dt, d > 0, P(r,t) = /?(T). The functions /?(T),7(£) are twice 
differentiable and /? > 0. Under these conditions, (24) is of the form 

m-P(*(T))]e-dTdT = e-dt>y(t). (25) 
/ 
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By differentiating (25), we obtain the recurrence relation 

l_e-<*(s-1(t)-*) 
0(z(t)) - m + m = 7(*) - d7(t), (26) 

which connects the values z{t) and z~1{t). 
We will analyze the conditions for given functions /? and 7 under which (25) can 

have a solution with ZQ < z(i) < t, zf(t) < 0. Suppose z(u) = z(t), u > t. Then 
z'1^) = 00, u > ^"1(*)» and P(z(t)) - Ptt) = dy(t) follows from (26). Thus, for the 
solution z(i), z'{t) > 0, to exist, it is necessary that f3(z(t)) — P(t) > d^t). Let 

Then z(i) can tend to 00 when t —► 00. Suppose that the condition (27) is satisfied in 
the following. 

Lemma 1. Let equation (25) have a solution z e C1^,^ and another solution z + 
6z G C^cT], 6z(i) = o(z(t)), which is close to the first. Ifz^z'1^)) < L(z(t)) where 

L(z\ -    -djz-HD-t)    P^) /28x 

then \8z(t)\ > \8z{z~1{i))\ {the variation 8z{i) of z(t) is decreasing) and conversely. 
And ifz'iz-1^)) < y/L(z(t)), then {Sz'tyl > Ifi^^"1^))! (the variation 8z'(i) of the 
derivative ^(t) is decreasing) and conversely. 

Proof. The proof of Lemma 1 in the case d = 0 was shown in [22]. In the general case, 
the proof proceeds in a similar way and is based upon varying (25) with respect to 
£(•), varying (26) with respect to z'^), and the use of the equality 

□ 
Lemma 1 allows us to show the existence and the uniqueness of the solution of 

equation (25) on the unbounded interval [to, 00) in some cases as well as the asymptotic 
behavior of solutions for bounded intervals [to, T], T - to ^> 1. 

In [22], when d = 0, it was shown that for existence of a continuous solutions 
z(t)i t e [£o,T], T ^> to, of (25), the given functions /?(•), 7(-), and the solution z(') 
themselves must satisfy rather strong conditions, and this solution was constructed 
in the cases of exponential, power, and logarithmic functions /?(T). We shall restrict 
ourselves to the following cases. 

Theorem 5. Let /3(r) = cir -f C2, j(i) = 7 = const, ci,7 > 0. Then (25) has the 
unique solution z(t) = t — A, t G [to, 00), and some set of solutions z(t), zf(i) > 0, for 
any interval [to,T]. In the case where T —» 00, all solutions z(-) approach the solution 
z(').  The constant A is determined by the nonlinear equation 

A-i^l = -X (29) 
d ci 

(A = ^/27/ci + 0(d), when d < 1). 

Proof. It is easily verified that (25) has the solution z(t) — t—A for the infinite interval 
[to, 00) where the constant A is determined by (29). This fact can be checked directly. 
We shall show that this solution is unique.   Indeed, in this case L(z) = e~~dA < 1. 
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Thus, if 2/(7-) 7^ 1 and ^(r) > yJe~dA at some point r > to, then according to 
Lemma 1, this results in increasing l&z'^)! and |(5^(t)| when t —> 00, violating the 
condition z'it) > 0 and, hence, yields the discontinuities of z_1(£). The continuous 
solution z(t), t G frb-z"1^)]) such that zf(t) < Ve~dA cannot be constructed. For 
this reason, the unique continuous solution of (25) for the interval [to, 00) is of the 
form z(t) = t - A. 

Let us construct the solutions of (25) for some interval [to,T], T ^> to. We may 
construct some continuously differentiable function z(t) < t, zf(t) > Ve~dA > e~dA, 
t G [z(T),T], which satisfies (25) and (26) at t = z(T). The construction of such a 
function can be done in more than one way. Continuing z(t) recursively from the right 
to the left by means of the formula (26), we get, in view of Lemma 1, some solution 
z(t) < t, z'ft) > 0 on the entire interval [£o,T]. At the same time, any solution z(t), 
t G [to,^, of (25) tends to z{') for T —► 00, in view of Lemma 1. The theorem is 
proved. □ 

Example 4. Let /?(T) = r, ^ = 1, 7 = 1, d = 0.01. Then Ata y/2 and the solution 
of (25) is z(t) = t - A, t G [1,00). 

Theorem 6. Let /3(T) = ecr
; ^(t) = best, c,6 > 0, s < c < d. Then (25) has some 

set of solutions z(t)j z'{t) > 0, for any interval [to,T]. In the case where T —± 00, 
all these solutions tend to the unique solution z(i), zf(t) > 0, of (25) on the interval 
[to, 00). 

For s < c,t — z(t) —> 0 as t —► 00, and z{t) =t — B at s = c, where the constant B 
is determined by the nonlinear equation 

ce-dB - de-cB = (bd - l)(d - c) (30) 

(B^ ^2b/c + o(d), whend< 1). 

Proof When s = c, substituting z(t) = t - B into (25) readily shows that z(t) is a 
solution of (25), and we get (30) for defining B. In this case, L(z) = e^c~d^B is less 
than 1. 

When s < c < d, according to (26), we have A(t) = t — z(t) —> 0 for t —> 00. 
Let us study the limiting behavior of the function A(t) when t —► 00 (and |A(t)| is 
small). Let the time ti be fixed. Denote A(ti) = Ai, A(z~1(ti)) = A2, and let 
A(t) = Ai+e(t-ti) + o(A?). ThenB = I-A1/A2. Substituting A(t) into (25) and 
calculating the integral, we get 

Using expansions of the left-hand side functions, we obtain the equation 

£*i^+o(A;) = *<-*, 

which when substituted into (31) leads to a relation between Ai and A2 

dAl - A2(2 + (d - 5))Ai + 2Ai - cAj + ofA?) = 0. 

A further study of the solution of this equation shows that A2 = Ai + o(A). Thus, 
when t -> 00, A(^-1(t))/A(t) -* 1, and 

L(z\ = g-dACz-^O+cAft)) = e-dA2+cAi _^ e-(d-c)Ai+o'(Ai) < 1 

Now we may construct the solution of (25) in the same manner as in the previous 
case.  If z'^z-1®) > L{z(t)) > y/L(z(t)) for any time t, then \6z(t)\ < l^^-1^))! 
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and ^'(t)! < ^'(z*"1^))! because of Lemma 1. For this reason, we choose some 
time T ^> to and construct the continuously differentiable function z(t) < t, z'ft) > 
y/L(z) > L(z), t e [Tj^-^T)], which satisfies (25) and (26) at t = T. Because of 
Lemma 1, continuing z(i) recursively from the right to the left by means of formula 
(26), we get some solution z(i) < t, zf(t) > 0 for the entire interval [to,z~1(T)]. We 
shall obtain the solution z E C1^, oo) of (25) if we let T tend to oo. In so doing, any 
solution of (25) satisfies z(t) —> z(t) when r,T — t —» oo. The theorem is proved.    D 

In applications, the importance of (24) consists in the finding of some "effective" 
trajectories (so-called turnpike trajectories [8,15]) which are close to the solution of the 
optimization problem and have simpler structure. The turnpike theorems are among 
the most important in mathematical economics. The essence of turnpike properties is 
the statement that for long planned intervals, the optimal trajectory approaches the 
turnpike one, which is independent of the interval length and the optimization crite- 
rion. By means of the VIE s with unknown delay time considered here, the different 
turnpike theorems (in normal, strong, and strongest forms) have been established in 
[22, 24] for optimal trajectories z(-) of the economic system renovation (for the optimal 
capacity service periods). 

In this connection, the study of general properties of turnpike trajectories defined 
by (24), if they exist, is useful. For this purpose, we represent the function /? in the 
form /3(T, t) = PI (T)/?2(t) and emphasize the following four indicators /?i (r), fa(t), ^(t), 
and p(t) which determine the behavior of turnpike trajectories a(-). 

Theorem 7. Assume that /^(r) or fait) or p(i) are increasing or that ^{t) is decreas- 
ing, the other three indicators are constant, and there exists a solution z(t), zf(t) > 0, 
t G [to,oc), of (24). Then the function t — z(t) decreases as t —> oo and conversely. 
If all four indicators are constant, then t — z(t) = const, to < t < oo. 

Proof. The proof follows from the analysis of the properties of the (24) and its deriv- 
ative. □ 

6.  Some applications of VIE s with unknown delay time 

The necessity to apply integral equations in mathematical economics comes while 
considering the heterogeneity of economic factors* such as fixed assets, production 
capacities, industrial equipment, labor force, etc. Such models take into account the 
materialized technological change [5, 18], which implies that new means of production 
are more efficient. 

The macroeconomic models based on the above VIEs [9-13, 22] allow the investiga- 
tion of the rational rates of technology renovation and dynamics of capacity lifetime. 
These problems are considered in correlation with other economic aspects (the pres- 
ence of resources, production efficiency criteria, technological change rates, etc.). 

These VIEs have other applications, which differ from macroeconomics. For exam- 
ple, they can describe the problems of equipment replacement in production systems 
[4, 17]. The important problem of replacement models is to find the optimal time 
interval T of replacement or repair [17]. For this purpose, the VIEs considered here 
make it possible to determine optimal T as a dynamic function T(t). 

More generally, the VIE s with unknown delay time describe the models similar to 
those used in renewal theory [1, 20]. This theory arose from the study of so-called 
random "self-renewing" processes and has been a bright example of the importance 
of applying integral equations. The basic renewal equation is the linear VIE (1) with 
respect to the unknown #(•).  Compared with renewal models, the VIEs considered 
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here permit the investigation of essentially non-stationary processes with the variable 
renewal intervals [z(^),t]. 

Similar integral models also arise in mathematical ecology, when the influence of the 
age structure and process prehistory upon population dynamics (hereditary effects) 
is considered ([3, 19, 21, 23] and others). For such problems, VIEs with unknown 
delay time may hold considerable promise. They incorporate a variable limiting age 
of individuals, a variation in the intensity of dying off and migration, etc. 

Acknowledgment. The author expresses gratitude to the reviewer for his careful 
analysis of the manuscript and the useful notes which assisted in significant improve- 
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