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NONNEGATIVE LINEARIZATION OF THE ASSOCIATED 

g-ULTRASPHERICAL POLYNOMIALS 

Ryszard Szwarc 

ABSTRACT. Nonnegative product linearization of the associated continuous q- 
ultraspherical polynomials is shown for all values — 1 < q < 1. This is obtained by 
applying new criteria for nonnegative product linearization of orthogonal polyno- 
mials. 

1. Introduction 

Let {pnj^o be a system of orthogonal polynomials. The product of two of these 
polynomials can be expressed as a linear combination of these polynomials, i.e., there 
are coefficients a(n, m, k) such that 

n+m 

Vn{x)Vm(x)=    ^    a(n,m,k)pk{x). (1) 
fc=|n—m| 

If all the coefficients a(n, m, h) are nonnegative, we say that the polynomials pn have 
nonnegative product linearization. 

The problem of which orthogonal polynomials admit nonnegative product lineariza- 
tion has attracted attention for a long time. This is because the property has impor- 
tant consequences, the main one being the convolution structure associated with the 
polynomials pn determined by the coefficients a(n,m,k) (see [9, 10, 22]). Also, the 
nonnegativity of the product linearization yields, together with other conditions, cer- 
tain pointwise estimates of pn(x) (see [22]). In these applications, the knowledge of 
explicit values of the linearization coefficients is usually not necessary. What counts 
is their nonnegativity. 

The explicit formulas for the linearization coefficients are available only for a small 
class of orthogonal polynomials. This class includes the ultraspherical polynomials 
and their g-analogues (see [5, 8, 12, 13, 17]). For the Jacobi polynomials p%'P(x), 
Hylleras [14] set up a recurrence relation involving only three linearization coefficients 
a(n, m, k — 1), a(n, m, k), and a(n, m, k — 1), and solved this explicitly for a = (3 (the 
ultraspherical case) and for a = /? + 1. Relying on Hylleras' formula, Gasper [10] has 
determined the range of values of a and (3 for which nonnegative product linearization 
holds. Later on, Rahman [17] expressed the linearization coefficients of the Jacobi 
polynomials as multiples of gFg hypergeometric series from which their nonnegativity 
was obvious for a > ft > — 1 and a + 0 + 1 > 0, a substantial part of the set 
which Gasper [9, 10] found in 1970. He managed to extend this to ^-analogues of the 
Jacobi polynomials and proved nonnegativity of the product linearization for a > /3, 
a + /3 + 1 > 0, and 0 < q < 1. Gasper [11] used Rahman's 10^9-series representation 
[17] of the linearization coefficients of q- Jacobi polynomials and determined the range 
of a and /3 for which the linearization coefficients are nonnegative. 
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Another approach is to study general orthogonal polynomials in order to find condi- 
tions for nonnegative product linearization and then test them on specific orthogonal 
polynomials. The first result of this kind belongs to Askey [1], and it can be applied to 
a wide class of Jacobi polynomials and their g-analogues. However, it does not cover 
the whole range of parameters a and /?, and some important special cases like the 
Legendre polynomials are left open. In 1992, in two papers [20, 21], new conditions 
were found which when applied to the Jacobi polynomials come close to Gasper's re- 
sult since they give nonnegative product linearization fora>/3>—l,a + /? + l>0. 
These conditions are given in terms of the coefficients in the three-term recurrence re- 
lation that the orthogonal polynomials satisfy. Roughly, some monotonicity properties 
of these coefficients are required. Unfortunately, these conditions do not admit coeffi- 
cients oscillating about certain values. However, there is one important instance where 
such oscillating behavior occurs: the g-ultraspherical polynomials with q negative. 

The aim of this paper is to give new criteria for the nonnegative product lin- 
earization of orthogonal polynomials in order to handle oscillating coefficients in the 
three-term recurrence relation. These results are collected in Section 3. The criteria 
then are applied to the associated g-ultraspherical polynomials to show that they have 
nonnegative product linearization for all values of <?, including q negative (the case of 
positive q has been partially solved by Bustoz and Ismail [6, Thm. 2.3] by applying 
the aforementioned criterion of Askey). This is done in Section 2. 

2.  Associated g-ultraspherical polynomials 

Let ii be a probability measure /i with infinite support on the real line and symmetric 
about the origin, i.e., ii{A) = fi(—A) for any Borel subset of A reals. Let {pn(x)}<^L0 

be a system of polynomials, orthonormal with respect to /i. We assume that the 
polynomials Pn(x) have positive leading coefficients. Then they satisfy the recurrence 
relation 

xpn(x) = Anpn+i(x) + An_ipn_i(x),        n > 0, (2) 

with the convention p_i = A_i = 0. The coefficients An are strictly positive as the 
ratios of the leading coefficients of pn(x) and pn+i(x). 

The associated polynomials pn(x]k) of order k are defined for any nonnegative 
integer k by the recurrence formula 

xpn(x] k) = An+fcpn+i(;r; k) + An+fc_iPn-i(£; k),        n > 0, (3) 

with p-i(x] k) = 0. If An is a rational function of n or of qn, then we can admit k 
real, as long as n + k is not a singular point of the function z \-^ Xz. The associated 
polynomials pn(x; 1) of order 1 also are called the numerator polynomials, and they 
turn up naturally when considering a continued fraction approximation of the Stieltjes 
transform of the measure /x (see [7, Chapter III.4] ). 

The associated polynomials again are orthonormal with respect to a probability 
measure on E. Although this new measure is determined by the original measure ^, 
the relation is rather intricate, and one cannot expect that the new measure can be 
found explicitly in terms of ^. 

For a sequence of positive numbers {crn}^L0, let 

Qn(x) = an pn(x). 



ASSOCIATED g-ULTRASPHERICAL POLYNOMIALS 401 

We call qn(x) the renormalized polynomials. The renormalized polynomials qn(x) are 
no longer orthonormal, and they satisfy a new recurrence relation 

xqn(x) = -Ynqn+iix) + angn_i(x) 

where       7n = An,    an = An_i,    n > 0, 

with the condition cr_i = 0. Thus, the coefficients an, 7n are positive (except for 
Q/Q = 0), and they are related to An by 

A^ = an+i7n. (5) 

Conversely, if two sequences of positive numbers {ari}
<^L1 and {7n}^Lo satisfy (5), 

then the polynomials gn, defined recursively by (4), are the renormalized polynomials. 
Indeed, the numbers an can be given as 

2      7o7i'--7n-i 
^n =  • a1a2"'an 

In this way, Theorem 1 of [21] can be restated as 

Theorem 1. Let the polynomials pn(x) satisfy (2). Assume there are sequences of 
numbers an and 7n, positive except for ao = 0, such that for n>0 

(i) Xl = Q;n+i7n, 
(ii) an < an+2, 

(iii) an + 7n < an+2 + 7n+2, 
(iv) an < 7n. 

Tften i/ie polynomials pn {x) have nonnegative product linearization. 

If it happens that An itself is increasing, then we can apply Askey's theorem [1] in 
order to get nonnegative product linearization. In that case, Theorem 1 also can be 
applied with an+1 = 7n = An. 

We now turn to considering the g-ultraspherical polynomials. Part of the result will 
be obtained by using Askey's criterion, as it was done in [6]. However, this criterion 
does not work when q is negative. Moreover, it does not apply to all cases when q is 
positive. In these cases, we will have to use other methods based on Theorem 1. 

The g-ultraspherical polynomials were introduced and studied by Rogers [18]. They 
have two parameters q and /?. We will assume that both parameters are real and 
of absolute value less than 1. In the standard normalization, the g-ultraspherical 
polynomials are denoted by Cn(x',l3 \ q), and they satisfy the recurrence relation 

2xCn(x;P | q) = ^^Cn+1(x;P \ q) + 1 ~^^ Cn-i(x; 0 \ q) (6) 

for n > 0, with C-\(x\f3 \ q) = 0. The orthogonality measure is known explicitly 
(see [4, Thm. 2.2 and Sect. 4] or [13, Sect. 7.4]). When |/3|, \q\ < 1, it is absolutely 
continuous with respect to Lebesgue measure on the interval [—1,1]. Later, we will 
make use of the fact that the support of this measure is contained in [—1,1] in one of 
the cases we will be considering. 

The linearization coefficients of the g-ultraspherical polynomials were already com- 
puted explicitly by Rogers [18] (see also [5, 12, 17]). They are given as products of 
factors which can be readily checked to be positive when |/3|, \q\ < 1. However, no ex- 
plicit formula is available for the linearization coefficients of the polynomials associated 
with g-ultraspherical polynomials. 
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In order to handle the associated g-ultraspherical polynomials following [6], we 
add one more real parameter a from the interval [—1,1] and define the polynomials 
C%(x;/3 | q) by the recurrence relation 

^-T^jgr'Z-'W- <7) 

k 
Observe that €% (a?;/? | q), where k > 0, are just the associated g-ultraspherical 
polynomials. These polynomials were first introduced in [6], where the orthogonality 
relation is given explicitly. 

The polynomials C%(x; (3 | q) are not orthonormal. By (4) and (5), the orthonormal 
q-ultraspherical polynomials C^{x\j3 \ q) satisfy (2) with 

A2 _ A2,  * _   (l-mz"+1)(l-/32a<z") , , 
n _   "W _ 4(1 - !iaqn){l - (3aqn+l)' K ' 

Then one can compute that 

X2     (^      y2 , .x       tt(g - ^)gn(l " g)(l - /?)(! + ^gn+1) ,Qx 
An+l W       ^n^;        4(1 _ /3^n)(1 _ ^^^(X _ ^agn+2) ' W 

The next theorem is known for 0 < ^ < 1 and a(q — /3) > 0 [6, Thm. 2.3]. The main 
novelty here is contained in part (i) when the coefficients in the recurrence formula 
are oscillating. Also, we show that for a nonnegative, no restrictions on the other two 
parameters are required. 

Theorem 2. Let |/3|, \q\ < 1, and \a\ < 1. Assume one of the following conditions is 
satisfied 

(i) q < 0, 
(ii) a > 0, 

(iii) a < 0, q > 0, and 0 > q2. 

Then the polynomials C^{x\P \ q) have nonnegative product linearization. 

Proof. We will break the proof into two cases. 
(a) — 1 < q < 0. This is the most interesting case, since the coefficients An(a) are 

oscillating about |. Indeed, it can be shown that 

12/   x_l   ,   1       qna{(3-q)(l-p) 
An^)        4 ^ 4 (1 _ a/3(Zn)(1 _ a/Jgn+l) • 

Such behavior has never been studied before for general orthogonal polynomials in 
connection with nonnegative product linearization. 

We will apply Theorem 3. For this purpose, we will need the following formulas 
that can be readily checked, 

2 a(g - /3)g™(l - g
2)(l - /?)(! - a Wm+3) 

^m+2W     ^mW     4(l-a/35TO)(l-a/3g"l+1)(l-a^"l+2)(l-a/39
TO+3)' 

{^+3(«) + ^(a)} - {A^+1(a) + \2
m{a)} 

_ a(q - I3)qm(l - q2)(l + g)(l - /?)(! + a/?^2) 
4(1 - al3qm)(l - a/3qm+2)(l - af3qm+4) 

Now, if a(q - 0) < 0, set m = 2n - 1 and apply Theorem 3(i). Otherwise, set m = 2n 
and apply Theorem 3(ii). 
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(b) 0 < q < 1. Assume a(q — (3) > 0. By (9), the sequence Xn(a) is nondecreasing. 
In this case, by Askey's theorem [1] or by Theorem 1 with Q>n+i = 7n = An(a), we get 
the conclusion. 

Now let a(q - (3) < 0. First consider the case a > 0 and q < (3. Then by (9), the 
sequence An(a) is decreasing and it tends to |. In view of Proposition 1, it suffices 
to show that the polynomials C^{x\(3 \ q) take positive values at x = 1. It can be 
computed that 

\*m - \*M =     gn(/?-g)(i-/?)(i-^)(i-^Vn+1) 

Thus by Lemma 1 and Proposition 1, we are reduced to showing that the polynomials 
Cn(x',(3 | q), i.e., the g-ultraspherical polynomials, take positive values at x — 1. The 
latter follows from the fact that the orthogonality measure for these polynomials is 
supported in the interval [—1,1] (see [4, Theorem 2.2]). 

In order to complete the proof, assume a < 0 and q2 < (3 < q. By (9), the sequence 
Xn(a) is decreasing and it tends to ^. By [6, Thm. 2.2] the orthogonality measure 
is supported in the interval [—1,1]. This implies the corresponding polynomials take 
positive values at x = 1. Now we can apply Proposition 1. □ 

Remark 1. The q2 in (iii) cannot be replaced by any value fio < q3. This is because, 
by [6, Thm. 2.1], the orthogonality measure has a mass at the right end of its support. 
This contradicts nonnegative linearization (see [19, Thm. 6 (iii)]). 

Remark 2. Part (ii) of Theorem 2 gives an affirmative answer to a conjecture of 
Askey (see [6, p. 728]), who suspected that nonnegative linearization holds for 0 < 
q < 1, 0 < a < 1, and 0 < (3 < 1. 

Since, by (8), we have 

Ma) -> 2' 

the support of the orthogonality measure consists of the interval [—1,1] and at most 
countably many mass points off this interval. Assume this countable set is nonempty. 
Since the support is symmetric about the origin, the right end of it is a mass point. By 
virtue of the aforementioned [19, Thm. 6 (iii)], the corresponding polynomials cannot 
have nonnegative linearization. Hence, the proof of Theorem 2 gives the following. 

Corollary 1. The polynomials C^{x\j3 \ q) have nonnegative product linearization if 
and only if the orthogonality measure is supported in the interval [—1,1]. 

By (9), the coefficients An(a) tend to ^ fast enough to satisfy Nevai's theorem [16, 
Thm. 40, p. 143]. This combined with Theorem 2 and Corollary 1 implies 

Corollary 2 ([6] Thm. 2.2). Let q, a, and (3 satisfy the assumptions of Theorem 2. 
Then the orthogonality measure of the polynomials C^(a;;/3 | q) has no mass points 
and its support coincides with the interval [—1,1]- 

For nonnegative integer fc, set a = qk. Then the polynomials C^{x]f3 \ q) are the 
associated g-ultraspherical polynomials of order k. Thus we obtain 

Corollary 3. The associated q-ultraspherical polynomials of any order have nonneg- 
ative product linearization for \q\, \/3\ < 1. 
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3. Auxiliary general results. 

In this section, we collect results of a general nature that have been used in Section 2 
for the associated g-ultraspherical polynomials. 

Lemma 1. Let pn(x) and qn(x) satisfy 

xPn(x) = Anpn+i(x) + An_ipn_i(x), (10) 

xqn(x) = Xf
nqn+1(x) + A^gn-ifc), (11) 

where An, A^ are sequences of positive numbers such that \f
n < An. Assume Pn(l) > 0 

for n > 0.  Then qn(l) > 0, for n > 0. 

Proo/. Let fi and ^L^' denote the orthogonality measures associated with Pn(x) and 
gn(a;), respectively. These measures are symmetric about the origin. Since pn(l) > 0, 
the support of // is located to the left of 1. By symmetry, it is contained in the interval 
[—1,1]. We will show that the support of // also is contained in [—1,1]. 

Observe that by (10), the nth moment of //, i.e., the integral J xnd/i(x) is a poly- 
nomial of Ao, Ai,... with nonnegative coefficients. Thus, 

but 

/oo poo 

xndfi,(x) <  /     xridfi(x), 
-oo J —oo 

/oo pi 

xndfi(x) = /    xndfi(x) < 1. 
-oo J-l 

f 
Therefore, 

poo 

xndn'{x) < 1. 

This implies  supp/x C [—1,1]. As a consequence, we obtain (7n(l) > 0. □ 

Proposition 1. Assume the pn satisfy (2) with An > ^ for n > 0. If pn(l) > 0 for 
n>0, the polynomials pn have nonnegative product linearization. 

Proof. On substituting x = 1 into (2) and dividing by Pn(l)5 we get 

Pn+l(l)    ,    , Pn-l(l)  _ -, 
A^ 7T\      r An-1 /1N     — -L- 

Hence, 

A^ = an+i(l-an) (12) 

where 
^     _  , Pn-l(l) 

Pn(l) 
By assumption, an > 0. Thus (12) implies an < 1, and we get 

an+i(l - Qn) > T > »n(l - Q5n)» 

so that an+i > an. Therefore, an has a limit, say a. By (12), the sequence An also is 
convergent, say to A > |, and 

a(l-a) = X2>]. - 4 

This yields a = ^. 
Put 7n = 1 - Qfn, then, by (12), 

An = »n+l7n. 



ASSOCIATED g-ULTRASPHERICAL POLYNOMIALS 405 

We claim that an and 7n satisfy the assumptions of Theorem 1. Indeed, the sequences 
an and an + jn = 1 are nondecreasing. Also, since an /* ^, we obtain 

7n = 1 - an > - > an. 

This completes the proof of the proposition. □ 

Theorem 3. Assume the Pn(x) satisfy (2) and either (i) or (ii) is satisfiedj where 

(i) tfie sequences X^n-i^ ^in-i + ^in ar,e nondecreasing and X^n-i ^ ^2n» 
(ii) t/ie sequences A^, A^ + A2n+1 are nondecreasing and A^ < A2n+1. 

T/ien tte polynomials Pn{x) admit nonnegative product linearization. 

Proof. In the case (i), set 

#271+1 = 72n+l = 1? 

#2n = ^2n-l)      72n = A2n, 

for n > 0. We assume that ao = A_i = 0. Then 

#2n+l + 72n+l = 2, 

#2n + 72n = ^n-i + A2n, 

for n > 0. Thus, the assumptions of Theorem 1 are satisfied. 
In the case (ii), set 

ao = 0,    7i = 1, 

n>0. 
Oi2n = 72n = 1, 

#271+1 = A2n,      72n+l = ^2n+l? 

Then 

#o + 7o = 1, 

#2n + 72n = 2, 

#2n+l + 72n+l = X2n + A2n+1, 

Again, the assumptions of Theorem 1 are satisfied. □ 

n>0. 

Remark 3. It is worth observing that in case (ii) we can slightly weaken the assump- 
tion due to the fact that ao + 7o = 1 < 2. Namely, we can change the values of 70 
and ai by setting 

7o = 2,        ai = -AQ. 

The assumptions of Theorem 1 remain valid. Therefore, it suffices to assume that the 
new sequence An satisfies (ii), where 

A0 = xA0,        An = An ,    n > 1. 

Corollary 4. Let pn(x) satisfy (2) with 

\2
n = \ + (-l)ne9n, 

where e = ±1 and 6n is a convex nonincreasing sequence of positive numbers. Then 
the polynomials pn(x) have nonnegative product linearization. 
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Proof.  Let e = 1. Then the assumptions of Theorem 3(i) are satisfied.  Indeed, the 
sequence \2n-1 — \~ fan-i 1S nondecreasing. Moreover, 

Finally, the sequence 

^2n - J + 02n > J " 02n-l=^2n-l' 

^2n-l + ^2n =  9 "" ^2n-l + ^2n 

is nondecreasing, as 9n is a convex sequence. 
Similarly, we apply Theorem 3(ii) for e = — 1. □ 
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