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DISCRETE DARBOUX TRANSFORMATIONS, 

THE DISCRETE-TIME TODA LATTICE, 

AND THE ASKEY-WILSON POLYNOMIALS 

Vyacheslav Spiridonov and Alexei Zhedanov 

ABSTRACT. Consequences of the Darboux transformations for the finite-difference 
Schrodinger equations and three-term recurrence relations for orthogonal polyno- 
mials are considered. An equivalence of the chain of these transformations, or 
discrete dressing chain, to the discrete-time Toda lattice is established. A more 
fundamental discrete-time Volterra lattice consisting of one simple difference- 
difference nonlinear equation is found. Some simple similarity reductions of these 
lattices are described. A group-theoretical meaning of the Darboux transforma- 
tions is illustrated on the example of Meixner polynomials. The general set of 
Askey-Wilson potentials is shown to define a class of solutions of the derived 
discrete-time equations. A subset of the latter potentials that can be obtained 
by dressing of the free discrete Schrodinger equation is characterized. A class of 
g-Racah polynomials for qN = 1 orthogonal with respect to a positive measure is 
obtained by undressing of the finite-dimensional Chebyshev polynomials. 

1. Introduction 

There are many common links between Darboux transformations [2, 10, 16, 18, 20-24, 
27, 33, 34, 44, 48, 50, 53-55, 62, 63, 81-83, 85, 86] and symmetry properties of the 
classical special functions [25, 75]. Darboux transformations are very much related to 
the Backlund and dressing transformations of the theory of solitons [20, 24, 50, 53, 
54, 76, 81, 85, 86]. Firstly, they form a core of the factorization method [2, 10, 23, 
44, 55, 62, 63, 68]; secondly, in the theory of orthogonal polynomials their analogs go 
back to Christoffel [16, 18, 20, 27, 48, 75, 82]; and thirdly, in numerical calculations 
of matrix eigenvalues, they appear in the procedure called the LiJ-algorithm [27, 83] 
(a modified form of which is known also as the QR-algorithm). As in all these cases 
the underlying transformations share many common properties, we refer to them as 
Darboux transformations and add the adjective "discrete" in the context of finite- 
difference equations. Loosely speaking, the aim of the present paper is to describe 
the connections between these transformations and symmetries of special functions in 
the example of a discrete Schrodinger equation and three-term recurrence relations for 
orthogonal polynomials. Since the subject lies at the cross point of various fields, we 
provide review material directed to non-experts. In particular, because the Darboux 
technique is developed best for the ordinary differential Schrodinger equation (1.1), 
we start from a brief summary of the corresponding results. 

Let us pick out the particular solution (j)(x) of the equation 

Hil)(x) = -y (a?) + u(x)rl>(x) = \^{x), (1.1) 
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where u(x) is some smooth real potential, corresponding to a fixed eigenvalue of the 
spectral parameter, A = fi: i.e., H(j){x) = ^(x). The Darboux transformation is 
defined for the entire class of solutions of (1.1) by 

$(x) = R>il){x), (1.2) 

where R is the first-order differential operator 

R=zii~W)- (1-3) 

The result of the transformation is not equal to zero whenever ^{x) ^ 0, 0(x). The 
relation (1.2) defines a set of wave functions ^(x) satisfying the new Schrodinger 
equation 

~ ~ ~ ~ d2 

Hip(x) = -il>"(x) + u(x)i;(x) = \ip(x),        u = u- 2—r ln(j)(x), (1.4) 
dxz 

and the eigenvalue of ^(x) coincides with A. Suppose that (1.1) is exactly solvable, 
i.e., the solutions for it are expressed in terms of known special functions. Then (1.4) 
is exactly solvable as well. This property of the Darboux transformation is a crucial 
one, since it allows us to construct more and more complicated potentials step by step 
in an iterative way. 

The relationship between Darboux transformations and the factorization method 
[44, 62, 63] is given as follows. If one considers the operator which is formally conjugate 
to R, 

T-      d      fW h* 

which maps eigenfunctions of H onto those of if, then 

H = LR + n,        H = RL + fr (1.6) 

which constitutes a representation (factorization) of the second-order differential op- 
erators as products of the first-order ones. At the operator level, the Darboux trans- 
formation is equivalent to the intertwining relations 

HR = RH,        LH = HL (1.7) 

where H and H are the old and new Hamiltonians, respectively. It is easy to see from 
(1.7) that the spectral properties of operators H and H are very close to each other. 

Let u(x) be a bounded function for finite values of x. Then, the singularities of 
a new potential u(x) are determined by zeros and singularities of the function (j)(x). 
Since u(x) is regular, the wave functions may be singular only at infinity. Let H 
have only a discrete spectrum. Whenever fi > Xm\n where Amin is the lowest discrete 
eigenvalue of H, the function (j)(x) has a zero, and thus, u(x) has a 1/x2 singularity. 
This may lead to a strong difference in the spectral properties of H and H, due to the 
different domains of definition of these operators and R. 

If /i = Amin and (f)(x) is a ground state wave function, then the spectrum of H coin- 
cides with that of H with the first level missing, i.e., by this procedure one removes the 
lowest level. If /x < Amin, then it is possible to choose nodeless (f)(x) such that l/^{x) 
will be normalizable, and the spectrum of H then contains one level more than that of 
H, with an additional eigenvalue equal to /x. In the latter two cases, one "undresses" 
and "dresses" respectively, the spectrum of a given potential. The undressing is de- 
fined uniquely, whereas the dressing introduces at each step an additional parameter 
entering the general solution of (1.1) for A = /x. Therefore, the result of removal and 
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restoration of the lowest level gives, in general, a potential different from the original 
one. If fj, < Amin and (f)(x) does not have zeros, but 1/0 is not normalizable, then the 
spectra of H and H coincide exactly, i.e., one gets completely isospectral operators. 

The intertwining relations (1.7) have a universal character. They were applied to the 
operators of a very general form by Zakharov and Shabat [85, 86], who introduced the 
term "dressing". In this paper, we consider the dressing technique for the Hamiltonian 
operators H which are tridiagonal in some basis |n) of a given linear space 

H\n} = \n + 1) + un\n - 1) + bn\n) (1.8) 

where the discrete index n labels the basis and real discrete "potentials" un and bn. 
For the moment, we do not specify either the range of n or the nature of the states 
|n). One can imagine the |n)'s as columns with constant elements on the n-th site and 
zeros in other places. In this case, H is simply a Jacobian matrix of an unspecified 
size. 

Discrete Darboux transformations (DDT) were considered in detail by Geronimus 
[33, 34] without using that name, and more recently by Matveev and Salle [53, 54] in 
the context of the ordinary Toda equations [76] and their hierarchic generalizations. 
In [53, 54], DDT were used in the construction of new solutions of the Toda lattice 
from a set of given ones, but the question of the possibility of generating all exactly 
solvable potentials with the help of the dressing procedure was not analyzed. In this 
respect, the Wronskian approach of [53, 54] is not appropriate if one is interested in 
the system of functions appearing after the infinite number of DDT applied to some 
simple initial objects. A set of exact solutions of the Toda lattice described in [51, 87] 
shows the complexity of the problem of classification of integrable potentials. However, 
the dressing techniques suggest that one should try to create all such systems from 
the free motion ones. 

The power of Darboux transformations was demonstrated by recent developments 
in the theory of a one-dimensional Schrodinger equation (1.1). Namely, a large class of 
potentials arising from an infinite number of application of the transformations (1.2) 
to the zero potential was described in [36, 59, 64, 69]. The use of Darboux transfor- 
mations in the form of a dressing chain, which was analyzed to some extent already in 
[44], allows us to define families of Schrodinger operators and special functions obeying 
certain fixed symmetry properties. In particular, the set of self-similar potentials of 
[64, 69] is related to the ^-deformed Lie algebraic structures and g-Painleve equations 
[69]. An analogous class of the lattice Schrodinger operators, or tridiagonal operators 
(1.8) obeying the ordinary and g-deformed ladder relations, has been described in [70]. 
In this work, we present further results in this direction. 

It should be noted that although a very close relationship between scattering theory 
and orthogonal polynomials has been exhibited in [12, 30, 31], no complete unification 
scheme has yet been developed. Moreover, the standard scattering theory is appli- 
cable only to a very restricted class of potentials. The dressing technique provides 
an adequate formalism for going beyond this restricted class, and this work may be 
considered as a step towards the unified picture of special functions of mathematical 
physics and the theory of solitons. It is worth mentioning that many consequences of 
DDT were already used in the theory of orthogonal polynomials. In this respect, the 
closest approach to the general discrete dressing technique has been reached in the 
works of Geronimus [33, 34] and in the later papers by Chihara and Uvarov [16-18, 
82] (see also [14, 15, 29, 39, 47]). 

The paper is organized as follows. In Section 2, we derive Darboux transformations 
for the second-order finite-difference operator (1.8). In Section 3, we analyze results of 
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the application of single or special double DDT to the simplest (free) system defined 
by the choice un = .1, bn = 0. In Section 4, we analyze two successive Darboux trans- 
formations with one and the same eigenvalue. A discrete-time Toda lattice (DTTL) 
and its relationship to the discrete dressing chain are discussed in Section 5. A parallel 
discussion of the Volterra lattice is given. The special similarity solutions of the DTTL 
are considered in Section 6, and in Section 7, the dynamics of DDT for the Meixner 
set of orthogonal polynomials of a discrete variable is analyzed. The general set of 
Askey-Wilson polynomials is considered in Section 8, where we show that it provides 
a class of solutions of the DTTL. The main new results of the paper are contained in 
Section 5 (equivalence of the discrete dressing chain to DTTL and new simple form 
of the discrete-time Volterra lattice), Section 6 (description of the similarity ansatz 
for the discrete-time Volterra lattice giving the Askey-Wilson polynomial recurrence 
coefficients), and Section 8 (description of the new g-Racah polynomials at qN = 1 
orthogonal with respect to a positive measure). 

2.  Darboux transformations for the discrete Schrodinger equation 

Throughout this paper, we use the language of non-relativistic quantum mechanics, 
because of its universality. Consider a Hilbert space /2(r) with orthonormal basis 
vectors |n), n e F, which we call the basis states, (n\m) = 6nm. These states are 
assumed to be eigenvectors of some self-adjoint operator. When x\n) = n\n) where x 
is an abstract coordinate operator on a lattice F, the coefficients ^ in the expansion 
of an arbitrary state from Z2(r) over |n), |$) = X^n^l71)' P^ t^e ro^e 0^ a discrete 
analog of the Schrodinger wave function in coordinate representation. In this case, 
the operator H (1.8) represents a discretized version of some Sturm-Liouville operator. 
However, one can equally think of the set |n) as formed by the discrete spectrum states 
of a usual differential operator. For example, the relations (1.8) may be enforced by 
some (nonlinear) symmetry algebra formed by H together with the operator which 
determines the states |n). For our purposes, the origin of basic tridiagonality (1.8) does 
not play any particular role. The finite-difference operator (1.8) may be considered as 
well over the Hilbert space Z/2(R), n € R, but we do not consider this case below. 

The eigenvalue problem for the operator (1.8), H\$} = A|$), is reduced to 

Un+lV>n+l(A) + ^n-l(A) + &n^n(A) = A'0n(A), (2.1) 

which we call the discrete Schrodinger equation (DSE). There is a large class of bound- 
ary conditions which could be imposed upon (2.1) and lead to non-trivial spectral 
problems. For example, orthogonal polynomials of A of unlimited degree are defined 
by (2.1) for some potentials un, bni provided that 

V>-i = 0,    ipo = 1        or       iPo = 1,    ^i oc A. (2.2) 

Then the integer index n = 0,1,... enumerates the degree of the polynomials. When 
un > 0, by the renormalization of the basis |n), one can always transform the Hamil- 
tonian H to a formal Hermitian form (in the usual matrix sense) and obtain 

xAWlXn+l + y/u^Xn-l + bnXn = AXnJ (2.3) 

however, it is more convenient to work with (1.8) and (2.1). 
We are seeking a discrete Darboux transformation (DDT) in the form 

R\n} = An\n - 1) + Bn\n) (2.4) 

where An and Bn are unknown coefficients to be found from the basic relation (1.7). 
Substituting (2.4) and (1.8) into (1.7) and equating coefficients in front of the linearly 
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independent states, we obtain the relations 

Bn+i = Bn, (2.5) 

Anun-i = An-iun, (2.6) 

An + Bnbn = ^n+i + Bnftn, (2.7) 

AnK-l + ^n^n = -An&n + ^n-l^n, (2.8) 

where £tn and bn are new potentials of the Hamiltonian H. 
From (2.5), we see that Bn = constant. Without loss of generality, we can set 

Bn = 1. Indeed, the operator R can be multiplied by an arbitrary constant without 
destroying the basic relation (1.7). Then one can express un and bn in terms of old 
potentials from (2.7) and (2.8) [53, 54], namely 

fin = Un+iAn/An+x, (2.9) 

6n = 6n+An+1-An. (2.10) 

Substituting (2.9) and (2.10) into (2.8), we obtain 

An - A*-! + &n-l " bn + ^±i - ^ = 0, (2.11) 

which has the first integral 

?£±L + An-bn = -v (2.12) 

where // is some constant. This equation (2.12) is a discrete analog of the Riccati 
equation; hence, it can be linearized. Indeed, the substitution 

An = - ^n_i/0n (2.13) 

transforms (2.12) to the form 

^n+l^n+l + </>n-l + bn<f>n = fJL(f>n. (2.14) 

The constant /J, is seen to play the role of a spectral parameter of the auxiliary DSE 
(2.14), whereas </>n is some solution of this equation. 

Using (2.13), we can rewrite (2.9) and (2.10) in a form analogous to (1.4) 

Un = Un+l -jo , (2.15) 

~bn = bn-p- + ^. (2.16) 

Consider also a transformation of the wave functions: |$) = J]n ^n|n) = iZ|*). Using 
(2.4) and (2.13) one finds 

^n = Tpn - -T^-^n+l- (2.17) 
0n+l 

The formulae (2.14)-(2.17) give a complete description of DDT for DSE. Whenever |$) 
is an eigenstate of H with the eigenvalue A, the function |l>) = R\$) is an eigenstate 
of the Hamiltonian H with the same eigenvalue, HR\$) = Ai?|$), which follows from 
the intertwining relation HR = RH. This means that the ^!n satisfy the equation 

fin+l^n+l + ipn-i + bn'lpn = X^n. (2.18) 
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We conclude that from a given solvable DSE (2.1) and a particular solution <f)n cor- 
responding to some fixed value of the spectral parameter A = JLA, one can construct 
another solvable DSE. 

It is easy to verify the reciprocal intertwining relation LH = HL where 

L\n) = Cn\n) + \n + 1),        Cn = ^n+iMn+i. (2.19) 

The operator L obviously provides the reciprocal Darboux transformation from the 
eigenfunctions of H to those of H and leads to the identities (1.6), which now constitute 
a factorization of the second-order finite-difference operators as products of the first- 
order ones. 

Consider two succeeding Darboux transformations, 

R2R1H = R2HR1 = HR2R1 

where i?i and R2 correspond to DDT with (/x, </>n) and with (/x, </>n), respectively. Then 
</>n satisfies the DSE 

un+14>n+i + 0n_i + bn<f)n = /i^n, (2.20) 

whose general solution for /2 ^ fi is 

k = Wn+l/0n+l (2.21) 

where 

Wn = </>nCn-l - 0n-lCn (2.22) 

is a discrete analog of the Wronskian and Cn is a general solution of the initial DSE 

(2.1) with eigenvalue A = /L For the potentials un and 6n, we then have 

= _ 0n_i0n4.i WnWn+2 

^ .     Wn+\ (2.23) 
1 (f)n-l (j)n (j)n-l <t)n bn = bn + — + -= -j . 

<Pn 9>n+l (pn (pn+l 

There are cases when separate transformations Ri^ map some normalizable eigen- 
states of the Hamiltonian H to the unnormalizable ones, but the product R2R1 is a 
well-defined operator. 

For the particular case when 11 = /2, if we assume that <^n is given by (2.21), where 
Cn is a solution of (2.14) linearly independent from </>n, then Wn+i^n+i = Wn

9, thus 

Un = 14n+i, 6n = 6n+i, ^n = (A - fityn+i- (2.24) 

This gives an inversion of the formula (2.17) 

^ = ^—(4-1-^^). (2.25) 

When ipn(X) are orthogonal polynomials and <^n(^) — VViO-O? ^^e corresponding 
ijjn{\\li) are called the kernel polynomials [17], which are nothing other than the 
reciprocal Darboux transforms of a given set of the polynomials (in our notations n is 
not a power of polynomials). A richer situation emerges when one takes the general 
solution of the equation (2.20) with ft = fi as an auxiliary wave function for the second 
DDT. This possibility is considered in Section 4. 
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Another simplified picture arises for bn = 0, p, = — /i. In this case, one can choose 
the solution (n = (—l)n0n, so that 4>n = 2(—l)n^n, and 

un = un+2—r-; '        6n = 0. (2.26) 
0n0n+l 

As a result, one has 

l?2iii|n> = |n>-  %^|n-2), 
0n 

which corresponds to the following transformation law for the wave functions 

^n=^n- <t>nlpn+2/<l)n+2' (2.27) 

Note that in this case, the double DDT, R2R1, does not add the diagonal term to i?, 

i.e., bn = 0. It is well known that the spectral problems (2.3) with bn ^ 0 and bn = 0 
are associated with the Toda and Volterra lattices, respectively, whose continuous-time 
dynamics describe isospectral deformations of the Hamiltonian H [76]. 

3.  One-soliton potentials and the related orthogonal polynomials" 

This section contains an elementary exposition of the relations between the soliton 
potentials and orthogonal polynomials. Consider the simplest possible potentials, 
un = 1, bn = 0, which correspond to the free discrete Schrodinger equation 

0n+l + 0n-l = M0n (3.1) 

with the following general solution: 

(a) for 2 < /J, < 00, we set /i = 2 cosha;, 0 < w < 00, and write 

0n = a cosh(um + /?); (3.2) 

(b) for —00 < fi < —2, we set fi = —2 cosh u;, and write 

0n = a(-l)n cosh(ujn + /3); (3.3) 

(c) for — 2 < fj, < 2, it is convenient to set ^ = 2cos0, 0 < 9 < TT, and write 

0n = acos((9n + /3); (3.4) 

(d) finally, for fi = ±2, we write 

0n = (±l)n(cm + /3) (3.5) 

where a and /3 are arbitrary complex constants of integration. The "initial" value 
of n is not fixed a priori, and by using the freedom to shift n, one can remove the 
constant /? from the above formulae. Wave functions are bounded in Z2(Z) and are 
not normalizable for the band |^| < 2, which thus represents the continuous spectrum 
of (3.1). Note that the boundary states with /1 = ±2 are not doubly degenerate. 

There are two well-known classes of orthogonal polynomials that are associated 
with (3.1). These are the Chebyshev polynomials of the first kind, 

Tn(cos 0) = cos On,        n = 0,1,..., (3.6) 

which are the solutions of (3.1) with the boundary conditions To = 1, Ti = cos0, and 
the Chebyshev polynomials of the second kind 

t/ra(coS^) = Sing(" + 1),        n^O,!,..., (3.7) 
sm v 

satisfying the conditions C/_i = 0, UQ — 1. For both cases, \x — 2 cos 9. 
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Generically, the systems (3.6), (3.7) are infinite dimensional, i.e., the index n goes 
to infinity. However, there exist families of finite-dimensional polynomials determined 
by the first zeros of Tn and Un which appear when the parameter 6 is a rational part 
of TT. In these cases, it is convenient to define p = e%Q and consider primitive roots of 
unity of the iV-th degree: jF — 1. For ~N — 4fc, one has T^ = 0, i.e., k is the dimension 
of a finite set of T-polynomials. Simultaneously, one has Uik-i = 0? i-e., 2A; — 1 is the 
dimension of the {/-polynomials. For iV = 4A: + 2, one has TJ^k = 0 and the dimension 
is equal to 2k. Finally, for N = 2k + 1, one has U2k = 0 and the dimension is 2k. 
The spectrum of these roots-of-unity systems is purely discrete, and the corresponding 
orthogonality relations are defined with respect to discrete measures. 

Let us now discuss the impact of a single or (simplified) double Darboux transfor- 
mation upon the structure of (3.1) and the associated orthogonal polynomials. Using 
formulae (2.15), (2.16), and (2.17), we obtain for </>n = coshwn, 

cn_icn+i          ~        sinh2u; 
Un = 2 ' bn = ' v^-o) Cn CnCn-]_i 

where cn = coshujn. The shift n —> n—tsinhuj/uj in (3.8), where t is a continuous time 
variable, gives the one-soliton solution of the ordinary Toda lattice [76]. Solutions of 
the DSE with potentials un and bn are ^n = ipn — cnV>n+i/cn+i- Take ipn = eQn, 
A = 2 cosh Q, Q > 0; then 

^ = e""fl-e"     COsham 

cosha;(n + 1) 

It is seen that for u ^ fi, the function if)n grows exponentially when n —> oo. However, 
for u = Q, the function ^in oc l/cn+i is normalizable for n G Z; in the latter case, ^n 

corresponds to the only existing bound state in /2(Z). 
The complementary characterization of the potentials (3.8) consists of the fact that 

they describe a subclass of the Askey-Wilson polynomials [6, 7, 28, 58]. Applying 
Darboux transformations to the Chebyshev polynomials, one gets their explicit form. 

If we take the (i = 2 state, </>n = n + 1, then 

.   _ n(n + 2) ~ 1 
"n      (n + l)2' n (n + l)(n + 2)" 

These potentials correspond to the special class of Jacobi polynomials [25], which also 
are easily found as Darboux transforms of the Chebyshev polynomials. The DDT with 
the /JL < — 2 states differs from the cases considered above only by the change of signs 
of bn and by the corresponding bound state eigenvalue. 

A different class of potentials is obtained after application of the double DDT 
(2.26)-(2.27) to the starting system (3.1) 

tLn=
Cn-lCn+\        bn = 0. (3.9) 

These potentials correspond to the simplest solutions of the Volterra lattice (known 
also as the Kac-vanMoerbeke or Langmiur lattice). They generate again some par- 
ticular subclasses of the Askey-Wilson polynomials. 

Single DDT with the trigonometric wave functions describing continuous spectrum 
states leads, in general, to potentials un which are positive on a different interval of n 
than the original un, and this requires a change of boundary conditions. As shown in 
the next section, a second Darboux transformation can remove such complications. 

Consider the result of applying the Volterra double DDT to the finite-dimensional 
Chebyshev polynomials of the second kind when p = eie is a particular primitive root 
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of unity, p2N = 1. For simplicity, we take the lowest root, i.e., we set 9 = TT/N. Then 
the spectrum of iV — 1 dimensional [/-polynomials is A/ = 2 cos trl/N, I = 1,..., iV — 1. 
In this case, the wave function (j)n = sin7r(n + l)/iV corresponding to the eigenvalue 
/x = 2 cos TT/N leads to 

~   _      sin7rn/iVsin7r(n4-3)/iV ,       . 
— (3.10) n      sin7r(n+l)/Arsin7r(n + 2)/Ar' 

This potential is positive between the closest zeros lying at n = 0 and n = iV — 3, 
i.e., it defines a set of polynomials orthogonal with respect to a positive measure. 
The spectrum of the derived potential (3.10) is A^ = 2cos7r/c/iV, k = 2,..., N — 2, 
i.e., we removed two discrete levels, one from below and one from above. In [72], it 
was noticed that the potentials (3.10) and their further DDT generalizations define 
a subset of g-ultraspherical polynomials [28]. These polynomials are of finite size, as 
distinct from the so-called sieved polynomials [3, 11]. Since they are defined by the 
periodic potentials, un+N = un, they are similar to the roots-of-unity systems found 
in [66]. It is worth mentioning that not all roots of unity have resulting potentials un 

that are positive. 
Further investigation of the classical orthogonal polynomials that can be derived 

from dressing (or undressing) of the free DSE is given in Section 8. 

4. Bound states in the continuum 

In this section, we show how singularities generated by the first Darboux transforma- 
tion may be removed by the second one. In particular, we consider the case when such 
a double DDT creates a bound state on the background of the continuous spectrum. 
For the standard Schrodinger equation (1.1), such systems have been systematically 
considered in [23, 37], and for the Jacobi matrices, this procedure was developed 
in [79]. 

As was shown in Section 2, the double DDT with the same auxiliary eigenvalue 
jl = fi does not create anything new in the case when the second auxiliary wave 
function 0n is a Darboux transform of the wave function with eigenvalue /x. An 
interesting situation takes place when one performs a second DDT with the general 
solution of the equation 

£n+l77n+l + 77n_i + Mn = flVn, (4.1) 

which is linearly independent from 0n given by (2.21). A general solution of this DSE 
looks like 

v     k=no<i)k(f>k-iJ 

where Wn is found from the equation 

VFn+1 _    1    _ Wn+2   02+l 

Integrating the latter equation once, we obtain Wn = Wn+i0n/0n+i, where an arbi- 
trary multiplicative factor is absorbed into the definition of Wn since no information 
about the structure of solutions is lost under such rescaling. Now we rewrite r]n in the 
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form 

77n = Of T » 2/n =    >      TTT + P- (4.3) 
0n+l /"    KKfc 

This is the general solution for (4.1). The first solution </>n is recovered in the limit 
a —► 0, a/3 = constant. 

Consider now how the potentials are transformed under the double DDT performed 
with the help of the (j)n and r]n functions 

~                        Wn+2Wn ynVn+l                     ynyn+2 ,A  A, 
Un = ^n+2 -T772 "2  = Un+l —o , (4-4) 

L = bn + |pi^ - ^i^^- + 0* - M-^" - (M - ^+1)^1. (4.5) 

These formulae were derived in [79] in a slightly different form. The transformed wave 

function 4>n is 

(t)n = (t)n- 0n+l = "  = • (4.6) 
Vn+1 Vn+1 yn+2 

It is interesting to find a criterion when this function belongs to the discrete spectrum 
of DSE with potentials (4.4), (4.5). 

For this, notice that the transformation ^n = y/WnXn yields the wave functions Xn, 
which satisfy DSE in the self-adjoint form (2.3), and the condition of normalizability 
is 

oo 00      /2 

Erf = £#-<«>. (4-7) 
n=0 n=0 yVn 

where we restricted ourselves to the half-line Hilbert space Z2(0, oo).  Hence, for the 

function 0n, we should have the condition 

£(l„)2/^n < OO- 
71=0 

The Wronskian Wn is found from the equation 

„2 
Wn+jWn = J- =  ^ , (4.8) 

Un+l ^71+22/71+12/71+3 

i.e., Wn = 2/n+i^71+1/2/71+25 where the constant of integration has been absorbed into 

Wn. To conclude, for </>n to belong to the discrete spectrum, the following condition 
must be satisfied 

Y—^2 <oo. (4.9) 
^ Wnynyn+1 

The double DDT has interesting applications in the theory of orthogonal polyno- 
mials. Indeed, consider the system of orthogonal polynomials Pn(x) (x = A) satisfying 
the three-term recurrence relation (2.1) with the initial conditions P_i = 0, PQ = 1. 
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For un > 0, bn real, these polynomials are orthogonal with respect to some positive 
weight function w(x) 

rb 
Pn(x)Prn(x)w(x)dx = hn6nm. (4.10) 

/ J a 

For the first DDT, let us choose (j)n = Pnin) where fi lies to the left of the orthogonality 
interval [a, 6]. Then it is well known [17] that the kernel polynomials mentioned above, 

Pn(x; p) = —(Pn{x) - -^-Pn+1(x)), (4.11) 

are orthogonal with respect to the weight function 

w(x) = (x - fi)w(x). (4.12) 

Now we can perform the second DDT with the help of r]n. Consider a system of 
polynomials defined by the relations 

P„(x) = £,_!(*) - ?Z±Pn(x): (4.13) 

Proposition 1. For a suitable choice of the constant /3 in (4.3), the polynomials 

Pn(x) are orthogonal with respect to the positive weight function 

ti(x) = —&- + J6(x - fi) = w(x) + J6(x - /x), (4.14) 
x — /i 

which differs from the initial w(x) only by the presence of one additional discrete mass 
J at the point x = /i (the value of this mass J is related to (3). 

A major part of this statement goes back to Geronimus [33, 34], who found the 

weight function for polynomials Pn(x) from the given weight function for Pn{x). The 
full statement follows from the assumption that Pn{x) are kernel polynomials of Pn(x) 
with the weight function w(x). The double DDT thus yields a simple analytic solution 
of the problem considered in [18, 82], of how to add the discrete mass J outside the 
spectral interval without changing the weight function. From the last equation, we 
see that w(x) = (x — fi)w(x) because x6(x) = 0 (i.e., the mass point is removed). This 

means that the polynomials Pn(x) serve as the kernel polynomials with respect to Pn 

whenever the relations (4.13) hold. 
There are interesting situations when the discrete mass is inserted inside the spec- 

tral interval [a, b}. Indeed, the first DDT (4.11) yields the well-defined orthogonal 
polynomials provided /J, < a or JI > 6; otherwise one fails to have positivity of the 
weight function w(x). Nevertheless, this DDT is justified if one goes beyond the 
polynomial systems and considers the resulting DSE as it is. Then the second DDT 
with rjn leads to well-defined orthogonal polynomials having discrete mass inside the 
spectral interval. 

Consider the simplest case: the partners of Chebyshev potentials with one bound 
state inside the continuous spectrum. Since un = 1, bn = 0, one has Wn = 1. Choose 

0n = 5n+i,    sn = sin#n,    IJ, = 2COS8. (4.15) 

Then from (4.6) we have </>n = sn+2/yn+2 and 

?/2 

2/712/71 + 2 ,A    -^v 
un = —^ , (4.16) 
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2/n+l 2/n+2 V2/n+l        2/n+2 / 

where the function yn is found from (4.3) to be 

1 /       0     sin2(9(n+l/2)\ ,A   oN 

Taking sufficiently large /3, one can assure that yn > 0, n > — 1. Then i2n > 0, and 
the polynomials defined by the recurrence relation 

unPn+1(x) + Pn-i(x) + bn-1Pri(x) = xPn(x), (4.19) 

with initial conditions P_i = 0, PQ = constant, are orthogonal with respect to the 

positive measure with one normalizable state Pn(/j) inside the continuous spectrum 

Pn(/i) = ^ '-. (4.20) 
2/n+l 

It is clear that P_i = 0, and the condition (4.9) is fulfilled.   When n —> oo, the 

potentials oscillate and go to their limiting values un —> 1, bn —>• 0 very slowly, which 
is a characteristic feature of potentials with bound states in the continuum. 

The above polynomials take especially simple forms when 6 = 7r/2, i.e., when one 
performs a double DDT with the /x = 0 auxiliary level. For this case, we have 

y„ = i(n + /?-!(-l)n),        ^ = 1^211,        6„ = 0. (4.21) 
2/n+l 

The unique bound state wave function looks as follows: 

iW(0) = 0,        hm = 2k
2}-1lk

3/2. (4.22) 
The recurrence coefficients (4.21) are given in [17, p.112, Ex 2.14], but the polynomials 

Pn differ from the corresponding 5n
,s by the initial conditions. This example looks 

similar to the polynomials with discrete masses inside the interval of orthogonality 
tied to zeros of the Chebyshev polynomials that appeared in the studies of sieved 
orthogonal polynomials [13, 32, 77]. It would be interesting to find the relationship of 
the procedure used in these papers to the double DDT. 

We conclude that the Darboux transformation technique is a universal instrument 
that allows us to perform analytically a large variety of spectral "surgeries", namely to 
add (remove) discrete levels in arbitrary places, to change the masses of the discrete 
levels, etc. (cf. [84], where a qualitative numerical analysis of similar problems for 
the discrete Schrodinger equation has been performed). It allows us to construct 
systematically orthogonal polynomials of the more general type than those of [13, 
16-18, 32, 39, 47, 77, 82]. In particular, a double DDT allows us to build systems of 
polynomials with embedded masses at arbitrary points of the interval of orthogonality 
— a possibility which was not explored systematically in the literature. One also can 
apply the above techniques to the spectral problem of polynomials orthogonal on the 
unit circle and get analogous results. 

5. Discrete dressing chain and discrete-time Toda lattice 

There are several versions of the discrete-time analogs of the Toda lattice [38, 42, 56, 
73]. Here we analyze the version which follows from the considerations of [27, 38, 53- 
55, 70]. More precisely, in this and the following sections we derive the corresponding 
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DTTL in explicit closed form, discuss its relationship to the discrete dressing chain, 
and describe various similarity solutions. A systematic approach to discrete lattices 
determined by the sequences of Darboux (Backlund) transformations for differential 
equations was developed in [65]. For general reviews on Darboux transformations, 
discrete-time systems, and large lists of references, see [9, 19, 80]. 

Consider a tridiagonal Schrodinger operator H(t) depending on a discrete "time" 
t, 

H(t)\n) = |n + 1) + un(t)\n - 1) + bn{t)\n) (5.1) 

(the basis |n) is assumed to be independent of time). We would like to treat the 
Darboux transformation (1.7) as a time shift, H(t + h)R(t) = R(t)H(t), where h is 
some positive constant (independent of t). Let us rewrite the equations (2.6)-(2.8) as 

un+iAn - UnAn+i = 0, (5.2) 

An - i4n+i =bn-bn, (5.3) 

Ai(&n-1 - bn) =Un- Un, (5.4) 

where un(t) = un(t + ft), bn(i) = bn(t H- ft). In order to obtain the DTTL, we should 
exclude An from this system. From (5.2) and (5.3), one has 

An=(bn-bn)u^ 

un - un+1 

Substitution of (5.5) into (5.4) results in 

Unibn - bn)(bn-i - bn) = (fin - Wn)(fin - Wn+l). (5.6) 

On the other hand, we can eliminate An from (5.2) and (5.3), 

Un+i(bn-bn) 
An+l = —I • 

Un - Un+i 

Substituting this into (5.4), we derive 

un+i(bn - bn+i)(bn - bn) = (un - un+i)(un+i - un+i). (5.7) 

Proposition 2. Under the assumption that un(t) and bn(t) are analytical functions 
oft, the equations (5.6), (5.7), in the limit ft —» 0, are reduced to the ordinary Toda 
lattice equations, i.e., they define a particular form of DTTL. 

Proof Firstly, we note that the analyticity requirement is a strong restriction upon 
the space of solutions of (5.6), (5.7). Within this subclass of solutions, one may set, 
for ft —> 0, 

Un « un + hiin,        bn « bn + ft6n. (5.8) 

Substituting this into (5.6), (5.7), we obtain 

Un+i{bn - bn+1)bn = un+1(un - un+i), (5.9) 

Un(bn-1 - bn)bn = Un(un - Un+i). (5.10) 

Dividing the first of these equations by the second one, we get 

Un = fl{t)Un{bn-l - bn) (5.11) 

where fi(t) is an arbitrary function of time. Analogously, shifting n —» n — 1 in (5.9) 
and dividing by (5.10), we obtain 

K = f2(t)(Un - ttn+l)- (5.12) 
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The compatibility of (5.11), (5.12) with (5.9), (5.10) yields the constraint /i(t) = 
/2OO. Then the equations (5.11), (5.12) give the exact Toda lattice equations [76]. 
The function f(t) = j1,2 (£) appears due to the arbitrariness in the continuous time 
parametrization. □ 

Comment. Equations (5.2)-(5.4) were obtained in [27, 53, 54], but the relationship 
with DTTL was not noticed. Vice versa, in [38] it was shown that H(t + h)R(t) = 
R(t)H(t) defines a DTTL, but the explicit local formulae (5.6), (5.7) were not derived. 
The relationship of the refactorization condition L(t + h)R(t + h) = R(t)L(t) to the 
DTTL also has been discussed recently in [43, 60, 67]. For a different way of deriving 
the DTTL, see [78]. 

The DTTL we have derived can be obtained as the compatibility condition of two 
linear equations, 

M* + h) = M*) + An+iWn+iW, (5.13) 

Un+i (t)lpn+l (t) + 1pn-l(t) + bn{t)^n{t) = \>lpn(i), (5.14) 

with the additional condition that An(t) does not depend on the spectral parameter 
A.  We remark that the above scheme was analyzed by Ablowitz and Ladik (see [1] 
and references therein), but the simple ansatz leading to the DTTL (5.6), (5.7) was 
not considered explicitly. 

From the formal relations 

H(t + h)=: RtyHWir1® = L-l(t)H(t)L(t), (5.15) 

one expects that the operators H(t) form an isospectral family, so that it is possible 
to construct the integrals of motion such as TriZ'(t), detif(t), and others which do 
not depend on t. However, the equations (5.15) are true provided the operators i?, L 
are well defined and invertible, i.e., if they do not have zero modes, 

R(t)m))o = 0,        L(t)\*(t))o = 0, (5.16) 

which belong to the physical eigenstates of H(t). Under the natural constraint for the 
operators #(£), L(t) to have the same domain of definition as #(£), there are three 
simple possibilities: either H(t + h) has an additional bound state with respect to the 
Hamiltonian H(t) described by \ty(t))o, or it does not have a partner state to |$(£))o, 
or the spectra of H and H are completely equal. 

We see that DTTL (5.6), (5.7) is a necessary but not sufficient condition for 
the isospectrality: solutions of DTTL provide both strictly isospectral and almost 
isospectral Hamiltonians. In the latter case, the number and the explicit form of 
the missing states are controlled by the equations (5.16). Taking into account that 
An(t) = —(j)n-i/(j)n where (j)n is a solution of (2.14) with an eigenvalue //, we see that 
the sufficient conditions for DTTL to have isospectral solutions at each discrete time 
value are: (a) ii(t) should lie outside of the spectrum of H(t); (b) An(t) should not 
contain singularities; (c) zero modes of the reciprocal DDT operator L(t) should not 
satisfy given boundary conditions (like normalizability, ^_i = 0, etc.). 

The wave function ^(t + ft) is the Darboux transform of il)n{t). The limit ft —► 0 
corresponds to the "infinitesimal" Darboux transformation. This limit means that An 

is sufficiently small, i.e., // is large. One can parametrize (up to terms oc h2) JJ, = 1/ft, 
An = hxn(l + hyn). Substituting this ansatz into (2.12), we obtain 

An = - hun(l + ft&n_i). (5.17) 
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Note that this approximation is nothing other than the WKB approximation for 
DSE (2.14) (i.e., the large n asymptotics). We see that, as in standard quantum 
mechanics, the Riccati representation of DSE provides a simple analysis of the WKB 
limit. 

Let us derive a discrete-time analog of the Volt err a lattice. Consider the system of 
equations 

il)n(t + h) = rl>n(t) + Dn+2{t)ll>n+2(t), 

t*n+l(t)^n+l(t) + ^n-l(t) = A^n(t). (5.18) 

The compatibility conditions give 

un = un+2Dn+i/Dn+2,       un-\-Dn = un + Dn+u (5.19) 

where un(t) = un(t + h). Eliminating the variables Dn, we get the discrete-time 
Volterra lattice 

Wn+l(fin - Un)(un - ^n+2) = fin(fin-l " ^n+i)(fin+l " ^n+l)- (5.20) 

For h —> 0, one obtains the standard Volterra chain equations 

Un = f{t)un{un+i - lAn_i), (5.21) 

where f(t) is an arbitrary continuous function of time. 
Analogous to the Toda case, one can integrate equations (5.19) and get the qua- 

dratic Riccati equation 

(Dn - un)(Dn+1 - un+i) = -ju2Dn+i. (5.22) 

Substituting the ansatz Dn = —(f)n-2/(t)n and integrating the resulting equation once, 
we get the DSE 

Wn+i^n+i + 0n-i = M(\/1 + <x2 + a(-l)n)(j)n (5.23) 

where a is another integration constant. For a = 0, this is the standard two-diagonal 
DSE. But for a ^ 0, it is necessary to split even and odd lattice points, and then 
the wave functions fak and </>2fc+i satisfy certain tridiagonal DSEs. In the WKB 
approximation, we set /i2 = ft""1, ft —> 0, and expand all variables in (5.22) up to 
terms oc ft2. This gives 

Dn = -hunun-i(l - h(un-i + ^-2)), (5.24) 

and the relations (5.19) are reduced to the Volterra lattice: un — ^(i^+i —un-\). 
For the sake of completeness, we now discuss briefly the differential Schrodinger 

equation. It is not difficult to derive an analog of the DTTL resulting from the 
intertwining relations (1.7) for the differential operator H (1.1). Using the standard 
formulae for the factorization method [44], we get the nonlinear differential-difference 
equation 

(fi" + u"){u - u) + {u')2 - {u')2 = {u- uf (5.25) 

where u = u(x,t), u — u(x,t + ft), uf = du/dx, and x is the continuous space coordi- 
nate. In the limit ft —► 0, one can substitute u & u + hdu/dt into (5.25) and find its 
continuous time partner to be du/dx = f(i)du/dt where /(£) is an arbitrary function 
of time. 

Let us rewrite (1.6) using the time-dependence notations 

L(t + h)R(t + ft) = H(t + ft) - fjL(t + ft), 

R(t)L(t) = H(t + h)-n(t). (5,26) 
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Excluding the operator H from these relations, we have 

L{t + h)R{t + h) = R(t)L{t) + ii(t) - ii(t + ft), (5.27) 

which is nothing other than the refactorization condition [44, 55]. The components of 
(5.26), (5.27) are 

un(t) = A^Cn-^t), (5.28) 

bn{t) = An(t) + Cn(t) + /x(t), (5.29) 

An{t + ft)Cn_i(t + ft) = An(t)Cn(t), (5.30) 

An(t + ft) + C„(t + ft) = An+1{t) + Cn(t) + fi{t) - fiit + ft). (5.31) 

The latter two equations define the discrete dressing chain [27, 55, 70]. The functions 
An and Cn play the role of superpotentials within the super symmetric interpretation 
of (5.28), (5.29). They obey the discrete Riccati equations 

An + ^n+i/An+1 - bn = -fi,        Cn + un/Cn-i - bn = -//, (5.32) 

and can be expressed through solutions of the DSE (2.14). 
It is evident that any solution of (5.30), (5.31) provides a solution of the DTTL. 

The inverse statement is also true. For any solution un(t), bn(t) of the DTTL, the 
functions An{t), Cn(t), fi(t) are unique: 

An{t) = Un{t + ft)    —, 
Un(t + k) - Un+^t) 

^nW = ^U, /^W = 6n(*) " AnW " Cn(t). 

We conclude that the DTTL and the discrete dressing chain are completely equivalent 
to each other. In fact, the discrete dressing chain is the first integral of the DTTL (5.6), 
(5.7), which follows from the considerations of Section 2 where the parameter fi(t) has 
been introduced. Indeed, substituting the expansion (5.17) into the above formulae 
yields the Toda equations. Thus, the discrete dressing chain may be interpreted as 
the discrete-time Toda lattice. 

Suppose that we have potentials un, bn for which the DSE (2.1) is exactly solvable, 
and let the spectrum be purely discrete. Since we know both the eigenvalues A^, 
k = 1,2,..., and the corresponding wave functions ipn  , we can build the discrete 

dressing chain just by taking /x(l) = Ai, 0n(l) = ^4 \ M2) = ^2, 0n(2) = i2(l)t/4 , 
and so on. This corresponds to the consecutive removal of all discrete levels from 
the spectrum of the initial Hamiltonian H. This simple observation shows that any 
solvable DSE is related to some solution of the discrete dressing chain such that An 

describes the corresponding discrete spectrum. Otherwise, any solvable DSE defines 
an infinite number of solutions of the DTTL, which are analytical in discrete time 
j only in very special cases. The dressing technique is useful for the search and 
classification of exactly solvable problems because it allows us to work with entire 
classes of systems obeying certain fixed symmetry properties. In the next section, we 
show that the similarity solutions of the DTTL (solutions with additional symmetries) 
lead to DSE's determining many classical special functions. 

For the Volterra chain, we have the following ansatz: 

H\n) = \n -f-1) + un\n - 1), 

R\n) = \n) + An\n - 2),        L\n) = Cn\n) + \n + 2), ^ '    ' 
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where, for simplicity, we use the same notations i?, L, and An, Cn for the DDT 
operators and superpotentials (An is equal to the Dn above). Intertwining relations 
HR = RH, LH = HL give 

Cn = Un+iUn+2/An+2, AnUn-2 = UnAn-i, 

(un - An)(un+i - An+i) = -fi2An+i, 

where fi is an eigenvalue of the DSE (5.23). 
From the factorization conditions and equations (5.34), (5.35), it follows that 

LR = H2- /i2,        RL = H2 - ii2. (5.36) 

One also can introduce the time variable t such that LR -f fj? = RL + fj? where 
L — L(t + /i), etc. In components, one has 

Anun—2 — AnGn, 

An + Cn + A2 = ^n+2 + ^ + ^2. 

These equations are the descendants of the discrete dressing chain (5.30), (5.31). 
Once the superpotentials An and Cn are known, one can find the potential un from 
the quadratic equation 

u2
n - un(An + Cn + v?) + ^n+iCn_i = 0. (5.38) 

Proposition 3. The An andCn solutions of the discrete dressing chain (5.30), (5.31), 
which are analytical in n, can be split into two classes with the help of a (multivalued) 
decomposition 

An(j) = V2n(j)V2n+i(j), 

Cn(j) = (KJ) - V2n+lU)) («/(j) - Vr2„+2(j)), (5-39) 

IJL(J) = constant — ^2(j). 

In ^/le first case, Vn(j) satisfies the second order in n and first order in j difference- 
difference equation 

Vn(j + l)(v(j + 1) - K-i(j + 1)) = Vn(j)(u(j) - Vn+1(j)), (5.40) 

which is a new form of the discrete-time Volterra lattice. In the second, rather trivial 
case, Vn(j) satisfies the equation 

Vn(j + 1) {vU + 1) - K-iO' + 1)) = Vn-lOW) - VnU)) (5-41) 
and the additional constraint 

K-l(j)K0 - VnU)) = Vn+l(j)(v(j) - Vn+2(j)). 

This statement is proved by direct substitution of the ansatz (5.39) into the original 
dressing chain (5.30), (5.31) and simple algebraic manipulations. In the following, we 
neglect the second possibility (5.41). In order to see that (5.40) defines a discrete-time 
Volterra lattice, it is sufficient to consider the limit h —>0, v = 1/h, and use the expan- 
sion Vn(t+h) « un(t)-\~hun(t). Note that the function un(j) — Vn(j) (^{j) — Vn-i(j)) 
satisfies the original discrete-time Volterra lattice (5.20). Since, in this picture, we have 
a factorization of the superpotentials An, Cn, we call the chain (5.40) the second fac- 
torization chain. The above formulae can be interpreted as a discrete-time analog of 
the well-known connection between solutions of the Volterra and Toda equations (for 
example, see [35]). The main advantage of representation (5.39), (5.40) consists in the 
replacement of two nonlinear equations of the discrete dressing chain by one equation 
in a much simpler form. To the authors' knowledge, the equation (5.40) is new and, in 
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light of a large number of applications of the discrete dressing procedure, it deserves 
careful investigation. 

6.  Similarity reductions and special solutions of the DTTL 

We have seen that the DTTL can describe isospectral time evolution of the potentials 
of DSE. Therefore, one can expect special solutions such as ordinary wave solutions, 
solitons, etc., to appear after various similarity reductions (as was the case for the 
ordinary Toda lattice [51, 76, 87]). The most interesting feature of similarity solutions 
of dressing chains is the presence of a large number of symmetries, so that the cor- 
responding linear problems are expected to incorporate at least the classical special 
functions. 

Let us consider some simple similarity reductions of the DTTL. First of all, consider 
the running wave solutions. 

(i) If one imposes the ansatz un(t) = u(t + n/i), bn(t) = b(t + n/i), then the equa- 
tions (5.6), (5.7) are fulfilled identically. Therefore, any un(t) and bn(t) describing 
waves that run to the left of the lattice with equal velocities provide a solution of the 
DTTL. 

(ii) If one sets un(t) = u(t — nh), bn(t) = b(t - nh), then we obtain nontrivial 
solutions expressed in terms of elliptic functions. This can be found directly from 
the equations (5.6), (5.7), but it is instructive to consider the algebraic approach as 
well. The suggested ansatz means that un = txn_i, bn = bn-i, so that the operator 
H = H(t + h) can be written in the form 

H(t + h) = TH(t)T-1 (6.1) 

where T is the shift operator, T±1\n) = \n ± 1). Then the Darboux transformation 
can be represented as the operator identity 

THT~lR = RH,        or       [JT, R'] = 0 (6.2) 

where Rf = T~1R. We conclude that all wave type solutions running to the right of 
the lattice can be derived from the condition (6.2) expressing the commutativity of 
two operators, H and R'. 

Relations (6.2) are equivalent to the equations 

-^-n^n—2 :=: 'U>nA.n—i) 

Anbn-2 + un-i =un + bnAni (6.3) 

An + bn-i = An+i + bn. 

They can easily be integrated to the form 

^n^n+l + (XUnUn+l + P(un + Un+i) = J (6.4) 

where a, /?, 7 are arbitrary constants. It is well known that the biquadratic recurrence 
relations like (6.4) can be solved in terms of the elliptic functions [8, 61]. 

Note that the wave-type reduction in the more general form 

un(t) = u(kt - nh),        bn(t) = b(kt - nh),    k = 0, ±1, ±2,..., (6.5) 

leads to the commutativity condition 

[H,Rk] = 0,       Rk = T-kR, 

Rk\n) = \n - k) + An\n -k-1). 
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These solutions are expressed through the hyperelliptic functions due to the observa- 
tion by Krichever [49] that all commutative difference operators of finite order lead to 
such functions. 

(iii) Somewhat more complicated reductions are 

un(t) = u(kt - nh),        bn(t) = b(kt - nh) + /3n, (6.7) 

where (3 is a constant. For them, we have 

H{t + h) = TkH(t)T-k + */?; (6.8) 

hence the intertwining HR = RH is equivalent to the commutator relation 

[H,Rk} = -PkRk. (6.9) 

This is the spectrum generating algebra ensuring that the spectrum of H is linear. 
Some of the potentials fixed by the relation (6.9) correspond to the specific classical 
orthogonal polynomials of a discrete variable, but in general, solutions of (6.9) are 
related to the discrete Painleve transcendents [70, 71]. 

Note that the non-singular running-wave solutions correspond to completely isospec- 
tral deformations because the potentials from the family (6.5) differ from each other 
only by a shift of the argument. For reduction (6.7), the spectrum of H(t) changes 
with time, but the discrete-time evolution of the operator H(t) — kf3t/h is isospectral. 

(iv) The constraints un{t + Nh) = q2un-k(t), bn{t + Nh) = qbn-k(t) correspond to 
the g-deformation of the algebraic relation (6.9), 

MH = qHM,        M = T-kR(t + (N - l)h) •-R(t + h)R(t). (6.10) 

This class of closures was found in [70], and realization of the algebra (6.10) for the 
Schrodinger equation (1.1) has been described earlier in [69]. 

(v) One also can use the ansatz with separation of spatial and time variables un (t) = 
u(t)an. In the case of an ordinary Toda lattice, this leads to a large set of classical 
orthogonal polynomials (Meixner, Krawtchouk, Charlier, Pollaczek, Laguerre, and 
Hermite) associated with the standard Lie algebras [87]. 

(vi) A combination of the running wave and the separated form 

un(t) = u(t + nh)an, (6.11)' 

leads to solutions of the DTTL being related to a variety of classical ^-orthogonal 
polynomials (dual g-Hahn polynomials). Algebraically, it corresponds to the specific 
quantum algebras (for example see [72]). Note that the reductions similar to (i)-(vi) 
may be applied to the differential-difference equation (5.25) as well (cf. [64, 68, 69]). 

Proposition 4. A generalized separation of variables in the second factorization chain 
(5.40) determined by the ansatz 

V2n{t) - g(2nh + ty        F2n+lW " g(2nh + t + hy {6'12) 

is integrable in terms of elementary functions. It yields recurrence coefficients for two 
large classes of orthogonal polynomials: the (associated) Askey-Wilson polynomials 
and the q-generalizations of the Carlitz-Karlin-McGregor polynomials investigated by 
Askey and Ismail [5]. 

The detailed proof of this proposition lies beyond the scope of the present work. 
The similarity reductions presented above do not exhaust all possible cases. In order 

to make a full list of them, one needs to find all continuous and discrete symmetries of 
the DTTL (or of the discrete dressing chain), to classify all subgroups of symmetries, 
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and to look for solutions invariant under these subgroups. Since, at present, there is 
no complete theory of symmetries for the finite-difference equations, such a program 
is difficult to perform. 

7. Isospectral families of the Meixner polynomials 

In this section, we give a group-theoretical interpretation of the discrete-time evo- 
lution on the example of Meixner polynomials. Consider the generator KQ in the 
representation of positive discrete series D~j~ of the su(l, 1) algebra 

Ko\n) = |n + l) + -sinh2<9n(n + 2j-l)|7i- l) + cosh<9 (n + j)\n) (7.1) 

where n = 0,1,..., oo.   The spectrum of this operator is j,j + l,j + 2, Let us 
introduce the "time" t = 2jh, and the Hamiltonian H(t) = KQ — j. Obviously, 
the spectrum of H(t) is 0,1,2,..., and it does not depend on t, i.e., the operators 
H(t) form an isospectral family. Note that this system is a representative of the 
reduction (6.11) where an = nsinh2 9/4h, u(t) = t — h. The eigenvalue problem for 
the operator H(t) generates the Meixner polynomials [26, 40, 52, 58] 

-sinh2<9 (n+l)(n+-)Mn+i+Mn_i+ (cosho(n + —) - wr)Mn = xMn 

(7.2) 

where Mn = Mn(x; £, 8), MQ = 1, M_i = 0, and the spectral parameter x = 0,1,... 
is the argument of the polynomials. 

It is easy to verify that the (re)factorization equations (5.28)-(5.31) are satisfied if 

f) t 0 t 
An = nsinh2 -, Cn = (n + -) cosh2 -, fi(t) = - -. (7.3) 

It can be checked that the DDT auxiliary wave function <£n(£), An = — </>n_i/</>n, 
has the eigenvalue /ji(t) < 0 and is not normalizable. Zero modes of the reciprocal 
DDT operator L(t) do not satisfy boundary condition ^-1=0. As a result, the time 
evolution is isospectral: we neither introduce new levels nor remove the existing ones. 
Therefore, the Darboux transformations can be rewritten as some identities for the 
Meixner polynomials [17]: 

Mn(x;t + 1,0) = Ffat,9)(Mn(z;t,6) + sinh2 ^ (n + l)Mn+i(ar,*,9)).        (7.4) 

(Recall that the Darboux operator can be multiplied by an arbitrary function F{x\ £, 8) 
without changing the basic relation (1.7).) The function F(x\t,9) is fixed from the 
relation 

*r ,    ,m     4(a;/i-tsinh20/2) ,     . 
Mi x;t,0) = -^         2      

/  \ (7.5) 
tsmh  9 

Setting n = 0 in (7.4) and using (7.5), we find that F(x'11,9) = t cosh2 §/(xh +1). 
Consider the limit h —> 0, 9 —* 0, 92/Ah —> 1. Then on the one hand, the recurrence 

relation (7.2) is reduced to that for the Charlier polynomials, 

t(n + IJCn+ifc; t) + Cn_i(z; t) + (n + t)Cn(x] t) = xCn(x; t), (7.6) 

x = 0,1, On the other hand, we know that the h —> 0 limit corresponds to the 
ordinary Toda lattice and separation of variables un(t) = u(t)<yn. One can verify 
that the recurrence coefficients for the Charlier polynomials (7.6) define a solution 
of the Toda equations [87].  Note that the limit h —> 0 implies j —> oo as seen from 
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the relation t = 2j/i, so that we obtain a contraction of the su(l, 1) algebra into the 
Heisenberg-Weyl one. 

The key observation of this section is that the "time" t corresponds to the Casimir 
parameter j of the su(l, 1) algebra representation. Therefore, the evolution in discrete- 
time is equivalent to passing from one irreducible representation to another. This can 
be contrasted with the case of continuous time Toda equations where the evolution is 
equivalent to changing 9, whereas the Casimir parameter j is fixed [87]. 

8. Dressing and the Askey-Wilson polynomials 

Consider the three-term recurrence relation for the Askey-Wilson polynomials [6, 7] 

un+1Pn+1 + Pn-! + bnPn = 2xPn,        P_iOr) = 0,     Po(x) = 1, (8.1) 

where 

(1 - g")(l - gqn-2) n-<fc(l - a^feg"-1) .    . 
Un       (1 - gq2n-3)(l - g<pn-2)2(l - gq2"-1) ' l     ' 

_ q"-i{(l + gq^-^jsq + s'g) - q^jl + q)g(a + s'q)] 
(l-gq2»-2)(l-g?») ' W-dj 

4 4 

The explicit form of Pn(x) is 

q     , gq      , aie , aie     \ 
',q,q} 8-4) 

0102, aias, a^ J 

where x = cos 9 and 

ain(g',q2)n(gq!q2)n K = 
(?; 2)^2^3; g)n(a2a4; 9)71(^3^4; ^)n ' (g^) 

(a;(z)n = (l-a)(l-a9)---(l-a9n-1). 

For completeness, we present the definition of a general basic hypergeometric series 
according to [28], 

( fli hi ' ' ' 1 fr z\   _ ST^ (/i; g)n(/2; <Z)n • • • (/ri g)n f/     ^\n   n(n-l)/2-| 1+s-r^n 

where r, 5 are arbitrary positive integers, and /1,..., /r, di,..., ds are free parameters. 
If the parameters a^ and ^ in (8.4) are real, — 1 < q < 1, and \ai\ < 1, then the Askey- 
Wilson polynomials are orthogonal with respect to a continuous weight function on 
the interval — 1 < x < 1. If the absolute value of at least one of the parameters is 
larger than 1, then there exists a discrete spectrum in addition to the continuous part 
(for some exceptions, see [41, 46]). 

The Askey-Wilson potentials (8.2), (8.3) provide at least four types (by the number 
of parameters) of analytical solutions of the discrete dressing chain or DTTL. Let us 
assume that one of the polynomials' parameters, say ai, depends exponentially on 
time, ai(t) = aiq* (we normalize the time step h = 1). Then we have the following 
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solution of the (re)factorization conditions (5.28)-(5.31) 

ai(*)(l-g")(l- 

(1- 
a^"1 (t)(l - gtyq^Hl - a1(t)a2^)(l - a^asq^l - a^a^) 

A   ,A__ ai(t)(l - <?n)(l " a2a3gn-1)(l - c^g^Xl - a3a4gn-1) .ft R. 
n[)~ (l-^)^-2)(l-^yn-l) ' W 

Cn{t) (l-9(t)q^-i)(l-g(t)q^) 
(8.7) 

li(t) = a1(t) + ai1(t). (8.8) 

Let us take |ai| > 1 and \ai\ < 1, i = 2,3,4. Then, from the theory of generic 
Askey-Wilson polynomials [7], it is known that the number of discrete levels N is 
determined by the maximal power of q allowed in the inequality 1 < aiq1*-1. One 
step of the above DDT yields t —> t + 1, or ai —+ aiq, which means that the number 
of discrete levels is reduced by one. So the taken wisp of Darboux transformations 
provides an isospectral family of the Askey-Wilson polynomials only when |ai| < 1. 
Prom the general properties of the factorization method, it follows that 2xk = ^(k) 
given by (8.8) describe the discrete spectrum of the system, provided the auxiliary 
eigenfunctions 0n(^) are normalizable, in which case they coincide with the bound- 
state wave functions. 

It is convenient to use the parametrization 

ai = qai,        g = g27,        27 = ai + »2 + ^3 + ^4, 

and the following compact representation of potentials (8.2), (8.3) 

  ^4  ^n+7—l^n—7+I TT /o Q\ 
^71+1-7 — ^       9   n I 1 1 Sn+oci+ak-i, V"-y/ 

S2nS2n-lS2n+l ££ 

6n+1-7 = *Y o^+^-W - c^-i, (8.10) 
^ S2nS2n+2 

where the symbols may have either hyperbolic or trigonometric meaning. For the 
hyperbolic notation, one has 

q = e~2a;,     sn = sinhu;?!,    cn = coshu;n,    a = 1. 

For the trigonometric notation, one has 

q = e~2l(p,     sn = sin (/m,    cn = cos(/?n,     a = — 1. 

The two representations are connected to each other by the relation u = i(p. 
Suppose that the parameters ctj (and so 7) are real. Then it is easy to see that 

the potentials itn, bn are real for real q, 0 < \q\ < 1, or for q = e~22(p, ip real. In the 
hyperbolic case, one has un > 0 whenever real cn lie to the right of all zeros and poles 
in (8.9), and this leads to the polynomials of unlimited degree. In the trigonometric 
case, cn, sn belong to the interval [—1,1], and in general un takes negative values. The 
g-Racah polynomials characterized by the quantization condition a^a^ = q~N where N 
is a positive integer and a^, a^ are two fixed parameters, were investigated in [6]. They 
are defined both for real g, — 1 < q < 1, and complex q, \q\ = 1. The example (3.10) 
belongs to a different, new class of finite-dimensional polynomials orthogonal with 
respect to a positive measure, because zeros of un = 0 appear from the different 
quantization conditions g = aia2&3&4 = QM, qN = 1. Due to the finite-dimensionality 
and discreteness of the measure, it also is appropriate to identify these polynomials 
as g-Racah polynomials. From (8.2), one can see that other types of zeros of un arise 
when g = q~N for arbitrary q, for qN = 1 and generic values of parameters, and when 



Oi = (q, -Q, q1/2, -q1/2), g^q3, 

or 

a, = (±1, Tq, q1^, -q1'2), g^q2 

or 

ai = (1, -1, g1/2, -q1'2), 9 = q> 

in arbitrary combination. 
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qN = 1, a^a/c = qM. As far as the authors understand, no complete classification of the 
regions of positive measure for the complex parameters ai and q for the Askey-Wilson 
potentials has been given. Later we hope to discuss this question in detail. 

Proposition 5 ([7]). The potentials (8.2), (8.3) are reduced to the Chebyshev poly- 
nomial potentials un = 1, bn ~ 0 {free DSE case) for all values of n if and only if the 
parameters ai are different from each other and take the values 

(8.11) 

(8.12) 

(8.13) 

It is natural to define potentials to be Darboux equivalent if they can be converted 
into each other by a number of Darboux transformations. For an infinite number of 
transformations, this definition should be applied carefully since the existence ques- 
tions become delicate. From Proposition 5 one can easily deduce Proposition 6. 

Proposition 6. The general subset of the Askey-Wilson potentials, which are Dar- 
boux equivalent to un = 1, bn = 0, is fixed by the following choice of parameters (in 
arbitrary combination) 

at = (qni, -<r, «"3+1/2, -<f4+1/2),        ai + ak for i # k, (8.14) 

where ni, n2, ns, n^ are arbitrary integers. 

Indeed, let Chebyshev potentials un = 1, bn = 0 be fixed by the choice ai = 
_a2 = g, as = -a4 = g1//2. The DDT (8.6), (8.8) allows us to change ai = q 
to ai = gni, ni > 0 after the ni — 1 steps. The negative discrete-time evolution, 
t —> t — 1, is governed by the reciprocal DDT operator L{t), which allows us to get 
ax — qni, m < 0. Other wisps of DDT performing the maps ai —> a^g, i = 2,3,4, are 
obtained from the above formulae just by permutation of the parameters, since the 
latter entered the potentials (8.2), (8.3) in a symmetric fashion. Because all three sets 
of parameters leading to free DSE (8.11)-(8.13) are contained in the conditions (8.14), 
they characterize all Askey-Wilson potentials which are Darboux equivalent to the 
Chebyshev potentials. 

Let us make two remarks. First, as a corollary of the above statement, the Askey- 
Wilson potentials with parameters (8.14) can be represented as the determinant of a 
specific M x M matrix, M = ^ n^ — 2, composed from solutions of the free DSE [53, 
54]. Second, since all integers n7; enter as free parameters, one can consider their 
continuation to arbitrary real (or complex) values, and this results in the completely 
general set of the Askey-Wilson potentials. Loosely speaking, this means that (8.2), 
(8.3), and thus all the associated polynomials, are built from the Chebyshev poten- 
tials/polynomials. This statement may be taken as a physical explanation of the 
existence of many nice properties of the system (8.1)-(8.5). 

Comment. Evidently, all the potentials with parameters aiqni are Darboux equivalent, 
and the choice (8.14) is distinguished by its simplicity. It is this Darboux equivalence 
that was used by Askey and Wilson [7] for calculation of the weight function for their 
polynomials. Namely, they used the fact that the homogeneous limit n* —> oo in a^ni 
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sets all parameters equal to zero, which corresponds to the g-Hermite polynomials 
with known weight function. Moreover, the choice (8.11) was used for fixing the latter 
weight function in explicit form. In fact, even the specific character of the choice 
of parameters (8.14) was remarked on in the Addendum to the seminal memoir [7]. 
Therefore, Proposition 6 is just a reinterpretation of the results of [7]. One of the goals 
of the present paper was to uncover the discrete Darboux transformation behind these 
peculiarities and to show that the latter transformation is very useful for building more 
and more complicated discrete potentials from simple ones. We stress that the system 
of Askey-Wilson potentials is a very special class of potentials that can be obtained in 
this way. Starting from the free DSE, one can easily construct systems with a finite 
discrete spectrum of an arbitrary form. 

In general, the potentials un and bn defined by the choice (8.14) contain singu- 
larities. However, one can find a wide subclass of parameters (8.14) for which the 
following requirements are satisfied: 

(i) un > 0 for -oo < n < oo, and un —> 1, bn —> 0 exponentially fast for n —> ±oo; 
(ii) un and bn do not have singularities for any integer n. 

For such potentials, one can formulate the scattering problem on the whole infinite 
lattice —oo < n < oo. The specific property of potentials which are Darboux equiva- 
lent to the free ones is that they are reflectionless, i.e., a solution of the corresponding 
Schrodinger equation (in the self-adjoint form) with asymptotics Xn &■ eien at n -^ — oo 
has analogous asymptotics, Xn <* el<9n, when n —> oo [1, 76]. 

Let us present some explicit examples obtained after the repeated double Darboux 
transformations associated with the Volterra lattice. 

(I) In [72], the reflectionless potentials 

un(j)=  c"c"+2^,        bn(j) = 0, (8.15) 

where cn = cosh am, u > 0, were obtained by successive dressing of the free DSE 
with the help of auxiliary wave functions <j>n(j) = cn+icn+2 * * • Cn+j- Indeed, it is easy 
to see that (j)n(j) is a non-normalizable solution of DSE with potentials un(j — 1), 
bn(j — 1) = 0 with the eigenvalue fi^j) = 2cosh.u)j. Potentials (8.15) appear from 
(8.2) after setting cn = -q-j/2, as = q1+j/2, as = g1/2"^2, aA = -q1/2^/2, and 
shifting n —> n -{- j + 1/2. In £2(Z), they have a continuous spectrum in the interval 
—2 < A < 2 and the discrete spectrum A^ = ±2coshu;A:, k = 1,..., j. In the infinite 
discrete spectrum limit j —> oo, taken after the shift n —> n — j, they correspond to 
the system of g-1-Hermite polynomials [4, 45, 57, 74]. 

(II) Another class of potentials, 

un{j) =  S"S"+2j+1 ,        6„(i) = 0, (8.16) 

where sn = sinhum, is obtained as a result of dressing free DSE by the functions 
0n(j) = sn+isn+2 * • 'Sn+j- It corresponds to the parameters ai = —a2 = g^+1)/2, 
as = —04 = g1+J/2. The potentials (8.16) cannot be said to be reflectionless due to 
the presence of singularities. In the limit j —» oo, the singularities disappear and we 
arrive at the recurrence relation for the ordinary g-Hermite polynomials. Note that 
potentials (8.16) correspond to the particular class of g-ultraspherical polynomials [7], 
and the potentials (8.15) correspond to the associated g-ultraspherical polynomials. 

(III) Perhaps the most interesting class of discrete potentials is obtained after Dar- 
boux transformations, defined by the trigonometric solutions of free DSE, 0n oc sin^n, 
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cos (pn, when ip is a fraction of TT. The simplest single-Darboux-transformation exam- 
ple of this type has been considered in section 3. The j-steps of similar DDT lead to 
the potentials: 

... sin7rn/iVsin7r(n + 2j + l)/JV ,   , .N     . /n _x 
^^sin^n + iViVsin.Cn + i+V'        ^) = 0. (8.17) 

These are the trigonometric analogs of the potentials (8.16) with ip = TV/N. AS Askey 
informed us, such potentials also appeared in some unpublished notes by B. F. Logan. 
It is easily seen that 

Uo(j) = UN-2j-l(j) = 0, 

un(j)>0,        0<n<N~2j-l, ( '    j 

which shows that we are dealing with the finite-dimensional set of orthogonal poly- 
nomials. In fact, this system is very simple, and it is obtained from the finite- 
dimensional Chebyshev polynomials of the second kind with the spectrum 2 cos irk/N, 
fc = 1,..., iV — Iby j-fold undressing of the first j levels from below and j levels from 
above. After that, the spectrum is A^ = 2cos7rfc/W, k = j + 1,..., Af — j — 1. It is 
obvious that the highest power of these polynomials is N — 2j — 1. 

Shifting n —► n + N/2 in (8.17) and then replacing N by 2iV, we arrive at the 
potentials 

cos 7rn/2N cos irjn + 2j + 1)/2N 
Un~ cos7r(n + i)/2iVcos7r(n + j + l)/2iV'        0n ~U' ^'^) 

which are root-of-unity partners of the potentials (8.15) for (p = 7r/2N. For arbitrary 
N > j + 1, we see that -U-JV = UN-2J-I — 0 and un > 0 are between these zeros. 

Using the correspondence between solutions of the Toda and Volterra lattices (see, 
e.g., [35, 72]), it is possible to generate non-trivial root-of-unity systems for which 
un>0 and bn ^ 0. More precisely, for any two-diagonal Hamiltonian 

Hv\n) = |ra + l)+ix£|n-l), 

one can associate the three-diagonal one, HT = Hy — 2 

ffr|n) = \n + 2) + i£t£-il» - 2) + (^ +1£+1 - 2)|n>. 

We subtract 2 from Hy in order for both operators Hy and HT to have the continuous 
spectrum band -2 < A < 2 (if it exists). Looking now at the lattice formed by the 
sites with odd (or even) index label and renormalizing the lattice step to be 1, one 
gets a Hamiltonian (1.8) with potentials u^ = ^^n^^n+i, &n — u2n+\ +u2n+2 ~ 2- For 
example, the Toda-analog of the potentials (8.17) after replacing iV by 2A^ will be 

_    gnSn+l/2gn+j+l/2Sn+j+l 
ILn — 2 i \O.Z\J) 

sn+j/28n+j/2+iSn_i_j/2+1/2 

bn = - 2cOS7r/2ArW/2+1/2, (8.21) 
Sn+j72+l/2Sn+i/2+3/2 

where sn = simrn/N. The potential un is positive between the zeros at n = 0 and 
n = N — j — 1. The spectrum is Am = 2cos7rm/N, m = j + 1,..., N — 1, i.e., the 
dimension of the system is N — j — 1. 
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The two-parametric set of similar potentials is obtained by removing additional k 
levels from above 

Un(j, k) =    2  *n«n+J+fc+l*n+J-+l/2*n+fc+l/2        ^ (8_22) 

Sn+U+k+l)/2Sn+U+k)/2Sn+l+(j+k)/2 

bn{ji k) = 2coSn/2Ns{k_j)/2S{k+j+1)/^ ^ 
5n+(j+fc+l)/25n+(j+fc+3)/2 

The corresponding polynomials are natural discrete analogs of the Jacobi polynomials 
in (x)i which appear in the limit N —> oo.   Note that the case j = k 
corresponds to (8.17), whereas k = 0 corresponds to (8.20), (8.21). 

Proposition 7.  The weight function for the two-parameter set of orthogonal polyno- 
mials generated by (8.22), (8.23) is 

j k 

w(xm'J, k) = sin2 — Y[ ^cos — - xmJ JJ (cos ^ + Xmj (8.24) 

where Xm = cos Trm/N, m = j + l,...,N — k — l. I.e., it consists of a reduced number 
of discrete jumps of the finite-dimensional Chebyshev polynomials. 

This statement follows from the fact that successive removal of levels is equivalent 
to changes to kernel polynomials, whose weight function differs from the original one 
only by a polynomial factor determined by the zeros of finite-dimensional Chebyshev 
polynomials. 

The examples presented above do not exhaust all possible positive root-of-unity 
potentials, e.g., one can generate a three-parameter set of analogous potentials for 
odd N by symmetric removal of 2r levels from the middle of the spectrum with the 
help of the double DDT for the Volterra chain, etc. Properties of the corresponding 
g-orthogonal polynomials do not seem to be analyzed in the literature. The authors 
have some results on this subject, but it is appropriate to present them separately. 
The richness of the situation is demonstrated by the following. 

Proposition 8. Recurrence coefficients of the q-ultraspherical polynomials 

sin(^nsin(z?(n + 2a -f 1) /^r /rt ^. 
un = ,    ,     /:     ,    ,       '     , <P = KP N, 8.25 

sm (p{n + a) sm (p(n + a + 1) 

where a is a real parameter, are positive for integer values of n between two successive 
zeros at n = 0 and n = s > 0 when 

(1) p = 1 and -3/2 < a < -1, -1< a < 0, 0 < a < 1/2, s = TV; 

(2) p = 1 and a = |, §,..., [Z=±] - \, s = N - 2a - 1; 

(3) p=l, N -1 and a = 1,2,..., N/2 -l,s = N-2a-l,N even; 

(4) p = l, (N-l)/2, (N + i)/2, N-l anda = l,2,...,(N-3)/2,8 = N-2a-l, 
N odd. 

Another problem which is worth pursuing is the classification of all reflectionless 
potentials of the Askey-Wilson type and analysis of the limits of an infinite number 
of DDT [72]. 

Finally, let us discuss briefly the dynamical symmetries. As found in [72], the 
strange series representation of the quantum algebra suq(l, 1) in Cartesian form cor- 
responds to the potentials (8.15). The compact analog of the same quantum algebra 
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describes symmetries of (8.17). Indeed, one can verify that the abstract Hermitian 
operators KQ, KI given by 

cos7r(n + i + l)/iV Ko\n) = ^ /AT \n), 

^1 N) = -TT": 1T7 \n + 1) + ^ ^T7 h- - l/» 11  /      2 8^^/^'   ^   / ^2sin7r/iVl h 

where un(j) is fixed in (8.17), satisfy the relations defining the Cartesian form of the 
siig(2) algebra: 

TT^KzKx-vKxKt^iKi, 

p-lK2KQ - pK0K2 = iKu (8.27) 

p-lK1K2-pK2K1=iK(h 

where K2 is defined by the first equality, and p = e~27r//2iV = g1/4 (for the nonlinear 
map of generators of the standard raising and lowering operator form of suq(2) onto 
(8.27), see [88]). Note that for the choice j = 0, the states |n) correspond to finite- 
size Chebyshev polynomials, i.e., the latter provide the simplest examples of g-special 
functions for q equal to a root of 1. Similarly one can consider the complementary 
series representation of the given algebra containing a free continuous parameter and 
find other types of positive potentials (8.25). 
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