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ON THE CALCULATION OF STOKES MULTIPLIERS FOR LINEAR 

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER 

A. B. Olde Daalhuis and F. W. J. Olver 

ABSTRACT. TWO new methods are described for the computation of connection 
coefficients for the asymptotic solutions of linear second-order differential equa- 
tions having an irregular singularity of arbitrary rank. The first method is based 
on new asymptotic expansions of the higher coefficients in the asymptotic solu- 
tions. The second method is based on direct numerical solution of the differential 
equation. Numerical examples are included. 

1. Introduction 

This paper is concerned with solutions of the homogeneous linear differential equation 

^■ + /W^ + *(*)«'= o, (i.i) 

in the neighborhood of an irregular singularity of positive integer rank r. Without 
loss of generality we may suppose that this singularity is located at z = oo. Then f(z) 
and g(z) can be expanded in power series of the form 

oo 

/(*) = z-1 £ £,       g{z) = *»-* £ f§, (1.2a,b) 

that converge on an open annulus \z\ > a. Moreover, at least one of the coefficients 
/o, go, and gi is nonzero (otherwise the singularity would be of lower rank). 

The nature and the existence of the asymptotic solutions of systems of homogeneous 
linear differential equations in the neighborhoods of irregular singularities has been 
the subject of many investigations; see, for example, [16,17]. In the present case, the 
construction of the asymptotic solutions proceeds as follows [15].1 

Let 

cf>(z) = 1J2(z) + hf,(z)-9(z), (1.3) 

so that 
oo 

*(s) = *2r-2]r;^)        \z\>at (1.4) 
s=0 

where 

hs = \ (fofs + flfs-l + • • • + fsfo) + U2r - 1 - S)fs-r - 9s, (1.5) 
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with /s_r interpreted as being zero when s < r. In particular, we have /IQ = \fo — do- 
If ho is nonzero, then we can expand the square root of ^(z) in the form 

oo 

{^W-1^' (1.6) 

where 

0o = ±^=±(l/o2-ffo)5, (1.7) 

and higher coefficients can be computed by means of the recurrence relation 
s 

shocks = ^(f j - s)hj(t)s-j,        s > 1; (1.8) 

compare [13], Chapter 1, Exercise 8.4. 
With the foregoing definitions, formal series solutions of (1.1) are given by 

oo oo 

s=0 s=0 

where 

Ml = -</>r - |/r - ^ + |, ^2 = 0r - I/r - Ir + I, (l.lla,b) 

and the coefficients aSjj, j = 1,2, are given by aoj = 1 and 

2spo,jasj = ^{gfe-ij - 2(5 - fc)pfcj}as_fc,j + (5 - r)(5 - r + l)as_rj,       (1.12) 

the last term being absent when s < r. Here pkj and ^5j are the coefficients in the 
expansions 

00 00 

pj(z) = zr-^^f,        qj(z) = zr-3Y,qjf,        N>a. (l-13a,b) 
k=0 k=0   Z 

of the functions 

Pj(z)=ej(z) + ^ + hm, (1.14a) 

„(,) = 3'(z) + ^9(z) + ^(*) + ^LZI) 

){^ + T} + /WUiW + ^KflW- (l-Wb) 

In the exceptional case |/o = go (which includes, of course, the commonly occurring 
case of fo=go = 0), the dominant terms (for large \z\) in the polynomials €i(z) and 
£2(20 have the same coefficients. If we make the transformation [15] 

r-l 
]¥■■       /\ 

then it is readily verified that at t = 00, the transformed differential equation has 
either a regular singularity or an irregular singularity of rank not exceeding 2r - 1 
with unequal dominant terms in the corresponding polynomials £1(2) and €2(2)-  We 

r—l 
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therefore may assume without loss of generality that |/o ^ go and, hence, that </>o 7^ 0 
in all subsequent analysis. 

The ratio (s — r)(s — r + l)/(2spoj) oiasj to as-rj in the recurrence relation (1.12) 
indicates that, in general, the series (1.9) diverge.2 In order to describe solutions that 
have these series as asymptotic expansions, we subdivide the plane into sectors 5fc, 
k = 0, ±1, ±2,..., defined as follows. Let a = ph^o; then 

see Figure 1.1. 

Sk = {z: 
(fc-|)7r-(7 

<phz< 
(fc+!)7r-<r 

h (1.15) 

^S 

(** + 37t/2^ 

V .# 

FIGURE 1.1. z-plane. Sectors Sk- Values of phz are given at ends of rays. 

The significant feature of these sectors is that for sufficiently large |z|, the real part 
of £2(2) — £1(2) is positive or negative at interior points of Sk according as k is even 
or odd. This follows from the relation 

62(2) - €i(z) ~ 2(f)QZr/r,        Z-+OQ, 

obtained from (1.10). 
Now define S^ to be any closed sector that is properly interior to Sk-i U Sk U 5fc+i. 

For example, So could be taken to be the sector 

-(§*■ + *- 6)lr < phz < (|7r - a - <5)/r, 

where 8 is an arbitrary small positive constant. 

Theorem 1.1. (i) For each even integer k, there exists a unique solution Wk(z) of 
(1.1) such that 

Wk(z) - e*1^1 J2 ^T'        z-^ooinSk 
3=0 

(1.16a) 

2 See also Theorem 4.1 below. 
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(ii) For each odd integer k, there exists a unique solution Wk{z) of (1.1) such that 

wk(z) - e^W^ Yl ^T*        ^oo'm Sk. (1.16b) 
s=0 

Any branches may be chosen for a = ph0o in (1-15) arid 2Ml, z^2 m (1.16), provided 
that they are used consistently. 

Theorem 1.1 can be derived from the theorem of [15] by suitable choice of the path 
Vk in this theorem. Thus, in the present notation, if we take S^ to be the sector 

Sk = { z : 
(k-^TT-a + S       ,          (k+hn-a-S 
 — < phz < —  

and make the transformation £ = 0ozr, then for all sufficiently large z in Sk, the 
path Vk can be taken as the map of a path Qk in the £-plane comprising an infinite 
segment of the real axis and segments of one or two straight lines at angles ±^6 to 
the imaginary axis. Figures 1.2, 1.3, for example, depict Qk when k is even and 
(kir — a)/r < ph z < (kir + ^TT — cr)/r, (kn + \TT — a)/r < ph z < (kir + |7r — a — <5)/r, 
respectively. See also Lemma 13.1 of [13], Chapter 6. 

FIGURE 1.2. C-plane. Path Qk when     FIGURE 1.3. C-plane. Path Qk when 
kir < phC < (fc+ |)7r, A; even. (fc + |)7r < phC < (fc + |)7r - 6, k 

even. 

2. The connection formula problem 

Although, for each value of fc, Theorem 1.1 provides information on the solution Wk(z) 
only in the sector Sk, this solution can be continued analytically to all values of phz. 
In general, Wk(z) has a branch-point at infinity. 

Among any three solutions a linear relation holds for all values of z. In particular, 

Wk+i(z) = CkWk(z) + BkWk-i(z), (2.1) 

where Bk and Ck are constants. The value of Bk is easily found by letting z —> oo on 
an interior ray in Sk- On this ray, Wk(z) is recessive and the other two solutions are 
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dominant with exactly the same asymptotic form. Hence Bk = 1, and (2.1) reduces 
to 

Wk+i(z) = CkWk(z) + Wk-i{z). (2.2) 

The coefficient Ck is more difficult to calculate in general. For later convenience, 
we sometimes set 

where 

u; = //2-Mi; (2.4) 

then 

Wk+1(z) = el-)kku*i'rAkwk(z) + uift-i W. (2.5) 

Either set of constants {Ck} or {Ak}, k = 0, ±1,..., may be called the Stokes multi- 
pliers (at infinity) for the differential equation (1.1). 

In passing, we note that if we know the Ck (or Ak) for all values of k, then it is 
possible to determine the asymptotic behavior of any solution Wj (z), say, in any sector 
Sk, say. Suppose, for example, k > j. It is readily verified that 

Wj(z) = \kWk-i(z) + Afc-iWfc^), (2.6) 

where the constants A^-i and A^ are found by application of the recurrence relation 

An+1 = -CnKn + An_i,        n =± j + 2, j + 3,... , k - 1, (2.7) 

beginning with A^+i = 1 and Aj+2 = —C^+i. Once A^ and A^-i have been found, 
the (compound) asymptotic expansion of Wj(z) in the sector Sk-i H 5*: is obtained 
from (2.6) by substituting the known expansions (1.16) olwk-i(z) and Wk(z) in this 
sector. Obviously from Figure 1.1, we can always arrange that Sk-iDSk includes the 
sector 

(kir — Tjir — a)/r < phz < (kw — <7)/r, 

that is, the right half of Sk when viewed from the origin. To cover the left half of S*, 
we continue the recurrence (2.7) one step further, to n = k, and then apply 

Wj(z) = Ak+iWk(z) + AkWk+i(z). (2.8) 

The purpose of the present paper is to describe two methods for computing the 
coefficients Ck and Ak in the connection formulas (2.2) and (2.5), one asymptotic, the 
other numerical. 

The asymptotic method is developed in §§3, 4, 5 and is based on expansions of the 
coefficients as,i and aSj2 for large s. Methods of this kind are already known; see, for 
example, [6-11]. Other analytical methods also exist [5,18]. The novelty of our ap- 
proach is that we employ inverse factorial series in place of the more usual inverse power 
series for the asymptotic expansions of as,i and aS)2- The advantage of the inverse 
factorial expansions is that the coefficients are available explicitly. In fact, they are 
simple multiples of the earlier coefficients ao,i, ai^i, a2,i,..., ao,2> Git2> ^2,2* • •■• • There- 
fore, it is possible to evaluate the Stokes multipliers to high accuracy with relatively 
little analytical and computational effort. In §6, we supply two numerical examples 
to illustrate this feature. 

The second method for evaluating the Stokes multipliers is based on direct numeri- 
cal integration of the differential equation along suitably chosen paths in the complex 
plane. It is outlined in §7 and applied to the numerical examples previously treated 
in §6. 
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3. Asymptotic method for the Stokes multipliers: 
singularities of unit rank 

In this section, we assume that r = 1.   The expressions (1.10) for £i(z) and £2(2) 
reduce to 

£1(2) = \iz,        6(s) = A22, (3.1a,b) 

where Ai, A2 are the zeros of the quadratic polynomial A2 + /QA 4- go- Accordingly, 

A2-Ax = ±(/0
2-%,)*, (3.2) 

and is nonzero by hypothesis (§1). The exponents //1 and /^2 are given by 

Pi = -T r-'        ^2 = ^v x-' (3.3a,b) 
A2 — Ai Ai — A2 

and the recurrence relation (1.12), with j = 1,2, respectively, reduces to 

(Ai - A2)5a5,i = (5 - fii)(s - 1 - /xi)as_i,i 

+ Z^{Al^+1 + ^+1 - (s - ^ - m)/j }a*-i,i» (3-4a) 

(A2 - Ai)sas,2 = {s - fi2)(s - 1 — A*2)a«-i,2 
s 

+ Z){A2^+1 + 4H-1 - (s - ^ - M2)/j}as-j,2, (3.4b) 
i=i 

again with the starting values ao,i = ao,2 = 1-   We also have (po = |(A2 — Ai), 
cr = ph(A2 — Ai). The sectors £&, fc = 0, ±1,..., are defined by 

Sk = lz : (k- ^JTT- <T < phz < (k+ o)71"-*7}- 

Next, we observe that Wkie"2^1z) is also a solution of the differential equation for 
any integer j, and from Theorem 1.1 it follows that 

wwfc) = e2jliiviwk(e-
2jiciz)9        k even, (3.5a) 

wk+2j(z) = eV^Wkie-V^z),        k odd. (3.5b) 

On combining these results with (2.5), with r = 1, and (2.4), we deduce that 

Ak = AQ,    k even;        Ak = Ai,    A; odd. 

Now suppose that the differential equation is normalized in such a way that 

A2-Ai = l. (3.6) 

This always can be arranged, if necessary, by replacing z with z/(\2 — Ai).   Then 
0O = I, a = 0, and the sectors 5^ become 

Sk = {z : (A:-i)7r<ph^< (fe+i)^}. 

Furthermore, the new values of Ck and ^4^ are (A2 — Ai)^-^ ^ times their old values.3 

In [12], we proved that in the present circumstances the following theorem holds.4 

3
In forming (A2 — Ai)(-) a;, the branch of ph (A2 — Ai) has to be a. 

4The notations wi(z), W2(z), Ci, and C2 in [12] now are denoted by wo(z), ivi(z), —C\, and Co, 
respectively. 
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Theorem 3.1. Let m be an arbitrary fixed nonnegative integer.  Then as s —» oo, 

.     m—1 

as,1 = (-y-1^iJ2(-)JH2ns + u-3) + 0{r(s + LJ-m)}, (3.7a) 

a8t2 = ~i^aj,1r(8-Lj-j) + 0{T{s-uj-m)}, (3.7b) 
^ i=o 

where UJ is defined by (2.4). 

Equations (3.7) can be regarded in two ways. If Ao and Ai are known, then (3.7) 
provide an easy way of computing as^ and as^ for large s. 

Alternatively, if we regard equations (3.4) as a way of generating aSi\ and as,2 
recursively for arbitrary large s, then AQ and Ai can be estimated via 

AQ = -2™ lim      "a'2   ,,        Ax = 2m lim izil_5fil (3.8a,b) 

or more accurately from 

m—1 _1 

^o = -27rzaa,2 j ^ ^^(s - c*; - j) j     + C)(s-m), (3.9a) 
i=o 
m—1 _, 

Ai = {-)s-l2mas^{Y,{-y^2ns^uj-j))     +OC5-
m). (3.9b) 

j=o 

It is the second point of view that we adopt in this paper. By choosing values of 
s and m that are large (but not unduly large), it is possible to compute AQ and Ai 
from (3.9) to very high accuracy. 

4. Asymptotic method for the Stokes multipliers: 
singularities of arbitrary rank 

We now proceed to the generalization of Theorem 3.1 to the case of arbitrary rank r. 
Corresponding to (3.5), we have 

Wfc+2ir(s) = eV^Wkle-V^z), k even,                          (4.1a) 

Wk+2jr(z) = eV^Wkie'V^z), k odd.                         (4.1b) 

From these results and (2.4), (2.5), it follows that 

Ak+2jr=Ak, (4.2) 

for all integers k and j. Accordingly, it suffices to determine a set of 2r consecutive 
Stokes multipliers. 

With £i(z) and £2(2) defined as in §1, we follow the terminology of Dingle [3], and 
call £2(2) — £1(2) the singulant (with respect to z = 00) of the differential equation 
(1.1). The first step is to renormalize the differential equation in such a way that the 
singulant is simply zr; compare (3.1) and (3.6) in the case r = 1. This can be achieved 
in various ways. The simplest, in principle, is to take a new independent variable x 
defined by 

xr = Mz) - Si(z) = 2zr V T-^T-; (4.3) 
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compare (1.10). For large x, we can expand z in a convergent power series of the form 
oo 

Z = X 
Xs 

s=0 

where, for example, 

— (4) ;   C>=-<A»^ (4-5a'b) 

"' = 2(r-lWo " (r-2)*xv.' <4'5c) 

and higher coefBcients can be found by means of standard procedures for reversion of 
power series. The problem with this approach is that reversion is cumbersome; even 
with the aid of available software packages, the evaluation of cs is slow when s is large. 
Following [10], Section III.3, we circumvent this difficulty by truncating the expansion 
(4.4) after r terms. Thus, instead of x, we use the variable z defined implicitly by 

* = *E|t> (4-6) 
3=0  Z 

with the condition CQZ ~ z as z —> oo. The effect of this modification is to replace 
(4.3) by 

6W-6W = 5r-^ + 0(i), (4-7) Co \z/ 

the term 0(l/z) here actually being a power series in 1/5. 
In terms of the variable 5, the differential equation (1.1) transforms into 

1- + fiz)li+g{z)w = 0, (4.8) 

where 

From (1.2) and (4.6), we see that j{z) and g(z) can be expanded in the form 

2 ^   ^  y 

these series converging for all sufficiently large values of \z\. In particular, we have 

/o = cjj/o,        ^o = cgrpo,        <7i = Cor"1{^i + (2r - 2)ci£o}. 

Since not all of fo, go, and #1 vanish, the same is true of /o, go, and ^1. Furthermore, 

On applying Theorem 1.1, we see that if S^ denotes the sector 

r r 

then equation (4.8) has solutions Wk(z) such that, as z —>• 00 in 5^, 

^(5) - e^1^^1    or   ^(z) - c6(5)5A2, (4.10) 
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according as k is even or odd. Furthermore, because Wk(z) is recessive when z —» oo 
in the central third of Sk and Wk(z) is recessive when z —> oo in the central third of 
Sfc, it follows that 

Al=Ml} M2=M2, (4.11) 

eiW-|i(5) = 6i+0(5-1),    &(^)-&(5) = 62 + 0(5-1),    i ^ oo,        (4.12) 

where 6i, 62 are constants and, hence, 

wk(z) = eb*<%1wk(z)    or   ^W = c6acff2T3fc(5), (4.13) 

according as k is even or odd. Next, since £1(2) and ^2^) are polynomials in z of degree 
r with no constant term, it follows from (4.7) and (4.12) that £2(2)—£1(2) = zr> exactly 
(as required), and also that 

&! -62 = —. (4.14) 
Co 

Lastly, let {Ak} be the set of Stokes multipliers associated with (4.8) at z = 00, so 
that 

i£;fc+i(i9 = e<->fcfcwwi/rifcTi;fe(5) + Wk-i(z), (4.15) 

with a; again defined by (2.4); compare (2.5) and (4.11). Then from (4.13) and (4.14), 
we deduce that these multipliers are related to the original multipliers Ak by the 
formula5 

Ak = e<->*~lrc-/c°c<-)fcwifc. (4.16) 

From here until the end of §5, we shall assume that the preliminary transformation of 
the form (4.6) has been made, if needed; in consequence, the normalizing condition 

6W-ei(2) = 2r (4.17) 

is satisfied. 

We observe in passing that when (4.17) holds, the definitions of §1 simplify, in that 
(p0 = Ir, (j)s = 0  (1 < s < r — 1), and a = 0. 

Theorem 4.1. Let m be an arbitrary fixed nonnegative integer. Then with the condi- 
tion (4.17), the coefficients as^ and as,2 defined in §1 have the asymptotic expansions 
as s —> 00 

1      r—1 77i—l 

A;=0 j=0 

' s + a; — ra > 
+ 0{r(i±^)},    (4.M.) 

-7 X lit. — J. 

+ 0{r(1^2)},    (4.18b) 

r 
r—1 m—1 

tyftere a; = ^2 — Mi • 

5 Again, the branch of phco used in forming CQ in (4.16) is — (ph0o)A> where ^o pertains to 
the original equation (1.1). 
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This theorem is proved in §5. In the remainder of the present section, we describe 
how it can be applied to compute the Ak- 

The (9-terms on the right-hand sides of (4.18) contribute relative errors 0(s~m/r) 
as s —> oo. We assume that s and m are chosen sufficiently large to render these 
contributions negligible compared with the desired precision in the Ak. On replacing 
s in (4.18a) by rs, rs + 1, ..., rs + r — 1, in turn, and ignoring the error terms, we 
arrive at the system of r equations for Ai, As, ..., A2r-i 

r-l 

2^,bo,2k+lA2k+l = ttrs,l> 
k=0 
r-l 

/ J bi^k+iAzk+i = ^rs+1,1, (4-19) 
k=0 

2^^-1,2^+1^2^+1 = Grs+r-l,!, 
k=0 

where 

bn,2k+i - ^f^k+1^i/r J2 aji2e-VkW" r(S + n + ^~J).        (4.20) 
i=o 

In a similar way, we find that 

r-l 

/_^bo,2kA2k = «rs,25 
fc=0 
r-l 

2j&l,2fc-A2Jfe = ttra+l^j (4-21) 
fc=0 

r-l 

2^fer-l,2A;^l2A; = ttrs+r-1,25 
fc=0 

where 

m—l 

„2k 2kn«i/T ^ aj%1e-
2k1*ilr T[s + n    ^    3). (4.22) 

2r7ri 

Each system (4.19), (4.21) may be solved by standard numerical procedures for 
linear algebraic equations. To investigate the conditioning of these systems, we replace 
each coefficient 6n^ by the corresponding dominant term on the right-hand side of 
(4.20) or (4.22), that is, we take m = 1.   In this way, we find that (4.19) has the 
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+ ••• + A2T-1 

ilTAx     +     e^^Az     +•••+     e(2r-1>'ri/M2r-i     = (-) 

2r7rmrS)i 

_12r7rzars+1|i 

This is a Vandermonde system of equations, and its condition number in the infinity 
norm is easily deduced from the result of [4, Example 6.4] to be r. Hence the system 
(4.19) is well conditioned. In a similar way, we may show tha.t the same is true 
for (4.21). 

5. Proof of Theorem 4.1 

The proof of Theorem 4.1 is an extension of that of Theorem 2.1 in [12]. With the 
solutions vjk(z) defined as in §1, we set 

vk{z) = e — „-£i(*),,-/*i-i wk{z). 

Then 

Vfc+iOs) = CkVk(z) + Vk-i(z); 

compare (2.2). 

Lemma 5.1. Let p be any constant that exceeds a. Then 

(5.1) 

(5.2) 

ooe(2fc+l)7ri/r r-1 i.ooe<2fc+1)T 

27riVo{z) = V^fc+l   / 
rii Jpe(2k+i)Ki/ 

V2k+l{t) 
t-z 

dt 
r-l    rpe(2k+1^i/r 

E/ 
k=0 JpeVW*/r »-*> k=QJPel 

valid when z lies in the annular sector \z\ > p, | ph^l < 7r/r. 

V2k(t) 

t-z 
dt,     (5.3) 

FIGURE 5.1. £-plane. Contour Co. FIGURE 5.2. t-plane. Contour Ci. 
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Proof. Let R be any constant that exceeds \z\. Then, from Cauchy's integral formula, 
we have 

27rivo(z) = - [  V^-dt, (5.4) 
JCo t - z 

where Co is the closed contour depicted in Figure 5.1. From (1.16a) and (5.1), with 
k = 0, we see that vo(t) = Oft"1) uniformly as t —> oo in the sector |ph£| < ir/r. 
Accordingly, on letting R —► oo, (5.4) becomes 

2nivo(z) = - - + )?®dt. 

In the first of these integrals, we substitute for vo(t) by means of (5.2) with k = 1. 
This yields 

Jpe-xi/r        t — Z Jpe-Tzi/ /pe7ri/r c/ ^ j pe--nt/r   t Z 

J pe-7ri/r t — Z JpeTri/r t — Z 

We now integrate V2(t)/(t-z) around the closed contour Ci depicted in Figure 5.2, 
and again let R —► oo. From (1.16a) and (5.1), with k = 2, we see that V2(t) = Oft"1) 
uniformly as t —> oo in the sector ir/r < pht < Sir/r. Hence, we obtain 

r""?ffl(a=r-"?w,<+r-"'-M(jl. 
Jpeni/r        t        Z Jpe3iri/r        t — Z J peni/r        t — Z 

Then by application of (5.2), with k = 3, we derive 

Jpeni/r t — Z Jpe3ni/r t — Z Jpe^i/r t — Z JpeWr t — Z 

Substituting into (5.5) by means of this equation, we obtain 

'ri/r «,   m /.ooe37ri/r        /.x /•PC'*/ 

Jpeni/r t — Z JpeSvi/r t — Z Jpe-Tri/r   t — Z 

J peTTi/r        t        Z Jpe-Tti/r        t — Z J pe37ri/r        t — Z 

We may regard (5.5) as the first stage in a cycle of substitutions and (5.6) as the 
second stage. We may continue the substitutions until we reach the rth stage, and 
then observe that 

J pe-^i/r t — Z Jpe(2r-l)7ri/r 

this being a consequence of the relation 

V2rft)=Vofte-2*i), 

obtained from (4.1a) and (5.1). Therefore, (5.3) is precisely the result that is obtained 
on completion of the rth stage. □ 
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Lemma 5.2. 

27rzas,i = - V)C2fc+i / v2k+1(t)tsdt + V) / v2k{t)t
3dt.   (5.7) 

The derivation of this result from Lemma 5.1 is similar to the deirivation of Lemma 
3.2 of [12] from Lemma 3.1 of [12]. We omit the proof. 

To complete the proof of Theorem 4.1, we observe from (1.16b) and (5.1) that for 
each k 

771—1 1 

i=o 

as t —► oo in S2fc+i and, in particular, as t —► oo along the ray pht = (2k + l)ir/r. By 
hypothesis, ^(t) — €i(t) = tr, hence 

/ v2k+1(t)t
8dt = V ^,2 / etrt8+"-i-ldt 

Jpe(2k+l)ni/r <r^ Jpe(2k+l)ni/r 

+ / etrO(ts+Cl,-m-1)A, 
Jpe(2k+l)Tri/r 

where the O-term is uniform for all positive integer values of 5. Taking a new variable 
r defined by t = exp{(2fc + l)7ri/r}r1/r, we find that the right-hand side of the last 
equation becomes 

.•_n        ' Jpr 
j=0 

+ o(r e-rr(s+^-m-r)/rrfr). 

As in [12], §4, we may replace each lower limit pr by zero without disturbing the 
uniformity of the 0-term with respect to s. Thus, we obtain 

/ J 0t pc(2fc + l)ir«/r r ~^ \ T / 

+ 0{T{ )},        s-^oo.        (5.8) 

To establish (4.18a), we substitute into the first sum in (5.7) by means of (2.3), (5.8) 
and then observe that the second sum is 0(ps) as s —> oo and therefore is absorbable 
in the estimate C?[r{(s + Ko; - m)/r}]. Lastly, in consequence of Stirling's formula, 
0[T{(s + Ku; - m)/r}] C 0[r{(s + a; - m)/r}]. Equation (4.18b) may be proved in 
a similar manner, and the proof of Theorem 4.1 is complete. 

Remark. Using another approach, Immink [7] constructed integ;ral representations 
of Stieltjes type for solutions of linear differential equations of any order; compare 
Lemma 5.1. Prom these representations, she then obtained asymptotic approximations 
for the Stokes multipliers that in effect supply the dominant terms of the expansions in 
Theorem 4.1. In other words, in the case of second-order equations, Immink's results 
correspond to ours with m = 1. This is an important difference, however, because the 
restriction to m = 1 renders the approximations much weaker for numerical purposes; 
compare the examples in §6 below. 
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6. Examples 

Example 1. We take 

d2w     /H       9. dw     _       A, ,„ ,v 

^■ + (1-z)^ + (1-z)u; = 0- ^ 

In the notation of §1, we have f{z) = 1 — z2, g(z) — 1 - z4, and hence r = 3. For the 
formal series solutions (1.9), we find that 

&(*) = ^^ + (# - 1)-.       &(*) - ^^ - (f + i)*, (6-2) 
and 

Mi^lV^-l,        /i2 = -|\/5-l,        a; = /i2 -Mi = -|\/5. (6.3) 

Thus, the singulant Zziz) ~?i(^) = !\/5z3 - ^v^^. Since this is not a monomial, The- 
orem 4.1 is not immediately applicable. Accordingly, we transform (6.1) as indicated 
in §4. On setting 

x3 = iVbz3 - l^/Sz 
and taking the cube root, we find that 

x=-Tz- -TTir*"1 + 0(z~3)>        z-*oo. 
33        SaSe 

Hence by reversion, 

z = 
56        SsSt 

33 1 
2=—r^H—r~Tx  1 + 0(x 3)'        a:-^ 00, 

thus 

c0 = 335   e? ci = 0, C2 = 3   35   6^ 03 = 0. 

Our choice of new independent variable is therefore 5, defined implicitly by 

z = P+^k^ (6-4) 
compare (4.6). In the transformed differential equation 

d2w      ts^dw     „,„. .     . 
W + f(*)M+9(*)*> = 0, (6-5) 

the coefficients are given by (4.9). We find that 

m=-4?+i« - ^ + j^ji - (1 - 5^)"^.    (6-6) 

~ 3125c^6 - 15625c^8' ^'^ 

Formal series solutions are 
00 

eii (5) #*! v ^1     ^"2 (z) ^2 sr ^2 E¥'        e^)5-£^, (6.8) 
s=0 s=0 

where jUi and ^2 are as in (6.3) and 

IxC?) = -1(1 - -^)53 - fcoi,        6(5) = |(1 + ^)53 - fcoz. (6.9) 
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s = 33 Ao Ai A2 A3 
771= 1 -4.28024360z 0.53504119 + 0.13182434i -1.59057354-1.25459872* -2.16118253* 

771= 10 -4.87003491* 0.50940646 + 0.156482512 -1.60891229-1.02017197* -2.38919826* 

771= 19 -4.87002156z 0.50940850 + 0.15647932* -1.60891135-1.02017656* -2.38916059* 

m = 28 -4.87002160z 0.50940850 + 0.15647933* -1.60891136-1.02017655* -2.38916077* 

771 = 37 -4.87002160i 0.50940850 + 0.15647933* -1.60891136-1.02017655* -2.38916077* 

TABLE 6.1. Approximations for the Stokes multipliers of (6.1). 

In consequence, £2(£) — ^i(^) = £3 as expected and as required by (4.17). 
With the aid of the software package MAPLE V [1], we computed numerically the 

Taylor series expansions of the functions pj (z) and qj{z) associated with (6.5); compare 
(1.13) and (1.14). From these results, we generated the coefBcients aS)i and as^ via 
(1.12), proceeding as far as s = 101. Sample values are 

«o,i = 1, 

aM = -0.39691860, 

a2fi = 0.033329236, 

5^! = -0.053431001, 

54,1 = 0.10293154, 

55,i = -0.029902385, 

5o,2 = 1, 
51,2 = 0.25184962, 

52,2 = -0.087257074, 

53,2 = 0.33387567, 

54,2 = 0.21695963, 

as 2 = -0.052190874, 

5ioi i = -6.3158988 x 10 ,34 5101,2 = 1.2029605 x 1035. 

To compute the Stokes multipliers {Ak} associated with (6.5), (4.19) and (4.21) were 
set up numerically with s = 33 and various values of m in (4.20) and (4.22). The two 
sets of three simultaneous linear algebraic equations were solved for the {Afc}. Sub- 
sequently, the desired multipliers {Ak} for (6.1) were obtained by use of the identity 

(ivs) (-)*AV5 
Aki (6.10) 

compare (4.16). 
Final results for m = 1, 10, 19, 28, and 37 are presented in Table 6.1. Since 

A4 — -A2 and As = —Ai (compare (2.5) and (4.2)), we omit the results for A4 and 
A5. The agreement of the entries in the last two rows indicates that, to the present 
accuracy, the neglect of the O-terms in equations (4.18) is justified after the stage 
m = 28 is reached. We infer that these entries give the correct values of Ak to eight 
decimal places. 

Example 2. We take the first example in [10], which is the system 

dx 
1 + i*2 

2x 2 + x-x2 W. (6.11) 

In [10], the asymptotic analysis applies to the case x —> 0. In terms of z = 1/x, the 
system becomes 

dW 
dz -2 -2z -1 + 2" 

W. (6.12) 
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On decomposing W = [X,y]T, we obtain the simultaneous equations 

Eliminating Y, X, in turn, we find that 

d2X 

(6.13a,b) 

Equations (6.14a,b) each have an irregular singularity of rank 2 at infinity. On 
applying the theory of §1, we find that there are solutions Xk, Ffe of (6.14a,b), respec- 
tively, with the properties 

dz2 

cPY 
dz2 

—   2—        —1 k even:    Xk ~ e z    zz    , 

k odd:    Xk ~ e'i^z'i, 

Yk - e-z -z, 

Yk ~e  ^ z  35 

z —> oo in 5^, 

z —> oo in 5^, 
(6.15) 

where 5^ = {z : (|fc - f JTT + 5 < ph^ < {\k + |)7r - 5}. (Thus a = 0 for both 
differential equations.) Moreover, from (6.15), it is clear the solution Y of (6.13a,b) 
that corresponds to X = Xk is Y = (-)fc2Ffc, and also that 

(-)fc2n   (-)fc-12yfc_1 
(6.16) 

is a fundamental matrix solution of (6.12).  Any other fundamental matrix solution 
can be expressed in the form 

C, 
Xk Xk-i 

_(-)k2Yk   (-)*-12rfc.i_ 

where C is a non-singular constant matrix [17, §2.3]. In particular, 

Xk+i Xk 
(-)fe+12n+1    (-)

k2Yk 
Xk Xk-i 

(-)k2Yk  (-)fc-l2n_1 ^21        0' 

12 
(*) 
22 

(6.17) 

(6.18) 

say. We set ourselves the task of computing the scalar constants C^^, CJ^ , C21 > an(^ 
022  * 

By comparing the asymptotic behavior of the two sides of (6.18) as z —> 00 in the 

sector ^k—^TT < phz < ^fc+^yr, we immediately conclude that C^ = Ck,x = ~Ck,Yi 

C$ = C^ = 1, and C$ = 0. Here {Ck,x} and {Cfc,y} denote the "C-type" Stokes 
multipliers of equations (6.14a,b), respectively; compare (2.2). Hence, (6.18) reduces 
to 

Xk+i Xk 

(-)k+12YM    (-)k2Yk 
Xk Xk-i 

(-)k2Yk   (-)
fc-12yfc_1 

ck,x  1 
1      0 

(6.19) 

and we also observe that the Stokes multipliers of (6.14a,b) differ only in sign. 
We apply the method of §4 to compute the Stokes multipliers for (6.14a). We 

have r = 2 and find that u — |, CQ = v^, ci = — 1, C2 = \y/2. Accordingly, our 
transformation variable z is defined by 

z = >/2z-\. (6.20) 
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S := 30 Co,x C1,x C2,X C3,X 
m:= 1 13.114172i 7.2724007 - 0.95787147i -0.22234619 - 0.12837163i 4.4657414 - 5.8191481i 

m:= 9 14.849803i 7.2773761 + 0.30624016i -0.20091135 - 0.11599622i 3.3734763 - 6.4555127i 

m:= 17 14.849851i 7.2773721 + 0.30622089i -0.20091164 - 0.11599639i 3.3734910 - 6.4554995i 

m:= 25 14.849851i 7.2773721 + 0.30622084i -0.20091164 - 0.11599639i 3.3734910 - 6.4554995i 

m:= 33 14.849851i 7.2773721 + 0.30622084i -0.20091164 - 0.11599639i 3.3734910 - 6.4554995i 

TABLE 6.2. Approximations for the Stokes multipliers of (6.14a). 

Since this is a linear transformation, the calculations are simpler than in Example 1. 
After computing the "A-type" Stokes multipliers {Ak} of the tranBformed differential 
equation, the Ck,X are obtained by use of the identity 

(6.21) 

compare (2.3) and (4.16). 
Final results are presented in Table 6.2 for the case when s = 30 in (4.19)-(4.22) 

and m = 1, 9, 17, 25, and 33 in (4.20) and (4.22). Similar conclusions may be drawn 
concerning accuracy to those drawn above for Table 6.1. 

7. Direct numerical methods for the Stokes multipliers 

In principle, the calculation of the Stokes multipliers Ck and Ak defined in §2 by direct 
integration of the differential equation (1.1) is quite simple. Let Zo be a point in Sk-l 
sufficiently close to infinity to enable Wk-l (zo) and W~_l (zo) to be computed to a 
prescribed accuracy from (1.16a) or (1.16b) and their differentiated forms. Similarly, 
let Zl be a point in the interior of SkUSk+1 that is sufficiently close to infinity to enable 
Wk(Zl) and Wk+l(Zl) to be computed from (1.16). By numerical integration, starting 
with the initial values Wk-l(ZO) and w~_l (zo), the value of Wk-l (zll is obtained. Then 

Ck = Wk+1(Zl) - Wk-l(Zl). 
Wk(Zl) (7.1) 

The difficulty in this approach is that it is prone to numerical instability. If Zl 

is taken to be an interior point of Sk, then Wk-l(Zt) and Wk+1(Zl) will be almost 
indistinguishable numerically, and wk(zd will be exponentially small in comparison. 
This means that severe cancellation will occur in evaluating the right-hand side of 
(7.1), and consequently little or no precision will remain in the computed value of Ck. 
On the other hand, if Zl is taken to be in Sk+l, then the computation of Wk-l(Zl) 
will be unstable if the integration path lies in the neighborhood of infinity, because on 
parts of it (in fact within the left-hand half of Sk), Wk-l(Z) decays rapidly compared 
with other solutions of the differential equation. 

The difficulty is overcome if the real part of the singulant 6 (z) -·6 (z) is monotonic 
on the integration path. However, the construction of such a path is not straightfor­
ward in general. For reasons given above, it cannot be confined to the neighborhood 
of infinity, and it may be dependent on the distribution of turning points and the 
other singularities of the differential equation. In these cases, [14] may be helpful. 
Although this reference is devoted to the problem of calculating the Stokes multipliers 
asymptotically when there is a large parameter present in the differential equation, it 
includes an investigation of the topology of the curves along which ~{6(z) - 6(z)} 
is monotonic. In addition, the Appendix in [14] supplies a numerical method for 
computing these curves. 
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A modification to this procedure is to make the same preliminary transformation 
of independent variable as that described in §4 to reduce 6(z) - 6(z) to the mono­
mial form ZT. This greatly simplifies the task of finding integration paths on which 
~{6(z) - 6(z)} is monotonic, although it may do so at the expense of introducing 
an extra singularity into the differential equation at z = O. 

Consider again Example 1 of §6. We may integrate numerically either (6.1) or (6.5). 
The only singularity of the former is at z = 00, but the singulant is ~v5z3 - iv5z. On 
the other hand, the latter equation has z3 as singulant, but it has a second singularity 
at the origin. For illustration with this example, we compromise by integrating (6.1) 
numerically along rays through the origin on which ~(z3) is monotonic. This combines 
the simplifying features of the two possibilities, but at the risk of introducing some 
instability into the computations. 

In the numerical integration, we start with Zo = 11 and we compute Wo (zo) and 
wb(zo) by taking 11 terms in (1.16a) and its differentiated form. We obtain wo(zo) = 
1.0137883 x 10-121 and wb(zo) = -7.6141442 x 10-120 • By differentiation of (6.1), we 
see that the coefficients of the Taylor series expansion 

00 

wo(z) = Lds(z - zo)S (7.2) 
s=o 

are given by do = wo(zo), d1 = wb(zo), and 

(s + 1)(s + 2)ds+2 = (s + 1)(z5 - l)ds+1 + (z6 + 2szo - l)ds 

+ (4z3 + s - l)ds- 1 + 6z5ds-2 + 4zods- 3 + ds- 4 , (7.3) 

s = 0,1,2, ... , where we set ds = 0 if s < O. Taking the first 40 terms of (7.2) and 
its differentiated form, we approximate wo(z) and wb(z) at z = Zo - 210. Again, we 
compute the Taylor series expansion of Wo (z) at z = Zo - 210' and with this expansion, 
we approximate wo(z) and wb(z) at z = Zo - 220 . After 220 steps, we obtain wo(O) = 
0.81045660 and wb(O) = -0.16426746. We then continue this process along the ray 
phz = ~7r. After 220 steps in this direction, we arrive at ZI = 11 expa7fi) with 
WO(ZI) = (3.8675043 + 3.3107321i) x 10311 .6 

To compute C1 from (7.1), we also need wl(zd and W2(ZI). These quantities can 
be found by use of the expansions (1.16). Again with 11 terms, we obtain wl(zd = 
(-8.2587430 + 4.8022021i) x 10311 . In comparison, W2(ZI) is negligible. Accordingly, 
(7.1) yields 

C1 = 0.17576723 + 0.50307920i 

and, hence, from (2.3), we obtain 

Al = exp( -125 v57fi)C1 = 0.50940850 + 0.15647933i. 

This agrees with the result given in the last two rows in Table 6.1, indicating that the 
possible instability in integrating the differential equation along the chosen path was 
not realized. 

Another general and reasonably stable variant of the method of numerical integra­
tion, and one that will extend more readily to differential equations of higher order, is 
as follows. As in Lemma 5.1, let p again denote a constant that exceeds the radius of 
convergence of each ofthe power series (1.2a), (1.2b). Also, let Zj (j = k -1, k, k + 1) 

6This procedure for the numerical integration of (6.1) is, of course, the well-known Taylor series 
method [2, §6.3]. We have used it simply for illustration; other methods could equally well be 
employed. 
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Zk+1 

FIGURE 7.1. Paths for numerical integration (second method). 

be a point in Sj sufficiently close to infinity to enable WJ(ZJ) and WJ(ZJ) to be com- 
puted from (1.16a), (1.16b), their differentiated forms, and pj -= pexp(zphzj); see 
Figure 7.1. Starting with the initial values WJ(ZJ) and wfaj), we integrate inwards 
along the ray phz = phzj to compute Wj(pj) and Wj(pj) for j = k — 1, /c, k + 1. 
We then may compute Wk-i(pk) and Wk+i^pk) by integrating along arcs of the circle 
1^1 = p. (This will be stable provided that p can be chosen to be sufficiently small.) 
Lastly, Ck is found from formula (7.1) with zi replaced by pk throughout. 

All of the entries in Tables 6.1 and 6.2 were recomputed by at least one of the two 
methods described in the present section, and numerical agreement was satisfactory 
in all cases. We would add that the computations needed in these direct numerical 
methods are considerably longer than those used in the asymptotic method described 
in §4. 

8. Suramary and conclusions 

In §1, we summarized the theory of the asymptotic solutions of the form 
oo oo 

Zs   zs  ' JL^   Z 

in which £i(z) and £2(2) are polynomials, for linear second-order differential equations 
having an irregular singularity at z = 00. In §2, we discussed the problem of finding 
the linear identities that hold among any three asymptotic solutions of these types. 
The coefficients in these identities are the so-called Stokes multipliers. The case of a 
singularity of rank unity was considered in §3, and asymptotic expansions of as,i and 
as?2 for large s were supplied in series of inverse factorials. These €;xpansions then may 
be used to compute the Stokes multipliers quite simply. 

In §4, the corresponding asymptotic expansions of aSji and as^ for large s were 
stated for a singularity of arbitrary rank r, and it was shown how to use the results to 
compute the Stokes multipliers by solving two sets of r simultaneous linear algebraic 
equations. §5, is devoted to the proof of the asymptotic expansions of the coefficients 
as?i and as^ stated in §4. Two numerical examples were furnished in §6, one for a 
singularity of rank 3, the other for a system of two first-order differential equations 
having a singularity of rank 2. 

^,2 

zs 
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In §7, we described another method for calculating the Stokes multipliers based 
on procedures for direct numerical integration of the differential equation. Potential 
problems of numerical instability were outlined, together with ways of overcoming this 
instability. The examples given in §6 were recomputed using this method. 

Both methods we have described are very powerful, and both may be capable of 
extension to differential equations, or systems of differential equations, of order higher 
than two. 

Acknowledgments. The authors are indebted to Professors D. A. Lutz and Y. 
Sibuya for supplying several references and Professor B. L. J. Braaksma for helpful 
discussions. 
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