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SOLUTIONS OF THE STRONG STIELTJES MOMENT PROBLEM 

Olav Njastad 

ABSTRACT. The strong Stieltjes moment problem for a bi-infinite sequence 
{cn, n = 0, ±1, ±2,... } can be described as follows: (1) find conditions for the 
existence of a positive measure /x on [0, oo) such that cn = J^0171 dn{t) for all 
n, (2) when there is a solution /L/, find conditions for uniqueness of the solution, 
and (3) when there is more than one solution, describe families of solutions. In 
this paper, we investigate aspects of question (3). In particular, we discuss so- 
lutions and their Stieltjes transforms that are obtained by utilizing a theory of 
quasi-orthogonal and of pseudo-orthogonal Laurent polynomials. 

1. Introduction 

The classical Stieltjes moment problem can be defined as follows: given a sequence 
{cn, n = 0,1,2,... } of real numbers, (1) find conditions for there to exist a (positive) 
measure n on [0, oo) such that cn = /0 tndti{t) for n = 0,1,2,..., (2) when there is a 
solution of the existence problem, find conditions for uniqueness of the solution, and 
(3) when there is more than one solution, describe (subfamilies of) the family of all 
solutions. The problem is called determinate when there exists exactly one solution, 
and indeterminate when there exists more than one solution. The problem was treated 
first by Stieltjes [34] in 1894 and then by Hamburger [12] in 1920-21 for the case when 
the support of /i is only required to be contained in (—oo, oo) (the classical Hamburger 
moment problem). These initial works were followed by an extensive development of 
a theory of moment problems where the connection with the theory of orthogonal 
polynomials plays a central role, e.g., see [1, 2, 7-9, 21, 22, 32, 33, 35, 36]. 

The strong Stieltjes moment problem (and strong Hamburger moment problem) can 
be formulated in the same way as the classical problems, except that here bi-infinite 
sequences {cn, n = 0, ±1,±2,...} are involved. These problems were introduced 
around 1980 by Jones, Thron, and Waadeland [20] for the Stieltjes case, and by Jones 
and Thron [17, 18] for the Hamburger case. In the following years, a theory of these 
problems and their connection with a theory of orthogonal Laurent polynomials was 
developed as far as questions (1) and (2) were concerned, see [3-6, 10, 11, 13-20, 
29-31]. In [28], a theory concerning question (3) for the strong Hamburger moment 
problem was developed. In particular, an analog to the Nevanlinna parametrization of 
solutions in the classical case was presented (cf. [1, 23, 33, 35]). In this paper, we make 
a contribution to a study of question (3) for the strong Stieltjes mc-ment problem. 

2. Natural solutions 

Let {cn, n = 0, ±1,±2,...} be a given bi-infinite sequence of real numbers. The 
Strong Hamburger Moment Problem (SHMP) for the sequence consists of finding all 

Received October 11, 1994, revised March 8, 1995. 
1991 Mathematics Subject Classification. 30E05, 42C05, 44A60. 
Key words and phrases: orthogonal Laurent polynomials, strong moment problems. 
Research partially supported by the Norwegian Research Council. 

320 



SOLUTIONS OF THE STRONG STIELTJES MOMENT PROBLEM 321 

(if any) positive measures // on (-00,00) satisfying 

6ndn(e)   for   n = 0,±l,±2,.... (2.1) 
■OO 

The Strong Stieltjes Moment Problem (SSMP) similarly consists of finding all (if any) 
positive measures fi on [0, oo) satisfying 

= /    endfi(e)    for   n = 0,±l,±2,.... (2.2) 
./o /o 

For any pair (p, q) of integers with p < q, let Ap,q denote the complex linear space 
spanned by the functions zJ, j = p,.. .,q. We write A2m = A_m>m and A2m+i = 
A_(m+x),m for m = 0,1,2,..., and A = U^Lo^- ■^■n element of A is called a Laurent 
polynomial 

Let M be the linear functional defined on the basic elements zn by 

M[zn] = cn,    n = 0, ±1, ±2,... (2.3) 

The conditions for a measure /z to solve the SHMP and the SSMP are equivalent to 
/oo 

L(6)dn(9)   for all   LeA (2.4) 
■OO 

and 
/»oo 

M[L}=        L{0)dn(0)   for all   L <E A, (2.5) 

respectively. A necessary and sufficient condition for the SHMP to be solvable is that 
the functional M is positive on (—00,00), while a necessary and sufficient condition 
for the SSMP to be solvable is that M is positive on (0,00), see [10, 14, 15, 18]. (That 
M is positive on an interval I means that M[L] > 0 for all L € A where L(z) ^ 0, 
L(z) > 0 when z G /.) A moment problem is called determinate when there is exactly 
one solution, and indeterminate when there is more than one solution. 

In the following, we always assume that M is positive on (—00,00). 
An inner product ( , ) is defined on A^ x AR (where AR denotes the real space 

spanned by all z^, j = 0, ±1, ±2,...) by 

(PiQ) = M[P(z).Q(z)]. (2.6) 

Let {<Pn} be orthonormal Laurent polynomials obtained from the base {l,^-1,^, 
2~2, z2,..., z~n, zn,... }. They shall be assumed normalized such that they may be 
written in the form 

V2m(z) = ^^ + • • • + <72m,m*m, <Z2m,m > 0, (2.7) 

^2m+l(^) =  tfZ+l ' *" ^2m+l,m^m, ^2m+l,-(m4-l) > 0> (2-8) 

for m = 0,1,2, The functional M and the system {^n} are called regular if 
<72m,-m 7^ 0, g2m+i,m ¥" 0 for aU m-   In the following, we shall assume that M is 
regular. That is always the case if M is positive on (0, oo), see [10, 13, 14]. 

The associated orthogonal Laurent polynomials {ipn} are defined by 

~<Pn(0)-<pn(zy Mz) = M (2.9) 
0-z 

(The functional is applied to its argument as a function of 9.) We note that ^0 = 0, 



322 NJASTAD 

The functions {</?n} and {i/in} satisfy the following three-term recurrence relation 
(where fniQnthn are constants): 

W2rn{z) 

}p2m(z) 

V2m+l(z) 

= (92m + h2mZ) 

- fn 4-h 1>i   [V2m(*) 

+ /2m 

+ f2m+l 

<P2m-2(z) 

^2m-2(z) 
m 

<P2m-l(z) 

and 

1 / n n        / 'llC-1 

1,2,...,     (2.10) 

m = 0,1,2,..., 

(2.11) 

(2.12) 

The functions {<£n} and {^n} thus are denominators and numerators of a continued 
fraction. This continued fraction is equivalent, in general, to an APT-fraction when 
M is regular and positive on (—00,00). When M is positive on (0,oo), the continued 
fraction is equivalent to a positive T-fraction, see [15, 19] (cf. also [24-27] for the 
situation when M is not necessarily regular). 

By considering inner products with suitable tpk{z) on the right- and left-hand sides 
of the recurrence relations (2.10)-(2.11), the following expressions for the coefficients 
in terms of the coefficients in ipn(z) can be obtained: 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

/2m = 
q2m-2,m-lQ2m,-m 

<l2m-l,m-iq2m-l,-m 

/2m+l = Q2m-l,-7nQ2m+l,m 

Q2m,-mQ2m,m 

92m = 
Q2m,-m 

q2m-l,-m' 

92m-\-l = Q2Tn+l,m 

Q2m,m 

h2m = 
q2m,m 

q2m-l,m-l 

h2m+l = <Z2m+l,-(ro+l) 

92r] 

(also see [16]). 
The determinant formula for continued fractions in our situation can be written as 

*¥>2m(3)^2m--l(*) " 3<P2m-l(*)^2m(s) 

(see [28, 30]). 
We introduce the expression Tn(z, a, b) by 

q2m,—•m 

q2m-l,-m 

g2m-f-l,7n 

q2m,m 

(2.19) 

(2.20) 

Tn(z, a, b) = ai)n(z) + b(pn(z),    n = 0,1,2,.. (2.21) 
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With this notation, the following general Christoffel-Darboux formulas are valid for 
arbitrary complex coefficients a, 6, c, d and for 2, £ G C — {0} (see, e.g., [28, 30]): 

zT27n-i{z,a,6)T2m(C, c,d) - CT2m_i(C,c,d)T2m(2;, a,6) 
2ra-l 

= /2m,"m   fH - 6c) + (* - 0 £ ^(z, a, ftjrjCC, c, d)}, (2.22) 
^2m-l,-m L ^ J 

^T2m+i(2, a, 6)r2m(C, c, d) - CT2m+i(C, c, d)T2m(z, a, 6) 
2m 

(ad - be) + (z - C) Y, Ti (z.a' 6)Ti (C c, d)] • (2-23) 
g2m+l,m 

We shall use these formulas in Section 3. 
By setting a = c = 0, 6 = d=lin (2.22)-(2.23), we obtain special Christoffel- 

Darboux formulas (involving only the orthogonal Laurent polynomials themselves), 
which may be written in the form 

¥>2m(C)[*V>2m-l(3) " C</>2m-l(C)] " CV2m-l{C)[V2m(z) " ^2m(C)] 
2m-l 

_     ftm,-m      (z_c)   ^^.(2)v?.(C),      (2.24) 

Q2m—1,—m ■   n 3=0 

<p2m(Q[z<P2m+l(z) " C^2m+l(C)] " C^2m+l(C)b2m(^) " ^2m(C)] 
2m 

^^-OE^W^tO-    (2.25) 
92m,m ...Q 

Dividing by 2 — £ and letting £ —► 2, we get 

1 1 2m—\ 

^2m(z)—  [Z(p2m-l(z)] - Z(f2m-l(z)—  [(p2m(z)] =       2m~m       Y]   ^(^)2
?       (2.26) 

«^ CLZ q2m-l,-m    ~^ 

1 1 2m 

^2m(2)-7-  [zV2m+l(z)] - Z^2m+\{z)—  fo>2m(*)] = ^m+1>m V ^\z)2. (2.27) 

All the zeros of ipn are real and simple, and if M is positive on (0,00), they are all 

positive. Let £J[ ,..., £n denote these zeros, ordered by size, £1 < £2 < * * * < £n • 
Then 

2m 2m-t-l 
TT £(2m) _ g2m,-m TTT   ^(2m+l) _      g2m+l,-(m+l) ^ 28) 

, _1 Q2m,m ,_1 ^2m+l,m 

It follows that 

^2m,-m > 0,       ^2m+l,m < 0, (2.29) 

when M is positive on (0,00). Consequently, 

/2m < 0,      f2m+l < 0, (2.30) 

92m > 0,      02m+l < 0, (2.31) 

^2m < 0,    A2m+i > 0, (2.32) 

when M is positive on (0,00). 
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If M is positive on (0, oo) (hence all the zeros of ipn are positive), it follows easily 
from (2.25)-(2.26) that between two consecutive zeros of <£n, there Is exactly one zero 
of ipn-i- Using (2.19)-(2.20) and the just-mentioned separation property of (pn and 
ifn-i, we find that between two consecutive zeros of (pn there is exactly one zero of 

In the general situation (M positive on (—00,00)), there exist positive weights 

Xi   ,..., An   such that the following quadrature formula is valid (see [10, 14, 16, 29]): 
n 

M{L} = J2X(C)L(&))    for    LGA2n_1. (2.33) 

Since the function f(9) =  ^-^ belongs to A2n-ij it follows from (2.9) and 
6 — z 

(2.33) that 

^^J     fca=1 ek-z 
Let v^ denote the discrete measure with mass A^ at the point ££ , k = 1,..., n. 

Then, according to (2.33), z/(n) solves the truncated (Hamburger) moment problem 
/oo 

ekdv^n\6),    fc = -2m,...>2m-lforn = 2m, (2.35) 
-OO 

/OO 

0kdv(n)(d),    Jk = -(2m + l),...,2mforn = 2m + l, (2.36) 
-OO 

Ck 

Ck 

and, furthermore, 

M*) _      f00 dvW(0) r^m. 
If M is positive on (0, oo), v^ solves the corresponding truncated strong Stieltjes 
moment problem, and the integral in (2.37) can be taken over (0, oo), since the support 
of z/n) in this case is contained in (0, oo). 

Since 
A^) + A(») + ... + A^) = M[1] = Co? (2>38) 

it follows by Helly's theorems that every subsequence {z/n(fc))} contains a subse- 
quence converging to a measure z/ which is a solution of the moment problem (i.e., 
the SHMP, in general, and the SSMP if M is positive on (0, oo)) and such that 
the corresponding subsequence of {^n(A;)(^)/(/?n(fc)(^)} converges locally uniformly to 
—f™(0 — ^)~1di/(^) outside (-oo, oo) (to —J^iO — z)~ldv(6) when M is positive on 
(0, oo)), see [10, 14, 16, 20]. Solutions that can be obtained in this way are called nat- 
ural solutions of the moment problem (cf. [8] for the classical situation). It is known 
that when M is positive on (0,oo), the subsequences {z/2m)} and {t/(2m+1)} converge 
to measures M0) and N^ (see Theorem 5.7 and cf. [19, 20]). It follows that when 
M is positive on (0, oo), the SHMP and the SSMP have two natural solutions in gen- 
eral and one natural solution when 7V(0) = N^. It also is known that the SSMP is 
determinate if and only if there is only one natural solution, also see Section 5. 

The Stieltjes transform F^ of a finite measure // is defined by the formula 
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The function F^ is a Nevanlinna function, i.e., it is analytic in the open upper half- 
plane U = {z e C : Im z > 0} (actually outside the support of /i) and maps U into the 
closed upper half-plane U. The discussion above shows that when {j/nW))} converges 
to a (natural) solution v of the SHMP, then {,0n(j)(^)/(^nO)(^)} converges locally 
uniformly in U to — Fu(z). 

For proofs and more detailed treatments of the questions discussed in this section, 
see [10, 13-20, 28-31]. 

3. Quasi-natural solutions 

In this section, we make the general assumption that M is regular and positive on 
(—oo, oo). We shall here review and complete the theory of quasi-orthogonal Laurent 
polynomials and their use in moment theory. For supplementary material, we refer to 
[10, 13, 14, 16, 28-30]. 

The quasi-orthogonal Laurent polynomials (pn(z^r) of order n are defined by 

V2m(z,T) = (P2m(z) - TZ^2m-l(z) (3.1) 
7- 

¥2m+l(z,T) = <P2m+l(z) <P2m(z)- (3-2) 
Z 

Here r is a variable, r € R = EU {00}. (For r = 00, ipn(z,T) = —(pn-i(z).) The 
associated quasi-orthogonal Laurent polynomials ipn(z,T) of order n are defined by 

1p2m(z,r) = fomiz) " TZ1p2m-l(z), (3.3) 
7- 

^2m+l(3,T) = fam+liz) 1p2m{z). (3.4) 
Z 

For n = 1,2,..., we also may write 

i;n(z,T) = M e-z (3.5) 

(Here, the functional M is applied to its argument as a function of 9.) 
The quasi-approximants Rn(z,T) are defined by 

RnM = ^^\. (3.6) 

For r = 0, they reduce to the ordinary approximants ipn(z)/<Pn(z), and for r = 00, 
they reduce to the ordinary approximants ,^n-i(z)/(pn-i(z). 

With the notation of Section 2, we may write 

<P2m(2, r) =     2m,~m H h (<72m,m " T^m-l,™-!^™, (3.7) 

^  ^ _  fem+l -(m+1) -rq2m-m)    , m ,       , 
^2m4-l(^»r) =  ^+i 1 H^m+l.m^    • (3.8) 

Thus, 

where 

/      N      B2m{z,T) (      N      52m+i(2;,r) 
¥>2m(*,T) =  -^r-^,      ^2m+l(^r) =        +\ , (3.9) 

£2m(2, r) = g2m,-m + ' • ' + ((?2m,m - 7-g2m-l,m-l)^2m, (3.10) 

-S2m+l(^?T) = fem+l,-(m+l) — ^27n,-m) H Y 92m+l,m^2m+1- (3.11) 
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Let ^(r),..., £nn)(T) denote the zeros of Bn(z, r) (in the case that deg B^z, r) — n), 
repeated according to multiplicity. Then 

d2m)(r) • • • ^\T) = q-^^ , (3.12) 
Q2m,m — TQ2m-l,m-l 

A2m+1),   x ^(2m+l)/   x Q2m+l,-(m+l) ~ ^m-m fo -IO^ 
Cl M • ' * ?2m+l    (r) = " ' W'1^) 

(l2m+l,Tn 

Recall that hn is one of the coefficients in the recurrence formulas for (pn (cf. (2.10)- 
(2.11), (2.17)-(2.18)). 

Theorem 3.1. Assume that M is regular and positive on (—00,00). 

A. All the zeros ofBn(z, r) are real and simple. The origin is not a zero ofBn(z, r), 
hence the zeros of <pn(z,T) are the same as the zeros of Bn(z,T). 

B. If M is positive on (0,oo)? then at least n-1 zeros o/^n(z,r) are positive. 

C. If M is positive on (0,00), then all the zeros of ^miz^r) are positive if and 
only if T £ (/i2m5oo), and all the zeros of (p2m+i(z,r) are positive if and only if 

T G (-00,/l2m+l)- 

Proof. A. For a proof of this general result, see e.g., [14]. 

B. Let £1,..., £A be the zeros of ^n(^5 T) of odd order in (0,00). First, let n = 2m, 
and assume A < 2m - 2. Set T{z) = (*-&)•••(*- 6)/^m- Then T(z) <E !±2m-i, 
zT(z) G A2m-2, and hence 

MfamM-Tiz)] = (V2m(z),T(z))-T(ip2m-l(z),zT(z)) = 0. 

On the other hand, ip2m{z,T) • T(z) does not change sign in (0,oo), so M[p2m{z,r) • 
T(z)] 7^ 0, which is a contradiction. Hence, A > 2m - 1. Next, let n = 2m + 1, 
and assume A < 2m - 1. Set T{z) = (*-&)•••(*- txl/z™-1. Then T(z) G A2m, 
^T(z) G A2m-ii and hence 

M[<p2m+l(z,T) • T(Z)] = (tp2m+1(z),T(z)) - T<P2m(*), -T(z)) = 0. 

On the other hand, ^m+iiz, r)-T(z) does not change sign in (0, oo), so M[(p2m+i(z, r)- 
T(z)] 7^ 0, which is a contradiction. Hence A > 2m. It follows from this that (pn(z,r) 
has at least n — 1 simple zeros in (0, oo). 

C. It follows from (3.12)-(3.13) together with the result under B that all the zeros 
of <P2m(z, T) are positive if and only if q2m-m/(Q2mim - Tq2m-i,m-i) > 0? and all the 
zeros of (p2m+i(z, r) are positive if and only if (22m+i,-(m+i) -'rq2m,-rxi)/q2m+i,m < 0. 
By taking into account (2.7)-(2.8), (2.17)-(2.18), and (3.12)-(3.13), we see that the 
conditions for all the zeros of (p2m(z, r) and ^2m+i(^5 r) to be positive are r > /i2m and 
r < h2m+i, respectively. (Note that, by (2.32), r = 0 is among the values for which all 
the zeros of (pn(z, r) are positive, in agreement with the statements in Section 2.)    □ 

For each n, each k = 1,..., n and each r G M, let ^(z, r) be the unique Laurent 
polynomial that satisfies 

L^MeAn-u    L<?\tf\T),T) = 8Jk (3.14) 

(see, e.g., [10, 14]). Set 

Ain)(T) = M[4B>(*,r)]. (3.15) 



SOLUTIONS OF THE STRONG STIELTJES MOMENT PROBLEM 327 

Theorem 3.2. Let M be regular and positive on (—00,00). 

A. The quadrature formula 

W[i1 = ^Ai!">(r)F(^)(r)) (3.16) 
fc = l 

25 valid for F e A_2m,2mT-2 when n = 2m and for F 6 A_2m,2m when n = 2m + 1. 

B. The weights A^   (r) are positive. 

Proof. See, e.g., [10, 14] and cf. also the remark after Theorem 4.2. □ 

In particular, the partial fraction decomposition for the quasi-approximants 

n \(n) /   \ 

jb=i z,k  vT;"- z 

follows as in the argument for formula (2.34). 

Let Vr denote the discrete measure with mass A^ (r) at the point £fc (r)> fc = 

1,... ,71. Then, according to (3.16), i4 solves the truncated strong Hamburger mo- 
ment problem 

/oo 

ekdv^\6), k = -2m, ...,2m-2, for n = 2m, (3.18) 
-OO 

/OO 

dkdv^{6), k = -2m,..., 2m, for n = 2m + 1. (3.19) 
-OO 

Furthermore, 

*•"•*>- -£ & (3•20, 

If M is positive on (0, oo), then i/r solves the corresponding truncated strong 
Stieltjes moment problem if and only if r > /i2m when n = 2m, or if and only if 
T < /i2m+i when n = 2m 4-1. Also, when these conditions are satisfied, the integral 
in (3.20) can be taken over (0, oo). 

As in the argument leading to the natural solutions of the moment problems, it can 
be seen that every subsequence {^T™(fc) } contains a subsequence {^rn(*(/))} converg- 
ing to a measure u which is a solution of the SHMP and such that the corresponding 
subsequence {Rn(k(j)){z,Tn(k(j)))} converges to -Fu(z), locally uniformly on C - R 

Solutions that can be obtained in this way shall be called quasi-natural solutions. 
If M is positive on (0, oo), then the quasi-natural solutions are also solutions of the 
SSMP, at least if Tn(k(j)) > 0 when n(k(j)) is even, or if rn(k(j)) < 0 when n(k(j)) is 

odd, since then all the measures ^r^ku)] ^ave support in (0, oo). 
For each z in the upper half-plane U and each n, let the mapping r —> w be defined 

by 

w = Wn = -Rn(z,r). (3.21) 

This linear fractional transformation maps R onto a circle contained in U. We shall 
use the notation An(z) for the open disk bounded by this circle, dAn(z) for the circle 
itself, and An(2) for the closed disk An(z)\JdAn(z). Obviously, the half-plane U (i.e., 
r G U) is mapped onto An(z) (i.e., w G An(z)) or onto C - An(z). If M is positive 
on (0, oo), then U is always mapped onto An(^). This can be seen from the signs of 
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the recurrence coefficients fn,hn in this situation (cf. (2.30), (2.32)) and composition 
of the transformations 

/: 2m 

#2m + ^mZ - TZ 
,    and   r f2m+l 

92m+l + ^2m+l ^ — f 

(The argument is similar to the proof of Theorem 4.6.)  Analogous results are valid 
when z belongs to the lower half-plane —17. 

By solving (3.21) with respect to r, we get 

T = 
(P2m(z)w2m + 1p2m(z) n = 2m 

Z[(p2m-l(z)w2m + fom-l(*)] ' 

z[<P2m+l{z)W2m+l + 1>2m+l(z)]     „       «       ,   « 
T =  r-r — T-r ,   71 = iTR + 1. 

^2m(^)^2m+l + W2m{z) 

Theorem 3.3. Let M be regular and positive on (—00,00). 

A. The disk An(z) consists of those w that satisfy the inequality 

n-l 

X>i(*)+wj(*)i2< 

(3.22) 

(3.23) 

w — w 

j=o 
z — z 

B. Am(z) C An(z)   for   m > n 

C. The radius rn(z) of the disk An(z) is given by 

rn(z) = 

n-l 

j=0 

-1 

(3.24) 

(3.25) 

(3.26) 

Proof A. The circle dAn(z) is given by Imr = 0 in formulas (3.22)-(3.23), i.e., 
w G dAn(z) if and only if 

zT2m(z, W, l)T2m-l(z, W,l) - Z T2m(z, W, l^m-liz, W, 1) = 0 

and   
zT2m+l(z,W, l)T2m(z,«;, 1) - zT2m+l(z,W, l)T2m{z,lU, 1) = 0, 

respectively. By using formulas (2.22)-(2.23) with C = z, a = w, b == 1, c = it), d = 1, 
we find that it; G 9An(2;) if and only if 

n-l 
w — w 
z — z J-Eir^iM)!2, 

i=o 

from which (3.24) easily follows. 

B. The inclusion Am(z) C An(z) for m > n follows immediately from A. 

C. It follows from (3.22)-(3.23) and standard properties of linear fractional trans- 
formations that 

Z[^2rn(z)ip2m-l(z) - ^2m-l{z)ip2m{z)] 
r2m(z) = 

r2m+l(z) = 

Z(p2m(z)ip2m-l(z) - Zip2m-l{z)^2m{z) 

Z~l[^2m{z)^2m+l{z) - ll>2m+l(z)<P2m(z)] 

(3.27) 

(3.28) 
Z(p2m(z)(p2m+l(z) - Z(p2m+l(z)(p2m(z) 

Substitution from (2.19)-(2.20) and from (2.22)-(2.23) (with a = e = 0, 6 = d = 1, 
C = z) leads to the formula (3.26). For more details, see [28, 30]. □ 
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It follows from (3.1)-(3.4), (3.6) that -ipn(z)/f(Pn(z) belongs to both dAn(z) and 
<9An+i(z).    Thus dAn+i(z) is tangent from the inside to dAn(z) at the point 
-ll)n(z)/Vn(z). 

It follows from (3.18)-(3.20) that all the points on dA2m(z) are values of the Stieltjes 
transforms F^z) where /x solves the truncated strong moment problem 

Ck 

/oo 

ekdfi(d),    k = -2m,...,2m-2, (3.29) 
-OO 

and all the points on dA2m+i(z) are values of the Stieltjes transforms F^z) where fi 
solves the truncated strong moment problem 

/oo 

ekdfi(e),    k = -2m, ...,2m. (3.30) 
-oo 

Let ft2m(z) denote the arc of dA2m(z) corresponding to r £ (^m^oo) and let 
^2m+i(^) denote the arc of dA2m+i{z) corresponding to r £ (—00, /i2m+i)- It follows 
from Theorem 3.1C and (3.18)-(3.20) that all the points of £l2m(z) and Cl2m+i(z) 
are values of Stieltjes transforms F^z) where /i solves the truncated strong Stieltjes 
moment problem 

nOO 

= /    ekdfjL(e),    k = -2m,..., 2m - 2, (3.31) 
Jo 

poo 

ck=        ekdfi(e),    k = -2m,..., 2m, (3.32) 
Jo 

respectively. 
For later use, we introduce the set On(z) as the segment of the disk An(z) obtained 

as the convex hull of the arc tin(z)' 
We define 

00 

Ck 

and 

n=l 

and we let A00(^) and dA^z) denote the interior and the boundary of A00(z). It 
follows from Theorem 3.3B that A00(z) is either a single point or a closed disk. The 
radius r00(z) of A00(z) is given by (cf. (3.26)) 

OO n -1 

roo{z) Iz-zlJ^lVji*)? 
3=0 

(3.34) 

Theorem 3.4. Let M be regular and positive on (—00,00). 

A. // Aoo(^o) is a disk for some ZQ £ U, then AOQ(z) is a disk for every z £ U 
(limit circle case). // A00(zo) is a point for some ZQ £ U, then A00(z) is a point for 
every z £ U (limit point case). 

B. In the limit point case, ^^Lol^iWI2 := 00 an^ I^^=ol^(^)|2 = 00 for all 
zeU. 

C. In the limit circle case, the series X^Lol^WI2 an^ ^^=ol7/;n(^)|2 converge 
locally uniformly in C — {0}. 

Proof. See [28, Theorems 3.4-3.5]. The locally uniform convergence is implicitly con- 
tained in the proof of Theorem 3.5. □ 
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In Section 5, we shall discuss connections between (subsets of) the sets A00(z) and 
solutions of the strong moment problems. 

4. Pseudo-natural solutions 

In this section, we make the general assumption that M is positive on (0, oo).  The 
pseudo-orthogonal Laurent polynomials ^(z, r) of order n are defined by 

<S>n(z,T) = <pn(z) - rtpn-tiz),    r G I. (4.1) 

The associated pseudo-orthogonal Laurent polynomials ^n(z1T) are defined by 

tf„(s,T) = 1>n(z) - T^n-i(z),    r E R. (4.2) 

They also may be written as 

■$„(0,T)-$n(z,T)" 
yn(z,T) = M 

9-z 

The pseudo-approximants Sn(z,T) are defined by 

(4.3) 

For r = 0, they are the ordinary approximants ipn(z)/(pn(z), and for r = oo, they are 
the ordinary approximants ilJn-i{z)/<Pn-i{z)> 

With the notation of Section 2, we may write 

^2m\Z, T) =  — 1 h q2m,mZ    , (4.5J 

Thus, 

where 

*2m+l(s, T) = 92m^1
m;

(r+1) + ' • • + (»m+l,m " r^,m)^. (4.6) 

-r-       /        x        C2m{z,r)                        .        .        C2m+l(2,T) ,       . 
*2rn(^r) = —^ ,      $2m+l(*,T)= ^m+1 , (4.7) 

C2m(2, r) = (q2m-m " rg2m-l,m) + * ' * + 42™,™^™, (4.8) 

^2771+1(^5^) = (72m+l,-(m+l) H ^ (^2m+l,m " Tq2m,m)z"m      • (4.9) 

Let Cin\r),..., Cnn)(T) denote the zeros of Cnfa r) (in the case theit deg Cn(z, r) = 
n), repeated if necessary. Then, 

2m 
TT £(2m) — y2™'-171 ~ TQ2m-l,-m /. ^.QX 

fc=A   ^ ^2m,m 
2m+l 
TT   ^(2m+l) = g2m+lt~(m+l) (4.11) 

*^     fc ^2m+l,m - T^2m,m 

Recall that c/n is one of the coefficients in the recurrence formula for (fn (cf. (2.10)- 
(2.11), (2.15H2.16)). 

Theorem 4.1. Assume that M is positive on (0, oo). 

A. All the zeros of $n(z,T) are real and simple, and at least n — 1 of them are 
positive. 

B. All the zeros of$2m(z,T) are positive if and only ifrE. (—OQ,#2m)> and all the 
zeros of^2m-\-i(z1T) are positive if and only ifrE (<72m+i?o°)- 
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Proof. A. Let CI>--'>CA be the zeros of $n(^,r) of odd order in (0,oo). First, let 
n = 2m and assume A < 2m - 1. Set T(z) = (z - Ci) • • • (z - Cx)/zrn-1. Then 
T(z) e A2m-2 and hence 

M[<f>2m(z,T)T(z)} = (<p2m(z),T(z)) - T(<P2m-l{z),T{z)) = 0. 

On the other hand, $2m(^)/7")T'(^) does not change sign in (0, oo), so M[^2m(z,r) • 
T(z)] 7^ 0, which is a contradiction. Thus, A > 2m — 1. Next, let n = 2m + 1 and 
assume A < 2m. Set (z - Ci) • • • {z - (^/z™. Then T(z) E Agm-ij and hence 

M[*2m+l(^T) .T(*)] = (*2m+lW,r(z)) - r($2m(z),r(z)> = 0. 

On the other hand, $2m+i{z,T) • T(z) does not change sign in (0,oo), so 
M[<&2m+i{ZiT) - T(z)] 7^ 0, which is a contradiction. Thus, A > 2m. It follows 
that $n(z, T) has at least n — 1 simple zeros in (0, oo). The last zero is then real also. 

B. It follows from (4.10)-(4.11) together with the results under A that all the zeros 
of ^2m(z1r) are positive if and only if (q2m,-m - rq2m-i,-m)/Q2m,m > 0 and all the 
zeros of ^m+i^r) are positive if and only if (g2m+i,-(m+i))/(02m+i,m - T<?2m,m) < 
0. Taking into account (2.7)-(2.8), (2.15)-(2.16), and (4.10)-(4.11), we see that the 
conditions for all the zeros of $2m{z> r) and $2771+1(25 T) to be positive are that r < <72m 
and r > p2m+i5 respectively. (Note that by (2.31), r = 0 is among the values for which 
all the zeros of $n(z, r) are positive. This agrees with the statements in Section 2.)    □ 

For each n, each k = 1,..., n, and each r E R, let If^   (z, r) be the unique Laurent 
polynomial that satisfies 

Kin)(z,T)eAn-U    K^(^n\r),r)=8j,k. (4.12) 

(For the existence of such a Laurent polynomial, see [10, 14].) Set 

tt)(T) = M[Kln)(z,T)}. (4.13) 

Theorem 4.2. Let M be positive on (0, oo). Then the quadrature formula 

W] = E4n)(^(c£n)M) (4-i4) 
fc=i 

is valid for F E A_(2m_i),2m-i when n — 2m and for F E A_(2m+i),2m-i when 
n = 2m + 1. 

Proof. Let F E A. For each n and r, we set 

Fn(z,T) - £F{<£\T))K£\Z,T).. (4.15) 
fc = l 

Note that 

^(Cin)(r),r)=F(CJn)(r)),    j = l,...,n. (4.16) 

Assume that F E A_(2m_i),2m-i- Then f{z) = F(z) - F2m(z,T) E A_(2m_i),2m-i 

and /(Q m (r)) = 0 for k = 1,..., 2m. Hence, we may write 

where P2m-2(z) E n2m-2, and thus, P2™~2i E A2m_2. It follows by orthogonality 
that 

M[f] = {^^^2m(z,r))=0, (4.18) 
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which means 

M[F] = M[Fn{z,r)} = j^M\K^m\z,r)]F{^m){T)). (4.19) 

Next, assume that F 6 A_(2m+i),2m-i- Then 

g(z) = F{z) - F2m+l(2;,r) 6 A-(2m+l),2m-l 

and £(ci2m+1)(r)) = 0 for fc = 1,..., 2m + 1. Hence, we may write 

ffW = f2!^*2m+l(^T)> (4.20) 

where S2m_i(^) € n2m-i» and thus, ^"^^ € A2m-i- It follows by orthogonality 
that 

^] = (£?!I^'    ian^i^r^O, (4.21) 

which means 
2m4-l 

MIF] = MlfWifrr)] = E M[lfJ^1)(z,r)]F(ciara+1)(T),T). (4.22) 
fc=l 

The result now follows by (4.13), (4.15), (4.16), and (4.22). □ 

Remark. The positivity of the weights A^n)(r) in Theorem 3.2 can be established 

as follows. Since (42m)M)2 ^ A_2m,2m-2 and (42m+1)(^^))2 G A-2m,2m, the 
quadrature formula (3.16) may be applied to (L^n)(^,r))2. It then follows by (3.14)- 
(3.16) that 

*in>M - E4n)(r)(4n)(Cin)(r),r))2 = M[(4^(z,r))2] > 0. (4.23) 
A;=l 

This argument cannot be used to establish positivity of the weights /c^ (r) since 

{K^iz, r))2 does not belong to the domain of validity of the appropriate quadrature 
formula. 

The partial fraction decomposition for the pseudo-approximants 

is obtained as in the argument for formula (2.34). 
We shall show that the weights K^ are positive when r € (-00,02m) in case 

n = 2m and when r G (#2m+i>°o) in case n = 2m -f 1. We shall use separation 
properties of zeros of $n(2,r) and *n(z,T) to establish this. 

Proposition 4.3. Assume that M is positive on (0,oo). Let r be such that all the 
zeros of$n(z,T) are positive. Then between two consecutive zeros o/$n(z,r) there is 
exactly one zero of^n(z,T). 

Proof. Let r be given, and assume that there is a common zero ZQ for $n(2,r) and 
tfnfoT), i.e., such that ^n(^o) - ripn-xizo) = 0 and ^(20) - ripn-i{zo) = 0. Then, 
ipn(zo)(fn-i(zo) - V'n-i^oVn^o) = 0, which contradicts the determinant formulas 
(2.19)-(2.20). (Recall that zo would have to be positive.) Hence, $n(z, r) and Vn(z, r) 
have no common zeros. 
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The zeros of $n(z,r) and ^r
n(z,r) separate each other for r = 0 by the discussion 

following formula (2.32). Since $n(2,T) and *n(z,r) have no common zeros for r in 
the interval in question, it follows from the continuity of the zeros with respect to r 
that the zeros of $n(z,T) and ^n(z,r) separate each other as stated. □ 

Proposition 4.4. Assume that M is positive on (0, oo). Let r be such that all the 
zeros of $2m(Z'>T) and &2m+i(z'>T) are positive. Then, 

lim <I>2m(#, T) = oo, lim *2m(^)7") = oo, (4.25) 
X—KX) x—too 

lim $2m+i(x,T) = -oo, lim *2m+i(^5
/r) = -oo. (4.26) 

x—»oc x—>oo 

Proof. From (4.3), (4.5), (4.6), it follows that we may write 

*2m(*,r) = ^^ + • • • + fen.mCoz"1-1, (4.27) 

*2m+l(z,T) = ?'2m^(r+1) + • • • + (92m+l,m - Tftto.^Jco*™-1. (4.28) 

The limiting values (4.25)-(4.26) now follow from (2.7)-(2.8), (2.29), (4.5)-(4.6).    D 

Theorem 4.5. Assume that M is positive on (0,oo). Let r be such that all the zeros 

of<&n(z,T) are positive. Then all the weights KK
k 

;(r) in the quadrature formula (4-14) 
are positive. 

Proof. It follows from (4.24) that 

W^ V *n(*,T) ^n(CJn)(r),T) 
«;• ;(r) =     lim —-» = f-r . (4.29) 

*-Cin)(r) 

By combining the separation result of Proposition 4.3 with the limiting behavior results 
given in Proposition 4.4, we find that tyn(z,T)/$>fn(z,T) is positive for all the zeros £ 
oi$n(z,T). □ 

Remark. It can be verified by the same kind of reasoning that when r is such that 
one of the zeros Cfc of $71(2,7") is negative, then the weight Acj^ (r) at this zero is 
negative and the weights at the other zeros are positive. 

Let r be such that all the zeros of $n(2, r) are positive. Let erf1 denote the discrete 
measure with mass ^ (T) at the point Q (r)> & ^ 1, • • • ,^" According to Theorem 

4.2 and Theorem 4.5, err    solves the truncated strong Stieltjes moment problem 
/»oo 

ck = /    9kdai2rn)(9),    k = -(2m - 1),..., (2m - 1) for n = 2m, (4.30) 

/»oo 

cfc = /     0*d<42m+1)(0),    * = -(2m + 1),..., 2m - 1 for n = 2m + 1.       (4.31) 
JO 

In addition, 

Sn(z,r) 
dain)(d) -fT?- 

As in the argument leading to the natural and the quasi-natural solutions of the 
moment problem, it can be seen that every subsequence {0Tn(fc) } contains a subse- 

{(n(k(i))) 1 
^ncV/))   ) conv^rging to a measure a which is a solution of the SSMP and 

such that the corresponding subsequence {Sn(k(j))(z,Tn(k(j)))} converges to —Fa(z), 
locally uniformly on C — {0}. 
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Solutions that can be obtained in this way shall be called pseudo-natural solutions. 
We stress the fact that pseudo-natural solutions of the SHMP are defined only when 
M is positive on (0, oo) and they are automatically solutions of the SSMP. 

For each z in U and each n, let the mapping r —> UJ be defined by 

uj = un = -Sn(z,T). (4.33) 

This linear fractional transformation maps R onto a circle. We shall denote by Dn(z) 
the open disk bounded by this circle, by dDn(z) the circle itself, and by Dn(z) the 
closed disk Dn(z) U dDn(z). 

We define the linear fractional transformation 5n(z,r) (for a fixed z G U and fixed 
n) by 

82m(z,T) = -^ ,    m = l,2,..., (4.34) 
92m + h2mZ — T 

S2m+i(z1r) = "{2m+1 / ,    m=l,2,..., (4.35) 
92m+l + "<2m+l/Z — ^ 

^i+Ai/^-r 
We then have 

Sn(z, T) = -si o 52 o • •. o sn(z, r). (4.37) 

Theorem 4.6. Assume that M is positive on (0, oo); then 

Dm(z) C Dn(z) (4.38) 

w/ien m> n. 

Proof. By taking into account the sign of /n, <7n, and hn given in (2.30)-(2.32), we ver- 
ify that sn(£, r) e U when r G {7, i.e., 571(2? ^0 C C/, forn = 2,3,... . Since Sn(z, r) = 
5n_i(^,sn(z,T)), this means that Sn(z,U) = 5n_i(z,5n(z, J7)) C 5n_i(z, 17). We 
also observe that sn(z,U) does not contain 00. Hence, Dn(z) = —Sn(z,U), so 
JDn+1(^)C^n(z). D 

Let r2m(2;) denote the arc of dD2m(z) corresponding to r G (—00,^m)? and let 
r2m+i(2) denote the arc of dD2m+i(z) corresponding to r G (^2m+i)Oo)- It follows 
from Theorem 4.1B and (4.30)-(4.32) that all the points of r2m(z) and r2m+i(2) are 
values of the Stieltjes transforms F^z) where // solves the truncated strong Stieltjes 
moment problem 

poo 
ck=        dkdfi(d),    k = -(2m - 1),..., (2m - 1), (4.39) 

Jo 

poo 

ck=        6kdfi(9),    k = -(2m + 1),..., (2m - 1), (4.40) 
Jo 

and 

/o 
respectively. 

For later use, we introduce the set Gn(z) as the segment of the disk Dn(z) obtained 
as the convex hull of the arc Tn(z). 

We define 
00 

DM = n Dn(z), (4.41) 
n=l 
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and let Doo(^) and dD00(z) denote the interior and the boundary of D00(z). As for 
A00(^), it follows that D00(z) is either a single point or a closed disk. 

In Section 5, we shall discuss connections between subsets of D00(z) and solutions 
oftheSSMP. 

5.  Stieltjes transforms of solutions 

In this section, we make the general assumption that M is regular and positive on 
(—oo, oo). When solutions of the SSMP are involved, M is assumed to be positive on 
(0,oo). 

We shall study more closely the relationship between Stieltjes transforms of so- 
lutions of moment problems and the systems of disks {An(z)} , {Dn(z)}, circles 
{dAn(z)}, {dDn(z)}, and segments {On{z)} , {Gn(z)}. 

Before proceeding, we note from the definitions of dAn(z) and dDn(z) that the 
points -ipn(z)/(pn(z) and —^n-i(z)/^n-i(z) belong to both of these circles (in fact, 
to Qn(z) and Tn(z)). Thus, the two circles intersect at these two points. 

We recall from Section 3 that tin(z) consists of the values of the Stieltjes transforms 
at z of the discrete measures determined by quasi-orthogonal Laurent polynomials of 
order n and support in (0, oo). Similarly (from Section 4), Tn(z) consists of the values 
of the Stieltjes transforms at z determined by pseudo-orthogonal Laurent polynomials 
of order n and support in (0, oo). 

Theorem 5.1. Assume that M is positive on (0, oo). 

A. nn(z) = dAn(z)nDn.1(z). (5.1) 

B. Tn(z) = dDn(z) n An-i(s). (5.2) 

Proof. According to earlier remarks, the point -ipn-i(z)/(pn-i(z) is a common point 
for the circles dAn-i(z),dAn(z),dDn-i(z), and dDn(z). 

A. We recall that -R2m{z,r) € 02m(^) if and only if r e (h2m,oo). The value 
r = oo gives the end point -il;n-i(z)/(pn-i(z). For the other end point of ^2m(^), we 
get 

<P2m{Z) h2m) = V2m(z) — h2mZ{P2m-l(z) 

= (92m + h2mZ)(p2m-l(z) + f2m^2m-2(z) - /l2m^2m-l(^)5 

by using the recurrence formula (2.10), hence, 

(P2m(z,h2m) = 92m   ¥>2m-l(*) " ( — )<P2m-2(z)   • (5-3) 

Thus, 

Similarly, we get 

This shows that 

^2m(z,h2m) = 92m^2m-l(z,r)      for T = ™. (5.4) 
92m 

^2m(z,h2m) = 92m^2m-l(z, T)     for T = —. (5.5) 
92m 

R2m(z,h2m) = S2m-l(z,T)     for T = —. (5.6) 
92m 
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In the same way, by using the recurrence formula (2.11), we get 

#2m+l(2,/i2m+l) = S^m^r)      for T = ^m+l ^ ^ ^ 
<72m+l 

This shows that the second end point of ftn(z) lies on dDn-i(z).   It follows that 
nn(z) = dAn(z)nDn-1(z). 

B. We recall that -S2m(z1r) G T2m(z) if and only if r G (—00,02m)- The value 
r = —00 gives the end point —ipn-i(z)/(pn-.i(z). For the other end point of T2m(z), 
we get 

$2m(2,#2m) = ^2m(^) - 02m^2m-l(^) 

= (02m + ^2m^)^2m-l(^) + f2m(P2m-2{z) - 92m^2m-l(z), 

by using the recurrence formula (2.10), hence, 

$2m(2,02m) = /^m^  <P2m-l(z) - (~ T^1) ' " V2m-2(z)   . (5.8) 

Thus, 

Similarly, we get 

$2m(2,02m) = ^2m^2m-l(^5 T)      for T = -^1. (5.9) 
^2m 

This means that 

^2m(z,g2m) = ^2m^2m-l(^, T)     for T = "T^- (5.10) 
^2m 

5'2m(^,02m) = i?2m-l(^,r)      for T = -^IL. (5.11) 
/i2m. 

In the same way, by using the recurrence formula (2.11), we get 

SW-t-iO^^m+i) = R2m(z,r)    for r = -   2rn+1. (5.12) 
^2m4-l 

This shows that the second end point of Tn(z) lies on <9An_i(,>:).   It follows that 
rn(z) = dDn(z)nAn-1(z). n 

We introduce the notations 

Y,p,q(z) = < F^z)  : jj, is a, solution of the truncated SHMP 

ck= f" ekdfi(e), k=p,...,q}, (5.13) 

Y,+q(z) = < Fp(z)  : /x is a solution of the truncated SSMP 

Ck= rVd/i(0), fc=p,...,g}. (5.14) 

Proposition 5.2.  T/ie 56^5 IIp,g(^) and %+ (z) are convex. 

Proof. Let fj, and ^ be two solutions of one of the two moment problems indicated. 
Then also a = tfj, + (1 — £)z/, 0 < t < 1, is a solution of the same problem. So the 
result follows from the fact that Fa(z) = tF^z) + (1 - tfF^z). D 
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Theorem 5,3. Assume that M is positive on (0, oo). 

A. E_2m,2m-2(^) = A2m(2:). (5.15) 

B. £-2m,2m(2) = A2m+l(2). (5.16) 

Proof. It follows from_(3.18H3.21) that dA2m(z) c S^2m,2m-2(^) and dA2m+i{z) c 
S-,2m,2m(^). Hence, A2m(z) C E^2m,2m-2(^) and A2m+i(^) C S_2m,2m(^) by Propo- 
sition 5.2. 

On the other hand, let w E S-2m,2m-2(2) and w e E_2m,2m(^)- Then there exist 
measures fj, which solve the truncated moment problems (3.18) and (3.19), respectively, 
such that w ~ F^z). The inner products defined by /x and M coincide on A_2m,2m-2 
and A~2m,2m- Let the function fz be defined by fz(6) = ^^. We find that 

d/i(8) w - w 
(6-z)(e-z)      z-z 

and (fz(Q)i <Pj(0)) = ifrjiz) + w<fj(z) for j = 0,..., 2m - 1 and j = 0,..., 2m, respec- 
tively. Bessel's inequality then takes the form (3.24), which shows that w = A2m(z) 
and w € £2^+1(2), respectively. Thus E_2m,2m-2(^) C A2m(z) and E_2m,2m(^) C 
Aam+i(2;). □ 

Proposition 5,4. Let M be positive on (0, oo); then the following inclusions hold: 

A. 02m(z) C E;t2m,2m^2(2), O2m+i(20c£±2mf2m(*.), (5.17) 

B. G2m(z) C E!^!,^*),      G2m+i(^) C Ei(2m+1)i2m.1 W.        (5.18) 

Proof It follows from the definition of nn(z) and (3.31)-(3.32) that fi2m(^) C 
Ei2m,2m^2(^) ^nd fam+iiz) C Ei2m)2m(2;). Similarly, it follows from the defini- 
tion of Tn(z) and (4.39)-(4.40) that T2m(z) C E+(2m_1))2m_1(z) and r2m+1(z) c 

El^m+i),2m-i (^), The results now follow from the definitions of On(z) and Gn(z) 
together with Proposition 5.2. □ 

We introduce the notations 

£00(2) = j F^z) : /JL is a solution of the SHMP 

Cfc=/    0fc^(<9)    fc = 0,±l,±2,... }, (5.19) 
«/—00 

££ = { 1^(2;) : /j, is a solution of the SSMP 

ck= f   ekdfi(e)    fc = 0>±l,±2,... }, (5.20) 

Toofz) ^ I F^z)  : fi is a, quasi-natural solution of the SHMP 

ck= f    0kdfi(e),    A; = 0,±l,±2,... }, (5.21) 

Ooo(^) ?= s /^(z) : /^ is a quasi-natural solution of the SSMP 

ck= f    9kdfi(0)1    fc = 0,±l,±2,... }, (5.22) 
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Too(2) = < F^(z) : fi is a pseudo-natural solution of the SSMP 

ck= f   ekdfx(e),    k = 0, ±1, ±2,... }. (5.23) 

Furthermore, we denote the convex hull of £loo(z) by O^z) and the convex hull of 
Too W by Goo W. 

Proposition 5.5.  The following equalities hold: 

A- Eoo(s)=    f)   Ep,g(z), (5.24) 

OO 

B- E+(*)=    fl   EMW- (5-25) 

Proo/. That E00(z),E+(z) are contained in the intersection sets is obvious.   The 
reverse inclusions follow by use of Helly's theorems. □ 

Proposition 5.6.  The sets J^oo(z) and £+ (z) are both convex. 

Proof. This follows as in the proof of Proposition 5.2. □ 

We shall make use of the following important result. 

Theorem 5.7. Assume that M is positive on (0,00), then 

A. The sequences 

{-^44)    and   {-^±iM) 

converge locally uniformly to functions F^(z) and F^^z) for z fi [0,00). 

B. The sequences of discrete measures {z/2m)} and {z/2m+1)} converge to natural 
solutions N^ and AT^00) of the SSMP and FNio)(z) = F^(z)f FN{0o)(z) = F^^z). 

C. For any solution fi of the SSMP and any x G (—00,0), the following inequalities 
hold: 

F(0\x) < F^x) < F^\x). (5.26) 

(This result is proved in [20] in a somewhat different way.) 

Proof. From the recurrence relations (2.10)-(2.11), we obtain the formulas 

y2m{z)^2m-2(*) - ^2m{z)^2m-2{z) 

= (/2m + h2mZ) [p2m-l (z)lp2m-2(z) - fom-l {z)^2m-2(z)] ,       (5.27) 

^2m+l(z)lp2m-l(z) - ^2m+l(^)^2m-l(^) 

= (g2m+l + h2m+lZ~1) [<p2m(z)4>2m-l(z) - ^2m(^)^2m-l(^)] ,       (5.28) 

and hence, 

^2m(z)        ^2m-2{z)  _       g2m-l,m-l(#2m + /l2m^) 
V2m(z)        ip2m-2(z)        q2m-2,m-lZ(p2m(z)(p2m-2{z) ' 

^2m-\-l(z) _ ^2m-l(g) _        g2m,-m(^2m+l + ^mH-l^""1) 
Wm+liz)        <P2m-l{z) q2m-l-mZ(p2m+l(z)(p2m-l(z)' 

by use of (2.19)-(2.20). 

(5.29) 

(5.30) 
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A. It follows from (2.7), (2.8), (2.29), and the fact that all the zeros of ipn are positive 
for all n that (pn{x) and ^n+2(^) have opposite sign for x € (—oo,0], n = 0,1,2,... . 
It then follows from (2.15)-(2.18) that 

<0   for x G (-oo,0), (5.31) 
V2rn{x)        <P2m-2(x) 

^2m+l(g) _ ^2m-l(x) 
>0   for a? G (-oo,0). (5.32) 

Furthermore, it follows from (2.7)-(2.8) and (4.27)-(4.28) that il>n{x)/<pn(x) < 0 for 
x G (-co, 0] for all n. We also obtain from (2.20) that 

Thus, we have for every m: 

 __ <  __ <  _ <  __ < u (5.cJ4) 
<P2m-l(X) V2m+l(X) <P2m{x) V2m-2{x) 

for x G (-oo,0]. It follows that the sequences {ip2m(x)/(P2m(x)} and 
{^2m+i(^)/^2m+i(^)} converge to finite negative values for x G (—oo,0). Prom 

(2.34), (2.38) and the fact that all zeros ^^ are positive, we conclude from local bound- 
edness by a normal family argument that {ip2m(z)/^2m(z)} and {^2m+i(^)/^2m+i(^)} 
converge locally uniformly on C — [0, oo). 

B. This follows by standard arguments from A and (2.37). 

C. Let fj, be an arbitrary solution of the SSMP. It follows by orthogonality properties 
that 

f Jo 

<P2m(0)2        V2m(0) 
Jo      l<P2m(z)2        <P2m(z)\   0 - Z 

and 

"W'-O (5.35) 

./o 

f^m+lO?)2        ^2m+l(^) 
^-^-0. (5.36) 

/O       L^2m+l(^)2        <P2m+l(z) 

Hence, it follows from (2.9) that 

<P2m(z)       Jo       0-Z V2m(z)2 J0 6 - Z 

js^+rsffl.^'    rsfcHffl!^.     ,5.38, 
V2m+l{z)       J0       O-Z Zip2m+l{z)2 J0 6-Z 

Consequently, 

JO      Q-X ^2m+lW V2m{x) 

for x G (—oo,0). From the result under A we conclude that 

dji(0) 
F{a){x) < / S-a-^^00^) (5-40) 

for x € (-oo,0). See also [11, 19, 20]. □ 
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Theorem 5.8. Assume that M is positive on (0,oo); then 

A. T00(z) = dA00{z), (5.41) 

B. (Joofc) = dA00(z)nD00(z), (5.42) 

C. Tniz) = dD^z) H AooO*). (5.43) 

Proo/. A. We see from the discussion following formula (3.26) that Too (2) consists of 
all limit points of sequences {—Rn(z,Tn)}, and since —Rn(z,r) G 9An(z), it follows 
that these points belong to dA00(z). Thus T00(z) C dA00(z). 

On the other hand, let Woo e dA00(z)\ then there exists a sequence {^n} converging 
to Woo with wn G 9An. For each n there is a rn such that it;n = —Rn(z, rn). According 

to Kelly's theorems, there exists a subsequence {n(k)} such that {z4n(fc) } converges 
to a quasi-natural solution v of the SHMP and such that {Fu(n(k))(z)} converges to 
Fv(z). Since wn = -Rn(z,Tn) = i^(n(fc))(^), we conclude that wZ)0 G T0o(^). Thus 
dA00(z)cT00(z). 

B,C. According to Theorem 5.7A, the subarcs of ^2m(^) corresponding to r > 0 
converge to a subarc AOQ (Z) of OAQQ (Z) with end points F^ (z) and F^ (z). Similarly, 
the subarcs of Q2m+i(z) corresponding to r < 0 converge to the same subarc A00(z) 
(because — it/2m(2,T) and — it^m+i^r) traverse dA2m(z) and 9A27n+i(^) in opposite 
directions with increasing r). Also, according to Theorem 5.7A, the subarcs of T2m(z) 
corresponding to r < 0 converge to a subarc ^00(2;) of dD^z) with end points 
F^^z) and F<'co\z)^ and similarly, the subarcs of r2m+i(z) corresponding to r > 0 
converge to the same subarc BOQ^Z) of dD00(z). By considering the directions traveled 
by i?2m(2,T) and S'2m(^,r), for example, with increasing r, we find that A00(z) = 
dA00(z) DDooiz) and B^z) = dD^z) n Aoo(^). It follows from Theorem 5.1 that 
the sequences of whole arcs {^(z)} and {rn(z)} converge to the same limiting arcs 
Aoo{z) = 9Aoo(^) nSoo(^) and dD^z) n Aoo(^), respectively. 

An argument similar to the second part of the proof of A shows that ^4oo(^) C fiooOz) 
and ^^(z) C Foo (z). Since there are no measures err with support not contained in 
(0,oo), we conclude as in the first part of the proof of A that Too(2) C B00(z), and 
thus, Fooiz) = Bcoiz) = aDoofc) n AooO*). 

It remains to show that fioo(^) C A00(z), i.e., that a sequence of measures {^r^(fc) } 
where the support of each measure is not contained in (0,00), cannot give rise to a 
quasi-natural solution of the SSMP. 

It follows from [28, Theorems 3.1,3.2] (see also Section 6) that there is a continu- 
ous one-to-one correspondence between the points of dA00(z) and the quasi-natural 
solutions of the SHMP. From Theorem 5.7C, it then follows that there can be no 
quasi-natural solution fi of the SSMP with Stieltjes transform outside the arc A00(z) 
bounded by F^(z) and F^^z). (Otherwise, some points of AO0(z) would be the 
Stieltjes transform of at least two quasi-natural solutions having different values at an 
x G (—00,0), due to continuity of the Stieltjes transforms w.r.t. z and the parametriza- 
tion of dA00(z).) We thus may conclude that ii^z) C A00(z). □ 

Corollary 5.9.  The following inclusion holds: 

A^nSoo^c £+(*). (5.44) 

Proof. This follows immediately from Proposition 5.6, Theorem_5.8, and the fact that 
the convex hull 000(^) U Goo(2) of ^oo(z) U T^z) is A^z) fl Doo{z)- □ 
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Theorem 5.10. Assume that M is positive on (0, oo) and that the associated SHMP 
is indeterminate. Then the associated SSMP is determinate if and only if the inter- 
section AQO^) n D0O(z) reduces to a single point. 

Proof. It follows from Theorem 5.7C that the SSMP is determinate if and only if the 
two natural solutions iV^0^ and N^ coincide, which by Theorem 5.8 is the case if 
and only if A00(z) fl Doo(^) reduces to a single point. □ 

6. Nevanlinna parametrization of solutions 

The assumptions on M in this section are as in Section 5. 
Let #0 be an arbitrary fixed point on R — {0}. We define functions an,/?n,7n,5n 

(depending on the parameter XQ) by 

n-l 

<Xn(z) = {*- ^o) ^ ll>j(xo)ll>j(z), (6.1) 
i=i 

n-l 

/?»(*) = -! + (*- xo) J2 Mxo)v>j{z), (6.2) 

n-l 

jn(z) = 1 + (z - XQ) 53 VjMipjiz), (6.3) 

n-l 

6n(z) = (z- XQ) 53 VjivoWjiz)' (6.4) 
j=0 

Since the coefficients in (pj(z) and ipj(z) are real, it follows that an(z),pn(z),/yn(z), 
6n(z) are real for real z. 

Proposition 6.1. Assume that M is regular and positive on (—00,00). 

A. l32m{z),62m(z) are linearly independent quasi-orthogonal Laurent polynomials 
of order 2m, and 0:2™(2), 72m(z) are linearly independent associated quasi-orthogonal 
Laurent polynomials of order 2m. 

B. z~1P2m+i(z), z~162m+i{z) are linearly independent quasi-orthogonal Laurent 
polynomials of order 2m+ 1, and z~1a2m+i(z), 2:~172m+i(^) are linearly independent 
associated quasi-orthogonal Laurent polynomials of order 2m -f-1. 

C. The equality 

<*n(z)6n{z)-l3n{z)>yn(z) = l (6.5) 

holds for all n. 

Proof. It follows from (5.1)-(5.4) and the Christoffel-Darboux formulas (2.22)-(2.23) 
that l32m(z) and 62m{z) can be expressed linearly in terms of ip2m(z) and Zip2m-i(z), 
a2m(z) and 72™^) in terms of fomiz) and zfom-iiz), z^fom+iiz) and ^-1^2m+i(^) 
in terms of ^2m+i(^) and z~l(f2m(z)^ and ^~1a2m+i(^) and z~1j2m-{-i(z) in terms of 
'02m+i(^) and z~lfil)2m{z). On the other hand, <p2m(z,T) can be expressed linearly in 
terms of femiz) and 82m{z),ijj2m{z,r) in terms of a2m{z) and 72m(^), ^2m+i(^,r) in 
terms of z"1 fam+liz) and z~162m+i(z), and ip2m+i(z,T) in terms of z~1a2m+i(z) and 
^~172m+i(^). Formula (6.5) is obtained by substituting for (pn(z), ipniz), (pn-i(z), 
ipn-i(z) expressed in terms of an(z), l3n(z), ^n(z), Sn(z) in the determinant formulas 
(2.19)-(2.20). See [28, Section 3]. D 
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It follows from (6.5) that for an arbitrary complex number t, Oin(z)t - 7n(^) and 
Pn{z)t — 6n(z) have no common zeros. 

By substituting (pn(z), ^n-i(^), il>n(z), ^n-i(^) expressed in terms of an(z), (3n(z), 
7n(^), 6n(z) in the definitions (3.3)-(3.4), (3.6), expressions for the quasi-approximants 
Rn(z,T) are given by 

7?      /        x        <X2m(z)t2m(T) - 72m(^) /fi fiN 
ti2m\Z,T) = -^ TTi. T\ X TIT5 ^       ' 

D ,        v        ^m+lC^fem+lM - 72m+l(;20 /fi 7x 
^m+il^?7"; =:: "^ / x, 7~T—7 r~r' v^-1) 

where 

^2m(^o) - TXo(p2m-l(Xo) /g g\ 

(6.9) 

2m ^2771(^0) - TXo1p2m-l(Xo) ' 

2m+1 ^0^2771+1(^0) - T^2m(^o) * 

We note that the linear fractional transformation r -> t = tn(r) maps R biuniquely 

onto R. 
We define 

We then may write 

Tn(z,t) = Rn(z,T), (6.11) 

where t is obtained from r by the transformations (6.8)-(6.9). 
The mapping t -► -Tn(z,t) maps ?7 (i.e., t G £7) onto An(z) (i.e., w = -rn(z,t)) 

for every z G ?7 (cf. [28]). 
We denote by /4n) tlie discrete measure determined by the quadrature formula 

associated with t3n{z)t — 6n(z). Then 

^n)=uin\    where   t = «n(r). (6.12) 

It follows by (3.17), (3.20), (6.10)-(6.11) that 

We shall use the following convergence result for the functions an,0n^n,Sn. 

Theorem 6.2. Assume that M is regular and positive on (—oo, oo), and assume that 
the associated SHMP is indeterminate. Then the functions an(z),pn(z),jn(z),6n(z) 
converge locally uniformly on C- {0} to analytic functions a(z),/3(z)^(z)16(z) given 
by 

oo 

a(z) = (z-xo)J2^(xo)M^ (6-14) 

oo 

j3(z) = -1 + (z - xo^M^Vjiz), (6.15) 

00 

j(z) = l + (z- xo)^2(Pj(xo)il;j(z), (6.16) 
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oo 

6(z) = (z- xo) ]r Vjixo^jiz). (6.17) 
j=o 

Proof. See [28]. D 

We note that the mapping 

a(z)t-y(z) 
(3(z)t-6(z) 

maps U onto A00(z) and R onto dA00(z) for every z G U. 
It follows easily from (6.13) and Theorem 6.2 that for each t £ R, the discrete 

measures /xj    converge to a (quasi-natural) solution ^t of the SHMP such that 

duttf) a(z)t - 7(«) 

/ «/—( 
A straightforward argument shows that all quasi-natural solutions of the SHMP are 
of the form/it (cf. [28]). 

Theorem 6.3. Assume that M is regular and positive on (—00,00). The mapping 
t —► fit establishes a one-to-one correspondence between R and the family of all quasi- 
natural solutions of the SHMP. 

Proof. Different values of t give different functions -(a(z)t - j(z))/(/3(z)t - 6(z)). 
Hence, the mapping t —> fit is clearly one-to-one from R onto the family of all solutions 
of the form fit and these constitute exactly all the quasi-natural solutions. □ 

Recall that the function f(z) is a Nevanlinna function if it is analytic in U and maps 
U into U. The extended Nevanlinna class Af* consists of all Nevanlinna functions and 
the constant 00. 

The Nevanlinna parametrization for the solutions of the SHMP can be stated as 
follows. 

Theorem 6.4. Assume that M is regular and positive on (—00,00) and that the asso- 
ciated SHMP is indeterminate. Then there exists a one-to-one correspondence between 
the functions tp in the extended Nevanlinna class N* and the measures fi in the class 
M of solutions of the SHMP. The correspondence is given by 

^ dii{6) a(z)v>(z)-7(z) 

/ J — C e-z      P(zMz) - 6(z)' (6*19) 

Proof. See [28, Section 4]. □ 

A function in A/"* is either a constant in R or a function that maps U into U. In the 
latter case, F^z) G A00(^) for all z G U (cf. the equation ^f = E^TJITJ^K;, 1)|2 

for dA00(z)). Thus for any solution fi of the SHMP, either F^z) G A00(^) for all 
z G U or F^z) G dA00(z) for all z G U. The latter situation occurs if and only if the 
function ip is a constant in R, i.e., if and only if the solution fi is quasi-natural. 

A solution fi of the SHMP with the property F^z) G dA00(z) for all z G U is called 
N-extremal. Thus the iV-extremal solutions are exactly the quasi-natural solutions. 

A solution of the SHMP is called a canonical solution if the corresponding function 
ip in Af* is of the form (p(z) = P(z)/Q(z), where P and Q are polynomials with real 
coefficients. Note that all constants in R are among these solutions. The canonical 
solution is said to be of order r if max (deg P, deg Q) = r, where P and Q have no 
common factors. For the sake of explicitness, we restate Theorem 6.3 as follows. 
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Theorem 6.5. Assume that M is regular and positive on (—00,00) and that the as- 
sociated SHMP is indeterminate.   Then the quasi-natural solutions are exactly the 
canonical solutions of order 0. 

Proof. Immediate from Theorem 6.3 and the definition of canonical solutions. □ 

Theorem 6.6. Assume that M is positive on (0,00) and that the associated SHMP 
is indeterminate. Assume that XQ £ (—00,0). Then the sequences 

(  V2m(z)  1        f  1p2m(z)   1        f  </?2m+l(*)  1        f  ^m+lC?)  1 

converge locally uniformly in C — {0} ^o analytic functions f^(z), g^(z), /^(z), 
g(oo)^z^ respectively. 

Proof (pn, ipn can be expressed in terms of an, /?n, 7n, 5n as follows (see [28, Section 3]): 

^2m(2) = ^2m(xo) ffem W - ^^ Am Wl, (6*20) 

V;2m(^) = ^2m(^o)   72m (z) -    f™ ,   0.   <X2m{zM , (6.21) 

^2m+l(^) = — '02m+l(^o)k2m+l(2) -     2m+1     0     ^2m+1(5;)   , (6*22) 
Z L %m+l(Xo) J 

^2m+l(^) = — ^2m+l(^o) |72m+l(^) ~ ^2m+1  ^     a2m(^)l . (6.23) 
^ L ^2m+l(^0) J 

According to^Theorem 5.7, {^2m(^o)/V;2m(^o)} and {^2m+i(^o)/^2m+i(a?o)} converge 
to values in E - {0}. According to Theorem 6.2, 0^(2), /?n(<z)j 7n00i ^nO*) converge 
locally uniformly in C. Hence the result follows from (6.20)-(6.23). D 

Proposition 6.7.  The pseudo-approximants Sn(z,T) may be expressed as 

C      („ ^        a^m(z)t2m(r, Z) - 72m(z) (a 0/1x 
02mKZ,T) = — -p-r-— —r-r, (0.^4j 

/?2m(^2m(r,z)-«2mW 

o /-  ~\ - a2m+l(^)^2m+l(r^) - 72m+l(^) /« Oc;\ 
52m+1(.,r) - /32m+l(,)i2m+l(r)2) _ 62m+l(z). (6-25) 

where 

,     v _ ^2m(^o) - TXo^2Tn-i(a:o) 
2m     ' *^2m (a?0) ~ TXofom-1 (^0) ' 

(6.26) 

.            /     ^x        ^0^2m+l(^o) - rgy2m(go) /fi Q^X 
t2m+i (T> ^ j = —; 7—x ;—7—v • v«-^') 

^0^2m+l(^o) - TZfamiXo) 

Proof. This follows from (3.1)-(3.6), (4.1)-(4.4), and (6.6H6.9). D 

We recall that <TT    is the discrete measure determined by the quadrature formula 
associated with the pseudo-orthogonal Laurent polynomial $n(j2,r). We shall write 

p[n)=*in\       t = tn(T), (6.28) 

where tn(r) is given by (6.8)-(6.9). We then may write 

dp[n\e) an(z)tn(z,T) - ^(z) l 0 d-Z f3n(z)tn(z, T) - Sn(z) 
(6.29) 
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It follows from the proof of Theorem 6.6 that {t2m(0)} ( = {^2m+i(oo)}) and 
{*2m+i(0)} ( == {hm(oo)}) converge to values t^ and t^. By using Kelly's the- 
orems and the fact that {an(^)}, {(3n(z)}, {7n(^)}, {^n(^)} converge, we conclude 
that for every t'in the interval determined by £(0) and t^00^ {pi^} converges to a 
(pseudo^natural) solution of the SSMP. These solutions have value of the Stieltjes 
transform exactly on the arc Too = dAx>(z) n Aoo^). 

Theorem 6.8. Assume that M is positive on (0, oo) and that the associated SHMP is 
indeterminate. Then the pseudo-natural solutions of the SSMP are canonical solutions 
of order 1. 

Proof Let t be fixed, and let rn be the corresponding r-value determined by the 
formulas (6.8)-(6.9). Since /*(« - z)-ldpln\0) converges to f™(0 - z^dp^O) and 
{cLn{z)}, {/?n(2)}, {7n(^)}, {$n{z)} converge to a{z), 0(z), j(z), 8(z), it follows from 
formula (6.29) that {tn(z,rn)} converges. 

Theorem 6.6 and formulas (6.26)-(6.27) then show that tn(z,Tn) converges to a 
function t{z) of the form 

*)-£!. (,30) 
Since 

dptifi) _    a(z)t(z) - f(z) I Jo e-z      P(z)t(z) - 6(z)' (6,31) 

we conclude that t(z) is the function of the extended Nevanlinna class .A/"* correspond- 
ing to pt, see Theorem 6.4. Thus pt is a canonical solution of order 1. □ 

7. Structure of solutions 

The quasi-orthogpnal and pseudo-orthogonal solutions of an indeterminate SHMP are 
essentially discrete measures (the origin belongs to the spectrum as a non-isolated 
point). This follows as a special case of a general structure theorem for canonical 
solutions. For the sake of completeness, we state this theorem. A proof can be found 
in [28, Section 5], 

Theorem 7.1. Assume that M is regular and positive on (—oo, oo) and that the asso- 
ciated SHMP is indeterminate. Let ju be a canonical solution, with (p(z) = P(z)/Q(z) 
in the Nevanlinna parametrization, P and Q without common factors. Then the spec- 
trum of p, consists of the zeros {zk} of the function P(z)P(z) - 6(z)Q(z) and, in 
addition, the origin. The measure p, has a mass of magnitude —pk at Zk, where pk is 
the residue of the Stieltjes transform F^z) at Zk. The origin is a point of continuity. 
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