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ABSTRACT. A formal asymptotic method is used to derive a differential-algebraic 
system of equations characterizing the metastable motion of a pattern of n (n > 
2) internal layers for the one-dimensional viscous Cahn-Hilliard modeling slow 
phase separation. Similar slow motion results are obtained for the Cahn-Hilliard 
equation and the constrained Allen-Cahn equation by introducing a homotopy 
parameter into the viscous Cahn-Hilliard equation and letting this parameter take 
on limiting values. For each of these phase separation models, the asymptotic 
results for the slow internal layer motion associated with two-layer metastable 
patterns are found to compare very favorably over very long time intervals with 
corresponding full numerical results computed using a finite-difference scheme. 
Finally, an example is given that clearly illustrates the very sensitive effect of 
boundary conditions on metastable internal layer dynamics. 

1. Introduction 

We study the metastable internal layer motion, in one spatial dimension, associated 
with the viscous Cahn-Hilliard equation modeling the phase separation of a binary 
mixture. In dimensionless variables, this phase separation model, introduced in [19], 
is given by 

Ut = - (e2uxx + Q(u) - KUt)xx , -1 < x < 1,    t > 0, (1.1) 

with appropriate boundary and initial conditions. Here, u is the concentration of one 
of the two species, e <c; 1 is an interfacial energy parameter, and Q(u) = —Vf(u) is a 
non-monotone function defined in terms of a double-well potential V(u). The precise 
assumptions on the form of Q(u) are given in (2.2). The boundary conditions for 
(1.1) are such that the mass m = J_1 u(x,t) dx is conserved. In (1.1), the term KUtxx 
accounts for viscous relaxation effects in the binary mixture and « > 0 is the viscosity 
coefficient. The well-known Cahn-Hilliard equation (cf. [4]) is obtained by setting 
K = 0. Since Q{u) is non-monotone, the reduced equation m = — [Q(u)]xx is an ill- 
posed backward heat equation for some range of u. The terms — e2uxxxx and KUtxx 

represent a gradient energy regularization and a viscous regularization, respectively, of 
this ill-posed reduced equation. Results concerning the equilibrium solutions and the 
long time behavior of solutions associated with this viscous regularization are given 
in [20]. A more detailed discussion concerning the physical motivation for (1.1) is 
given in [19] and [20] (see also the references therein). 
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For e —> 0, the qualitative features of the dynamics associated with (1.1) are as 
follows. Through a very intricate transient process, a pattern of internal layers is 
formed from initial data over an 0(1) time interval. However, once this pattern 
has formed, the subsequent motion of the internal layers is exponentially slow. For 
the Cahn-Hilliard equation, the occurrence of this metastable motion for a two-layer 
pattern has been proved in [1] from a dynamical systems viewpoint and in [3] using 
energy methods combined with some results of [11]. In [11], similar slow motion results 
were obtained for a system of Cahn-Hilliard-type equations. We are not aware of any 
analogous slow motion results for the viscous Cahn-Hilliard equation. 

To complement these previous results which establish the existence of the slow mo- 
tion for the Cahn-Hilliard equation, we give an explicit characterization of metastable 
internal layer motion for the more general viscous Cahn-Hilliard equation (1.1). Specif- 
ically, for e —> 0, we use formal asymptotic methods to derive a differential-algebraic 
system of equations for the locations of the internal layers associated with an n-layer 
metastable pattern. In the derivation, we assume that the internal layers are widely 
separated, and thus, we do not account for internal layer collisions. To obtain similar 
slow motion results for two related phase separation models, it is convenient in the 
analysis to modify (1.1) by introducing a homotopy parameter. By letting this pa- 
rameter take on certain limiting values, we obtain explicit asymptotic results for the 
metastable motion associated with the Cahn-Hilliard equation and the constrained 
Allen-Cahn equation. 

Metastable internal layer motion has been studied recently for other evolution equa- 
tions. The internal layer dynamics for the Allen-Cahn equation and some related 
equations has been studied from a dynamical systems viewpoint in [5], [9], and [15] 
and by formal asymptotic methods in [18], [21], and [25]. Similar slow motion behavior 
has been shown in [14], [16], and [22] to occur for a class of viscous shock problems. 
The method we use to explicitly characterize the internal layer dynamics for (1.1) 
in the absence of any layer collisions is an extension of the projection method used 
successfully in [21], [22], and [25] to treat these related problems. This method com- 
bines the method of matched asymptotic expansions with certain spectral properties 
associated with the underlying linearized operator. For the Allen-Cahn equation and 
the viscous shock problem, analytical results obtained from the projection method 
have been favorably compared in [21] and [22] with full numerical results and, in a 
few cases, with explicit analytical solutions to the full perturbed problems. 

For a two-layer metastable pattern, we compare our asymptotic metastability re- 
sults for (1.1) with corresponding full numerical results computed using a finite- 
difference scheme. The asymptotic and numerical results are shown to be in very 
close agreement over very long time intervals. Moreover, the numerical method is 
able to accurately track the motion of the internal layers on a time interval of order 
1011. This time interval is significantly longer than the computational time interval re- 
ported in the previous numerical studies of slow motion behavior for the Cahn-Hilliard 
equation given in [8] and by McKinney (described in [1]). 

In a sequel to this paper, we plan to examine both asymptotically and numerically 
the coarsening process associated with (1.1). This process describes the mechanism 
by which an initial metastable pattern of n internal layers cascades, by way of layer 
collapse events, to metastable patterns with fewer and fewer layers. The dynamic 
metastability results herein for patterns with widely separated layers provide the first 
step in characterizing the coarsening process in the presence of a mass constraint. In 
[25], a hybrid asymptotic-numerical method was used to study the coarsening process 
for the simpler Allen-Cahn equation in the absence of a mass constraint. 
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We also investigate the sensitive effect of boundary conditions on metastable dy- 
namics. For a specific form of the Allen-Cahn equation defined on the infinite line, we 
show that the inclusion of artificial boundary conditions used to truncate the infinite 
domain to a finite domain leads to spurious metastable internal layer dynamics (see 
[24] for some related work). In a more general context, we believe that the analysis of 
this example has implications for the accurate numerical computation of other types 
of weakly interacting localized structures on the infinite line. 

The outline of the paper is as follows. In §2, we derive asymptotic equations of 
motion for the locations of the internal layers corresponding to a two-layer metastable 
pattern for (1.1). Similar asymptotic results are obtained for the Cahn-Hilliard equa- 
tion and the constrained Allen-Cahn equation. In §3, these asymptotic results for 
the metastable motion are compared with corresponding full numerical results. In §4, 
the asymptotic results of §2 are extended to treat a metastable pattern of n (n > 2) 
internal layers. Finally, in §5, we give an example illustrating the sensitive effect of 
artificial boundary conditions on metastable internal layer dynamics. 

2. A two-layer metastable pattern for the viscous 
Cahn-Hilliard equation 

We consider the viscous Cahn-Hilliard equation in the form 

(1 - a)ut = - (e2uxx + Q(u) — aimt)xx ,    -1 < x < 1,    t > 0, (2.1a) 

u(x,0) = uo(x),    ux(±l,t) = uxxx(±l,t) = 0. (2-lb) 

Here K > 0 and Q(u) is the derivative of a double-well potential V(u). We assume 
that Q(u) has exactly three zeroes on the interval [s_,s+], located at u = s_ < 0, 
u = 0, and u = «+ > 0, with 

Q'(s±)<0,    Q,(0)>0,    V(s+) = 0,    V{u) = - j" Qirfidn. (2.2) 

Since (2.1a) is unchanged upon adding a constant to Q(u), we can choose V(s+) = 0 
without loss of generality. 

In (2.1a), a is a homotopy parameter satisfying 0 < a < 1. When 0 < a < 1, 
the mass m = J_1u(x,t)dx is conserved for (2.1). For a = 0, (2.1) reduces to the 
Cahn-Hilliard equation. For a = 1 and K = 1, we impose the mass constraint on (2.1) 
to obtain the constrained Allen-Cahn equation, 

/    u(x,i Ut = e uxx + Q(u) - crc(t),    ux(±l,t) = 0, /    u(x,t)dx = m. (2.3) 

In (2.3), ac(t) is determined by the mass constraint. Some results for the constrained 
Allen-Cahn equation in two spatial dimensions are given in [23]. The unconstrained 
Allen-Cahn equation is obtained by setting ac(t) = 0 in (2.3) and disregarding the 
mass constraint. In the derivation of metastable dynamics below, we assume that the 
initial condition for (2.1) is such that m satisfies 2s- < m < 2s+. 

To analyze metastable behavior for (2.1), it is convenient to rewrite (2.1) in the 
form 

anut = e2uxx + Q{u) - cr,        ^(±1, t) = 0, (2.4a) 

(1 - a)ut = -crXX)        ^(±1, t) = 0, (2.4b) 
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FIGURE 1. Plot of u*(x) given by (2.5) with us(z) = tanh(2;) and 
5+ = 1, that approximates a two-layer metastable pattern for (2.1). 

with u(x, 0) = uo(x). The transient process associated with the formation of a 
metastable pattern from initial data ^o(^) is very complicated and will not be dis- 
cussed. Instead, we assume that uo(x) is such that a two-layer metastable pattern for 
(2.1), with a structure as shown in Figure 1, is formed on an 0(1) time interval. For 
e —■> 0, it was shown in [2, 6, 21] that a is exponentially small when this two-layer pat- 
tern is in equilibrium. In our derivation below of metastable internal layer dynamics, 
we assume that a also is exponentially small during the metastable evolution. 

The two-layer metastable pattern for (2.1) shown in Figure 1 is represented by the 
approximate form u(x,t) ~ u*(x), where 

u*(x) = u*(x; xo,xi) = u8[e'~1(x - XQ)) +^s[e~1(^i - x)) - s+. (2.5) 

Here XQ = a;o(£), xi = xi(t), XQ < xi, and us(z) is the unique heteroclinic orbit 
connecting S- and s+, which satisfies 

u"(z) + Q [us(z)] = 0,    -oo < z < oo;        us(0) = 0;    u'^z) > 0; 

us(z) ~ s+ — a+e~u+z,    z —> oo;        us(z) ~ S- + a-e^ 

The positive constants u± and a± in (2.6b) are defined by 

u± = (-Q'^i))1/2, 

-oo. 

(2.6a) 

(2.6b) 

log a± = log(±s±) + /      ( - + drj. 
(2.7) 

,[2V(r))}1/2     V-8±, 

Since us(0) = 0, the curves x = xo(t) and x = xi(t) closely determine the locations of 
the zeroes of u(x, t) during the slow evolution. 

To derive equations of motion for xo(t) and xi(t), we use a projection method, 
which is an extension of a similar method used in [21, 22, 25] to treat other problems 



CAHN-HILLIARD EQUATION 289 

exhibiting dynamic metastability phenomena. This method is based on an asymptotic 
analysis of the quasi-steady linearization of (2.4) about u = u* and a = 0. To obtain 
the form of this quasi-steady linearization, we substitute u(x,t) = u*(x; xo,xi) + 
w(x,t) into (2.4), where w satisfies w < u* and Wt «C u^. Assuming that a = 
0(ut) -C 1, we then obtain the following quasi-steady approximate system from (2.4) 
and (2.6b): 

e2wxx + Q'(u*)w = (T + E(x) + anut, (2.8a) 

wx(-l,t) = -<(-l) - -e-'a-v-e-*-1^1^, (2.8b) 

wx(l,t) - -<(1) - e^a-v-e-6'1"^1-^, (2.8c) 

i 

axx = (l-a)e-1 ^(-^'^[^(-IF^ " ^^    ^(±l,t) = 0. (2.8d) 

Here Xj = dxj/dt and E(x) = E(x\ XQ,XI) is defined by 

i 

E{x-xQ,x1) = Y,Q{us[e-\-iy(x-xj)])-Q{u*). (2.9) 
i=o 

The term ^(x) represents the exponentially weak interactions between the internal 
layers. 

Next, we integrate (2.8d) to derive 

(Txfat) = (l-a)io (ws[e""1(a;-a;o)] - 5-) 

+ (1 - a)±i (^[c-^xi - x)] - 5+) . (2.10) 

From (2.6b) and (2.10), it is clear that cr^-l, t) is exponentially small. Moreover, since 
x1—XQ = 0, which is an obvious consequence of the mass constraint, it also follows from 
(2.6b) that ax(l,t) is exponentially small. We claim that these exponentially small 
errors in satisfying the boundary conditions for a can be neglected in the derivation 
of the asymptotic equations of motion for Xj(t). (The justification for this claim is 
described below following (2.18b).) Then integrating (2.10), we obtain 

a(x,t) = (I - a)x0 Mo(x; XQ) + (1 - afaM^x; xx)-\-crc(t). (2.11) 

Here crc(t) is an unknown function to be determined, and MQ and Mi are defined by 

Mo(x; XQ) =  /    (usle^irj - x0)] - s_) drj, 
J~l (2.12) 

Mi(a;; xi) =  /    (us[e  1{x1 - 77)] - s+) dq. 

The problem for w then is obtained by substituting (2.5) and (2.11) in (2.8a). 
Now consider the eigenvalue problem associated with (2.8a,b,c): 

e2(j>xx + Q'(u*)(j) = \<t),    -1< x < 1,     (0, </>) = 1, (2.13a) 

^(-1) = 0,    <^(1) = 0. (2.13b) 

The inner product in (2.13a) is defined by (g,h) = J_1ghdx. For e —> 0, the first 
two eigenvalues of (2.13) are exponentially small while the remaining eigenvalues are 
bounded away from zero (cf. [5]). The eigenfunctions (t)j(x) for j = 0,1 which corre- 
spond to these exponentially small eigenvalues are given asymptotically for e —» 0 by 
0j(x) ~ RjUf

s[(—iye~1(x — Xj)}, where Rj is a normalization constant. 
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Next, we expand the solution to (2.8a,b) in terms of the eigenfunctions of (2.13) as 

^ A- 
^ET1^ (2-14a) 

i=o ^ 

Upon integrating by parts and using Green's identity, we derive 

Aj = (E, fa) + (a, fa) + a««, fa) - Bj, 

Bj = e2 [fa(l)wx(l,t) - ^(-1K(-I,t)]. 

Since Aj —> 0 as e -^ 0 for j = 0,1, a necessary condition for the solvability of (2.8a,b,c) 
in this limit is that Aj = 0 for j = 0,1. By substituting (2.11) into these limiting 
solvability conditions, we obtain the following evolution equations for XQ and xi: 

(1 - a)io(Mo,0o) + (1 " a)ii(Mi,0o) 

+ (c7c, 0o) + (£?, 0o) + «««, 0o) - Bo, (2.15a) 

(1 - a)io(Mo,0i) + (1 - a)ii(Mi,0i) 

+ (c7c,0i) + (S,0i) +a/c«,0i) -Bi. (2.15b) 

The system (2.15) gives two equations for the three unknowns xo(t), xi(t), and crc(t). 
An additional equation results from replacing u by u* in the mass constraint m = 
/_i u(x,t) dx. For e —> 0, we evaluate this approximation to the mass constraint to 
show that di = Xi(t) — xo(t) is independent of t and is given by 

777 — 2 *? 
di = -,    m = m - 2e((9_ - 6>+). (2.16a) 

5+ — S_ 

Here 0± > 0 are defined by 
/0 poo 

[usiv) - 5-] dry,    0+ = /     [5+ - u,(7/)] dr/. (2.16b) 
-oo ^0 

The constraint 25_ < m < 2s+ is needed to ensure that d\ satisfies the required 
inequality 0 < d\ < 2 in the limit e —> 0. 

Since fa(x) is localized near x = Xj and is exponentially small for \x — Xj\ = 
O(l), we can obtain explicit asymptotic equations of motion for xo(t) and xi(t) by 
asymptotically evaluating the various terms in (2.15) for e —> 0 using Laplace's method. 
The boundary term Bj and the inner products (E,fa) and ((TCifa) were evaluated 
asymptotically in [21], with the result 

(E,<f>j)^2ealulRje-^^, (2 ^ 

(crc, (^j) ~ eRjCrc(s+ - s_),     j = 0,1, 

B0~2eali;2_Roe-2e~1''-do,    B1 ~ 2ea2_^i?ie-^-1-^. (2.17b) 

Here, we have labeled da = XQ-\- 1, di = £1 - a;o, and ^2 = 1 - &!• The remaining 
terms in (2.15) can be evaluated asymptotically to obtain 

(Mo, </>i) ~ €i?i(s+ - s-)2^ + 2e2i?i(s+ - «_)(«_ - 6+), 

(M1,<p0)=O(e-<-1% ^^ 

(Afo.^o) ~ e2nRQ,     (Mi,^i) ~ -e2/i-Ri, 

(u^-) ~ (-i)i+1*;#;/3>    i = 0,l. 
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In (2.18a), c is a positive constant proportional to the distance between xi and XQ. In 
addition, (3 > 0 and fi > 0 are defined by 

/oo poo 

[u'Mfdv,    »= [a+-u«fo)]M*7)-*-]<*»?. (2.18b) 
-oo J — oo 

The derivations of these formulas for (Mj, (j)k) are given in Appendix A. We emphasize 
that since (j>j is localized near x = Xj, the dominant contribution to the inner product 
(cr, (j)j) is insensitive to the insertion of any exponentially small boundary layers for a 
near x = ±1 that are required to exactly satisfy the boundary conditions cr^il, t) = 0. 

The function ac(t) in (2.11) and the evolution equation for do(t) are obtained by 
substituting (2.17) and (2.18a) into (2.15). This leads to one of our main results. 

Proposition 1. For e —> 0, the two-layer metastable pattern for (2.1) is represented 
by (2.5), where xo(t) = -1 + do(t), xi(t) = di + do(*) - 1, and di is given in (2.16a). 
The distance do(t) and the function ac(t) satisfy 

do - ea2_ v2_ C1 (e-2*"1"-* - c"26"1^*), (2.19a) 

_ 2a2.i/2       -i^dl 

a?.i/l 
(2.19b) 

Here £ and 7 are defined by 

C = att/3-e2(l-a)^ + 7, 

A (2-20) 
7 = e (1 - a)(«+ - s.) [c(ff- - «+) + (*+ - 5-)y] • 

In (2.19) and (2.20), the constants a±, v± are defined in (2.7), 0± is defined in (2.16b), 
and /3 and // are given in (2.18b). For the constrained Allen-Cahn equation (i.e., a = 1 
and K = 1), C = P and 7 = 0, and hence (2.19) reduces to the result given in [21] (see 
also [15] for some related work). 

With the initial value do(0) = dg, (2.19a) is readily integrated to obtain 

'1 + tanh (e-1z/_(dg - d§)/2) c*/*- , / \      .      di 6 

_ 1 - tanh (e-V_(dg - d§)/2) e*/*. 
^e£-1

t/_(2-<f1) 

AaLvt 

(2.21) 

Here d^ = d2(0) = 2 — di - do(0). The unstable equilibrium of (2.21) is do = d2 = 
1 - di/2. It follows from (2.21) that for e < 1 and dg > di], the internal layer centered 
at #1 will collapse against the wall at x = 1 at a time t ~ (e26 ly-d^/(2a2iu^_). 
Alternatively, if djj < d^, the layer centered at XQ will collapse against the wall at 
x = -1 when i - Ce2c"1,/-d8/(2a?.i/i). 

3.  A two-layer evolution: comparison of 
asymptotic and numerical results 

We now compare the asymptotic result (2.19a) for a two-layer metastable pattern with 
corresponding numerical results computed from (2.1) and (2.3) using a finite-difference 
method. We also outline the numerical method used to compute the solutions to (2.1) 
and (2.3). A full account will appear elsewhere. 
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3.1. The numerical method. The numerical method is based on a central finite 
difference scheme for the spatial discretization coupled with a third-order backward 
differentiation scheme (see Gear [10]) for the time discretization. Since this time 
integration method is of high order while still allowing for large time steps without 
the loss of stability, it is both accurate and efficient for tracking the motion of the 
internal layers over exponentially long time intervals. However, as a result of the 
sudden decrease in the time scale that occurs when an internal layer approaches the 
boundary of the domain, we found it necessary to implement a time stepping control 
strategy. The strategy, which monitors a bound on the error ratio between consecutive 
time steps, is used to reject large inaccurate time steps. 

The spatial discretization for (2.1) was done using a centered fourth-order scheme 
for the highest derivative term and a sixth-order scheme for the lower-order terms. 
For smooth solutions, the formal truncation error of the spatial discretization is 
O (e2/i4 -f h6). The proper numerical implementation of the boundary conditions for 
higher-order schemes is an important area of research [12]. For (2.1), we note that all 
of the odd spatial derivatives of the solution vanish at the end points of the interval. 
This symmetry property for the continuous problem then can be exploited to yield 
higher-order accurate numerical boundary conditions. 

At each time step, the implementation of Newton's method requires the numerical 
inversion of a Jacobian. The Jacobian for the nonlinear discrete problem was evaluated 
analytically and inverted numerically using the subroutines for banded matrices from 
Linpack [17]. The explicit mass constraint for the non-local Allen-Cahn equation 
(2.3) results in an extra row and column in the Jacobian matrix. To numerically 
invert this augmented Jacobian, we used the bordering algorithm frequently employed 
in numerical continuation approaches for bifurcation problems [13]. 

The exponentially slow internal layer motion can be calculated accurately only by 
resolving the exponentially weak interactions between the internal layers (cf. [21]). 
To ensure that these interactions are properly resolved, we adopted the conservative 
approach of using quadruple precision arithmetic in all of the numerical computations. 

As a partial check on the computational results, the total mass was evaluated 
numerically at each time step by integrating the discrete solution using the mid-point 
rule. Since all of the odd spatial derivatives of u vanish at the end points, the Euler- 
Maclaurin summation formula shows that this midpoint rule is formally of infinite- 
order accuracy (see [7] p. 73). Our computations using 1000 meshpoints showed that 
the mass was conserved to many significant digits. 

3.2. The comparisons. The asymptotic and numerical results for do(t) are com- 
pared for two choices of Q(^), for various values of e, and for various initial condi- 
tions. The first choice of Q is the odd nonlinearity Q(u) = Qo(u) = 2(u - u3) for 
which a+ = a_, i/+ = z/_, and 6+ = 0-. For this form of Q, the heteroclinic orbit 
constants needed in (2.19)-(2.21) can be obtained analytically as 

a_=:2,    i/_=2,    /3 = 4/3,    0_=log2,    fi = 2. (3.1) 

The second choice of Q is the asymmetric form Q(u) = Qa(u)i where 

Qa(u) = u(u + l)(ro - u)(ri - u), 

Let s- = 0 and 5+ = TQ. Then, since ri > 7*0, it can be verified that Qa{u) satisfies 
(2.2) on the interval [s_,s+]. In the comparisons below, we chose ro = 1.3. For this 
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FIGURE 2. Asymptotic and numerical results for log10(i) versus do 
are shown for the Cahn-Hilliard equation (a = 0). The labels indicate 
the values of e used. The three trajectories on the left side correspond 
to the asymmetric form Q = Qa given in (3.2) with ro = 1.3, and the 
three trajectories on the right side are for Q = Q0 = 2(u — v?). In 
this plot, the asymptotic and numerical results are indistinguishable. 

value of ro, we numerically obtain that 

a_ = 2.2500, i/_ = 2.5886,    /? = 1.8058,    6L = .5599, 

9+ = 1.0634,    ix = 2.6834. 
(3.3) 

These heteroclinic orbit constants, which are needed in (2.19)-(2.21), were obtained 
from a careful numerical computation of the heteroclinic connection us(z) defined in 
(2.6). 

For (2.1), the transient process associated with the initial formation of a pattern of 
well-defined internal layers from initial data is very intricate. In contrast to the Allen- 
Cahn equation, it is not clear which initial data will lead to a two-layer metastable 
pattern. To overcome this difficulty, a certain spatially dependent forcing term was 
added to the right side of (2.1) for a very short duration. The inclusion of such a 
term gave us the flexibility of routinely generating two-layer patterns with reasonably 
precise control on the locations of the internal layers at the onset of the metastable 
evolution. At some fixed 0(1) time, these initial internal layer locations computed 
from the numerical method were used as initial conditions for the asymptotic result 
(2.19a). The asymptotic and numerical results for do = doOO were t^ien compared at 
later times. 
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In Figure 2, we plot the asymptotic and numerical results for log10(£) versus do 
for some trajectories corresponding to two-layer metastable patterns for the Cahn- 
Hilliard equation (a = 0). The values of e used are indicated in this figure. On this 
logarithmic scale, the asymptotic and numerical results are indistinguishable. The 
three trajectories on the left side of Figure 2 correspond to Q = Qa. For these 
trajectories, the layer centered at x = XQ eventually collapses against the wall at 
x = -1. For the trajectory in Figure 2 with e = .08 and Q = Qa, we plot the 
numerical solution in Figure 3 at several values of t. The collapse process, which 
occurs when t « 1.391 x 1011, is evident from this figure. A formal scaling suggests 
that the time scale for the completion of this collapse event is 0(1). The three curves 
on the right side of Figure 2 correspond to Q = QQ. For these trajectories, the layer 
centered at x = Xi eventually collapses against the wall at x = 1. The last point on 
each of these trajectories corresponds to the initiation of the collapse event, defined as 
the time for which cfe — 0? where d2 = 1—xi. Since the asymptotic result (2.19a) is not 
valid when a collapse event occurs, we do not compare the asymptotic and numerical 
results for do at times during or after the collapse event. However, further numerical 
results (not shown) indicate that do changes by an amount of O(e) during the collapse 
event. After the layer collapse is complete, do remains fixed at an equilibrium value 
consistent with a one-layer pattern with the same mass. 
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do (num.) do (asy.) t (num.) t (asy.) 
0.594993643 0.594993644 0.4692459394 9 0.4686297431 9 

0.595235288 0.595235293 0.1698851766 12 0.1698817367 12 

0.62484401 0.62484390 0.8036521829 13 0.8036528889 13 

0.64538629 0.64538463 0.8691830759 13 0.8691851609 13 

0.6653888 0.6653782 0.8817175084 13 0.8817202122 13 

0.675509 0.675484 0.8834767270 13 0.8834795897 13 

0.687090 0.687024 0.8843288486 13 0.8843318111 13 

0.705747 0.705447 0.8847617813 13 0.8847648277 13 

0.72468 0.72336 0.8848597065 13 0.8848627831 13 

0.75191 0.74332 0.8848841878 13 0.8848872775 13 

0.77372 0.75001 0.8848867648 13 0.8848898570 13 

0.81901 0.75198 0.8848872950 13 0.8848903883 13 

TABLE la. (Cahn-Hilliard)    Results for do 
u3) and e = .05.   The initial values x® = 

do(t) foTQ(u) = 2(u- 
-.40500702 and x? = 

.54527721 at t = 14.42 were used to calibrate the asymptotic results. 

do (num.) do (asy.) t (num.) * (asy.) 
0.503717325 0.503717322 0.1327227942 1U 0.1327200053 1U 

0.497710755 0.497711032 0.4580219562 " 0.4580387414 " 
0.48854744 0.48854860 0.8758363748 " 0.8758748210 " 
0.4774683 0.4774721 0.1139719166 12 0.1139779931 12 

0.4551146 0.4551366 0.1332133700 12 0.1332218341 12 

0.444789 0.444835 0.1360995881 12 0.1361085986 12 

0.430191 0.430314 0.1379550139 12 0.1379644445 12 

0.415586 0.415908 0.1386765684 12 0.1386862400 12 

0.38392 0.38631 0.1390760004 12 0.1390858988 12 

0.36904 0.37468 0.1391125076 12 0.1391224369 12 

0.31080 0.35720 0.1391345193 12 0.1391444878 12 

0.18619 0.35642 0.1391350379 12 0.1391450083 12 

TABLE lb. (Cahn-Hilliard) Results for do = do(i) for e = .08 and 
Q(u) given by (3.2) with ro = 1.3. The initial values xg = -.49613511 
and #5 = .41551949 at t = 14.42 were used to calibrate the asymptotic 
results. 

In Table la, we give a pointwise comparison of the asymptotic and numerical results 
for do = do(t) corresponding to the trajectory shown in Figure 2 with Q = Q0 and 
e = .05. For the trajectory in Figure 2 with Q = Qa and e = .08, a similar comparison 
is shown in Table lb. In these tables, the third and fourth columns compare the 
numerical and asymptotic elapsed times necessary for the distance do to be given by 
the values in the first column. These elapsed times are found to agree to several 
significant digits. The first and second columns in these tables compare the numerical 
and asymptotic results for do at the times given in the third column. These results 
for do agree well up until the collapse time is approached. However, for times near the 
collapse time (the last few rows of Tables la and lb), very small numerical errors in 
computing the elapsed time get reflected in significantly larger errors in determining do. 
This sensitivity to small numerical errors results from the fact that the solution changes 
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FIGURE 4. Asymptotic and numerical results for log1o(t) versus do 
are shown for the constrained Allen-Cahn equation [OL = 1 and K = 1). 
The labels in this figure have the same meaning as in Figure 2. 

on a much shorter time scale at the onset of a collapse event. However, we emphasize 
that if our numerical method made a significantly larger, but still rather modest, error 
in computing the elapsed time of say 1-2%, the asymptotic and numerical results for 
do would agree rather poorly over a wide range. 

In Figure 4, we plot asymptotic and numerical results for log10(t) versus do corre- 
sponding to two-layer patterns for the constrained Allen-Cahn equation (2.3) (a = 1 
and « = 1 in (2.20)). The asymptotic and numerical results for do(t) are again in- 
distinguishable in this figure. For two of the trajectories shown in Figure 4, we give 
a similar pointwise comparison of the asymptotic and numerical results for do(t) in 
Tables 2a and 2b as was done in Tables la and lb. As for the case of the Cahn-Hilliard 
equation, the results in Tables 2a and 2b show that the values for the elapsed times 
are in very close agreement whereas the asymptotic and numerical results for do at a 
given time agree well only up until a collapse event is initiated. 

Finally, in Figure 5 we plot some trajectories log10(£) versus do corresponding to 
two-layer patterns for the viscous Cahn-Hilliard equation with a = 0.5 and K = 1. For 
two of these trajectories, the close agreement between the asymptotic and numerical 
results for do(t) is shown in Tables 3a and 3b. 

These comparisons show that the asymptotic result (2.19a) gives a highly accurate 
determination of the exponentially slow motion associated with two-layer metastable 
patterns of (2.1) before any collapse event occurs.  Moreover, the numerical method 
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d0 (num.) do (asy.) t (num.) t (asy.) 
0.539778909 0.539778916 0.1327227944 1U 0.1327015589 1U 

0.541108949 0.541108950 0.3882783312 " 0.3882780231 " 
0.57881456 0.57880227 0.4093632517 12 0.4093899505 12 

0.59818243 0.59813185 0.4330027517 12 0.4330330269 12 

0.6143377 0.6141808 0.4389126267 12 0.4389447181 12 

0.629264 0.628835 0.4408367720 12 0.4408695100 12 

0.638418 0.637631 0.4413521681 12 0.4413851863 12 

0.648952 0.647397 0.4416614057 12 0.4416945959 12 

0.668908 0.663698 0.4418847440 12 0.4419181011 12 

0.69137 0.67560 0.4419470211 12 0.4419804571 12 

0.71876 0.68079 0.4419620534 12 0.4419955324 12 

0.77414 0.68200 0.4419648636 12 0.4419983546 12 

TABLE 2a. (Constrained Allen-Cahn) Results for do = rfo(^) for 
Q(u) = 2(u — it3), K = 1, and e = .06. The initial values 
zg = -.46026604 and x? = .53973846 at * = 21.67 were used to 
calibrate the asymptotic results. 

do (num.) do (asy.) t (num.) t (asy.) 
0.497154336 0.497155391 0.5308911772 1U 0.5374898994 1U 

0.493154215 0.493155776 0.2256800766 12 0.2257554296 12 

0.48899481 0.48899736 0.4016019371 12 0.4016960215 12 

0.48582681 0.48583008 0.5071550534 12 0.5072533120 12 

0.4784563 0.4784628 0.6830769138 12 0.6831968268 12 

0.463235 0.463256 0.8633968208 12 0.8635372035 12 

0.440003 0.440104 0.9469597045 12 0.9471157040 12 

0.428362 0.428579 0.9596040882 12 0.9597634019 12 

0.413773 0.414333 0.9664760358 12 0.9666376186 12 

0.40298 0.40409 0.9686750591 12 0.9688376802 12 

0.36963 0.37738 0.9705992045 12 0.9707631907 12 

0.28957 0.36319 0.9708488494 12 0.9710132102 12 

TABLE 2b. (Constrained Allen-Cahn) Results for do = do(t) for e = 
.08, « = 1, and Q(u) given by (3.2) with ro = 1.3. The initial values 
xg = -.50275997 and x? = .40184203 at t = 32.67 were used to 
calibrate the asymptotic results. 

we use is able to track accurately the motion of the internal layers over very long time 
intervals. 

4. An n-layer metastable pattern for the viscous Cahn-Hilliard equation 

We now outline the derivation of a differential-algebraic system that describes the 
metastable dynamics of an n-layer pattern for (2.1). Before doing so, we first introduce 
some convenient notation. 

For j = 0,...,n, we define ^ by ^ = (-l)-7'^, where £o = ±1 specifies the 
orientation of the internal layer closest to x = -1.   For j = 0, ...,n, the triplet 
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FIGURE 5. Asymptotic and numerical results for log10(£) versus do 
are shown for the viscous Cahn-Hilliard equation with a = 0.5 and 
K = 1. The labels in this figure have the same meaning as in Figure 2. 

do (num.) do (asy.) t (num.) t (asy.) 
0.576222994 0.576222890 0.9384918795 9 0.9386374332 9 

0.580142447 0.580142104 0.5764344397 10 0.5764714039 10 

0.59223190 0.59222732 0.1470527387 " 0.1470747925 " 
0.60218042 0.60216735 0.1820389844 11 0.1820714098 " 
0.6159711 0.6159317 0.2043913081 " 0.2044303499 u 

0.625185 0.625106 0.2111941892 11 0.2112362673 " 
0.633463 0.633321 0.2145956298 11 0.2146394345 " 
0.644669 0.644359 0.2170252302 11 0.2170708768 " 
0.669233 0.667646 0.2187866905 " 0.2188342190 " 
0.69671 0.68870 0.2191435381 " 0.2191916658 11 

0.72685 0.69927 0.2192023800 " 0.2192506900 " 
0.77022 0.70171 0.2192109808 11 0.2192593209 11 

TABLE 3a. (Viscous Cahn-Hilliard) Results for do = do(t) for 
Q(u) = 2(u - u3), /c=l,€ = .06, and a = 0.5. The initial val- 
ues x% = -.42443328 and x? = .57558911 at t = 21.37 were used to 
calibrate the asymptotic results. 
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do (num.) do (asy.) t (num.) t (asy.) 
0.472285458 0.472285460 0.1466393880 8 0.1467956085 8 

0.471197143 0.471197127 0.7185895526 10 0.7185796612 10 

0.46663994 0.46663989 0.3228601659 11 0.3228579137 n 

0.45877105 0.45877104 0.6148503132 11 0.6148499606 11 

0.4435361 0.4435373 0.8905096190 11 0.8905224871 11 

0.430504 0.430510 0.9839681073 11 0.9839946557 11 

0.412817 0.412846 0.1032071741 12 0.1032113656 12 

0.387096 0.387279 0.1050282402 12 0.1050333008 12 

0.363111 0.364001 0.1053632477 12 0.1053685853 12 

0.34605 0.34863 0.1054233772 12 0.1054288057 12 

0.31707 0.32924 0.1054486102 12 0.1054540964 12 

0.25333 0.32012 0.1054530981 12 0.1054586002 12 

TABLE 3b. (Viscous Cahn-Hilliard) Results for do = do(t) for e = 
.08, a = 0.5, K = 1, and Q(u) given by (3.2) with ro = 1.3. The initial 
values xg = -.52771239 and z? = -37690138 at t = 161.43 were used 
to calibrate the asymptotic results. 

(aj, Vj,Sj) then is defined by 

(a^,Sj) = {(a+'^'S+)    whan ^ = -1, 
w 'J'"      l(a_,»/_,«_)    when^ = +l. 

(4.1) 

Here a±, ^±, and s± are given in (2.6b). An n-layer metastable pattern for (2.1) then 
is represented by the approximate form u(x,t) ~ u*(x)y where 

n-l 

u*{x) = ii*(x; xo,... ,Zn-i) = us[e  ^(a; - so)] + ^ (ws[e  ^^(x - Xj)] - Sj) . 

(4.2) 

In (4.2), ^ = Xj(^) for j = 0,..., n — 1 and Xj-.i(t) < Xj(t). The inter-layer distances 
dj = dj(t) are given by dj — Xj — Xj-i for j = 0,..., n, where we have introduced the 
fictitious layers x_i and xn by X-i = — 1 and xn = 1. The layers are assumed to be 
well-separated in the sense that dj(t) = 0(1) as e —> 0 for j = 0,..., n. 

To derive equations of motion for Xj(t), we use the projection method. The quasi- 
steady linearization of (2.4) is obtained by substituting u(x, t) = ^(x; XQ, ..., #n-i) + 
w(x,t) into (2.4), under the assumption that w <C w*, Wt <^ u^, and cr <^ 1. Then, in 
place of (2.8), we find 

e2,Wxx + Q,(u*)w = cr + E(x) + a^ctt^, 

Vndn 

n-l 

^rr = (1 - ce)e 1 ^fjijU^e  ^j^-^j)],    ^(±1,^ = 0. 
i=o 

(4.3a) 

(4.3b) 

(4.3c) 
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Here E(x) = E{x\ XQ, ..., xn-i) is given by 

n-l 

E{x\ aro,...,a;n_i) = ^ Q (^[e-1^-^ - x,)]) - Q(u*). (4.4) 
j=0 

Next, we integrate (4.3c) to obtain 

n-l 

a(^,t) = (l-aJ^^-Mj^a;; ^•) + crc(^), 

i=0 (4*5) 

M^x; x^) =  /    (usle^Cjiv - Xj)] - Sj) drj. 

When the approximation m = J_1 u*(x; XQ, ..., xn-i) dx to the mass constraint holds, 
the boundary conditions ^(±1, t) = 0 are satisfied to within exponentially small terms 
that are negligible. 

The eigenvalue problem (2.13), with u* given in (4.2), has exactly n exponentially 
small eigenvalues Xj for j = 0, ...,n — 1 (cf. [5]). For e —» 0, the corresponding 
normalized eigenfunctions are (f)j(x) ~ RjU,

s[€~1^j(x — Xj)] for j = 0,..., n — 1, where 
Rj is a normalization constant. Substituting (4.5) into (4.3a) and expanding w as in 
(2.14a), we derive (2.14b). By imposing the limiting solvability conditions that Aj = 0 
for j = 0,..., n — 1, we obtain the coupled system for ac(t) and Xj(t), j = 0,..., n — 1, 

n-l 

(1 - a) J^Xk (Mk^j) + (aofa) + a««,^) ~ Bj - (E^j), 
k=0 v4-bJ 

j = 0,...,n- 1. 

Here Bj is defined in (2.14b). A further equation, which is given below in (4.7b), is ob- 

tained by evaluating the approximate mass constraint m = J_1 u*(x; XQ, •.., £n-i) dx 
for e -> 0. 

Next, the asymptotic form (t>j(x) ~ RjU,
s[e~1^j(x — Xj)] is used to evaluate the 

various terms in (4.6) for e —* 0. The terms Bj and (E,(j)j) were evaluated in [21], 
and it is easy to show that {u^(j>j) ~ —fijXjPRj and [crc^(j)j) ~ €crc(s+ — S-)Rj. The 
substitution of these asymptotic formulas into (4.6) leads to the following result. 

Proposition 2. For e —» 0, an n-layer metastable pattern for (2.1) with widely spaced 
internal layers is represented by (4-.2), where Xj{t) forj = 0,..., n — 1 and ac(t) satisfy 
the differential-algebraic system 

n-l 

/c=0 

aK(3xj +c(l -aj^ifc&jfc ~ ecrc^(5+ - s_) + eHj,    j = 0,... ,n - 1,     (4.7a) 
=o 

n 

^ 5^ (xk -Xk-i) ~m- en(9- - 0+). (4.7b) 
fc=0 

The exponentially weak forces Hj for j = 0,..., n — 1 and the coupling coefficients bjk 
for j, fc = 0,..., n — 1 are defined by 

fl,. =2(a,2
+1^+1e-(1+^-1)e"1^+1^+1 -a^e-^^0)6"1^^), (4.8a) 

6jib = /    {usie^Zkix - x^] - Sk) (^[e-1^-^ - Xj)] - Sj+1) dx. (4.8b) 
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In (4.7) and (4.8), (a^i/^Sj), 0±, and /? are given in (4.1), (2.16b), and (2.18b), 
respectively. Also, in (4.8a), Sj^ is the Kronecker symbol. 

For the constrained Allen-Cahn equation where a = 1 and K = 1, (4.7) reduces 
to the result derived in [21]. Furthermore, if we set a = 1, hi — 1, and crc = 0 in 
(4.7a) and disregard the mass constraint (4.7b), then (4.7a) reduces to the well-known 
dynamics Xj ~ eP~1Hj associated with the unconstrained Allen-Cahn equation. 

The coefficients bjk in (4.7a) can be evaluated asymptotically for e —» 0 in a way 
similar to that shown in Appendix A for the two-layer case. A straightforward but 
lengthy calculation shows that 

6ifc--(-l)i+*(xi-Xfc)(5+-8_)2 

- e [1 - (-iy+k] 0(s+ - S_)(0_ - 0+),    for j > k, (4.9) 

bjj ~ -Wi        bjk = 0(e~e   c),    for j < k. 

Here JJ, is given in (2.18b) and c is a positive constant that is proportional to the 
distance Xk — Xj. From these asymptotic estimates for bjk, it follows that if we write 
the left side of (4.7a) in the matrix form Bx, then the matrix B is lower triangular 
to within exponentially small terms. Moreover, if 0 < a < 1, then the entries in the 
matrix B that are below the main diagonal are 0(e) smaller than the entries along 
the main diagonal. 

Since, for 0 < a < 1, B is a diagonal matrix to within 0(e) terms, the system (4.7) 
can be asymptotically decoupled for this range of a to obtain 

n-l 

an/Sxj ~ e^-n-1^ - s.)-1 ]P(sfc - 5fc+i)i?fc + eHj,    j = 0,..., n - 1,    (4.10a) 
fc=o 

n-l 

ac - n-1^ - 5_)-2 J2(sk - Sk+i)Hk. (4.10b) 
k=0 

When a = 1, the form (4.10) is an exact reformulation of (4.7). In (4.10a), let n > 2 
and label the initial-layer separations dj(0) for j = 0,... ,n by d® = dj(0). Assume 
that for some J with J ^ 0 and J ^ n that vjd® < Vjd® for all j = 0,... ,n and 
j ^ J. Then, from (4.10a), it is easy to show that the distance dj{t) between xj and 
xj-\ satisfies the approximate evolution equation 

d'J~-—Jl--)a'>Jv]e-^d\    dJ(0)=d0
J>0. (4.11) 

Integrating (4.11), we obtain 

» -■  -^ log [x . t/ts],    ts s ^[1-2/nr1 -e-Wj 
vj 4aji/j 

^(O-dJ + ^IogH-t/tJ,    t^^-'r     «'   ^- (4-12) 

Thus, dj = O(e) when t & ts. The collapse time for the corresponding unconstrained 
Allen-Cahn equation is obtained by letting n —> oo and setting a = 1 and K, = 1 in 
(4.12). A more detailed study and comparison of the internal layer dynamics (4.7) 
associated with the various limiting forms of (2.1) is in progress. 

5. Artificial boundary conditions and spurious metastable dynamics 

Domain truncation with the imposition of a simple form of artificial boundary condi- 
tion can significantly perturb the metastable internal layer dynamics associated with 
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pattern for (5.1). The artificial boundary conditions (5.1b) are ap- 
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(5.1b) 

problems defined on infinite domains. To illustrate this effect, we consider the Allen- 
Cahn problem that results from truncating an infinite domain problem to the finite 
domain problem 

ut — e2uxx + Q(u),    -L < x < L1    t > 0, 

eux(L,t) = —u[u(L,t) - 3s],     eux(—L,i) = u[u(-L,t) + s]. 

Here L > 0, s > 0, and Q(u) is an odd periodic function satisfying Q(—s) = 0, 
Qf(—s) < 0, and Q(u + 2s) = Q(u). The simple artificial boundary conditions (5.1b), 
where v = [—Qf(—s)]1^2, were derived by linearizing (5.1a) about the constant states 
u = — s and u = 3s and then by finding the decay rates onto the constant states. The 
corresponding nontruncated problem is (5.1a) on the infinite line — oo < x < oo with 
u —> — s as x —* —oo and u —> 3s as x —> oo. For the form of u shown in Figure 6, 
our goal is to compare the metastable internal layer dynamics for the infinite domain 
problem with that of the truncated problem (5.1) (see [24] for some related work). 

The metastable pattern shown in Figure 6 is represented by u(x,t) ~ u*(x), where 

u*(x) = u*(x] xo, xi) = Usle^ix - XQ)] + Ua[e~1(a; - xi)] + s. (5.2) 

Here Xj = Xj(t) and XQ < XI. In (5.2), the heteroclinic orbit us(z) satisfies (2.6a) and 
the anti-symmetry condition us(z) = —u3(—z). By retaining an extra term in the far 
field form of u8(z), we derive from (2.6a) that 

us(z) - s - ae-"* + be-1"" + • • •     z -> oo (5.3) 
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In (5.3), a, 6, and k are defined by 

^sJ     J0   \[2V(v)}1/2     V-sJ 

V(u) = - [  Q(v)dri, 
Js (5.4) 

fc = 2,    b = -C^^,    forQ"(S)^0; 

To derive equations of motion for X[)(t) and xi(t), we use the projection method. 
Let u = u* + w, where w < u* and ^ < wj. Then, from (5.1) and (5.3), the 
quasi-steady linearized problem for w is 

e2wxx + Qf{u*)w = E(x) + u*,     -L < x < L, (5.5a) 

ewx(-L,t) - vw{-L,t) = (k- 1)6z/e"6"1^^, (5.5b) 

ewx(L,t) + vw{L,t) = {k- l)bve-e~1WL-Xl\ (5.5c) 

In (5.5a), E is defined upon substituting f0 = 1, & = 1, n = 2, and (5.2) into 
(4.4). On the interval |a:| < L, the eigenvalue problem associated with (5.5) is (2.13a) 
with boundary conditions e0/(±L) ± v(j){±L) = 0. For e -> 0, the (nonnormalized) 
eigenfunctions corresponding to the two exponentially small eigenvalues are fa (x) ~ 
^/

5[e~1(x - Xj)] for j = 0,1. In the limit e —> 0, we enforce the solvability conditions 
that the projections of w against these eigenfunctions are zero. From these conditions, 
we obtain the coupled system of differential equations for xo(t) and xi(t) given by 

-^Ao ~ -2a2z/2 e"6"1^1 + (fc - 1) bau2 g-^1^!)^, (5.6a) 

"^ii -2a2z/2e-e"1^1 -(fe-ljfca^c-6"1^1^*. (5.6b) 

In (5.6), /? is given in (2.18b), di = Xi - XQ, do = XQ + ^, and d2 = L - xi. 
We now interpret the dynamics (5.6). On the infinite line, the distance between xi 

and XQ satisfies di ~ 4e/?~1a2^2e~e~ll/dl. Thus, the inter-layer force is repulsive for all 
di and di -^ oo as t -> oo. Now for the truncated problem, the last terms on the right 
sides of (5.6a,b) can be neglected in the limit e -> 0 only when di < (fc+l) min (do, ^2)- 
Thus, it is only for this range of di that the metastable dynamics of the truncated 
problem correctly approximates that of the infinite domain problem. As di increases, 
the last terms on the right sides of (5.6a,b) become more significant and spurious effects 
from the artificial boundary conditions are introduced. When b > 0, these conditions 
have the deleterious effect of introducing a spurious stable steady-state solution not 
present in the infinite domain problem. The equilibrium layer spacings doe, die, and 
d2e for this steady solution are 

^ = d2e~fcf3-KfcT3)l0S7' 
2L(k + l) ,       26      , ( • ) 

dle~-fcT3- + RfcT3)log7- 
Here 7 = 2a/[(k - 1)6]. To illustrate the theory, let Q(u) = - sin[7r('w + 1)]. For this 
example, k = 3, a = 47r~1, u = ^pK, and b = 4/(37r). From (5.7), it then follows 
that die ~ 4L/3 + elog(3)/(3x/7r) and doe = d2e = L/3 + O(e). Thus, the interesting 
qualitative feature in this problem is that the artificial boundary conditions can induce 

e 

e 
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spurious metastable dynamics even when the internal layers are located at an 0(1) 
distance away from where the artificial boundary conditions are imposed. 

There are many other problems defined on the infinite line where various types 
of localized structures interact with each other by way of exponentially weak inter- 
layer forces. Examples of such problems include the interaction of solitary waves of 
nearly equal amplitude for the KdV equation and related equations, and the interac- 
tion of kinks for nonlinear wave equations. To numerically solve these more general 
problems using finite difference methods, the infinite domain must be truncated to 
a finite domain and artificial boundary conditions must be imposed. The simple ex- 
ample analyzed above suggests that considerable care must be taken in performing 
these computations to ensure that any spurious dynamics introduced by the artificial 
boundary conditions does not obscure the delicate interaction between the localized 
structures. 

Appendix A. Evaluation of the inner products for a two-layer pattern 

For e —> 0, we now outline the evaluation of the inner products (Mj, (j)k) for j = 0,1 
and k = 0,1, given in (2.18a). Here fa ~ RkUf

8[(—l)*^-1 (x — Xk)] and Mj is defined 
in (2.12). 

To evaluate (Mo,0o)5 we first integrate by parts to obtain 

(MQ, fa) =-eRo /    Usle'1^ - xo)] (usle^ix - XQ)] - s-) dx 

+ eRou8[e-1(l - x0)] /    (^[e-1^ - XQ)] - S-) dx. (A.l) 

Combining the integrals in (Al) and using i£s[e_1(l — XQ)] ~ 5+ for e —> 0, we derive 

(MQ, fa) ~ei?o /    (s+-us[e-1(x-xo)]) (^[e-1^ - XQ)] - s_) dx. (A.2) 

The dominant contribution to the integral in (A.2) arises from the region near x = XQ. 

In this way, we find that (Mo, fa) ~ €2nRo, where /i is defined in (2.18b). A similar 
calculation shows that (Mi, fa) ~ — e2/xi?i. 

To evaluate (Mi, fa), we integrate by parts and then combine the resulting integrals 
to derive 

(Mo,fa) ^eRx I    (us[e-1{x1-x)}-S-)(us[e-1{x-Xo)\-S-) dx. (A.3) 

The right side of (A.3) can be written exactly in the more convenient form 

(Mo, fa) ~2€Ri(sjr-s-)2 + tRi(54.-5-) /    (us[e-1(x-xoj\-s+) dx 

+ eR\(s+ — sJ) I    (us[e~1{xi - x)] - s+) dx 

+ eit^i /    (wJ5[€~1(a; - xo)] - 5+) (wa[e"1(a:i - x)] - s+) dx.      (A.4) 
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Since the last integral on the right side of (AA) is 0(e-€   c) for some c > 0, it can 
be neglected. Next, for e —> 0, we evaluate the remaining two integrals in (AA) to get 

/. 

i 
(^[e-1^ - XQ)] - 5+) dx ~ -(XQ 4- l)(s+ - 5_) + e(0_ - 0+), 

(A.5) 

/; 

i 
(uale^ixi - x)] - s+) dx ~ (1 - £i)(s_ - s+) + e(0_ - 5+). 

Here 0± are defined in (2.16b). The result for (MQ, 0I) given in (2.18a) then is obtained 
by combining (A.4) and (A.5). 

Finally, an integration by parts shows that (Mi,0o) is given by (A.3) where s_ 
and i^i are replaced by s+ and — RQ, respectively. Since the resulting integrand is 
exponentially small for — 1 < x < 1, it follows that (Mi,0o) = 0(e~e c) for some 
c> 0. Therefore, in deriving (2.19) from (2.15), we have set (Mi,0o) = 0 in (2.15a). 
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