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ON STEADY TRANSONIC FLOW BY COMPENSATED COMPACTNESS 

Cathleen S. Morawetz 

1. Introduction 

This paper contains a theorem for the mixed equations of potential flow in two space 
variables that is analogous to DiPerna's theorem [2] on the existence of weak solutions 
for two hyperbolic conservation laws and is based on the Tartar-Murat Lemma for 
compensated compactness, see [6]. The application is plane flow for which a suitable 
"viscous" model exists, and this will be discussed in another paper. Some hypothesis 
about speed must be made. There are other conceivable applications such as axially- 
symmetric flow, plane fluid models for semiconductors, etc. The equations of the 
viscous model must admit a potential and a stream function, or something like it. 
This is crucial in proving that the limit at zero viscosity is a genuine weak solution. 
But also one has to establish some underlying bounds. 

The difficult problem in the applications is to create a problem depending on a 
"viscous" parameter and which has certain properties: It must be solvable and have 
sufficiently strong bounds uniform in the viscous parameter v so that the theorem 
given here can be applied. 

Here we are assuming we have such a viscous model. In Section 2, we describe the 
system that will be considered. In Section 3, we find entropy pairs of a simple form 
that satisfy divergence estimates in the potential-stream function plane. In Section 4, 
we justify using this plane and describe the use of the Tartar-Murat Lemma and the 
Young measure for the weak limits. We also state the theorem to be proved. In 
Sections 5, 6, and 7, we show that, under the circumstances of the theorem, we can 
divide the proof into three parts each with its own applications of the entropy pairs. 
The hyperbolic region is treated by a variation of Serre's method, see [5]. 

This approach to transonic flow was first presented in [3]. However, the application 
erred. The entropy pairs used in extending DiPerna's hyperbolic results were not 
shown to be bounded in the elliptic region as well as in the hyperbolic region. Here 
explicit, bounded, entropy pairs are found by separation of variables and achieve the 
desired result. 

2. Transonic potential system 

By a transonic potential system we mean a system for the velocity (tx, v) and density 
pB of the form 

Uy - vx = 0, (2.1) 

(PBU)X + (pBv)y = 0, (2.2) 

pB=PB(q), (2.3) 
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258 MORAWETZ 

where g2 = v? + v2 and ps^dq -f c2(p)dpB = 0. 
The first equation is the condition for potential flow and implies (u, v) = V0. The 

third is Bernoulli's law which comes from Euler's momentum equations. The density 
PB given by Bernoulli's law is assumed to satisfy the condition that psq is a convex 
function with a maximum at sonic speed and vanishing for q = 0 and q = q* when 
PB = 0. The second equation is conservation of mass and implies the existence of a 
stream function V^ = {—pv,pu). 

Remark 2.1. Other variations, for future consideration, occur in axially symmetric 
transonic flow where (2.2) is replaced by (ypB'u>)x + (ypBv)y and VV> = (—ypsv, ypsv). 
However, for these cases no viscous models have been constructed. Another variation 
is, in (2.3), to let p depend on (j) and possibly related functions. 

We limit ourselves here to the plane case and first consider some limited aspects of 
a viscous model and associated assumptions. Let z/ be the viscous parameter and let 

PB = PB(<n,   (02 = K)2 + K)2. 

Let uy, vu approximately satisfy the mass law 

{pB{qv)nv)x + {PB{qv)vu)y = e, (2.4) 

where e —► 0 as v —> 0 and is compact in H^l for v < Z/Q, say. 
In addition, we require a viscous stream function that approximates the real one 

for some R": 

{-Ruvu,R?vr) = VTpv (2.5) 

Our objective is to use the DiPerna-Tartar-Murat approach with a family of entropy 
pairs to show that if Ru —* PB(qu) in some appropriate sense, then there exists a 
subsequence of z/ such that uu\vu converge to a weak solution of (2.1)-(2.3) almost 
everywhere. 

3. Entropy pairs 

In this section we introduce bounded entropy pairs (/,#) that are generated by 
(2.1)-(2.3). Here (/,#) is a vector function of the variables (w, v). In the standard 
DiPerna-Tartar-Murat method, we would be led to require estimates on div(/,p) 
and as a result conclude, by using families of entropy vectors, that there exists a 
subsequence of the parameter v such that the corresponding viscous solutions converge 
to a weak solution of equations (2.1)-(2.3). However, it is not clear how to find a family 
of entropy vectors satisfying div(/,^) = 0 formally that will permit us to draw the 
right conclusions in the #, ^/-plane. In this section, we drop the subscript B on p and 
proceed formally. 

We introduce the stream function and the potential by 

V0 = (u, v),        V^ = (-pv, pu), (3.1) 

where p is given by Bernoulli's law as a function of u2 4- v2. 
We may rewrite the equations as 

div p V0 = 0,        div rV^ = 0, (3.2) 

where 

r = p-\ (3.3) 
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Then we regard (/, g) as a vector function of 0, rp where we note that the Jacobian 
of the transformation from 0, ^ to x, y coordinates is p(u2 + v2) which vanishes only 
at cavitation p = 0 or stagnation u2 + v2 = 0. Since one of our assumptions will be 
that u2 + v2 and p are bounded uniformly away from 0, we may use the two planes 
equivalently in this section. More care must be exercised in examining weak limits. 

We generate entropy pairs using 

div(/pV0 + 0TVV>) = 0 (3.4) 

or, by (3.2), 

U+91, = 0. (3-5) 

Of course, we can construct entropy pairs F, G with div(F, G) = 0 using F = fpu-gv, 
G = fpv + gu) but they do not appear to be so useful. 

It is helpful to represent (3.1) by 

d6 + ir dib = w dz, 

w = e<r-i9,        dz = d(x + iy). 

A computation using (3.6) readily shows that 

pcr^-0(f> = O 

TCTtf) + Ojf, = Tfj) = faff, 

where f is ^ here. Then, from (3.5) and (3.7), we have, with / = /(cr, 0), g = gfa 0), 

f<T^<t> + fepvii> + QaVi}) +g9(T- T)<T4, = 0, (3.8) 

so that we require 

f* + go(T-T) = o, 

f9 + g*T = o. 

Then (3.5) holds. 
We shall use only certain solutions of (3.9). First, we introduce 

d/i = pda    with    /x = 0 (3.10) 

for sonic speed, i.e., e2<T = c2(p). Prom (2.2), 

| • e2or + i(p) = const. (3.11) 

and e2cr da + re2 dp = 0, so f in (3.9) is re2<r/c2 = rM2 with M the Mach number. 
Thus, (3.9) may be written as 

/M+5()r
2(M2-l)=0, 

Any solution of (3.12) may be found by setting 

9 = -He, 

if H is a solution of 

r2(M2 - \)Hee - H^ = 0, (3.14) 

where M2 - 1 = 0 for /t = 0. This equation is of Tricomi type. 

(3.9) 

(3.12) 

(3.13) 
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The only entropy pairs that we shall use here are those obtained by separation of 
variables. Thus, with ' denoting d/d/z, 

f = e±in6H±n,    g = e±ine(Tin)H±n, (3.15) 

where H±n satisfies the ordinary differential equation 

H±n - n2T2(l - M2)H±n = 0, (3.16) 

and 

f = e±n6k±n,    g = e±ne(Tn)K±n, (3.17) 

where 

K±n - n2T2(M2 - l)K±n = 0. (3.18) 

Such solutions exist in both elliptic and hyperbolic regions. 

4. Use of the Tartar-Murat Lemma on compensated compactness 

We first formulate conditions on a sequence of solutions of the regularized equation, 
i.e., (2.1), (2.4), (2.5). 

Suppose the solutions u, v of the regularized equations have a weakly convergent 
subsequence which satisfy uniformly 

(i) —oo < fii < /i < 1^2 < M*, 

(ii) 9i < 0 < 02, 
where /z* is the value of // at cavitation speed, and 

(iii) Fx + Gy is compact in H^ for all bounded smooth entropy pairs F, G. 

Then every smooth function of /i, 6 also has a weakly convergent subsequence. 
As in [6], we may represent the weak limit (w. 1.) of any function F(/x, 6) by a Young 

measure, di>(fji,9,x,y), 

w. 1. F = j F(/x, 6) dz>(/z, 6, x, y), (4.1) 

where the integral is over the ^, 6 domain. Because of (iii), we are able to claim that 
the Tartar-Murat Lemma holds. 

Tartar-Murat Lemma. If (Fi,Gi) and (JF^G^) 
are two Pairs of entropy functions 

satisfying (iii), then 

w.l.Fi w.l.Gs-w.l.Gi w.l.F2=  /Vi(M)G2(M)-Gi(M)^2(M))*'    (4-2) 

where the integral is over the domain given by (i) and (ii). 

Note that over the same domain, we see that by taking F = 1, 

di> = 1. (4.3) 
/■ 

The object is, by using a suitable infinite sequence of entropy pairs, to show that 
the Young measure is a Dirac measure at a single point, say 0(bMo- We then have 

wA.F(fi,0)    at   re,2/   is   F(fio(x,y),0o(x,y))  a.e. (4.4) 

Prom (4.4) it follows that the weak limit of an appropriate subsequence of solutions 
of (2.1), (2.2), (2.4) exists and for all x C C^0, 

/ 
(XXPBU + XyPBv) dxdy = 0, 
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so that u,v are genuine weak solutions of (2.1)-(2.3). 
However, it turns out to be necessary to work in the 0, ip plane where the entropy- 

pairs (/, g) are of such a simple form that the Tartar-Murat Lemma leads to a Dirac 
measure. Since 0, ip depend on z/, this may appear confusing, and our object now is 
to justify this step. 

Suppose x(</>, -0) C CQ
0
 in a compact region fi of the </>, ip space. Suppose for each 

^, u and v are bounded functions of #, y. Then they are bounded functions of 0, ^ 
and (j)^ have uniformly bounded derivatives with respect to #, y. And under the 
assumption that PB and u2 + v2 are bounded away from zero, x, y have uniformly 
bounded derivatives with respect to 0, ip for all v. 

In order to use the Tartar-Murat Lemma on open sets Q in the 0, ip plane, we 
see first that /QX^^O dcpdip contains a subsequence that converges since (™) is 
uniformly bounded. Hence we may introduce a Young measure df (0, //, 0, ip) and then 

r.Lg(e,ti)= 19(B^)dv{9^^il)). (4.5) 

Here 0,/x are given by (3.6) and (3.12) and satisfy (i) and (ii). 
Suppose, as we will show, that the measure is a Dirac measure. Then 

w.U(0,^)=£(<9o,//o) 

where ^OJMO depend on (p,ip. 
It remains to show that the weak limit with respect to 0, ip is the weak limit with 

respect to x,y. But w. 1.0(0, //) satisfies 

lim / x(0,^)0(0,/x) d0# = / x(0^)w.U(0,/x)d^d^. 

And the left-hand side is 

lim / x(</>(^ 2/),^(s, y)) 0(0, /x) PB(U
2
 + v2) dxdy 

= \i™jx{<l>u{x,y)r(x,y))g{e\^)R»{u2 + v2ydxdy 

for a subsequence since Ru —> PB- 

By an appropriate subsequence, this limit differs arbitrarily little, by the uniform 
continuity of <j)v, ip", from 

lim f C(x, y) 0(0^, /x") p-(^)2 dxdy = f C(x, y)wA.gp(q2) dx dy 

where C is CQ
0
. But the right-hand side is, by (4.6), 

X(<t>(x,y),ip(x,y)) g(6o((p,ip),iJio{(p,ip)) dcpdip 

= / X ((f>(x, y) ip(x, y)) gp(u2 + v2) dx dy 

where gp(u2 +v2) is evaluated at 0o,Mo which are functions of (p(x,y), ip(x,y). Here 
cp and ip are the limit solutions as u —> 0 which are continuous functions oi x,y. 

This reduces the weak existence theory to establishing the estimates (i), (ii), and 
(instead of (iii)) 

(iv) /«£ + 0^ is compact in H^l where the domain is an open set in the </>, ip plane 
for /, 0 smooth bounded functions of 0, p,, p. 

We conclude 

/= 
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Lemma 4.1. If f,g satisfy (iv) and are bounded, the Tartar-Murat Lemma holds with 
a Young measure dv{ii, 6; V^)- 

The theorem we shall prove is 

Theorem 4.2. Suppose (i) 0*,^* are the weak limits for some subsequence of 
solutions of 

ul - t£ = 0,    (RvuV)x + {irvv)y = 0, 

(pBU")* + (pBVU)y C Hf0l,      PB = PB^), 

i^ftere u — iv — ea~%e, a = a(/i) by (3.12). Suppose the subsequences ii(u*/,V1') and 
6{uv\vv) satisfy the inequality in (iii) below. 

(ii) (/, g) is any bounded smooth entropy pair satisfying 

U + gi,C Hf0l    where   V</> = (u", v") 

and V^ = {-Ryvl',Rl'uu) where Rv -+ PB(^) asu^O. 
(iii) (/, g) is bounded in 

-00 < —fli < fJL < fl2,       \0\ < B, 

where ^2 is less than its cavitation value. 
Then the weak limits (0*,/z*) are strong almost everywhere and every function 

g(6,p) converges a.e. to #(0*,//*). 

The proof consists of showing successively that the Young measure dv (for the weak 
limit in 0, ip space) in the (0, fi) domain is 

(a) Dirac or zero in the elliptic region; 
(b) Dirac in the elliptic region or confined to a characteristic quadrilateral in the 

hyperbolic region with possibly one parabolic point; 
(c) if in the hyperbolic-parabolic region, then confined to two characteristics of 

opposite kind and hence to a point. 
The proofs of (a), (b), (c) are the contents of Sections 5, 6, and 7. The conclusion 

is that the Young measure is Dirac under the conditions of the theorem and, hence, 
the limit of the sequence is a weak solution of the nonlinear equations (2.1),(2.2). 

5. The elliptic domain 

In this section, we show that the Young measure is a Dirac measure in the elliptic 
region or has its support in the hyperbolic-parabolic subdomain of V defined by (i), 
(ii) of Section 4. The proof here simplifies that of [3]. 

We generate the two pairs using, see (3.17)-(3.18), 

f1=Hne
ind,    g1 = -inHne+in6, 

f2=Hne-
in\    g2 = +inHne-

ine, 

where Hn will be chosen as the solution of Hn + n2r2(M2 - l)Hn = 0 which grows 
exponentially as /z —► —oo where M —> 0 and r —» const. Later, we will describe Hn 

more completely. 
By the Tartar-Murat Lemma in the 0, ijj plane, see [6], 

/ / (fi92 - f29i) di>= / fi dv I #2 dv - / /2 du / #i di>. (5.2) 
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Since the Young measure dD is a probability measure so that J dv = 1, we may rewrite 
this equation as 

// 
(/i(S2 - 92) - ftiQi - g'l)) di>di>' = 0, (5.3) 

where ' denotes that the variables are 0', // and the domain of integration is over both 
primed and unprimed variables. We make use of the fact that we may interchange the 
primed and unprimed variables to obtain 

//• 
((/1 - f[)(92 - g^ - (h - &)(gi - 5i)) di>di>' = 0. (5.4) 

We now substitute (5.1) and find, as in [3], 

0 = JJ((Hn(ri - Hn(pf)) (HnOj) - Hnbi')) 

+ 4Fn(M) HnW) sin2 in(0 - 0')) dvdtf. (5.5) 

Suppose the measure has an elliptic part // < 0 and a hyperbolic part ^ > 0. We 
look at the integrand for just two of the values, an unprimed "elliptic" and a primed 
"hyperbolic". And suppose n is large. Then the primed contribution will be highly 
oscillatory but bounded and the unprimed contribution coming from Hn(fi) Hn(fi) will 
grow like exp(-2n / ry/l - M2 d/i). Here Hn is a solution of the ordinary differential 
equation normalized to 1 at /x = 0 where it is also flat. In the hyperbolic region, it 
oscillates but is bounded; for JJ, < 0, it grows exponentially in n or as fi —> —00. Near 
fi — 0, its asymptotics are more involved. So it will dominate everything else in the 
integral unless / dv' is zero. We rigorize this argument now. We use Lemma 4 from 

[7]- 

Lemma 5.1 (Lemma 4 of [7]). Letp = -f(l-M2)1/2, p(Q) = 0, |(-p)-1/2 = h(n). 

(i) For 0 < fi < /i(cr+), Hn, n~1Hn are bounded independently of n if a+ < s*. 

(ii) There exist functions B(S) bounded in 6 and Cn(8) > h2(—S) such that 

(a) for fJ>- < fJ* <0, 

1 < Hn{fi) < B{8)en^^-)-lp^^\ 

0 < -n^Hnifi) < B(6)en^^-)-^-6^; 

(b) for fi-.<fi< -28, n > No(8), 

Hn(v) > jCn((5)/i(-(5)/i(M)e-^)-^-6)), 

-n^Hnbi) > ^Cn(6)h(-8)hs(fM)en^-rt-6». 

From (iia) and the inequality (iii) of Theorem 4.2, we see that the whole integrand 
of (5.5) with both points elliptic is nonpositive. Here we use both -Hn > 0 and 
Hn = n2r2(l - M2)Hn > 0. 

From (i) we see that the integrand is bounded by n with both points hyperbolic. 
Prom (iib) we see that if one point is elliptic and the other hyperbolic or parabolic 

the contribution from the elliptic term HnHn behaves like -ne2n(p(/x)~p(~*5^ for 
\6\ <C |/x|. Such terms dominate. Thus, either there is measure only in the parabolic- 
hyperbolic region or the measure is entirely supported in the parabolic-elliptic domain. 
But in the latter case, as we observed above, the integrand is nonpositive and vanishes 
only if the measure is concentrated at a point. Hence, we conclude 
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Lemma 5.2. The measure di>(9, fi, (j), ip) is either supported in the parabolic-hyperbolic 
subdomain or it is a Dirac measure in the elliptic region. 

6. The hyperbolic domain reduced 

In this section, we will show that if the support of the measure u is in the hyperbolic 
domain, then it is confined to a characteristic quadrilateral. 

In [3] the entropy pairs for hyperbolic regions were obtained without noting that 
they must be bounded in the original (8, /i)-rectangle in order to apply the Tartar- 
Murat Lemma. For this reason, they cannot be constructed from hyperbolic data as 
solutions of the partial differential equation (3.16) since they may not be continuable 
into the elliptic region. However, the entropy pairs K±ne±ne can be continued since 
K±n satisfies a regular ordinary differential equation in the elliptic region. We begin 
with Lemma 5 of [3] along with the identity corresponding to (5.5). 

Thus we have 

[(K-n - Kf_n)(k-n - k'_n) dudv' = 4 [K-nkLnsmh2 ±n(0 - e')di>dvf,       (6.1) 

where, because of the results of Section 5 above, we now may assume there is no 
measure in the elliptic region. We also may replace K-n by .K*+n in (6.1). But we 
must specify them through a modification of a basic lemma about Airy functions. 

Lemma 6.1. There exists a pair of linearly independent solutions G±n(m) of the Airy 
equation G — n2mG = 0 which have the following properties: 

(a) For 0 < m < n~2/3xo, Gn, n~2/3Gn, G-n, 7i'"1/3G-n are bounded and for n 
large enough G-n = 1 — e where e —► 0 as XQ —> 0. 

(b) For m > n~2/3Xo, the matrix 

Gn G-n     \ 
i^Gn    n-lG-n) 

has the asymptotic form 

(       enXAn e-nXA-n \ 
\enX(\An + An)    e-nX(-\A-n + A-n)) 

where A±n = m"1^ + 0(1), A = §m3/2. 

The fact that K(fi) ^ Kf(0)/i leads to certain difficulties before we can apply this 
lemma. We use the methods of Wasow [7] or Bender and Orszag [1] and sketch the 
proof of the desired lemma which is exactly the same as for the Airy function since 
only the high-order terms are needed in the application. 

The steps are 

Lemma 6.2.  There exists a change of variable from fi to m(n, fi) with the asymptotic 
form 

m = rao(/x) 4- -xrai(/x) • • • 
nz 

for large n, and from P to G with P = hG, where h has the asymptotic form 

h~ ho(fi)-h—hi(fjL), 

so that if P satisfies 
d2P       2 

dfl2 + n2K(n)P = 0,    K(n) < 0, 
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then 
<PG      2 

dm2 

where n is arbitrary. 

n2mG = 0, 

The proof of this lemma follows simply by a formal if tedious substitution and 
expansion where we avoid the singularity of the differential equation at cavitation by 
using the assumption of the inequality of (iii) in Theorem 4.2. 

The second step is to deduce from the Airy equation the leading terms of a P that 
is analogous to G±. This is technical and we use only the fact that to lowest order we 
may take m = —K(ii) and use Lemma 6.1 to replace the two solutions for P, which 
we denote by K±n, by the two solutions G±n. 

We substitute in the identity (6.1) using the second part of the lemma with 
K-.n ~ e'^ra"1/4 ~ e-^/x)-1/4 with A ~ §M3/2 for points where m > n~2/3xo, 
and by the first part of the Lemma we note that K-n and n~2/3K-n are bounded for 
m < n""2/3xo. Thus, we find that 

K-nKLn - -n\' c-n<A+A/> m-1/4(m,)-1/4,    m > n"2/3^, 

or the integrand on the right-hand side behaves like 

-n\' e-n(A+A,)+nl*-*,lm-1/4m,-1/4 

while the left-hand side has a bounded integrand. 
Thus, there can be no joint measure di> dv' in the domain where 

-(A4-A/)< \0-#\,    Aor A'X). 

Contributions from A = A' = 0 are all smaller. Hence, we conclude that there can be 
no measure in domains where 

-(A + A,)<|e-e,|,    /xor/Z^O. 

Consider, without loss of generality, that 0 > 0'. Then there is no measure in 
0 + A > 0' — A'. The curves 0±X = const, are the characteristics of the equation (3.16) 
for H. By looking at the two extremes we see that the g.l.b.(0 + A) = l.u.b.(0 - A) 
and, hence, there is no measure except in some wedge (0 — 0o)2 < A2 or on the axis 
A = 0. 

If there is measure, say, in the hyperbolic region and also on /z = 0, other than 
at 0 == 0o, say 0 > 0o, then there are points where l;f_n.ft^_n(sinh2 n(0 — 0')) ~ 

-nVe-^+^-^m1/4 since K-n - 1. But then \0 - 0f\ < A', or 

(0 - (0' + A')) (0 - (0f - A')) < 0, 

while 10' ± A'l < 0Q, which is a contradiction.   Thus, there is no measure on the 
parabolic axis for 0 ^ 0o if there is measure in the hyperbolic region. 

Suppose, to finish this section, that there is measure on the parabolic axis only. 

Then for any solution, say K, of (3.18), we may choose to have K = 1, nK = 1. The 
identity in K yields, since fj, = // = 0 on the left-hand side, 

4n~1 /sinh2 |(0 - 0') dvdv' = 0, 

from which it follows that the measure dv is a Dirac measure. 
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Thus, to summarize Sections 5 and 6: 

• If the measure is not in the hyperbolic region, it is a Dirac measure at a point 
either on the parabolic line or in the elliptic region. 

• If the measure is in the hyperbolic region, it lies between the characteristics 
\0 ± A| < 10o| and there is no measure elsewhere. 

Using the function iiT+n? we note that since p is bounded away from zero, the 
coefficient of n is bounded and bounded away from zero. Thus we may use the 
same argument "upside down" and conclude that the support of the measure lies 
in (8 — 9i)2 < (A — Ai)2 where Ai is the maximum value of Ai given by the bound on 
the speed and 6i is some value of 6. 

7.  The hyperbolic quadrilateral 

We have shown that the support of the Young measure is either entirely at a point in 
the elliptic region or on the parabolic line or else it lies in a quadrilateral bounded by 
characteristics in the hyperbolic region. We will now show that if it is the latter then 
the measure is a Dirac measure in either the hyperbolic region or on the parabolic 
line. The argument is based on 

Lemma 7.1. If(fi,gi), i = 1,2,3, are entropy pairs satisfying the assumptions of the 
Ji      Jj Tartar-Murat Lemma and if Wij = then 
9i    dj 

(fi)(W23) + </2><W3i> + (h)(Wl2) = 0, (7.1) 

Here ( ) means integrated with respect to the measure di>. 

Note that a similar identity holds with (gi) instead of (fi). 

Proof. Substitute from the Tartar-Murat Lemma 

(W23) = (h){g3) - </3><<72>, 

etc., and one sees that all terms cancel. 

Serre [5] has used this identity in the hyperbolic problem for two entropy pairs that 
have no common support with a third, see also Morawetz [4]. This leaves only one 
term from which one can finally conclude by constructing Serre's special entropy pairs 
that the support of the measure lies on a single characteristic of one kind. Hence, it 
follows by using the same argument with characteristics of the other kind that the 
support lies at a point. His argument is simpler than DiPerna's. Here, because of the 
special form of the hodograph equations, we can simplify the argument and extend 
it to the mixed case. What follows also can be applied to any hyperbolic 2x2 case 
where there are suitable separated solutions of the hodograph equations. 

Suppose f,g are smooth entropy pairs satisfying H^ = /, — He = #, K{II)HQQ + 
Hpy, = 0, and fjiK(fi) < 0, K' ^ 0. Let H be of the form Pene where P is a solution 
of 

P + Kn2P = 0. 

We are going to use different entropy pairs of this form in the identity of the main 
lemma, but first we need a number of preliminary properties. 

The three pairs of entropy functions that we use are found from #1 = e~neGn) 

H2 = e"(n+1^Gn+i, and H3 = eneG-n. They are chosen to mimic the behavior of 
pairs of compact support by yielding exponentially small contributions in the right 
places to the terms in the identity (7.1). 
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We see from Lemma 6.1 that for m < n"2/3^, n~b^Wi2 is bounded and, for 
m > n~2^sxo1 the leading term of the integrand of Wu is 

C(2n+1)(A-*) (^i^, _ AnAn+1 + XAnAn+1) 

or 
e(2»+l)(A-*)^2me/2)-m-l/2 + 0(I)^ 

Thus, for ^ — A < 0 as n -* oo, W/i2 is exponentially large with n. 
On the other hand, 

-(n + l)Gn+i    nG_ 
Gn+i G- 

also is bounded by n5/3 for m < n_2/3xo, and for n large, m > n~2^XQ using the 
asymptotics. Thus we find n~2W23 is bounded. 

Similar bounds hold for W31. On the other hand, /1 = —ne~n0Gn is bounded by 
ne-n0 £or m < n~3/2a:o and is asymptotically like ne~n^e~x^m1^4 for m > n~2/3XQ. 
Furthermore, /2 = — (n+l)e~(n+1^Gn+i has similar behavior. Finally, fs — nen9G-n 

is bounded from below by nene(l — e) for m < n~3/2xo and behaves asymptotically 
like ne^-^m-1/4 for m > n-3/2^. Pick XQ small so that e < 1/2. 

We proceed to use these bounds in Lemma 7.1 to arrive at the conclusion that the 
domain of support of the measure is a single characteristic as in DiPerna [2] and Serre 
[5]. 

Without loss of generality, suppose that the quadrilateral —L < 9 — A < 0, 
O<0 + A<Lis the smallest quadrilateral [in the sense that the values of the 
characteristic constants of the boundaries are either g.l.b. or l.u.b.] for which J du = 1. 
We divide it by the characteristics 8 — A = —5, 6 — A = — L + 6 with, say, 6 = j^L. 

We shall show that either the total measure in— 6 < 6 — A<0is zero or the total 
measure between — L < 6 — A < — L + £ is zero. Thus the quadrilateral is not the 
smallest quadrilateral unless the quadrilateral is a single characteristic segment. 

We define [f gdi>)i as the integral of g with respect to the measure contained in 
—£ < 0 — A < 0. From our estimates we find 

f3di>>nl     x(™<) di> 

where 

X = e~6(l-e)    for    m< n~3/2xo, 

= e-6m-1/4    for    m > n-3/2^. 

Also I / /1 di>\ < bnenL and | / /2 di>\ < bnenL. Here b is any bound independent of n. 
On the other hand, fW^du = (Wu) is greater than ce(2n+1^L-^ri(2n + 

1) ((f dv)L — (/ d^L-s)- Here c is a constant greater than zero and independent 
of n. One also sees that (fi)(W2s} and (/2)(W3i) are bounded by enLn2. 

If we substitute these bounds in the identity of the main lemma and choose n 
sufficiently large, we see that the term (fs)(Wi2) dominates with the exponential 
e(2n+i)(L-6)-n6 over ^ Q^QJ. terms which are bounded by enL. Hence, we must have 
zero measure on the relevant domains. Thus, on substituting the above estimates, we 
have 

(/*).((/*),-(M 
which proves our assertion that the quadrilateral is not minimal. 

. =0' ' L-6 
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We conclude that the measure lies on a characteristic of one kind. By applying the 
argument reversing 0, we conclude it lies on one of the other characteristics. Hence, it 
lies on a point, and since J di> = 1, we conclude that the measure is a Dirac measure. 
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