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MODIFIED STURM-LIOUVILLE EXPANSIONS 

A. McD. Mercer and Peter R. Mercer 

1. Introduction 

Let q be a real-valued continuous function defined on the compact interval [a, b]. Then 
the Sturm-Liouville expansion of an "arbitrary" function in terms of the solutions of 
the differential equation 

0 + [A-g(x)]2/ = O (1) 

(given certain appropriate boundary conditions) is classical. There is an extensive 
literature devoted to these series and their generalizations. 

Variants of these expansions are concerned with the different types of convergence 
involved and with the several ways the conditions on the function q and on the interval 
[a, b] can be altered. A prime source for the analysis of many of these variants is [1]. 

Other expansions, which instead of being orthogonal are "bi-orthogonal", can be 
derived if we start from a related form of (1) which hair a given nontrivial function 
specified on the right-hand side. Such a family of expansions was investigated 
in [2]. While such bi-orthogonal expansions possess t leoretical interest, the loss 
of convenience for applications, which goes with the less of pure orthogonality, is 
considerable. 

It is the purpose of this paper to present a new and somewhat extensive family of 
orthogonal expansions associated with an inhomogeneous form of (1). Here we shall be 
concerned exclusively with the simplest conditions on the function q and the interval 
[a, 6], and the type of convergence to be considered is pointwise convergence. We hope 
to deal with some other variations in a future paper. 

2. Preliminaries and statement of results 

Let q be a real-valued continuous function on [a, b] and let 0(x, A) and x{x: ^) satisfy 
(1) and the end conditions 

0(o, A) = sin a,    ^(a, A) = — cosa, 

x(6,A) = sin/J,    x'CMH-cos/?. (2) 

Note. To avoid repetitious analysis, we shall assume throughout that sin a ^ 0 / 
sin p. 

The Wronskian a;(A) = </>(£, \)xf{x, X) — (l>f(x, X)x(x, A) of 0 and x is independent of 
x. It is an entire function whose zeros are all real and simple and can be enumerated 
as Ai < A2 < • • • —► 00. When A is one of the An, then 0(x,An) and x(:r,An) are 
linearly dependent, say 

X(x,\n) = kn(l)(x,\n). (3) 
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The functions {(/>(#, An)}^ satisfy the relations 

/   (t)(x, Xn)^(x, Xm)dx = (Sn,m U h      . (4) 

This orthogonality condition leads to the classical result: 

Theorem A.    ([1, Theorem 1.9]).   If f e L(a:b) then the Sturm-Liouville series 
associated with f, namely 

00      kn fb 

n=1^l^nj A 

behaves as regards convergence (pointwise) in the same way as an ordinary Fourier 
series. 

Now let us introduce another function w(x). This function will be non-trivial, 
real-valued, and absolutely continuous on [a, b]. Furthermore, for reasons which will 
appear later, we shall assume that w(x) is in "general position" with respect to the 
functions </>(#, An) — i.e., it is not orthogonal to any of them. (This condition could 
be relaxed at the expense of some complication of detail.) 

With w(x) as above, let 8(x, A) be the solution of the problem 

y" + [\-q(x)]y = uj(\)w(x), 

y(a) cos a + yr (a) sin a = 0, (5) 

2/(6) cos^ + y7 (6) 8111)8 = 0, 

and set 

m(A) =  f w(x)9(x, X)dx. (6) 
J a 

Like a;(A), m(A) is an entire function, and as we shall see (Lemma 1 below), all 
of its zeros are real and simple and can be enumerated as /zi < /Z2 <•••-* oo. In 
Lemma 2 below, we shall see that the functions 0(x,/in) satisfy the relations 

/ Ja 

b 

0(X, Hn)0{x, Hm)dx = -tfn.nMMn V(/Zn). (7) 

Our purpose in this paper is to establish the following. 

Theorem 1.    If f € L(a,b), then the series 

nb oo __i pb 

0o(x)      f(y)eo(y)dy + J2   ,(,   ww,   Ax^n) /   f(y)0(y^n)dy 
Ja ^ WWnjm'Wn) Ja 

behaves as regards convergence (pointwise) in the same way as an ordinary Fourier 
series. Here 0o(x) is the normalized form ofw(x), namely 

60(x) = -r—jj-,     where    ||w||2 =  /  {w(x)]2dx. 
IIWII Ja 
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Note. The leading term in this series, which has no counterpart in the series 
of Theorem A, appears because the subspace generated by the set of functions 
{8(x,iin)}iD is orthogonal to w(a;) by virtue of (6). 

In the above, we have followed the notation of [1] and we will continue to do so 
whenever possible. Several of the results to be found there will be of use in our analysis 
and so we quote these. We write A = s2 and s = a + it, where a and t are real. 

Lemma A.    ^>(x,X) satisfies the integral equation 

, /    x\       . / x sins(x — a)      1   fx  .     , x  , ...    ... 
0(a;, A) = sm a cos s(x - a) - cos a  + - /   sin s(x - y)q{y)(p{y, \)dy. 

s s Ja 

Lemma B.    J4S \S\ —> oo, we have 

/e\t\(*-*)\ 
(f)(x, A) = sinQ;coss(a: — a) + O (—r-.— ) 

uniformly in [a, b]. 

Lemmas A and B have their obvious analogues involving the function x- 
We shall also use various complex forms of the Riemann-Lebesgue Lemma, typified 

by the following. 

Lemma C.    Let f E L(a,b).  We have 

/   f(x)sms(x-a)dx = o(e^b~aA     as \s\ -» oo. 

We close this section with a remark concerning the assumption that w(x) is in 
general position with respect to {</>(#, An)}!0. 

Observing (2), the method of variation of parameters when applied to (5) gives 

0(x, A) - x(z, A) /  0(2/, \)w(y)dy + (/>(*, A) / xfo, \)w(y)dy. (8) 
Ja Jx 

Now if A is put equal to An in (5), the right side vanishes making the problem 
homogeneous, and so there arises the possibility that the function Q{x, An) is merely 
the trivial solution. However, put A = An in (8) and use (3) to see that 

0(x,Xn) = kn(t)(x,Xn)      w(x)(t)(x,\n)dx. (9) 
Ja 

Hence because of our assumption on w(x), none of these integrals is zero and so none 
of the functions 9(x,\n) is trivial. 

3. Preparatory lemmas 

Recall that 9(x)X) and 6(x,ji) satisfy, respectively, 

0"(a, A) + [A - g(aO]0(x, A) - u;(A)w(x), 

e"{x,ii) + \IL- q{x)]0{x,n) = w(ij)*r(x), 

and that m(X) = Ja w(x)8(x,\)dx. We shall need the following lemmas. 
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Lemma 1.    The zeros of the entire function m(X) are all real, simple, and satisfy 
Ai < /j,i < A2 < //2 • • * -+ 00. 

Lemma 2.    The orthogonality relation (7) holds. 

Lemma 3.    ^5 |s| —> oo; we have 

n,    x,       .        .   nsms(b-a)    , N        (e\m-a) 
u(x, X) = sm a smp -w(x) + o ' 

Lemma 4.    ^4s |s| —> oo; w;e /iat;e 

m(A) = ||w|f sinasinp  + 0 ' 

A final lemma is needed concerning the zeros of m(A). In [1], and in what follows, a 
certain closed contour FJV in the complex A-plane is used. With A = s2, TN is the image 
of the contour 7JV = ABCD in the upper half s-plane whose vertices are A = (CJV, 0), 
B = (CW, CW), C = (-Civ, CJV), £> = (-CAT, 0), where CN = (iV + i)7r/(6 - a). 

Lemma 5. For A/" sufficiently large, the contour T^ encloses precisely the zeros 
AI,...,AJV+I and Hi,., .^HN- 

4. Proofs of the lemmas 

Proof of Lemma 1.      Denote the normalized form of (t>{x,\n) by 4>(x,Xn) That is, 
fa <t>(x,\n)<i>(x,\m)dx = 5n>m.  Also, set cn = f*w(x)(t)(x,Xn)dx (n = 1,2,...) and 

^n(A) = fa 0(x,\)<i>(x,\n)dx. If we multiply the upper member of (10) by 0(x, An), 
integrate over [a, 6], and use (1) and (2), we obtain 

^(A) = ^    (A#AB). 

These are the coefficients of the normalized Sturm-Liouville expansion of 0(x, A), and 
since for each A this function is both continuous and of bounded variation, we actually 
have 

0(X, A) = f; ^£-4>(x, An)    (a < a; < b, A ^ A„). 
n=i A _ A" 

Multiplying this throughout by w(a;) and integrating over [a,b], we obtain 

c2 

m(A)=W(A)X;r
fV- C11) 

n=l A " An 

Now since w G L2(a,b), we have S4 < +00, and so the series in (11) is uniformly 
convergent throughout the complex A-plane punctured by disks of radius 6 > 0 
centered at the points An. Now m(A) will be represented by (11) throughout the whole 
complex A-plane provided we define the right side of (11) at the An by continuity. 

The An are all real and by assumption none of the cn vanishes. Thus there is 
precisely one real zero of m(A) lying between each of the An. It can also be seen from 
(11) that m(A) and v(X) cannot vanish simultaneously since none of the a/(An) is 
zero. 
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Finally, if we write c£/(A - An) = (c^/|A - An|2)(A - An) in (11) and then assume 
the existence of a non-real zero /x0 of m(/x), we arrive at a contradiction. The proof 
of Lemma 1 is complete. 

Proof of Lemma 2.    If we multiply the upper member of (10) by 0(x, A) and subtract 
the lower member multiplied by 9(x, fi), then integrate the result over [a, 6], we obtain 

rb 

[O'faX)e(x1 ii)-6\x,ii)0{x,A)]* + (A-/x) /   6(x,X)0(xiii)dx = ci;(A)m(/x)-ti;(/i)m(A). 
J a 

Using the boundary conditions in (5), this reduces to 

/ J a 
'g(3;,A)g(x>/i)<te = fa,(A)m0t,)"h,(/i)m(A). (12) 

A — fjL 

Observing Lemma 1, we set fj, = nn in (12) and let A —> /xn to obtain (7).   Thus 
Lemma 2 is proved. 

Remark.    In a similar fashion, from (12) we may deduce that 

rb 
6(x, \n)0{x, Xm)dx = ^n,m^/(An)m(An), (13) J J a 

which is just another form of (4).  Indeed, multiplying (9) by w(x) and integrating 
over [a, 6], we obtain 

m(Xn) = kn{       w(x)(j)(x,Xn)dx\   . (14) 

Now by substituting (9) into (13), and using (14), we obtain (4). 

Proof of Lemma 3.    If we insert the result of Lemma B into the right side of Lemma 
A, we obtain the following estimate for 0(a;, A): As |s| —* oo, we have 

</>(#, A) = sin a cos s(x — a) cos a sin s(x — a) (15) 

1 rx /e\t\(x-a) 
+ — sin a sins (x — a) /   q(y)dy + o [ —r—— 

2S Ja V        \S\ 

uniformly in [a, b]. Using the analogues of Lemmas A and B, we see in the same way 
that as |s| —» oo, we have 

x(x, A) = sin(3 cos s(b — x) H— cos /3 sin s(b — x) (16) 
b /e\t\(b-x) 1 f 

+ 7— sin/3sins(6 — x) /   q(y)dy + o 
2s Jx 

uniformly in [a, 6]. 
Prom (15), we get 
pX nx -1 f>X 

/   (j)(u^X)w(u)du = sma       w(u)coss(u — a)du cos a       w(u)sms(u — a)dv 
Ja Ja & Ja 

1 rx ru rx /el*l(w-a)\ 
+ — sin a /   w(u) sins(^ — a)       q(y)dydu + /   w(u)o I —j—:— I du. 

2s Ja Ja Ja \       \s\       J 
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Now when we combine this last estimate with (16) in order to estimate the former 
member of (8), namely x(a;, A) f* (j)(y, \)w(y)dy, we obtain sixteen terms. Fortunately 
each of these terms is simple to analyze. During this analysis, use is made of integration 
by parts and of results of the type appearing in Lemma C. In the end we get: As 
|s| —►■oo, we have 

X(x,\) r<j>(y,\)w(y)dy (17) 
Ja 

= - sin a sin 3 sin s(x — a) cos s(b — x)w(x) + o I r-;  I . 
s \      lsl      / 

The corresponding result for the right-most member of (8) is: As \s\ —>• oo, we have 

<P(x,x) f x(yAMy)dy (18) 
Jx 

= - sinOL smp cos s\x — a) sm s(b — x)w{x) + o ' 
s \      \s 

Finally, Lemma 3 is proved upon addition of (17) and (18). 

Proof of Lemma 4- This follows from Lemma 3 upon multiplying by w(x) and 
integrating over [a, b]. 

Proof of Lemma 5. The former statement was proved in [1] by applying Rouche's 
Theorem to 

W(A) = \/Asin[\/A(6-a)]sinasin/? + 0(e|t|(6-a)) (19) 

(= the /(A) + g(X) of Rouche's Theorem), 

taken round the closed contour TN with N large. The latter statement follows similarly 
by using the result of Lemma 4. (The function / in this case has one fewer zero in TN 

than does the / in (19) since A = 0 is no longer a zero.) 

5. The proof of Theorem 1 

Let / G £(a, 6). By (9) and (13), the series in Theorem A can be written as 

OO -i nb 

^{\n)m{\n)ja m^^n)dve(X,Xn), 

and so, in view of Theorem A, to prove Theorem 1 it suffices to show that as iV —» oo 
we have 

W+l i rb nb 

E,m wx ^ / f(v)e(v,\n)dve(x,\n)-*e0(x)    f(v)e0(v)dv. 
n=l       \An)m{An) Ja Ja 

N+l 

+ 

By Lemma 5, the left-hand side here is the sum of the residues of the function 
rb 

;(A) 
l^yjl f(v)6(v,\)dv6(x,\) 
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inside the closed contour FJV when N is large; so it suffices to show that as N —> oo 
we have 

We put A = s2, which transforms this integral to 

and we examine the size of each of its terms as N —> oo and, correspondingly, as 
|s| —► oo on the contour. 

From [1], we have 

1 
u(X)      s sin a sin/? sin s(b — a) 

and similarly, from Lemma 4, we have 

1 1 

1 + 0 

m(A)      ||w||2sinasin/?sins(& — a 
■[l + o(l)}. 

(20) 

(21) 

Each of these results depends on the observation that |sins(6 — a)| > Ae^b~a^ on 
7JV, where A is some absolute constant. This observation also allows us to deduce 
from Lemma 3 that 

flOE,A) = sinasin/3S1Ilg(b    a)w(x)[l + o(l)], (22) 

and 

3        v        J   '   w(v)f(v)dv + o /   f(v)0(v,\)dv = smasm0 
Ja 

= sin a sin p8111^-^  f w(i;)/(«)dt;[H-o(l)], 
* Ja 

again from Lemma 3. The results (20)-(23) together give 

^- f  -TTTTrf / f(v)e(v,X)dve(x,X)2sds 2TnJw{X)m(X)Ja 

w(a;) 
w 

r(x) 

J f(v)Y,(v)dv±, J   i[l + o(l)]2ds 

J^ f(vMv)dv±-.£   i[H-o(l)]dA. 

(23) 

As AT   —>   oo,  the integral here tends to unity and the term multiplying it is 
0o(x) Ja f(v)d0(v)dv, so the proof of Theorem 1 is complete. 
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