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MONOTONICITY OF THE ZEROS OF THE THIRD DERIVATIVE OF 

BESSEL FUNCTIONS 

Lee Lorch and Peter Szego 

ABSTRACT. It is shown that j"f
k is an increasing function of z/, 1 < v < oo, for 

each fixed k = 1,2,... , and also that this holds in 0 < v < oo when j"^ > y/S. 
Here j"'k is the k-th. positive zero of J'J'fa), the third derivative of the Bessel 
function of first kind and order v. These results follow from a representation 
derived for djfJfk/du, u > 0. In addition, a number of inequalities for j"^ are 
established, especially for k = 1. 

1. Introduction 

We prove here that the k-th. positive zero, j^., of J"f(x), the third derivative of the 
Bessel function of order v, is an increasing function of the order z/, for each fixed 
k = 1,2,3,... , for 1 < u < oo. This is shown to be true as well for 0 < is < 1 for 
these jf"k > \/3, in particular for all the zeros of J"'(x) which occur past the first arch 
of Ju(x), since j^ > joi = 2.404... > A/3, ^ > 0, [10, §15.6 (2), p. 508]. 

The behaviour of those j"f
k < y/3, where they exist when 0 < v < 1, is more 

complicated. Their nature is depicted in graphics kindly prepared by Alfred Gray of 
the University of Maryland using Mathematica. These suggest that such zeros exist 
when and only when 1/3 < i/ < 1, z/3 = .755..., and that there are exactly two. 
The smaller decreases to 0, the larger increases to A/3, as u —► 1—, according to his 
diagrammes. This has been shown by a different method from the one used here and 
will be published separately [4]. 

The results established here and in [4] are reminiscent of the corresponding phe- 
nomena for the zeros jvkijlki an(^ Jvk 0^ ^(x)^ Jl(x)i and J"(x)i respectively. 

For is > 0, monotonicity of jVfc was pointed out already in 1876 by L. Schlafii, for 
jlk by P. Schafheitlin in 1907, and extended, in both cases, by G. N. Watson [10, 
§15.6, pp. 507-510]. His method encompasses zeros of C1/(x) = AJ^fa) + BYl,(x), A 
and B independent of x and is, where YJ/(x) is the Bessel function of the second kind; 
it covers Cl(x) as well. 

For j"k,is > 0, monotonicity properties have been established only recently [6,7, 
8,11]. These state that j"k increases with is in 0 < is < 00, for each fixed k = 1, 2,  
In addition, it has been shown [5] that j"k increases in — 1 < is < 00 when j"k > joi = 
2.4048 ... and, further, that when 1/2 (= —0.199 ...) < is < 0, there exist precisely two 
zeros of J"(x) for which j^ < j"2 < jvi. Here j"-^ decreases to 0 while j'^ increases 
to Joi = 3ii = 1-8411..., as 1/ -> 0-. 
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These last results parallel the properties suggested by the Gray diagrammes for 
fui < fri <>/3, i* < 1/ < 1. 

All in all, this emerging pattern would suggest, e.g., the possibility that (i) j^: 

increases inn — l<z/<oo, and (ii) for jfy' > j^i,   j^ increases in n — 2 < v < 

oo, n = 1,2,    Here jfy' denotes the fc-th positive zero of Jv(x).   This would 
exhibit yet more elegant and simply stated monotonicity properties, none trivial, in 
the seemingly inexhaustible number possessed by these venerable, ubiquitous, and 
useful functions. 

A word of caution: "Monotonicity" refers to local monotonicity. This is noted 
already in the way Watson presents the monotonicity properties of c^k and c'uk [10, 
§15.6, pp. 507-510], the zeros of Cv(x) and C'v{x)^ respectively. The reason is that 
the variation of v brings into being new zeros, e.g., of J[,{x) as v increases through 0, 
of J"(x), as v increases through 1/2 = —0.199... and again through 1, and of J"f{x) 
as z/ increases through 1/3 = 0.755... and again through 2. These become the first 
(smallest) positive zeros, thereby causing a change in rank of all the pre-existing zeros. 

Our monotonicity results will be obtained from the sign of dj^/dv. To develop 
a formula for this derivative, we shall adopt the differential equations approach suc- 
cessfully utilized by A. McD. Mercer [8] in his study of dj"kldv, motivated by the 
application of that method to djlk/du by M. Hacik and E. Michalikova [1]. The latter 
refer, in turn, to a similar approach taken by M. E. Muldoon [9]. Their approach 
differs substantially from, and is considerably simpler than, that found in [5] and [11]. 

The Bessel function ^(x) is defined by the alternating series 

1 ^      (-l)kx2k+u 

Ju^ = ^]^04
kk\r(v + k + i) (L1) 

and satisfies the differential equation 

x2y" + xy' + {x2 - v2)y = 0,    y = J„(x). (1.2) 

Differentiating and then eliminating the y" term yields an equation which will be 
central to the discussion below. 

xV" + x{x2 -v2- 2)y' - (x2 - ?>v2)y = 0. (1.3) 

2. Inferences from the Mittag-Leffler representation 

Various components of the proofs that d\/dv > 0 and of various inequalities are 
assisted by properties such as (2.7) of A = /" that follow readily from the Mittag- 
Leffler type representation [10, §15.41, p. 498] 

This can be rewritten in a form appropriate to the intended applications via a 
standard recursion formula [10, §3.2 (4), p. 45] followed by (1.3), 

AJ,+1(A) _        AJ/XA) _ A2 - 3i/2 , 
MX)    ~V      J„(A)  ~V     A2-1/2-2 W 

for A2 ^ v-1 + 2. 
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Thus, 

_2A ,       ^A2-z/2 + 2z/ 

fe=l ^vk 
Zi^ = i"-»V-/-2> ^2+2- (2-3) 

The requirement above that A ^ jvk is a consequence of the assumption that 
A2 / z/2 + 2: If A were to be a jVfcj then the differential equation (1.3) would imply 
that 

A(A2 - v2 - 2)y'(X) = 0, 

so that ?/(A) would vanish, since A2 ^ v2 + 2. But then ^/(A) = y(X) = y(juk) = 0, 
which is impossible in view of the familiar uniqueness theorem applied to the Bessel 
differential equation (1.2). 

Accordingly, the following inferences may be drawn from (2.3): 

If A2 ^ 3 and v = 1,    then A > jn = 3.83..., (2.4) 

j'£ = x/3,     (cf. also (1.3)). (2.5) 

If 0 < u < 1, and A < j^,    then A2 < z/2 + 2 < 3. (2.6) 

If 1< v < 2,    then A2 > i/2 + 2 > 3. (2.7) 

If i/ > 2 and A < j^,    then A2 < z/(z/ - 2) or A2 > z/2 4- 2. (2.8) 

A new (small) zero of J"f(x) comes into existence as is increases through 2. This is 
analogous to the arrival of a new (small) zero of JfJ(x) as u increases through 1 [10, 
§15.3, p. 486]. Thus, %[ -+ 0, as u -> 2+ while j"'^ > v2 + 2, v > 2. 

From (2.4)-(2.8) it follows that 

A2 = z/2 + 2 if and only if z/2 = 1 and A2 = 3, (2.9) 

i.e., if and only if A = ji[. 

Remarks. 1. The bound for A given in (2.6) can be sharpened to A2 < 3z/2 < 
flu 0 < v < 1, for A < jvi. The bound in (2.7) can be sharpened to A2 > z/2+2z/, 1 < 
z/ < 2. 

2. The inequalities (2.8) can be made more explicit. The resulting formulation, still 
for u > 2 and A < j^i, asserts that there exist two values, Ai, A2, of A such that 

Xj < 1/(1/-2) <v2 + 2v< X2
2 <j2

1,     z/>2. (2.10) 

To prove this, we note first that j^ > f^ > v2 + 2v [10, §15.3 (8), p. 487]. With 
x2 = v2 + 2z^, (1.3) becomes 

{y2 + 2z/)3/2J^,(v/^2 + 2z/) + 2{y2 + 2v)1l2{y - 1)j£(V^~+2^) 

+ 2v{y - \)Jv{^v2 + 2v) = 0. 

The second and third terms are each positive for u > 1 and so 

JU'W^ + Zv) < 0,    1/ > 1. 
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Similarly, J^/(\/^2 + 2) < 0, v > 1. From (1.1) it is easy to see that J^(0) > 0, v > 2. 
Thus, there exists Ai such that Af < z/2 + 2. The first inequality in (2.10) now is 
immediate from (2.8). Further, (1.3) becomes, when x = jVi? 

The second term being negative, we have J'J'^jui) > 0, v > 2, and so the remaining 
inequalities in (2.10) follow. 

3. It can be shown that J"f(x) vanishes only twice in 0 < x < jui when v > 2. 

4. The upper bound in (2.6) finds a companion lower bound in (4.3). 

5. Associated with (2.5) is the observation that if A ^ v^ then A2 ^ is2 + 2. 

6. Inequalities (2.6)-(2.8) are used below. Stronger inequalities, not needed here, 
are established in [4, §5]. Alternatively, one can strengthen them also by using the 
inequalities for J1/+i(A)/Jl/(A), 0 < A < j^i, found in [2]. 

3. The derivative of j"'k with respect to the order z/, k fixed 

Here we obtain representations (3.4), (3.5), and (3.7) for dj^/dv, k = 1,2,..., from 
which monotonicity properties of j"f

k will be inferred in subsequent sections. For 
typographical convenience, we write A = A^ = j^, with the understanding that this 
is generic, that A is a function of v and that k is fixed, k = 1,2, As usual, j"f

k is 
the fc-th positive zero of J'J'fa). 

The boundary-value problem which arises in this connection is, for y(x) = J^Arr), 

(xyj = ^y- x2xy (3.1) 

with 1/(0) = 0, y"'(l) = 0. 
The stated boundary conditions can be written equivalently as 

2,(0) = 0,    y'(l)=y2
3tf2~_A2

A2g(l),    A2 #^ + 2. (3.2) 

This is a consequence of (1.3). 
With A2 ^ i/2 + 2, i.e., A ^ j'& = y/3, 

</(!) = XJUX) = xt_vr_2M\) = x_vl_2v0)- (3-3) 
The device employed in [1] and [8] is useful here as well.  That is, from (3.1) we 

obtain the two equations 
,2 

and 

(xy')' = —y - Axy 

(Xv'y = (z/ + g)2y - Txv, 
x 

where A = A2 and T is the corresponding parameter associated with the order v + e 
and v is the new solution. 
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Continuing, multiplying the first equation by v, the second by y, subtracting and 
integrating over (0,1), we have 

2/,(l)^(l)-^(lMl)-[^2-(^ + ^)2] /  — ^-(A-T) / xyvdx. 
Jo    x Jo 

This becomes, in view of (3.2) and division by e, 

3i/2 - A 3(i/ + e)2 - r ^I^IK1 

z/2 + 2 - A      (i/ + e)2 + 2 - r 

£ Jo    x s     J0 /o 

Letting s —> 0 and multiplying by —1, we obtain 

This can be written, provided A2 ^ u2 + 2, i.e., for A ^ j^, as 

A2_ 

The transition to (3.4) follows on carrying out the indicated differentiation (bearing 
in mind that A is a function of i/), collecting the terms involving dA/dis, and finally 
replacing A by A2. 

This is the formula which we shall use to determine the sign of dX/dv, and hence 
the monotonicity of A, as a function of v, for appropriate z/ and A. It can be written in 
alternative forms. For example, the coefficient of dX/dv can be transformed by using 
[10, §5.11 (11), p. 135] in the form 

^ £ tJ2(t)dt = i {(1 - ^)J2(A) + [^(A)]2} 

and then replacing J^(A) by means of (3.3). This done, (3.4) becomes, for A2 ^ v2 + 2, 
i.e., for A ^ ii» = V3, 

.72(A) „f^d\_^f*Jd(t)M       M3-A2)    r2, 
rQ,(A)- -r^-c^^m <-> A2(i/2 + 2-A2)2^l/v ^1/ 

where the polynomial (^(A) is defined by 

QI/(A) - A6 - (3Z/2 + 1)A4 + 3^2(^2 + 2)A2 - v2(v2 - l)^2 - 4), (3.6) 

which, reverting to (3.4), is positive for all u > 1. 
The right-hand side of (3.5) can also be written otherwise, since [10, §5.5 (5), p. 152] 

rx   T2 

Jo    t k=i 
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which, applied to (3.5), gives, again for A2 / v2 + 2, 

J2(A) d\ 
rtMAj — 

A(y2 + 2-A2)2^"v 'dv 

4t/(3 - A2) 
1- 

(^2 + 2-A2)2 j3(A) + 2£j2+fc(A). (3.7) 
fe=l 

This can be transformed still further, say by first using recursion formulae to write 
Jl/+i(A) and Jl/+2(A) in terms of J^(A) and J^(A) and then by expressing J^(A) in 
terms of J^A) via (3.3). 

4. Positivity of the coefficient of dX/dv 

We prove here that the coefficient of dX/du in (3.4), and hence in (3.5) and (3.7), is 
positive, for all u > 0, with X = jf"k. 

For i/ > 1, this is obvious in (3.4) and hence must be true as well for (3.5) and 
(3.7), as rewritings of (3.4). 

For 0 < u < 1, our assertion is equivalent to 

Qu(\) > 0, (4.1) 

an inequality which is valid also for u > 1, where Q^(A) is defined by (3.6). 
This we consider in two steps: (a) A2 > 3 and (b) A2 < 3. Common to both is 

the need to establish that Qu(x) is an increasing function of x for fixed v > 0, in 
applicable intervals. 

We note that Qv(x) increases for all x > 0 when ^ < z/2 < 1, and that when 
i/2 < jij it increases for 

X>3 
3z/2 + 1 + y/l - 12z/2] := av, 

as is clear from its derivative Q^x). 
But au < |, so that in case (a), 

QAX) > QA^Z) = -^ + 14^4 - 13z/2 + 18 > 14.87 > 0,    0 < v < 1, 

since here A > y/3. 
For case (b), we can use again the property just noted that Qv(x) increases for all 

x > 0 when ^ < u2 < 1. This is because 

A > jv! > joi = 2.4048... > V3,    0 < u < VQ = 0.7552027..., (4.2) 

as we shall establish a bit later. 
We need a lower bound for A in order to make use of the monotonicity of Q^x). 

It is enough to know that 

A2 > 1 - i/,    v > 0, (4.3) 

also verified a bit later. 
Thus, from (4.3) and (3.6), 

QuW > Q«/(vT^T) = i/(l - v)(v4 + v3 - v2 + 3i/ - 1) 

which is positive for | < v < 1 and hence all the more so for the interval Z/Q < v < 1, 
relevant here. 
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Now we prove (4.2) and (4.3). For (4.2) we use the third derived series for Jv(x)^ 
i.e., 

f (x) - 2-T(u + Ik3" "fix) - V (-l)^ + 2fc)(z, + 2fc-l)(z, + 2fc-2)^ 

where the constant term is understood to be z/(^ — l)(i/ — 2). 
Prom this alternating series it is easy to see that, for x2 < v2 + 2, 

,2 384/^(0;) > 384I/(I/ - l)(i/ - 2) - 96I/(I/ + 2)x: 

12(i/ + 3)(i/ + 4)a:4     (t/ + 4)(i/ + 5)(i/ + 6)a;6  _ 
+ i/ + l (I/ + l)(i/ + 2)(i/ + 3)   -^W- 

The polynomial ^^(x), a cubic in x2, reaches its minimum (in x1 < v2 + 2) when 

4(i/ + 2) [(*/ + 3)2(i/ + 4) - AV(*/ + 3)(Z/ + 4) 
x0 — 

(I/ + 4)(I/ + 5)(I/ + 6) 

where 

^ = v7-^4 - H^3 - 19i/2 + 75i/ + 108. (4.4) 

The sign of p1/(x) is preserved on multiplication by 

(is + l)(i/ + 2)(i/ + 3)(i/ + 4)2(i/ + 5)2(i/ + 6)2. 

This done, we evaluate the resulting polynomial at its minimum x — XQ. Then 

(i/ + l)(i/ + 2)(i/ + 3)(i/ + 4)2(Z/ + 5)2(z/ + 6)2 

384(i/ + 2)(^ + 3)(^ + 4) 

(z/+l)(^ + 4)(z/ + 5)2(i/ + 6)2 

-Pi/(aJo) 

384 Mxo) 

= (y + 4)(i/8 + 17i/7 + 44z/6 - 692J/
5
 - 4785z/4 - 7977z/3 + 5796z/2 

+ 13500z/ + 3888) - (i/ + 2)2(i/ + 3)
1/2

(J/ + 4)1/2^3 

:=JPi/i(a7o) -^2(^0). 

In 0 < v < 1, each term is positive, so that their difference is positive when and only 
when the difference of their squares is positive. But 

j£i(*o) - i&fro) = 21/(1/ + l)(i/ + 5)2(z/ + 6)2F(z/), (4.5) 

where 

Fly) = z/11 + 18z/10 + 55z/9 - 616z/8 - 2867z/ 

+ 13400z/6 + 90471z/5 + 68054i/4 - 271692i/3 (4.6) 

- 218232v2 + 134784z/ + 93312. 

The polynomial F(i/) is positive for 0 < z/ < I/Q, where Z/Q = .7552027.... 
Thus, ^'(x) > 0, x2 < v2 + 2, when 0 < v < UQ. In view of (2.6), this concludes 

the proof of (4.2). 
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The proof of (4.3) is simpler. With x2 < 1 — i/, we note that 

/„(*)> K-i)(- 2) -^±M 

> z/(z/ - l)(z/ - 2) - ir/(z/ + 2)(1 - v) 

= -z/(l - i/)(6 - 5i/) > 0, 0 < v < 1, 

so that J'J'ix) > 0, x2 < 1 - z/, verifying (4.3). 

Remark. We thank Donald H. Pelletier for his help with the calculations included 
in (4.5) and (4.6). 

5. Local monotonicity of j"^ 

The main local monotonicity properties are obvious from (3.5) and (4.1). 

Theorem 5.1. // A2 > 3 and v > 0, then dX/dv > 0, A ^ ?{{. 

The hypothesis that A2 > 3 can be dropped from Theorem 5.1, provided we restrict 
v to be at least 1. 

Theorem 5.2. Ifv>l, then dX/dv > 0. 

Proof. Here we consider first 1 < i/ < 2. For these, (2.7) shows that A2 > i/2 + 2 > 3. 
Thus, such v are already covered by Theorem 5.1. It remains to consider v > 2 (and 
these v only for A2 < 3, again in view of Theorem 5.1). 

The coefficient of dX/du in (3.4), and hence also in (3.7), is positive (§4). Proof 
will be complete on showing that the right-hand side of (3.7) is positive when v > 2 
and A2 < 3, i.e., that 

4i/(3 - A2) 
(z/2 + 2 - A2)2 <1,     z/>2. 

In fact, 

41/(3 - A2) 2 
<-,    ^>2. 

(z/2 + 2-A2)2      3' 

This holds if 

A4 - 2(v2 - 3i/ + 2)A2 + z/4 + 4z/2 - 18i/ + 4 > 0,    i/ > 2. 

The discriminant of this quadratic in A2 is 

-12i/(2i/ + l)(i/ - 2) < 0,    i/ > 2, 

so that the quadratic has no real roots for u > 2. Being eventually positive, then, the 
quadratic in A2 is always positive and the requisite inequality is verified, completing 
the proof of Theorem 5.2. 
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Remark. Theorem 5.2 holds also for 0 < v < VQ. This is clear from (4.2) and The- 
orem 5.1. However, the restriction u > 1 in Theorem 5.2 cannot be dropped entirely. 
As Alfred Gray's diagrammes exhibit and [4] establishes, j^ decreases although jfy 
increases in u^ < v < 1. 

Calculations of these quantities, motivated by the Gray diagrammes, were made 
before the work for [4] was done. Some were done as demonstrations at the August 
1993 mathematics meeting in Vancouver, on "Derive", by David R. Stoutemyer (Soft 
Warehouse, Honolulu), and by S. Adams and Keith O. Geddes using "Maple V, Re- 
lease 2" (Waterloo, Ontario, Canada), later redone by Martin Muldoon using "Maple 
V, Release 1". 

These calculations give, as would be expected, a larger value than I/Q, denoted 
by ^3 above. It is perhaps surprising that the values are so close. We have Z/Q = 
0.7552027...; the Maple programme extends the validity of (4.2) to z/ = 0.75558.... 
For v = 0.75558..., JfJf(x) has a double zero which, pursuant to [3, (2.5)], occurs at 
x = 0.95939... . 
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