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EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS TO FAST 

DIFFUSIONS WITH SOURCE 

Kiyoshi Mochizuki and Kentaro Mukai 

ABSTRACT. We consider positive solutions to the Cauchy problem for quasilinear 
parabolic equations dtu = Au171 + up with max{0,1 — 2/N} < m < 1 < p, where 
N is the space dimension. Putting p^ =m + 2/N, we shall show that if p < p^, 
then all nontrivial solutions blow up in finite time, and if p > p^, then there are 
nontrivial global solutions. 

1. Introduction 

We consider the Cauchy problem 

atU = Aum + up,   (x,t)£llN x(0,T), (1) 

u(x,0) = uo(x),   xGRN, (2) 

where 0 < m < 1 < p and uo(x) > 0.  Equation (1) with 0 < m < 1 arises in the 
plasma physics (see Berryman [1]). Since the thermal conductivity mu'm~1 | oo when 
u | 0, mathematically (1) represents a fast diffusion with source (Peletier [11]). 

In the case of slow diffusion m > 1, the following result is known to hold. Let 

p*m = m+l. (3) 

If 1 < p < p^, then all nontrivial nonnegative solutions of (l)-(2) blow up in finite 
time, whereas if p > p?^, then global solutions of (l)-(2) exist when the initial data 
are sufficiently small (see Fujita [5], Hayakawa [8], and Weissler [14] for m = 1, and 
Galaktionov et al. [7], Galaktionov [6], Kawanago [9], and Mochizuki-Suzuki [10] for 
m > 1). Thus, the number p^ is the cutoff between the blow-up case and the global 
existence case, and it is called the critical exponent. 

Similar blow-up and global existence results are expected to hold also for the case 
of fast diffusion m < 1. 

In this paper, we restrict ourselves to the case 

max I 0,1 - — > < m< 1, (4) 

and we assume that uo(x) is continuous in x E R"^ and 

uo(x)eL1(IlN)nL00(RN). (5) 

Then a unique weak solution u(x,t) E C^T);!,1^)) n L£c([0,T);L00^)) of 
(l)-(2) exists at least for sufficiently small T > 0 (see, e.g., Brezis-Crandall [2]), and 
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it becomes continuous in (x,t) E R"^ x [0,T). When T = oo, we say u is global; 
otherwise we say u blows up in finite time. In the latter case, it follows that 

\\u(',t)\\L°o ->oo    as   tTT. 

We shall prove the following theorems. 

Theorem 1.1. //I < p < p^, then all positive solutions of the Cauchy problem 
(l)-(2) blow up in finite time. 

Theorem 1.2. If p > p^, then for sufficiently small uo(x) E L^R/^) such that 

^o(^) = 0(|^r2^1-m))    as    |a|->oo, (6) 

the Cauchy problem (l)-(2) has a global solution with 

sup u(x,t)<Ct-1^p-l\ (7) 

where C is some positive constant 

The proofs of the above theorems depend on a comparison principle for parabolic 
equations (Proposition 2.1). To show Theorem 1.2, we shall construct a supersolution 
of (l)-(2) which behaves like O^"1/^"1)) as t -> oo (cf. [7]). To show Theorem 1.1, 
we shall modify the argument of [10] with the aid of a result of Friedman-Kamin [4]. 
The subcritical case 1 < p < p^ being easy, we explain our argument in the critical 
case £ = 24. 

Let u be a nontrivial global solution to (l)-(2). Then our blow-up condition (Propo- 
sition 2.3) implies 

/   /    u(x,T)pdxdT <7rN/2(2N)1^p-m^    for    t > 0. 
Jo   JllN 

If m > 1, then, as is proved in [10], one can find a Barenblatt solution Em(x,t\ L) of 
the porous media equation to satisfy Em(x,t\',L) < UQ{X) for some ti > 0. This leads 
to a contradiction since we have 

Em(x, r; L)pdxdT —> oo    as    t —> oo. 

In our fast diffusion problem, however, the support of every Barenblatt solution 
spreads out to the whole R^ whenever t > 0, and it becomes difficult to find such a 
convenient subsolution to (l)-(2). To remove this difficulty, we turn our attention to 
the self-similarity of the Barenblatt solutions, 

Em(x,t',L) = kNEm(kx,kN/itiL),    k>0, 

where £ = (p^ - I)"1. We put Uk(x,t) = kNu(kx,kN/H). Then it also gives a 
global solution to (l)-(2) with UQ(X) replaced by kNuo(kx).   Compare this Uk(x,t) 

and Em(x,t\L) with L =   /      uo(x)dx, when k —> oo.   Then applying the asymp- 

totic behavior for porous media equations (cf., [4, Remark 2]), we reach a similar 
contradiction. 

Note here that our results can be extended to the exterior Dirichlet boundary-value 
problem if N > 3. In his recent work [13], R. Suzuki has obtained a critical blow-up 
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to the exterior problem of slow diffusion. His argument is applicable also to our fast 
diffusion problem without any essential modification. 

The rest of the paper is organized as follows. In §2, we define a weak solution of 
(1) and prepare several preliminary propositions. Theorems 1.1 and 1.2 are proved in 
§3 and §4, respectively. Finally in §5, we remark on a critical blow-up for the exterior 
problem. 

2. Preliminaries 

We begin with the definition of a weak solution of (1). 

Definition 2.1. By a solution of equation (1) we mean a function w(a;, t) in R^ x [0, T) 
such that 
(i)    u(x,t) > 0 and G C'([0,T/];L1(RJV)) fl L00(RiV x [0,^]) for any 0 < T_ < T. 
(ii)   For any bounded G C R^, 0 < r < T and nonnegative tp(x,t) € C2(G x [0,T)) 
which vanishes on the boundary dG, 

/  u(x,T)(p(x,T)dx — / u(x,0)(p(x,0)dx 
JG JG 

= [   [ {uipt + urnAip + upip}dxdt- f   f   urndn(pdSdt1        (8) 
JO    JG JO    JdG 

where n denotes the outer unit normal to the boundary. 
A supersolution [or subsolution] is similarly defined with equality (8) replaced by 

> [or <]. 

The following comparison principle is well-known for the quasilinear equation (1). 
The result will be freely used in the sequel. 

Proposition 2.1. Letu [orv] be a supersolution [or subsolution] of (1). Ifu(x,0) > 
v(x,0), then we have u > v in the whole IlN x [0,T). 

Let <p(x,t) e C2(RN x [0,T)) satisfy 

/     {ip + \dt<p\ + |V^| + \A(p\}dx < oo. 
Jn" 

Then, by a limit procedure, we have from (8), 

/     u(x,T)(p(x,T)dx — /     u(x,0)(p(x,0)dx 

= {u(pt+umA(p + up(p}dxdL 
Jo  JiiN 

We put ip = e~€\x\ , e > 0, in this equation. Then it follows that 

/    u(x,T)e-€M2dx- [    u(x,0)e-eW2dx 
JK

N JK
N 

=  T f    {(-2Ne + 4e2\x\2)um + up}e-e^2dxdt.        (9) 
Jo   JR" 

Our proof of Theorem 1.1 will be based on the following two propositions. 
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Proposition 2.2. Let u be a solution to (l)-(2). Then for any r G (0,T); 

/     u{x,T)dx— l     Uo(x)dx =  /     /     u(x,t)pdxdt. (10) 
JK

N JRN JO  JRN 

Moreover, we have 

f    u(x,t)dx<ea{r)t I    uo(x)dx   for   t€[0,r], (11) 
Jn" JK

N 

where 

Proof. Note that 

a(r) = sup        u(x,t)p  1. 
(rr,t)GRiVx(0,r) 

[    (-2N6 + 4e2\x\2)ume-eW2dx  < ^~^-m)N/2 f f    ^ 
Jn" \JiiN       ) 

x J2i\r ( /    e-^l2^1—)^y~m + 4 ( \    |y|2/(i-^)c-Wa/(i-^)dyy"m\ 

Since 1 — (1 — m)Ar/2 > 0 by assumption (4), the right-hand side goes to zero as e | 0. 
Thus, the Lebesgue dominated convergence theorem shows equation (10). 

Next, let a(r) be as above. As is easily seen, the initial-value problem 

f dtw = Awm + a(r)w,       (a?, t) G R^ x (0, oo) 

1 ii;(a;,0) = ^0(2;)? a; G R^ 

has a global solution w which also satisfies 

/    w(x,t)dx = eaiT)t [    uo(x)dx. 
Jn" JiiN 

Since w is a supersolution to (l)-(2), we conclude (11). 

We define J(t),t>0, as 

J(t)=(f    e-eW2dx\      [    u(x,t)e-eW2dx. 

Proposition 2.3. Ifuo is large enough to satisfy 

J(0) > (2Ne)1^p-7n\ (12) 

then the corresponding solution u of (l)-(2) is not global. More precisely, there exists 
a T > 0 such that 

sup u(x,i)—> oo    as   11 T. (13) 
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Proof. The assertion is already proved in [10, Proposition 2.3].   Namely, it follows 
from (9) that 

J(r) - J(0) >( f    e-eW2dx)       r [    {-2^6^m + up}e-eM2dxdt. 
\JllN )        JO    JVLN 

Put r(£) = —2Ne^m + ^p. Then it is convex in £ > 0, and is positive and increasing 
in £ if £ > {2Ne)1^p-rn\ So, by the Jensen inequality, 

J{r) > J(0) + f T(J(t))dt, 
Jo 

from which we have 

t<r)jL<n ...? . <«. < /J™ « < r _ 
Jj(o) r(£)    jjco) - J(0)   r(0 -7j(o)-2iVe£-+^ 

as long as tx(a;, t) exists. This leads to a contradiction if the solution is global. 
Moreover, taking account of (11) of Proposition 2.2, we conclude (13). 

We shall close this section by giving a concrete expression of the Barenblatt solution 
to the initial-value problem 

dtv = Av171, (a?, t) e R^ x (0, oo), 

i;(a;,0) = L6(x),        xeIlN, 
(14) 

where L > 0 and 6(x) is Dirac's 6—function. 
Let 

-i 

(m-l + ^)     =(p^-l)-1>0 

and 

Gm(s)=[A + B82]-mi-m), (15) 

(1 - m)£ f 
where B = ■L———J— > 0 and A > 0 is chosen to satisfy  /     Gm(\x\)dx = 1. 

2mN jRiv 

Proposition 2.4.  The solution to (14) is given by 

Em{x,t;L) = L {Lm-H)~tGm ^x\{Lm-H)-l'N) , (16) 

and it is self-similar in the following sense: for any k > 0 

kNEm(kx, kN'H; L) = Em(x, t; L). (17) 

Proof. The expression (16) is well-known, and the self-similarity (17) easily follows 
from (15) and (16). 



EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS 97 

3. Proof of Theorem 1.1 

In this section, Theorem 1.1 will be proved in a series of lemmas. 

Lemma 3.1. Let u be a global solution of (l)-(2). Then we have 

[    u(x,t)e-eW2dx < c(N)e-Nl2+1/^-rn\ (18) 
./RiV 

for anyt>0 and e > 0, where C(N) = 7rN/2{2N)1^P-ml 

Proof Since 

/    e-^2dx = e-N^ [    e-^2dy = iTN^e-N/\ 

the blow-up condition (12) is reduced to 

Thus, every global solution u must satisfy the converse inequality (18). 

Lemma 3.2. Assume that u is global. Ifl<p< p^, then 

/     u{x, t)dx = 0    for any t > 0. (19) 
JR

N 

IfV = Pm> then 

/    u(x,t)dx<C(N)    foranyt>0. (20) 

Proof Since u(^t) £ L1(RiV), noting (3) and letting e | 0 in (18), we easily have the 
assertions of the lemma. 

Lemma 3.3. Let p = p^- Assume that u is global.  Then we have for any t > 0, 

/   /    u(x,T)pdxdr<C(N). (21) 
Jo Jn" 

Proof The assertion directly follows from (10) of Proposition 2.2 and (20). 

The following lemma is due to Friedman-Kamin [4, Remark 2]. 

Lemma 3.4. Letuo(x) G L1(Riv)nL00(RAr), and letv be the solution of the Cauchy 
problem 

dtv = Av171, (x, t)eRN x (0, oo) 

v(x^0) = ^0(^)5        xGllN. (22) 

// we put Vk(x, t) = kNv(kx, kN^t), then 

Vk(x,i) -+ Em(x,t]L)    as   k —> 00 (23) 

locally uniformly in IlN x (0,00), where L =        uo{x)dx. 
JiiN 
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Proof of Theorem 1.1. Contrary to the conclusion, assume that for given UQ(X) ^ 0, 
the Cauchy problem (l)-(2) has a nontrivial global solution u. 

In case 1 < p < p^, a contradiction occurs by (19) of Lemma 3.2 since it implies 
u(x, t) = 0. So, we have only to consider the critical case p = p^. 

We put Uk{x,t) — kNu{kx,kN/H). Then it satisfies (l)-(2) with UQ(X) replaced 
by kNuo(kx). Similarly, Vk given in Lemma 3.4 satisfies (22) with UQ(X) replaced by 
kNuo(kx). Uk being global, we have from Lemma 3.3 

/   /   uk(x,r)pdxdT<C(N)    for   t > 0. 
Jo JiiN 

By definition Vk(x, t) < Uk{x, t) in R^ x (0, oo). Thus, it follows from Lemma 3.4 and 
the Fatou lemma that 

/    /     Em(x,T;L)pdxdT < liminf /    /     vk(x,T)pdxdT < C(N) (24) 
Js JllN k^00 Js JllN 

for any 0 < 6 < t. 
On the other hand, it follows from Proposition 2.4 that 

/   /    Em(x,T;L)pdxdT = Lp f {Lm'1Tyipl{Lm'1T)idT I    GmdxlYdx. 
Js JiiN Js JllN 

Since p = p^, we have — £(p — 1) = —1 in this equality. So, the right side goes to oo 
if we let 6 —> 0 or t —> oo. 

This contradicts (24), and the proof of Theorem 1.1 is completed. 

4. Proof of Theorem 1.2 

In this section, we assume p > p^ in (1). We shall show Theorem 1.2 by constructing 
a supersolution of (1) in the form 

Z(x, t) = (t + to)-" [a + b\x\2(t + to)-2™] -1/(1-m), 

where to, a, 6, a, and u are suitably chosen positive constants. 
Substitute this in the inequality 

dtZ - AZm > Zp. (25) 

Then putting 
X = a + b\x\2(t + to)-2l'a, 

we have 

x-1/(1-m)-l faa{t + t )-«-! + ^[^{t + to)-(m+2u)a 
[ 1 — m 

-a(i-rr^)6Wa(* + «b)-(1+to)-1 

+ 3^ (N_   2  \ ia;|2(t + fo)_(m+4l/)j 
1 — m \        1 — my J 

> x-l/(l-m)-l{t + to)-aP [0 + j,^^^ + to)-2^j -(P+m-2)/(l-m) _ 

(26) 
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1 T) — 7YI 
We put a + 1 = (m + 2i/)a = ap, i.e., a =  and v = —-—. Then 

left side = X-1^1-m^-1(t + to)-ap![ ••• |; 

a        2mNab 1     ^ 
+ -; + ^ X p— 1       1 — m       1 — m 

2m6   / T         2    \ v         a          2raa& / r 2 
+ ^  [N-- )X--     A^- 

l — m\        l — m) l — m     1 —ra\        1-m 

Thus, it follows from (26) that 

FIX) = jr-(p+m-2)/(i-m) L_ (i + 2mb (N - zr^—] \ X 
1 - m [ \        1 - mj J 

a      (p — m       Arab 1   ^ „ 
H < > < 0. 

1 — m [ p — 1      1 — m ) 

This inequality holds if a and 6 are chosen to satisfy F(a) < 0 and F'(X) < 0 in 
X > a. The first condition is reduced to 

0 < a-fr-1)/*1"™) < —L. /2miV6 - ^-^ 1, (27) 
l — m { P-1J 

and the second condition is 

= _P + m-2x_{p_imi_m) __L_L_ 2rnbN(P*m - 1) 1      0 

1-m l-m|^ 1-m        J 

in X > a. If p + m — 2 > 0, then (28) is reduced to 

and if p + m — 2 < 0, then (28) is reduced to 

0     a_(p_1)/(1_fn) < -(l-m) + 2mbiV(p^-l) 
~        (l-m)(p + m-2) 

(30) 

Summarizing these results, we obtain 

Lemma 4.1. (i) /n case p + m — 2 > 0? /e^ 

l — m ,   ^        l — m 
< 6< 

2mAr(p - 1) - 2mN(p*m - 1)' 

T/ien (27) and (29) hold if a is chosen sufficiently large. 

(ii) In case p + m — 2<0, let 

l — m , l — m 
< 6< 

2miV(p - 1) 2mN(p*m - 1)' 

Then (27) and (30) ftoM z/ a is chosen sufficiently large. 



100 MOCHIZUKI AND MUKAI 

Remark.    The case (ii) occurs if 

N    <m<1-iv max ^ 0,1 — — ^<m<l-—    and   p^ < p < 2 - m, 

and the case (i) occurs for other pairs {m,p}. 

Proof of Theorem 1.2.       Let to > 0, and let {a, 6} be a pair of positive numbers 
satisfying the conditions of Lemma 4.1. Then the function 

Z(x,t) = (t + to)-1^-1* [a + 6|ar|2(t + to)"(p"m)/(p-1)]"1/(1"m) 

satisfies (25), that is, it becomes a supersolution of (1). Let 

uo(x)<C(l + \x\2)-1^1-rn\ 

If we choose to > 0 and C > 0 very small to satisfy 

0<to< (a-1^-1)/^-™)    and    C < (r4o)1/(1~m), 

then we have 
0<UOOE) <Z(a;,0),    x GllN. 

Let u be the solution of (l)-(2) with this initial datum uo(x). Then by the comparison 
principle, it follows that 

u(x,t) < Z(x,t) 

as long as u(x,t) exists. This and (11) of Proposition 2.2 ensure simultaneously the 
global existence and the decay property (7) of Theorem 1.2. 

5. Exterior Dirichlet problem 

In this section, we shall remark that the critical blow-up occurs also for the exterior 
Dirichlet problem if the space dimension N > 3. 

Let ER = {x £ R^; \x\ > R} (R > 0), and let us consider the exterior initial- 
boundary-value problem 

7 dtu = Au171 + up,       (z, t) e ER x (0, T) 

u(x,Q>)=uo{x), xeER (31) 

u(x,t) = 0, (x,t)edERx(Q,T), 

where m satisfies (4), p = p^ and 

uo(x)GL1(ER)nL00(ER). 

In this case, Lemma 3.4 is extended as follows: 

Lemma 5.1. Let v be the solution of 

'dtv = Avm, (x,t)£ERx{0,T), 

v(x,0)=uo(x),       xeER, (32) 

^(a:^) = 0, {x,t)edERx(0,T). 

If we put Vk(x, t) = kNv(kx, kN/H), k > 0, then 

Vk (x, t) —> Em (x,t',L)    as   k —> oo (33) 
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locally uniformly in {RiV\{0}} x (0, oo), where 

f rN-2 - RN-2 

L=        uo(x)(TR(\x\)dx,    aR(r) = ^-^ . (34) 
JER 

r 

Proof. As in the whole space case (see [4]), we see that for any 6 > 0 there exists ks > 0 
such that {vk(x,i)',k > ks} is uniformly bounded and equicontinuous in Eg x [5, oo). 
Thus, using the Ascoli-Arzela theorem and a diagonal sequence method in 6, we 
see that for any sequence {kj}^oo, there exists a subsequence {kj} and a function 
w(x,t) e C ({Riv\{0}} x (0,oo)) such that 

vk'. (^J 0 "^ ^(^51)    as    kj —> oo 

locally uniformly in {R/^UO}} x (0,oo). 
To show w(x, t) = Emfa, t,; L), we can follow the argument of Suzuki [13, §3]. 
Vk satisfies equations (32) with ER and Uo(x) replaced by ER/k and ^uo^kx), 

respectively. Thus, 

= {vkdty + v^Aipjdxdt 
Jo    JER/k 

for any ip{x,t) E C^En/k x [0, oo)) such that <p(x,t) = 0 on \x\ = i?/fc. We choose 
<p(x,t) = (TR/kilxDCix^i)^ where C(x,t) G CQ(TI

N
 X [0, OO)), in this equation, and let 

k = kj; —► oo. It then follows that 

/    w(x,T)(;(x,T)dx-C(0,0)L= [   [    {wdt( + wmA(}dxdt (35) 
JiiN Jo  JiiN 

for r > 0, where L is as given in (34). 
Note that (35) is satisfied by the Barenblatt solution Emfa, t; L). Then the unique- 

ness theorem due to Dahlberg-Kenig [3] (cf. also Pierre [12]) implies the desired equal- 
ity. 

Now, let u be a global solution to (31). Then since Uk = kNu(kx, kN^H) is again a 
global solution to 

'dtuk = Auibm + Uk*,        fat) e ER/k x (0,T) 
Ukfa 0) = kNuo(kx),       x G ER/k 

ukfat) = 0, fat)edER/kx(0,T), 

it follows from our blow-up conditions that 

r f      ukfatypR/k(\x\)dxdt < (2N + A)1/^-rn\N/2 (36) 
JS    JER/k 'R/k 

r — (R/k) 
for any 0 < 8 < t < oo, where pR/k{r) =  L_L-2 (cf>? [IQ, §4]).   The number 

(2iV + 4) corresponds to 2iV in (12) or (18), and it appears when we use the inequality 

A 'pR/k(\x\)e-eM-R/k)2] > -(2N + 4)epR/k{\x\)e-«W-R'kr. 
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Suppose that u is nontrivial. Then combining (36) and Lemma 5.1, we can follow 
the proof of Theorem 1.1 to yield a contradiction. 

The critical blow-up for the exterior problem (31) is thus concluded. 
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