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KRAMER-TYPE SAMPLING THEOREMS ASSOCIATED WITH FREDHOLM 
INTEGRAL OPERATORS 

Mahmoud H. Annaby and M. A. El-Sayed 

ABSTRACT. In a recent paper of Zayed [18], a new Kramer-type sampling theorem 
was established. In Kramer's theorem, it is assumed that the kernel associated 
with the theorem arises from a self-adjoint boundary-value problem whose 
eigenvalues are all real and simple and the eigenfunctions are all generated by 
one single function. In Zayed's theorem, the class of the integral transforms 
has been extended to a larger one. For instance, the kernel associated with the 
theorem may arise from a non-self-adjoint boundary-value problem with repeated 
eigenvalues. The technique used in the theorem is based on the use of Green's 
functions for boundary-value problems to reconstruct the interpolating functions. 
In this paper we make use of Zayed's idea to obtain a sampling theorem associated 
with a Fredholm integral operator of the second kind. 

1. Introduction 

Kramer's sampling theorem [9], which generalizes the Whittaker-Shannon-Kotel'nikov 
sampling theorem (WSKST), has been studied extensively, see [2,3]. It imposes many 
questions. One of these questions is from what situation do the kernel and the sampling 
points associated with the theorem come? This question is answered partially by 
Kramer in [9]. He assumed that the kernel and the sampling points arise naturally 
when one solves certain self-adjoint boundary-value problems whose eigenvalues are 
all real and simple and all eigenfunctions are generated by one single function. More 
precisely, consider the boundary-value problem 

£(y) = \y, (1.1) 

Uj(y) = 0,    j = l,2,...,n, (1.2) 

where 
n 

£(y) = Y^Pi^y^^ix),    -oo<a<x<b<oo, (1.3) 
2=0 

is any self-adjoint differential expression [5,11], and 

Ujiy) = J2 ^2/(i"1) W + PijV^Hb) (1.4) 
i=l 
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are n linearly independent forms of ^"""^(a), ^"^(b), i — 1,2,...,n, such that 
conditions (1.2) are self-adjoint, cf. [11]. Here Pi(x), i = 0,1,... ,n, are assumed to 
be complex-valued continuous functions with n — i continuous derivatives, po(x) ^ 0 
for x E [a, b]. Assume that (j){x,X) is a solution of (1.1) and {Afc}, {0(rr,Afc)} are the 
sequences of eigenvalues and their corresponding eigenfunctions. Let f(x) £ L2(a,b) 
and 

F(A)=  / f(x)<t)(x,\)dx. (1.5) 
J a 

Then F{\) will admit the sampling series 

^-EW-fl^ff*. (16) 
Other questions which are motivated by Kramer's theorem involve the relationship 

between Kramer's theorem and WSKST on one hand, and on the other hand, another 
generalization of WSKST, which is due to Paley and Wiener [12]. Campbell [3] showed 
that Kramer's theorem gives nothing more than WSKST if problem (1.1)-(1.2) is of 
the first or second order. Recent papers [1,15-18] dealt with the second part of the 
question and showed that Kramer's theorem gives nothing more than the Paley-Wiener 
(Lagrange interpolation) one. 

To the best of our knowledge, in the literature dealing with Kramer's theorem and 
its motivations, the kernel and the sampling points were always assumed to come 
from ordinary differential operators. It is worth mentioning that the idea of using 
ordinary differential operators in sampling theory goes back to Weiss [14]. It is known 
that any boundary-value problem of the type (1.1)-(1.2) can be transformed into 
an integral equation, but no sampling theorem associated with integral equations 
has been developed so far. This paper is devoted to this task. In more detail, let 
G(x,£) be the Green's function associated with the differential equation t,{y) = 0 and 
the boundary conditions (1.2). Then it is known [5,11,13] that the boundary-value 
problem (1.1)-(1.2), which is not necessarily self-adjoint, is equivalent to the Fredholm 
integral equation of the second kind 

y(x) = \f G(x,Z)y(QdZ. (1.7) 
Ja 

Also it is known that the Green's function G(a:,£, A) associated with problem (1.1)- 
(1.2) is the resolvent kernel associated with equation (1.7) when problem (1.1)-(1.2) 
is self-adjoint [4,5]. In the next sections, we are going to derive Kramer-type sampling 
theorems associated with the integral equation 

y(x) = X f K(x,Z)y(t)dt, (1.8) 
Ja 

where K(x,£) is any L2-kernel. The resolvent kernel R(x,£,\) plays, as expected, the 
role played by the Green's function in [7,18] (see Theorem 4.1). In Theorem 5.1, the 
kernel of the integral transform, associated with the sampling theorem, is expressed in 
terms of a solution of the inhomogeneous integral equation. In both cases we confine 
ourselves to the case where K is symmetric and the poles of the resolvent kernel are 
simple. 
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The main results of the paper are formulated in Theorems 4.1 and 5.1 below. 
Section 7 is devoted to some illustrative examples concerning the sampling theorems 
associated with the Predholm integral equation. 

2. The use of Green's functions in sampling theory 

In this section, we mention briefly Zayed's idea of how Green's functions can be used 
to derive sampling theorems. 

Consider the boundary-value problem 

t(v) = Ay, (2.1) 

Uj(y) = Oi    j = l,2,...,n, (2.2) 

where £(•), Uj('), j = 1,2,... ,ra, are given in (1.3), (1.4). Both £(•) and Uj(-) are not 
necessarily self-adjoint. Let G(a?,f, A) be the Green's function associated with (2.1)- 
(2.2). The construction of this function is given in [5,11]. Let {Xk} be the sequence 
of the eigenvalues of the problem (2.1)-(2.2). Assume that they have the asymptotic 
behaviour 

where n is the order of the differential equation (2.1). Now define the entire function 

P(A): 

A 
A TT(1 — —),       if AQ = 0 is an eigenvalue, 

^ ^ (2-4) 
TT(1 — —),        if 0 is not an eigenvalue. 
k=o k 

Obviously, P(A) is well defined for n > 1. If n = 1 then P(A) will take the form 

P(A) = 

00 A A 
A TT(1 - —) exP(T_)5        if AQ = 0 is an eigenvalue, 

k=1 A A' ^ 
(1 — -—) exp(—),        if 0 is not an eigenvalue. 

Afc Xk 

IK X 
oo n 

k=0 

If the poles of G(x,^ A), which are precisely the eigenvalues of the problem, are 
assumed to be simple, then the function 

$(x,\) = P(\)G(x,t0,X) (2.6) 

is an entire function of A for a; 6 [a, b]. Here £o is chosen in [a, b] as indicated in [18]. 

Theorem 2.1 ([18]). If f e L2{a,b) and 

F{\)= f 7(x)$(x,\)dx, (2.7) 
Ja 

then F(X) is an entire function ofX of order not exceeding 1/n thai admits the sampling 
representation 
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Moreover, if problem (2.1)-(2.2) is self-adjoint oriff satisfies the boundary conditions 
adjoint to (2.2), then series (2.8) is uniformly convergent on any compact subset of 
the complex X-plane. 

3. Preliminaries 

Consider the integral equation 

y(x) = xf K(x,Z)v(£)dt, (3.1) 
Ja 

where K(x,£) is an L2 (5)-function and A G C. Here S is the square [a, b] x [a, 6]. 
Moreover K is assumed to be symmetric, i.e., 

K(x,Z) = K(Zix),    a<x^<b, (3.2) 

If (3.1) has a non-trivial solution </>(#) for some A, we say that A is an eigenvalue 
of equation (3.1), or of the kernel K(x,£), and </>(#) is an eigenfunction of equation 
(3.1), or of the kernel K(x,£), corresponding to the eigenvalue A. In the case that 
an eigenvalue A has more than one eigenfunction we define the multiplicity of A to 
be the number of the linearly independent eigenfunctions corresponding to A. It is 
well-known [4,6] that the multiplicity of any eigenvalue of equation (3.1) is finite. 

Equation (3.1) may have no solution except the trivial one, i.e., it has no eigenvalue. 
The Volterra kernel (K(x,€) = 0,for x > £) is an example of this case [6,13]. In some 
other cases, equation (3.1) may have only a finite number of eigenvalues. For instance 
degenerate (finite rank) kernels, i.e., kernels of the form 

r 

K(x,Z) = 'Eiai(x)bi(Z), 
2 = 1 

can have only a finite number of eigenvalues. 
The case of interest is when equation (3.1) has infinitely many eigenvalues. In this 

case [4,6], the set of eigenvalues is countable and has no finite limit point. The only 
possible limit points are ±oo. For this reason the eigenvalues of equation (3.1) can be 
ordered according to their absolute values in a sequence 

0<|Ai|<|A2|<---<|A*|<"-, (3.3) 

where |Afe| —> oo when k —► oo. We can repeat an eigenvalue in the above sequence 
as many times as its multiplicity. Then we can also consider the sequence of 
corresponding eigenfunctions to be 

0i(a:),02W,...,^(^),... . (3.4) 

Since the symmetric kernel K(x, f) generates a self-adjoint operator in L2(a, 6), the 
eigenvalues of equation (3.1) are all real [6,13], and the eigenfunctions corresponding 
to different eigenvalues are orthogonal. So we may assume that the set {(f)k(x)} 
is orthogonal since we can apply the Gram-Schmidt orthogonalization scheme if 
necessary. 

If the equation 

/ 
K(x,t)y(Z)dZ = 0 (3.5) 
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has a nontrivial solution (/)(x), then we say that oo is an eigenvalue of the equation 
(3.1) with an eigenfunction 0(a;). Degenerate kernels defined above [4] are examples 
of such kernels. If oo is not an eigenvalue of equation (3.1), then the kernel K(x,€) 
is called a closed kernel. The Green's function in equation (1.7) is an example of a 
closed kernel. This fact directly follows from the completeness of the eigenfunctions 
of the Green's function G(x, £) [5], and that a kernel K is closed if and only if {</>£(#)} 
is complete [4]. Prom now on we consider closed kernels only. Thus we can assume 
that the set {(f)k(z)} is a complete orthonormal set in L2(a,b). 

Let R(x,fl,\) be the resolvent kernel associated with equation (3.1) (see [4] for 
definition). Then we have the following 

Lemma 3.1 ([4]). The resolvent kernel R(x,€, A) is an L2-function for any X ^ A/., 
that admits the expansion 

i^,A) = £^f>,    A^A*. (3.6) 

The convergence is in the tf-norm. 

Since each eigenvalue may have more than one eigenfunction, relation (3.6) may be 
written in the form 

00 <l>k,v(x)<l>k,u(Q 
fl(*,&A) = i;;C       x   -x       .    A*Afc, (3-7) 

k=ljy=l 

where &% is the multiplicity of A^. Since {(j)k} are L2-functions, each of them exists 
almost everywhere. Let £o £ [a,6] such that (f)k(^o) is finite for all k. Define the 
function <j)(x, A) to be 

*(*, A) = R(x^X) = ± ^M*) = ±±^f^\    X^Xk.    (3.8) 

Since {(f)k(x)} is complete, (3.8) can be viewed as the Fourier expansion of (j)(x,X) 

with the Fourier coefficients ^ _^ , A ^ A^. Also, (t)(x,X) is a meromorphic function 
with simple poles A^. The residue at each pole A^ is 

^fc   

rk = ^2<l>kAx)(f>kA^o)' (3.9) 

The sequence of the eigenvalues {A^} given in (3.3) satisfies (see [4, pp. 48, 88]) 

Aj £(^Y<oo. (3.10) 
k=l 

Define the entire function a; (A) to be 

-w-n (i-£)- (»■") 
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when Y^kLi x~ ^ 00' an<^ 

^A) = f[(l-£)exp(A), (3.12) 

otherwise. Due to the self-adjointness of the problem in hand, the poles of the resolvent 
kernel are all simple. Then in the canonical products (3.11)-(3.12), each A^ will appear 
once. This does not require that the Afc be simple eigenvalues, but rather simple zeros 
oiu(X). 

The function 

*(x,A)=w(A)0(a:,A) (3.13) 

is an entire function of A for each fixed x. 

4. The sampling theorem 

In this section we derive a sampling theorem associated with the Fredholm integral 
equation (3.1). Here the kernel of the transformation is $(£, A) defined in (3.13) above. 

Theorem 4.1. Let f G L2(a,b) and 

F(\)= [ ~f(x)$(xJ\)dx. (4.1) 
J a 

Then F(X) is an entire function of X of order not exceeding 2 that admits the sampling 
representation 

Moreover the sampling series (4.2) is uniformly convergent on any compact subset of 
the complex X-plane. 

Proof. By the Cauchy-Schwarz inequality, we have 

|f(A)!2< I /'l/lx)!2^) ( /'|t(x,A)|2ir] <oo. (4.3) '£*<■***)(£ 
Thus F(X) is well-defined. Also, that F{X) is an entire function of A with order < 2 
follows directly from (4.3) and the fact that <I>(x, A) satisfies these properties [4, p. 50]. 

Since both / and $ are Z/2-functions and {4>k{x)} is a complete orthonormal set in 
L2(a, 6), then 

oo 

f{x) = YJ{fAk)H{xl (4.4) 
ik=l 

and 

oo 

*(s,A) = £<$,&>&(*), (4.5) 
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are the Fourier series of / and <I>, respectively. Here (/, fa) and ($, fa) are the Fourier 
coefficients. Using Parseval's identity, we get 

oo 

F{\) = Y,Tf^)^,<t>k). (4.6) 
ft=i 

Equation (4.6) can be rewritten in the form 

OO      I/fc      

^w^EE^^)^'^)- (4-7) 
From (3.8) and (3.13), we have 

From (3.13) and (4.1), we have 

F(\)=u>{\) f J{x)<j>{x,\)dx. 
J a 

Therefore, using (3.8), we get 

F(\k) =  lim ^- / (A- Xk)J[x)(t>{x,X)dx 

Vk       pb  

= -ul{\k)Y^(t>kA^) j    f(x)fa,v(x)dx 

- -w'(Afc) ^ faAto) (f, M- (4.9) 

Substituting (4.8), (4.9) in (4.7), one gets (4.2). 
Finally, to prove the uniform convergence of the series (4.2), we use (4.6) and the 

Cauchy-Schwarz inequality to obtain 

iV-l / oo \ V2  / oo \ V2 

WM - E a^><*,^>i < E I</^*>I2      E I<*.^»I2 

fc=l \k=N J \k=N J 

But, in view of Bessel's inequality [4], the series 

EK/'^>I2 

converges. Again from Bessel's inequality, we have 

oo 

k=N 
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Prom equation (2), p. 50 in [4], ||$(x, A)||2 is uniformly bounded on compact subsets 
of the complex A-plane. Thus, if M is a compact subset of the complex plane, then 
there exists a positive constant C(M) such that 

oo 

El(<Mfc»|2<C(M),    AGM. 

Hence, for A G M 

N-l    /  oo \ 1/2 

^(A)-£<7^)<*,&>  <VC(M)(X;K/.^)I2 -0 as  iV->oo. 
fc=i Kk=N 

Remark 1. Note that Theorem 4.1 gives a family of sampling theorems due to the 
fact that the kernel $(a;, A) depends on the choice of £o € [&>&]• I*1 some cases (see, 
for instance, example 1 below) it may happen that for some £o € [a, b) 

^fc(6>)=0,    for all fc. (4.10) 

On the other hand, as example 2 shows, there is no £o € [a, 6] such that (4.10) takes 
place. Therefore the values of £o that make (4.10) true depend on the nature of the 
system of eigenfunctions. So, it might be difficult to classify £o's which fulfill (4.10), 
i.e., those £o's that are inadequate for constructing a (nontrivial) sampling theorem. 
However, since {</>&} is a complete orthonormal system, there are always £o € [&>&] 
that could be used to achieve our aim. 

Remark 2. As in [18], the kernel $(a;, A) is a Kramer-type kernel [9] only when all 
eigenvalues of the problem are simple. In this case we have 

(1) $(:z,A)eL2(a,&),    A G C, 

(2) {$(2;, Afc)}  =  {v'(\k)<f>k(€o)<l>k(x)} which is a complete orthogonal set in 
L2(a,6). 

Remark 3. Although in Theorem 4.1 the upper estimate of the order of the sampled 
function is 2, the order of the entire function -F(A) may be very small (cf. example 
2). This fact directly follows from the dependence of the order on the convergence 
exponent of the sequence {Afc}, i.e., the infimum of the positive numbers 7 such that 
x:iAfc|-^<oo. 
Remark 4. The previous results can be extended to the non-self-adjoint operators, 
i.e., when K(x,£) is not symmetric. In this case, to maintain a sampling theorem, we 
assume the poles of the resolvent kernel to be simple. To prove this, we follow the 
same line established in Theorem 4.1 above and use the following facts. 

(1) !?(£,£, A)  is  a meromorphic function of A having simple poles at each 
eigenvalue A^. The corresponding residue is 

^fe   

where fk is the multiplicity of the eigenvalue A*;, and {^^(z)} are the 
eigenfunctions of the equation adjoint to (3.1) corresponding to the eigenvalue 
\k [4,8]. 

(2) The sets of the eigenfunctions of (3.1) and its adjoint are complete [4, 
Chapter 14]. 
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(3) The set of the eigenvalues {Xk} satisfies ^2 \^k\~2 < oo. 

Remark 5. The condition for uniform convergence of the sampling series in [18] is 
superfluous here. 

5. Another sampling theorem 

In this section, we derive another sampling theorem connected with (3.1). The kernel 
of the integral transform, associated with this sampling theorem, is expressed in terms 
of a solution of the inhomogeneous integral equation instead of the resolvent kernel. 
The advantage of this approach is twofold. First, it resembles the ideas in one of the 
main directions to construct sampling theorems for differential equations. Second, it 
eliminates the need for defining £o mentioned above. 

Note that the kernel of the integral transform associated with the sampling theorem 
must be defined at each A 6 C. But, since (3.1) has only a discrete set of eigenvalues, 
we use the inhomogenuous equation instead. 

Consider the homogeneous Predhom integral equation 

y(x) = X f K(xMQdZ (5.1) 
Ja 

and its corresponding inhomogeneous equation 

y{x) = X /   K(x,02/(0 # + h(x),    h G L2(a, b). (5.2) 
Ja 

Let {Xk} be the sequence of eigenvalues of equation (5.1) and {(j)k(x)} the set of the 
corresponding eigenfunctions. We assume, without loss of generality, that {A/-} are all 
simple. Equation (5.2), cf. [4], has a unique solution, ^(z, A), A ^ A^, which can be 
written in the form 

il>(x, A) = h(x) + A / R(x, f, A)ft(0 df, (5.3) 
Ja 

where j?(a;,£, A) is the resolvent kernel defined above. Also, [4, p. 195], ip(x,X) may 
be expanded in the form 

fc=i Xk ' A 

where h(k) are the Fourier coefficients of h. Define 

V{x,\)=w(\)il>(x,\), (5.5) 

where 

u/(A) = < 
JJ(1 - —) exp(A/AA;),        otherwise. 

U=i k 

(5.6) 
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Set 

V;i(x,A) = f^-^-^(x),    X^Xk. (5.7) 

Then we have the following sampling theorem 

Theorem 5.1. Let f(x) G L2(a,b) and 

F(A)= / 7(^)*(^A)dx. (5.8) 
Ja 

Then F(\) is an entire function ofX with order < 2 that admits the sampling expansion 

nA) = gw(A_g»,(At). (5.9) 

The series (5.9) is uniformly convergent on compact subsets of the complex X-plane. 

Proof. Using the Cauchy-Schwarz inequality, equation (5.3), and that both a;(A) and 
u;(A)i2(a;,£, A) are entire functions of order < 2    [4, p. 50], we conclude that the 
function ^(A) exists, entire of order not exceeding 2. 

From (5.4) we get 

F(X) - u(\) f J{x)h{x) dx = X f J{x)^i{x, A). (5.10) 
J a J a 

Parseval's identity and expansion (5.7) lead to 

F{\)-u}{\) I J(dh(x)dx = \f]7(k)h(k)-^-. (5.11) 
Ja fc=i Afc ~A 

But we have 

F(Xk)=  lim   / J(x)V(x,\)dx 

=  lim -^- / \(\-\k)7(x)Mx,X)d* 

- -w'(Afc)A Jtfc)/^). (5.12) 

Hence, combining (5.11), (5.12), we get 

m . .mfmn*) **+p(^Xk(^tU>y     (5'13) 

Applying Parseval's identity, we obtain 

ob  oo   

/   7(dHx)dx = Y,h(k)m. 
Ja k=i 

Using (5.12), one gets 
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Thus 

A simple manipulation yields 

To prove the uniform convergence of series (5.9), it sufficies to show that the series 

fc=i 
E^rarrSm (5-14» 

converges uniformly on every compact subset M of the complex A-plane. 
Indeed, from (5.12), we have 

But there exists a positive constant C(M) such that, cf. [18], 

Aw(A) 
Afe - A 

<C(M),    AeM, k = l,2,.... 

Thus 

mm^-  < C(M)\h(k)f(k)\. 
Ah — A 

Since ft, / are L2-functions, then 

1/2   / oo \  1/2 

fc=l \/c=l / \k=l / 

The uniform convergence of (5.14) now follows from the Weierstrass test for uniform 
convergence. 

Remark 6. The idea of using the inhomogenuous equations to obtain sampling 
theorems was suggested by Professor Gilbert G. Walter during the Conference of 
Mathematical Analysis and Signal Processing held in Cairo University, Jan. 3-9, 
1994. He suggested that the kernel ^(z, A) of the integral transform associated with 
the sampling theorem should be a solution of the equation 

y(x) = X f K(x,Z)ytt)de + w(\), 
J a 

i.e., ^(^J A) is a solution of (5.2) when h{x) = 1. 

Remark 7. Note also that the sampling theorem, 5.1, depends on ft. Therefore, we 
have again a family of sampling theorems. 
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6. Some extensions 

The results of Sections 3, 4, and 5 above can be extended to the equations 

poo 

y(x)=        K(x,Z)y(Z)dZ (6.1) 
Jo 

/oo 

K{x,t)y(Z)dZ, (6.2) 
-oo 

where K(x,£) is a symmetric L2-function on the corresponding domain. In fact, we 
can consider a transformation of x and £ that carries the infinite interval to a finite one 
[13, pp.151-152]. However, it might happen that the new kernel has some singularities, 
but, in spite of this, it is an L2-kernel. 

7. Examples 

Here we give some examples illustrating how to obtain sampling expansions associated 
with Predholm integral equation. The first two examples are applications of Theorem 
4.1. The next two examples are devoted to the case discussed in §6. The last 
example illustrates how to obtain sampling expansions associated with inhomogenuous 
equations. 

Example 1.        Let K(x,€) be the kernel 

^,0=    mm   (a:,0-a*. (7.1) 
0<:c,£<l 

The eigenvalues of this kernel [10] are A^ = fc27r2, k = 1,2,... and the corresponding 
eigenfunctions are (l>k{x) — \/2 sin/cTrx. If £o is chosen in ]0,1[, then the kernel is 

where 

and 

$(x,A)=cj(A)fl(z,£o,A), 

k=l 

The sampling series takes the form 

2/c27r2 sin y/X 
F(A) = ^(-l)^(fc27r2) 

fe=i VX(X - fc27r2)' 
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Remark 8.    In the above example, the resolvent kernel R(x, £, A) [4,5] is the Green's 
function associated with the boundary-value problem 

-y" = Xy,    2/(0) = 2/(1) = 0, 

which takes the form 

f sin y/Xx sin \/A(l - £) 

R(x,Z,\) = G(x,t,\) = < 
y/X siny/X 

sin y/\£ sin VX(1 — x) 

\/A sin\/A 

,     0 < x < i, 

,     0 < £ < x. 

Remark 9.    In the above example, there are only two points that lead to the trivial 
case, viz. £o = 0,1. 

Example 2.        Let K(x,t;) = K(x — £), —TT < £, £ < TT, where K{x) is an even 
function which is periodically extended to the entire rr-axis so that 

K{x-Z) = K{Z-x). (7.2) 

In this case [10] 

(J)Q{X) — (27r)~1//2,    (Pk  {x) = —= cos to,     <Pk  (x) = —7=smkx 

are the eigenfunctions of the integral equation corresponding to the eigenvalues 

Ao = (Trao)"1,    A^ = (Tra^)"1,     fc = l,2,..., 

where 
/TT />7r 

^(a:) dx,    dk = /    -K"(a;) cos A:x cZrc. 
-TT «/—TT 

Hence 

1 ^ cos/c(^ — £) 
27r(Ao-A)   ' ^   7r(Afe-A)  ' 

Choose £o ^ [—TTjA"]- Then the sampling series has the form 

W-E^JTIA fc=o    ^^  (A-AfeV(Afc)' 

where 
oo 

w(A) = H (1 - 7rAafc). 
*;=0 
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Remark 10.    In example 2 we can choose K(x) sufficiently smooth so that the 
convergence exponent of the sequence {A^} is very small. For instance: 

(1) If K(x) = x2,    -TT < x < TT, then [10] 

AQ = 3(27r3)-1,    X^t^Lk2,    fc = l,2,.... 
(47r) 

(2) If K(x) = 3(5 - 4 cos a;)"1,    -TT < x < TT, then [10] 

Afc = 2 ,     /c = 1,2,... . 

Note, however, that there is no £ in [—TT, TT] that leads to the trivial case. 

Example 3.        Take the kernel 

POO -T 

K{x, 0 = e**-^2 / ^— dr,    0 < x, £ < oo. (7.3) 

The eigenvalues of the kernel (7.3) [4,10] are A^ = k + 1, k = 0,1,..., and the 
corresponding eigenfunctions are 

e-x/2 
(t>k(x) = —jj-Lk(x)„ 

where Lk(x) are the Laguerre polynomials. This set of eigenfunctions is a complete 
orthonormal set in I/2(0, oo) [4,10]. The resolvent kernel R(x, £, A) will take the form 

If £o and $(x, A) are taken as described above, then the sampling representation will 
take the form 

where 

^A) = n(l--^_)exp[A/(fc + l)]. 
/c=0 

Example 4.        Let K(x,()) be the kernel 

nmm(x,£) noo 

K{x,0 = e(x2+S2V2 e-T2dT e*3 dr,    -oo < x,S < oo.    (7.4) 
«/oo »/max(a;,^) 

The eigenvalues of this kernel [4,10] are A^ = 2k + 2, k = 0,1,..., and the 
corresponding eigenfunctions are 

0fc(aO - {2kV*(k\)y1/2e-k2'2Hk(x), 

where Hk(x) are the Hermite polynomials. This set of eigenfunctions is a complete 
orthonormal set in L2(—oo,oo) [4,10]. The resolvent kernel R(x,€,\) will take the 
form 

RU C A) - T e-^'2^)^) U(X^A)~^02>'(kl)^(2(k + l)-\y 
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Let £o and $(a:, A) be taken as described above, then the sampling representation will 
take the form 

 HA) 

k=0 

where 

*A)-g^ + »)(A_a_X,(a + ip. 

"(A) = fl (l " jj^) «T[V(2* + 2)]- 

Example 5.        Consider the integral equation 

y(x) = X f K(x,Z)y(Qde + x, (7.5) 
^0 

where 

KM=re~'SinhX>       0^X^^ (7.6) 

The eigenvalues of the kernel (7.6) [10] are A^ = — 1 - //| and the corresponding 
eigenfunctions are </>&(#) = sin/^a;, where //& are the zeros of the equation tan^ = //, 
/z > 0. Hence, in view of Theorem 5.1, 

00    h(k) 
ip(x,\) = x + \V"- -sin^^,     A/ A*, 

fc=iAfc~A 

and 

where 

and 

Now if /GL2(0,1) and 

then 

*(a;, A) = u(X)ip(x, A),    A E C, 

/i(A;) =  /   ^sin^^cfx. 
Jo 

F(X)= f JWy(x,X)dx, 
Jo 

^EWfxr^k). 
k = l 
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