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DYNAMICS OF AN ALMOST PERIODIC LOGISTIC 

INTEGRODIFFERENTIAL EQUATION 

K. Gopalsamy and Xue-zhong He 

ABSTRACT. Sufficient conditions are derived for the existence of a globally attrac- 
tive positive almost-periodic solution of the logistic integrodifferential equation 

^-m 
POO 

i - b(t)  /     K* 
Jo 

a(t)-b(t) /     Ka(s)N(t-s)ds t>0, ae (0,oo), 

in which a(t),b(t) are continuous positive almost-periodic functions defined on 
(—oo, oo) and Ka : [0, oo) —► [0, oo) is piecewise continuous and integrable on 
[0, oo), where a is a positive-valued parameter. We obtain sufficient conditions for 
all positive solutions to have "level-crossings" about the unique almost-periodic 
solution. Existence of a positive solution with no "level-crossings" about the 
almost-periodic solution is also discussed. 

1. Introduction 

It is well-known that the environments of most natural populations change with time 
and that such changes induce variation in the growth characteristics of populations. 
For instance, favourable weather conditions stimulate an increase in the body size and 
reproduction while unfavourable environments can lead to a decline in the birth rate 
and an increase in mortality. Temporal variations of an environment of a population 
are usually incorporated in model systems by the introduction of time-dependent 
parameters in governing equations. Such governing equations are nonautonomous, and 
studies of nonautonomous equations have not attained a satisfactory level of maturity 
comparable to that of autonomous equations. The reader is referred to the recent 
monograph of Gopalsamy [8] for an extensive discussion of multispecies dynamics in 
temporally uniform environments governed by autonomous differential equations with 
discrete and continuously distributed delays. 

The purpose of this article is to derive a set of algebraic sufficient conditions for 
the existence of a globally attractive positive almost-periodic solution of the logistic 
integrodifferential equation 

!W-m 
poo 

a(t)-b(t) /    Ka(s)N(t-s)ds 
Jo 

t>0, ae (0,oo),   (1.1) 

in which a(£),&(£) are continuous positive almost-periodic functions defined on [0, oo) 
and Ka : [0, oo) —> [0, oo) is piecewise continuous and integrable on [0, oo) for each 
a e [0, oo).   For a general discussion of almost-periodic differential equations with 
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INTEGRODIFFERENTIAL EQUATION 39 

and without delays, we refer to the works of Fink [7], Yoshizawa [26, 27], and Cor- 
duneanu [5]. It will be found that the contents of this article provide a generalization 
of the recent results in Zhang and Gopalsamy [29, 30] and Gopalsamy et.aL[15] where 
equations of the form 

dx(t) 
dt 

dv(t) 
dt 

dN(t) 
dt 

= r(t)x(t) 

= r(t)v(t) 

= N(t) 

1- 

1- 

x(t — nr) 

m 
V(t-T(t)) 

K 
poo 

a{t) - b(t) /    K(s)N(t - s)ds 
Jo 

(1.2) 

(1.3) 

(1.4) 

in which the coefficients are periodic positive functions with a common period, have 
been investigated. We like to add that although (1.1) and (1.4) are alike, a, b of (1.1) 
are almost-periodic functions while a, & of (1.4) are periodic with a common period. 
We note that it is possible for the various components of biological and physical envi- 
ronments (reproduction rates, resource regeneration, etc.) of a population system can 
be periodic with rationally independent periods, and therefore it is not unreasonable to 
consider the various parameters of model systems to be changing "almost-periodically" 
rather than periodically with a common period. There exists an extensive literature on 
differential equations with periodic coefficients and their applications; for example, we 
refer to the articles by Arino et al. [1], Burton [4], Gushing [6], Gopalsamy [9-13], Ha- 
lanay [17], Hamaya [19], Nisbet and Gurney [22], Qichang [23], and Zhang and Gopal- 
samy [28]. Almost-periodic integrodifferential systems modelling population dynamics 
have been discussed by Seifert [24, 25], Murakami [21], and Hamaya and Yoshizawa 
[20]. The analyses and results of these authors depend crucially on an assumption 
that there exists a negative stabilising feedback mechanism in the dynamics acting 
without delay. The methods of analysis of these authors are not directly applicable to 
equations of the form (1.1). Our interest in the study of (1.1) has evolved from a desire 
to generalise equations like (1.2)-(1.4) to those with almost-periodic coefficients. We 
discuss furthermore the delay- (or memory-) induced level-crossing or absence of level- 
crossing of solutions of (1.1) about a certain nonstationary equilibrium-like solution 
of (1.1). 

2. A priori bounds 

In this section, we obtain a priori upper and lower bounds of positive solutions of the 
nonautonomous logistic integrodifferential equation 

dN(t) 
dt 

= N(t) 
poo 

a{t)-b(t) /     Ka(s)N(t-s)d, 
Jo 

having an initial condition of the type 

N(s) = (j)(s) > 0    for s < 0 and 0(0) > 0, 

£>0,    ae(0,oo),    (2.1) 

(2.2) 

where </> is bounded and continuous on (-oo, 0]. We assume that a, b are nonnegative, 
continuous on R, and satisfy 

0 < a0 < a(t) < a0,    0 < b0 < b(t) < 6°,    for t <E R, 
poo poo 

/     ifa^ds = 1,    cra= sKa(s)ds < oo. 
Jo Jo 

(2.3) 

(2.4) 
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In particular, we will be interested in delay kernels of the form 

a ,n+l 
Kjf) = —rsne-as;    s e (0, oo), n = 0,1,2, • • • , a > 0. 

nl 

Theorem 2.1. Let a, 6, and Ka satisfy the above assumptions. Let N(t) be any so- 
lution of (2.1) and (2.2). Then N(t) > 0 for all t>0, and furthermore 

^m^M^bof~Ka(s)e-«°sds 
for a > 0, (2.5) 

where a0 and b0 are defined by (2.3). 

Proof The positivity of the solution N(t) of (2.1) and (2.2) for t > 0 is immediate 
from the form of (2.1) and the assumptions on the initial values. By the positivity of 
iV(*) and (2.1), we have 

dN(t) 

dt 
<N(t) 

poo 

a" -b0 /    Ka(s)N(t-s)ds 
Jo 

< a0N(t)    for t > 0. 

For t - s > 0, it follows from (2.7) that 

dN(t) 

N(t) 
< a0dt. 

(2.6) 

(2.7) 

(2.8) 

Integrating (2.8) on [t — s, £], we derive 

N(t) <N(t-s)ea0s, 

that is 

N(t -s)> N{t)e-a0s    for t > s > 0. 

From (2.6) and (2.9), 

dN(t) 

(2.9) 

dt 
<N(t) 

<N(t) 

a0 -b0 f Ka(s)N(t-s)ds 
Jo 

a0-b0( f Ka(s)e-a0sds)N(t) 

N(t)[a0-b0f(t)N(t)], (2.10) 

where f(t) = f* Ka{s)e-a0sds > 0 and satisfies f(t) -> /* = f™ K^e'^'ds < oo 
as t —> oo. By comparison, N(t) < y(t) for t > 0, where y(t) satisfies 

^ = y(t) [a° - bomy(t)],    2/(0) = N(0). (2.11) 

Solving (2.11), we have 

y(t)    2/(0) 
-r Vo _no+ 
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Since f(t) -^ /* > 0 as t -> oo, one can derive that lim  /  f(s)ea0sds/ea0t = f*/a0, 

and hence l/y(t) —> bof*/a0 as t -^ oo. Thus 

a0 

limsupiV(t) < limsupy(t) =        -       ^e-Q^^ 

and the proof is complete. 

Theorem 2.2. Suppose that a and Ka are such that for some e0 > 0, 

/    Ka(s)e-(ao-bOM«-€°)sds < oo, 
Jo 

in which Ma is defined by (2.5). If N(t) denotes any solution of (2.1) and (2.2), then 
N(t) satisfies 

liminf N(t) > ma = —■F^——, x   
Q
/ ,„., ,   , . (2.12) 

Proo/. Let iV(t) be any positive solution of (2.1) and (2.2). It follows from Theorem 
2.1 that for 8 > 0 small enough (say 6 < e0/(2b0)), there exists a ti > 0 such that 

N(t)<Ma + 6       fort>ti. 

By the positivity of N(t) and (2.1), we have for t > ti, 

dN(t) 

(2.13) 

dt 
>N(t) 

= N(t) 

POO 

a0-b0 /     Ka(s)N(t-s)ds 
Jo 

nt—ti poo 

a0-b0 /       Ka(s)N(t - s)ds -b0 Ka(s)N(t - s)ds 
Jo Jt-tx 

(2.14) 

which together with (2.13) implies 

dN(t) 
dt 

>N(t) (a0-b0 [     Ka(s)N(t-s)ds) 

rt-t! 

-b0 /       Ka(s)(Ma + 6)ds . (2.15) 

Let ca(t) be defined by 
nt—ti poo 

Ca(t) = a0- b0(Ma + 6) Ka(s)ds - b0 Ka(s)N(t - s)ds,    t > h. 
JO Jt-t! 

Then, by the boundedness of N(t) and (2.4), 

lim cJt) = a0- b0(Ma + 6), 
t—>oo 

and also from (2.15), 

(2.16) 

dN(t) 
dt 

> ca(t)N(t)    for t > ti, 

which leads to 

N{t-s)<N{t)e   ILCa{r)dr    iort-s>t1. (2.17) 
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Hence, for t>ti,we have from (2.14) and (2.17) that 

dN(t) 
dt 

>N(t) 

>m 

POO 

a0-b0        Ka(s)N(t-s)ds 
Jo 

nOO 

a0-b0 Ka(s)N(t-s)ds 
Jt-u 

b°( J^ Ka(s)e-SL^^ds)N(t) (2.18) 

We note from 
JnOO 

1      Ka(s)N(t-s)d8 = 0, 
t-t! 

that for arbitrary 0 < ei < e0/2, there exists a Ti > *i large enough such that 

/»oo 

6° /      Ka(s)N(t - s)ds <eu    for t > Ti. 

Also from (2.16) we have 

(2.19) 

[a0-b0(Ma + 6)]-e1<ca(t)<[a0-b0(Ma+6)} + e1,    for t > T1.    (2.20) 

By (2.20), 

6° /     ' Ka(s)e~ SL Ca{r)drds < b0 r Ka{s)e-(a°-b°(M°+s»seeisds   for t > T,. 
Jo Jo 

(2.21) 

Prom (2.18)-(2.21), we derive that, for t > Ti, 

dN(t) 
dt >m (fflo-d) - (b0 rKa(S)e-^-b^M-+s^se^sds\N(t) (2.22) 

We can obtain from the hypothesis and (2.22) that there exists a T2 satisfying T2 > Ti 
such that 

N(t)> 
a0 - ei 

= E(eu6)    fort>T2.      (2.23) b0 /o00 K^e-^o-^iM^s^s^s^ 

On the other hand, we have from 

E(€i,8) —» ma    aseij^^-O"^, 

where ma is defined by (2.12), and by the continuity of E(ei,6) with respect to ei 
and 8, that for arbitrary e > 0, there exists 0 < Si < e0 such that 

E(ei,S) > ma — e   for ei < Si and S < Si. (2.24) 

For this 5i, it then follows from the above analysis that there exists a T > T2 such 
that 

N(t) >ma-e   for t > T, 

from which (2.12) follows. 
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Remark.    In the case of the single constant discrete delay logistic equation 

dN(t) 
dt 

= N(t)[a(t)-b(t)N(t-a)], 

one can obtain by other methods (see [15]) that 

Ma = 
b0^ 

™     = ^e(a0-b°Ma)« ■exp 
a0b0 

(2.25) 

(2.26) 

It is intuitive that if a, b are positive constants, then the "oscillation width" induced 
by the discrete delay a in (2.25) is measured by Ma — ma. Figure 1 illustrates the 
effects of the discrete delay on the oscillation width. 

a(t)=l/b(t)=l 

2.5 

1.5 

0.5 

0.4 .   .   0.6 alpha 

FIGURE 1. 

3. Existence of a globally attracting almost-periodic solution 

In this section, we derive sufficient conditions for the existence of a globally attracting 
positive almost-periodic solution of (2.1) when a, b are strictly positive continuous 
almost-periodic functions of t e R. Our first result is concerned with the stability 
characteristics of positive solutions of (2.1) and is almost the same as Theorem 2.3 in 
Gopalsamy et al. [15]. We have included it here with a brief indication of proof for 
the sake of completeness. 

Theorem 3.1. Assume that a, b are strictly positive, bounded, and continuous on M. 
Furthermore, suppose that f™ s2Ka(s)ds < oo and 

(b°fa, <b0, 

where 

CTQ, =  /     sKa(s)ds < oo,    b0 = inf b(t),    b0 = sup6(t). 
Jo *£R tel 

(3.1) 
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If Ni(i) and A^OO denote any two positive solutions of (2.1), then 

lim [N1(t)-N2(t)] = 0. 
t—►oo 

Proof We let 

z1(t)=ln[N1(t)}1    z2(t) = ln[N2(t)] 

and derive that zi, Z2 satisfy 

(3.2) 

dt 
zi(t) - z2(t) - r Ka{s)\j    b{v + s) 

Jo KJt-s 
/•OO 

/    Ka(s)b(t 
Jo 

eZl(v)   _ eZ2(v) dv > ds 

e*iM -e^W + s)ds. 

We choose a 8 > 0 small enough satisfying (b0)2aa(Ma 4- S) < b0, which is possible 
due to the assumption in (3.1). The details of the proof are based on the observations 
that iVi and N2 are eventually bounded in the sense that for the above 6, there exists 
T0 > 0 such that 

where 

N^t) < Ma + 6,    N2(t) <Ma-t-6    fort>T0 

MOL = 
b0f™Ka(s)e-"°sds' 

and the functional V(t) = V(zi,Z2)(t) defined by 

poo r   pt 

V(t) = *!(() - 2j(t) - /    KM I /    6(« + 5) [e-l* )_P^H dv > ds 

oZl(v)   _  pZ2{v) dv \ du > ds 

is a Lyapunov-type functional for the dynamics of zi(t) — Z2(t). The remaining details 
of the proof are similar to those of Theorem 2.3 in Gopalsamy et al. [15] and hence 
are omitted. 

We remark that the sufficient condition in (3.1) is better than that obtained in 
Theorem 2.3 of Gopalsamy et al. [15]. The next result provides sufficient conditions 
for the existence of almost-periodic solutions of (2.1). With respect to the theory 
of almost-periodic functions, this paper is self-contained since the only fact from the 
theory which is used below is that of Bochner's criterion for almost-periodicity (see, 
for instance, Besicovitch [3]). Such a criterion says that a function g(t), continuous on 
(—00,00) is almost-periodic if and only if, for every sequence of numbers {r^^Li, there 
exists a subsequence {Tm^^L-^ such that the sequence of translates {g(t + Tmfc)}^=1 

converges uniformly on (—00,00). 

Theorem 3.2. Let a, b be strictly positive almost-periodic functions defined onM. Let 
Ka : [0,00) —> [0,00) be piecewise continuous nonnegative and satisfy the hypothesis 
of Theorem 2.2. Suppose the coefficients a and b satisfy 

M^b0aa < ma, (3.3) 
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where 

Mot = 
bof^K^e-o^ds' 

rria = b0 f™ Ka{s)e-(ao-t>0Ma)sds' 

Then (2.1) has a unique positive globally attracting almost-periodic solution N(t) in 
the sense that if P(t) is any other positive solution of (2.1), then 

lim [P(t) - N(t)] = 0. 
t—MX) 

Proof It follows from (3.3) that there exist two positive numbers ei > 0, 62 > 0 such 
that 

(Ma + eiyb0aa < ma - e^. (3.4) 

From Theorems 2.1 and 2.2, it follows that all solutions of (2.1) remain eventually 
bounded above by Ma + ei and below by ma — €2- By using the almost-periodicity 
of a(-) and &(•), it can be shown that there exists a solution, say N*(t), of (2.1) such 
that 

ma-e2< N*(t) <Ma + ei    for t G R. (3.5) 

A detailed proof of this is contained in Lemma 2 of Murakami [21]. Let {tm} be an 
arbitrary sequence such that 

tm > tn    for     m > n    and      lim tn = +00. 
n—>-oo 

We define x^ and x^ by 

x(»)(t) =N*(t + tn),        x^\t) = N*(t + tm). 

We note that x^n\t) and x^it) satisfy 

~x^m\t) = x^m\t) 
dt 

a(t + tn) - b(t + tn) I     Ka(s)x^n)(t - s)ds 
Jo 

flOO 

a(t + tm) - bit + tm) I    Ka(s)x{m)(t - s)d 
Jo 

We now let 

,(m) (t) = In [a;(m) (t)] ,        u^ = In [sW (t)' 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

and derive from (3.7)-(3.9) that 

dt 
u(m>(t)-u^>{t) Ml = jt   ln(x(m)(i))-ln(a;(n)W) 

o(t + *m) - o(* + *n)    -    6(t + tm) - b{t + tn) 
poo 

/       Ka(8)x^m\t - 8)d8 
Jo 

-b(t + tn)(J   Ka{s) x^m\t-s)-x{n)(t-s) ds 

= -b{t + tn)(J00Ka(s) x^{t-s)-xM(t-s) ds) - g^t^tv 

(3.10) 
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^1(^5 ^mj WiJ — a(t + tm) -a(t + tn) 

b(t + tm)-b(t + tn) 
poo 

/    Ka{s)x{m){t-s)ds. 
Jo 

(3.11) 

Let 

«;(<,*„,,*„) = u<m>(t)-u(n)(t). (3.12) 

Then, by the mean value theorem, 

x,-\t -S)- xV)(t -s) = e"
(m,('-s) - e»tB,(*-) r.(m)/' 

= e .0(t-S,£m,tn) -7/.(n)r ^mj(t-5)-^^(t-S 

— 6 ' ^(^fc       S, 6777,, tn), (3.13) 

where 0(£ - s, tm, tn) lies between i^^771^(t - 5) and u^(t-s). We have from (3.5) that 

0 < ma - 62 < ed{t-s'tm'tn) < Ma + 61    for t,seR. (3.14) 

It follows from (3.10), (3.12), and (3.13) that 

W(titm) tn) 

nOO 

:-&(* + *«) /    ira(s)ee(t-s'*'"'*")«;(i-s,fm)i„)rfs + ffi(t,iro,f„) 
Jo 

-b(t + tn)(J    K^e^-'^^dajw^tmytn) + gi(t,tm,tn) 

POO 

+ b(t + tn) /    Ka(s)t 
Jo 

,0(*-s,*m,in) W(t, tm, tn) - W(t - 5, tm, tn) ds 

= -&(* + tn) f    /     KaWeW-^^dsj W(t, tm, tn) + Q^t, tm, tn) 

nOO 

+ b(t + tn)        Kaisy^S'^'^sw'it-fctm^ds, (3.15) 
^0 
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with 0 < 0 = (3(t, s) < 1. Then 

d 
dt 

rW\J")trm tnj 

= -b(t + tn)(J     KaWeW-'^'^dsJwfatrnitn) + gi(t,tm,tn) 

J(t-8,tm,tn) gi(t- (3s,tm,tn) + 6(* + *n) /    sKa(s) 
Jo 

- b(t -pS + tn) /    iU^V(t~/3s-r'WnM* - /8* - r, tm, tn)dr 
Jo 

= -b(t + Q (^ Ka(8)ee^~'^'^<u\w(t,tm,tn) 

poo 

- b(t + tn) /     sK^e6^-8^^ 
Jo 

nOO 

x   b(t-l38 + tn) /     KaWeW-t'-^^wit-Ps-ritrnttrJdr 
Jo 

i   ^(^5 ^^-5 ^nj? 

ds 

(3.16) 

where 
/»oo 

0(*,^m,tn) = ^i(t,tm,tn) + 6(t + tn) /     sKa{s)e6{t-s^u)lg1 (t - (3s,tm,tn)ds 
Jo 

(3.17) 

We derive from (3.16) and (3.14) that 

Dt 
mMm^n)! ^ -6(t + tn)(ma -e2)|w(t,£m,tn)| 

+ b(t + tn)b0(Ma + e1)
2([    sKa(8)ds\\w(t,tmitn)\ 

where 

+ \9(t,tm,tn) 

\ti(t, tm, tn)\ = SUp \w(s, tm, tn)\. 
8<t 

(3.18) 

Since cra = f™ sKa(s)ds < +oo, we have from (3.17) and (3.11) that 

\g(t,tm,tn)\ < bi(t,tm,trl)|+60(MQ; + ei)o-a|^i(t,tm,tn)| 

< [1 + b0aa(Ma + ei)] sup[\a(s + tm) - a(s + tn)\ 

+ (Ma + Ci) \b(s + tm) - b(s + tn) |]  = G(t, tm, tn). 

Hence we obtain from (3.18) and (3.19) that 

£>+ F 
— \w(t,tm,tn)\ < - b(t + t^^rria - e2)\w(t,tm,tn)\ 

-(Ma+ei)26Va|iD(t,tm,tn)|l +G(t,tm,tn).     (3.20) 

(3.19) 



48 GOPALSAMY AND HE 

We can rewrite (3.20) in the form 

I     U J.      ±   \\   (ma-e2) f    b(r+tn)dr 

(ma-€2) f    b(r+tn)dr 
< e Jto 

Dt 

b0aa(Ma + ei)26(i + tn)\w(t, tm, tn)\ + G(t, tm, *„)], 

(3.21) 

where t0 > 0 is some constant.   Integrating (3.21) on [t0,t] and using the nonde- 
creasinging nature of G in t, we have 

H<,*m,tn)l < H*o.*m,<n)le '" 

+  (\ -('n--e»)/>(*-+*-)'"-[&Va(Ma + e1)
26(a + <n)|t5(*,«m,*n)|]d* 

< K*o,*m,tn)|+G(t,«„,*n,)  ^ e'^"-^ H'^ds 

(/ ^"^^^ 6(''+tm)d^0^(Ma + 61)
26(S + tn)ds) |«;(t, im, tn)| + 

< |lw(*o,tm.*n)| + ' 

+ 
60(ma - 62) 

b0aa(Ma+€1)
2 

^V^j ^m? tn) 

(ma - 62) 
l^^^m^n)!, (3.22) 

which leads to 

\w(t,tm,tn)\ < \w(t0,tm,tn)\ + 
b0(ma -62) 

6Va(Ma + e1)
2 

^{t) ^mi In) 

(ma - 62) 

From (3.4) and (3.23) we derive that 

\w(t,tm,tn)\ < \w(t,tm;tn)\ 

< 

(t,tm,tn)\    foTt>t0. (3.23) 

ma - €2 

(ma - €2) - b0aa(Ma + ei)2 

^o, Wn)| + T-, rG(t,tm,tnj\. (3.24) 

Thus 

|ln[^(t + tm)]-ln[^ + tn)]| < ma -62 

(ma - €2) - b0aa(Ma + ei)2 

Wyto, rm, tn)\ + —-z ^(jyt) tm, tn) 
b0(ma-e2) 

(3.25) 
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The sequence {x(t+tm)} is uniformly bounded and equicontinuous, and hence on each 
compact subinterval of [t0, oo) there exists a subsequence which converges uniformly in 
t belonging to the compact subinterval. If necessary restricting our further analysis to 
such a subsequence {tn}, we can conclude that Iw^o^m^n)! = W^o + ^m)— x(t0+in)\ 
converges to zero as im,in —> oo. By the almost-periodicity of a(t) and b(t), it will 
follow that G(t,tm,fn) converges to zero as im,tn —> oo. Thus we can conclude that 
a subsequence of {x(t + tm)} is uniformly convergent on [t0,oo). It follows that x(t) 
and hence N* (t) is asymptotically almost-periodic. One can proceed in the standard 
manner (see Hale [18], Yoshizawa [27]) to show that the almost-periodic part of N*(i) 
is a solution of (2.1). Thus the existence of an almost-periodic solution of (2.1) follows. 
To prove the global attractivity of this almost-periodic solution, it is sufficient to show 
that (3.3) implies (3.1). For instance, we define ai and 0*2 as 

(b0)2 M2 

Oil = l—CJaMo^ ai = 6Va—9L. 
Oo rrta 

We have immediately from (3.3) that 0^2 < 1. However, 

<*i = (^Q)2     M      ™>cx     = b0ma 

Oi2        b0   
aa   ab°<jaM

2      b0Ma 

b0 b° /« Ka(8)e-(-o-boMa)sd8 ao J0    
A« We 

_ a0       /0
ooi^a(s)e"aOMg 

a0 j™ Ka(s)e-(ao-b0Ma)sds 
<1 

which implies ai < ot^ < 1 and hence (3.3) implies (3.1). The uniqueness and the 
global attractivity of the almost-periodic solution follow from Theorem 3.1. The proof 
is complete. 

Note: On p. 43 of [15], it is stated that the arguments of [15] are applicable to the 
almost-periodic case. We have obtained in the above theorem, sufficient conditions 
which are better than those obtainable with the techniques of [15]. It can be found from 
[15] that the delay distributed over [0,00) has been reduced to that over one period by 
means of a hypothesis on the delay kernel. Such a reduction in the case of an almost- 
periodic system is not possible. While techniques of [15] are applicable for delays 
distributed over finite intervals, we need a new way of handling delays distributed 
over unbounded intervals. It is in this sense that Theorem 3.1 is significantly different 
from the results of [15]. 

4.  Solutions with and without level-crossings 

We have shown that under certain sufficient conditions, the equation (2.1) has a unique 
positive almost-periodic solution. Once we know the existence and attractivity of 
the almost-periodic solution, it is of interest to know the nature of attraction of the 
almost-periodic solution, that is, whether convergence of solutions of (2.1) to the 
almost-periodic solution is monotone or oscillatory. The following definition is derived 
from Gopalsamy et al. [15]. 
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Definition 4.1. Let y(t) be any solution of (2.1). We say that positive solutions of 
(2.1) have level-crossings about y(t) if for any solution N(t) of (2.1), there exists at 
least one t* E (—oo, oo) such that 

N(t*)-y(t*) = Q. 

If no such solutions N(t) exist, then the system (2.1) is said to have solutions with no 
level-crossings about y(i). 

In this section, sufficient conditions for all solutions of (2.1) and (2.2) to have one 
or more level-crossings about the almost-periodic solution are obtained first. Then we 
derive sufficient conditions for the existence of a positive solution without any level- 
crossings about the almost-periodic solution. In the special case of (2.1) with constant 
coefficients, these conditions coincide with the sufficient and necessary conditions for 
the equation 

^^ = N(t) \a - b r K{s)N{t - s)ds 
dt |_ Jo 

to have level-crossings about its positive equilibrium a/b (for details, see Gopalsamy 
and Lalli [16]). 

Theorem 4.2. Suppose the hypotheses of Theorem 3.2 hold and let y(t) denote the 
unique almost-periodic solution of (2.1). Furthermore assume that Ka : [0, oo) —> 
[0, oo) is piecewise continuous and the transcendental equation 

/•OO 

i^A) = A + b0ma /     Ka(s)e-Xsds = 0 (4.1) 
Jo 

has no real roots. If N(t) denotes any positive solution of (2.1) distinct from y, then 
N has level-crossings about y in the sense that 

N(t*) - y(t*) = 0       for some t* E (-oo, oo). 

Proof Since any root of ^(A) = 0 has to be negative, we can consider (4.1) with A 
replaced by —A so that F(X) = 0 leads to 

poo 

b0ma /     Ka(s)eXsds = A       for A G (0, oo). 
Jo 

If b0ma /Q00
 Ka(s)eXoSds — X0 < 0 for some A0, then we can see from 

b0ma /     Ka(s)eXsds — A > b0ma /     Ka(s)—-—ds — X 

poo 

■ /    KCi(s)Xs2ds-l 
Jo 2 

oo        as A —>■ oo 

b0ma I     Ka(s)eXsds = A. 

that there exists a A > A0 such that 
nOO 

:   /        Ka(S)i 
Jo 

Thus if i^A) = 0 has no real roots, then 
nOO 

b0ma /    Ka(s)eXsds > X       for A G (0, oo), 
Jo 
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that is, 
POO As 

F(X) = b0ma /    Ka{s)—ds > 1       for A E (0,oo). 

Let P and Q denote subsets of R+ defined by 

P = {A G M+ |F(A) = 00},        Q = {A e M+ |F(A) < 00}. 

For A G P, it is true that there exist positive numbers e, fi with 0 < e < mc and fi > 0 
such that 

(4.2) 60(ma - e) 

l + /x 

/'OO AS 

y  Ka(s)—ds > 1. 

Suppose A G Q, and let {en} and {/xn} be two sequences of positive numbers such 
that en —► 0 and /xn -^ 0 as n -»- 00, and en < ma. An application of Fatou's Lemma 
leads to 

, i _ 1 in.-.    —  f- „  1       1 .    .   P 

lim inf - 
n—>oo 

.M^la ~en) f"     en)   f" Ka(s)^ds > b0ma f" Ka(s)^ds > 1. 
l + A^n      Jo A Jo A 

Hence there exist e and // with 0 < e < ma and 0 < /x such that (4.2) holds. Now we 
suppose that there exists a solution of (2.1) and (2.2), say x(t), without level-crossings 
about the almost-periodic solution y(t) and show that this leads to a contradiction. 
Without loss of generality, we assume that 

x(t) > y(t)        for t G (-00, +00). 

Define u(t), v(t), and w(i) as 

u(t) = hi[x(t)],        v(t) = ln[y(t)], w(t) = u(t) - v(t). 

Then w(t) is governed by 

(4.3) 

dt dV 

s) eu(t-s) _ ev(t-s) 
poo 

= -b(t) /    Ka{ 
Jo 

poo 

= -b(t) /     KaWe**-*) 
Jo 
nOO 

< -b0 /    Ka(s)y(t - s)w(t - s)ds, 
Jo 

ds 

eu(t-s)-v(t-s) _ 2 ds (4.4) 

(4.5) 

on using (4.3).  Since y(t) is the almost-periodic solution of (2.1), by Theorems 2.1 
and 2.2 we know that there exist S > 0 and ti > 0 such that 

ma-e< y(t) < Ma + 6       ioit> h. (4.6) 

Using (2.4), we can choose (3 > 7/ > 0 such that J^ Ka(s)ds > 0.   From (4.5) and 

(4.6), 

dw(t) 

dt 
+ b0(ma -e)       Ka(s)w(t - s)ds < 0       for t > f3 + h. (4. 7) 
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We have from (4.3) that w(t) > 0 for t G (-oo, oo). Then it is easy to see from (4.7) 
that there exists a ^ > h such that w(t) is nonincreasing for t>t2, and consequently 

dw(t) 
dt 

+ Bw(t-ri) <0        for *>*2, (4.8) 

in which B = b0(ma - e) f^ Ka{s)ds > 0. Integrating both sides of (4.8) on [t - rj/2, t] 
(t>t3>t2+rj), 

h- w(t)-w(t-^) + B w(s-r])ds<0       foit> 
* Jt—n/2 

As a consequence of (4.9), 

B w(s- rj)ds < w(t - j-)       for t > t3. 
Jt-'n/2 2 

By the eventual nonincreasing nature of w, we derive from (4.10) that 

(4.9) 

(4.10) 

or equivalently 

-(*-.) <(^H*-|). 
Similarly, we can derive that 

U,(*"2)-(^)tw(*)'      for^i3' 

which together with (4.11) leads to 

/ 2 \2 

w(t — rj) < ( —— ] w(t)        for all large t. 

Now we define a set 

A = JA > 0 : ^^ + Xw(t) < 0,    for large *}. (4.14) 

Clearly A = 0 6 A and A is a subinterval of [0, oo). We shall first show that A is 
bounded above. In fact, integrating both sides of (4.4) on [t — r),t] (t > ts), we derive 
that 

(4.11) 

(4.12) 

(4.13) 

w(t) - w(t - rj) + /    b(r) j" Ka(s) \eu 

Jt-T) JO L 

and this implies 

(r-s) _ ev(r-s) dsdr = 0, 

nt nOO 

/     b(r)        Ka(s) 
Jt-rj JO 

eu(r-s) _ ev(r-s) dsdr < w(t — rj), 

which can be rewritten as 

mLw)l™KM eu{r-s) _ ev(r-s) dsdr<w{t-rj). (4.15) 
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It is found from (4.3) and (4.4) that eu^ - ev^ = x(t) - y(t) is nonincreasing, and 
therefore we have from (4.15) that 

h       C00 r i 
b{t)V^ /    Ka(s) [e^-^ - e^-')j ds < w(t - rj)> 

or equivalently (using (4.13)) 

poo 1 LOI /)01/2\2 

b{t) /    tfa(s) eu<*-> -e"*'-* ds < T-w{t-rj) < T-AJT) «»(*),  (4.16) 
Jo '- ^ o0 rj 0o r] \r>r)/ 

eventually. Now, from (4.4) and (4.16), 

dw{t) 
dt 

+ 
poo 

b(t) /    Ka(s 
Jo 

0u(t-s) _ pv(t-s) ds 

< 
dw(t)     b0lf 2 V    ,.        . ^ .. _. 
—^ + — -   —    ™(t)       for some ^ (4'17) dt        b0rj\BrjJ 

which implies that 

^l/_2_\2 

b0r)\Br)J 

is an upper bound of the set A.   Thus A is bounded.   As a consequence, for the /x 
chosen in (4.2) there must exist a A G A such that A(l + /z) ^ A, that is, 

0 <      ,   ^ + A(l + ^^W        for large t' dt 
(4.18) 

Since A G A, there exists a £4 > £3 such that 

dw(t) 
dt 

+ \w(t) < 0        for t > U 

and hence, for t > £4, t — s > £4, 

?/;(£ — s) = 
w(£ — 5) 

w(t) 
w(t) 

w(t) exp ( — In 

= it; (t) exp ( —  / 

> eXsw{t). 

wit) 
w(t — s) 
1   w'(s) 

w(s) 
ds 

(4.19) 
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Prom (4.18) and (4.19) we derive that for t>t^ 

at 
poo 

= -b(t) /    Ka(s) \eu^-^ - ev^-^\ds + A(l + ii.)w(t) 

< -b0 /        Ka(s)y(t - s)w(t - s)ds + A(l + fJ,)w(t) 
Jo 

< -bo(ma - e) /        Ka(s)eXsw(t)ds + A(l + fi)w(t) 
Jo 

-bo(ma -e) Ka(s)eXsds + A(l + /i) w(t), (4.20) 
Jo J 

which leads to 

bo(ma - e) [    4 Ka(s)eXsds < A(l + /x). (4.21) 
Jo 

We let t —> oo in (4.21) and obtain 
rOO 

b0ma I     Ka(s)eXsds < A(l + fji) 
Jo 

which contradicts (4.2). Therefore the result follows. 

We shall now proceed to obtain a result on the existence of a solution of (2.1) with 
no level-crossing about the almost-periodic solution. Our result is established by an 
application of the Schauder-Tychonoff fixed point theorem. 

Theorem 4.3. Suppose that equation (2.1) with (2.2) has an almost-periodic solution, 
say y(t). If there exists a j3 > 0 such that 

nOO 

b0Ma /    K^e^dsKp, (4.22) 

then there exists a positive solution n*(t) of (2.1) on (-00,00) such that 

\n*(t) - y(t)\ > 0       forte (-00,00). 

Proof. We first note that if N(t) is any solution of (2.1) and (2.2) and if y(i) is the 
positive almost-periodic solution of (2.1), then we can define n, Y,x as 

n(t) = ln[N(t)], Y(t) = hi[y(t)], x(t) = n(t) - Y(t). 

Note that x(t) is governed by 

*& = -b(t) 1°° Ka(s)y(t - s) [e*^ - l] ds. (4.23) 

Thus the question of looking for a solution of (2.1) without level-crossings about y(t) 
is equivalent to that of looking for a solution of (4.23) without zero-crossing. Our 
proof is based on an application of the well known Schauder-Tychonoff fixed point 
theorem. Prom (4.22), there exists a 6 > 0 small enough such that 

poo 

b0(Ma + 8)        Ka(s)e0sds < p. 
Jo 
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Using the almost-periodicity of a, 6, and y and following the arguments in the proof 
of Lemma 2 in Murakami [21], we can show from Theorem 2.1 that for 6 > 0, 

y(t) <Ma + 6       for t G R. 

Let C(R) denote the set of all continuous bounded functions on (-00,00). Define a 
set S as follows: 

S= < x e C(R) 

x is nondecreasing on [0,00) 

-(1-e)<£(*)< -{l-6)e-P\ 

*(*) = -(!-€), 

x{t)(3 < b0(Ma + 6) J" Ka(s) [e^-^ - 1 

for t > 0, 

for t < 0, 

ds,    for t > 0 

} , (4.24) 

in which e > 0 is a fixed number such that 1 — e > 0 and Ma is defined by (2.5). 
We first show that the set S is nonempty. This will follow if we can verify that the 
function z(t) defined by 

-(1-e), t<0 

-(1- e)e-^,        t>0 
z(t)=^    ,.     ^-pt 

belongs to the set S. It is sufficient to \ rify the last requirement of (4.24) about z. 
In fact, 

z(t-s) _ -^ 
poo 

b0(Ma + 6) /    Ka(s)\e 
Jo L 

= b0(Ma + 6){   /   Ka(s) 

ds 

0z(t-s) _ 1 ds + 

= b0(Ma + 6) {I!Ka (s) 
e_(l_e)e-««-.) _ 1 

/OO 

Ka(s 0z(t-s) _ 1 

ds+ /     Ka(s) 

ds 

e-(l-e) _ ! dsy 

Using the fact that e x — 1 > —x for x > 0, we derive 

/"OO 

60(Ma + <5) /     #„(«) [e^-^ - ij ds 

>b°(Ma + 8)S.[ Ka(s)[-(1 - e)e-W-s^ds + H Ka(s)[-(1 - e)]ds| 

= -60(MQ +S)(l-e)(f Ka(s)e-W-S)ds + H K^ds^ 
/•OO 

> -60(Ma + «)(1 - e) /    Ka(s)e-/3^-s)d5 

/»oo 

= -(1 - e)e-lStb0(Ma + 6)        Ka(s)e0sds 
Jo 

> -(1 - e)/3e-^ = /3z(i)       t > 0, 
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and hence z(t) € S. Therefore S is nonempty. Next we define a mapping F :   S 
C(R) by 

r -(i-c), 

^(»)(*) = < 
— (1 — e) exp - fm 

,   Jo 
Opoo                                   ex(s-r) _ ^       v 

Ka(r)y(s-r) — dr)ds 
o                                x(s) J 

t<0, 

,    *>0, 

(4.25) 

in which y{$) is the almost-periodic solution of (2.1). We now proceed to verify that 
FS C 5. From the definition (4.25), we have 

jF(a;)(*) = -(l-e)        for t < 0. 

Since x £ S and a; < 0, by the positivity of the almost-periodic solution y(i), 

ex(s-r) _ i 
J b(s)^J^Ka(r)y(s-r)- 

<*) 
dr}ds> 0; 

hence 

ds, 

F(x)(t)>-(l-e)        fort>0. 

It follows from x G S that 
poo r 

»(*)/? < &0(Ma + <S) /    ii:a(s) e*^"*' - 
Jo 

which implies 

b0(Ma + 8)        KJs)- T^ds <0       for t > 0. 
Jo £(*) 

It is found from (4.26) that 

pt poo ex(s-r) _ 2 
/   6(5) /     Ka(r)y(s — r) r^ duds 

Jo Jo x(s) 
nZ      POO 

<b°(Ma + 6) /    /    Ka(r) 
Jo Jo 

<  /   pds = pt       fort>0 

x(s) 
drds 

I 
which implies 

(1 — e) exp "/ w^fi0*"^8-^- 
r(s—r)   1 

x(s) 
dr ) ds 

<-(l-e)e-/3t    fort>0, 

and therefore 
-(1 - e) < F{x)(t) < -(1 - e)e-/3£        for t > 0. 

To show FS C S, we still need to show that 

(4.26) 

(4.27) 

poo 
(3F(x)(t) < b0(Ma + 6)        [e^X*-') _ i\ds   for t > 0. (4.28) 
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By the definition of F and the fact ex — 1 > x for x < 0, 

poo 

b0{Ma + 8) /    Xa(s)[eF^-s) - l]ds 
Jo 

pOO 

> b0(Ma + 6)        Ka(s)F(x)(t - s)ds 
Jo 

Ka(s)F(x)(t - s)ds + /    Ka(s)F(x)(t - s)d, 

= b0(Ma + 6){J Ka(s) -(1-e) 
/        /-i-s /.oo ex(r-q) _ j 

*«p(-yo      Kr)^    ^(«)lf(r-g)-^y 

+ y00^(s)[-(l-e)]dS} 

Ka(s)ds 

-(l-e)b0(Ma + 6) [ Ka(s) 
Jo 

57 

-dqdr 

x exp 
/»£-$ poo ex{r-q) _ 2 

/       6(r) /     Ka(q)y(r-q) — dqdr 
Jo Jo x{r) 

ds. 

(4.29) 

We know that F{x){t) < -(1 - e)e-^ and hence -(1 - e) > F(^)(t)e/5t. Noting that 
F(a;)(t) is nondecreasing, one can see that 

/oo 

/OO 

-(1 - e)Ka{s)ds 

/OO 

F(;r)(5)e/3sii'a(5)ds 

/CO 

(4.30) 

And for the last term in (4.29), we derive that 

{l-6)b0(Ma+8) [ Ka(s) 
Jo 

>x{r-q) _ ^ ni-s POO ex{r-q) _ ^ 

exp - /       b(r) /     Ka(q)y(r-q) — dqdr 
.   Jo Jo x{r) 

ds 
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= -{l-e)b0{MCi+6) [ Ka(s) 
Jo 

xexpj-^ b{r)^    Ka(q)y(r-q)e 

+ 

x(r) 
Mr-q) __ I 

dqdr 

/     b[r) Ka(q)y(r-q) — dqdAds 
Jt-s        Jo x(r) J 

= b0(Ma + 6) f Ka(s)F(x)(t) 
Jo 

x exp 
■   ft foo ex{r-q) _ -j "I 

/     b(r) Ka(q)y(r-q)- j^-dqdr 
Jt-s        Jo x(r) 

ds. 

From (4.26), 

ft foo ex{r-q) _ -i 

/     6(r)/     K^yir - q)- j-^dqdr 
Jt-s Jo ' x(r) 

ex(r-q) _ -^ 

dqdr 

(4.31) 

nt        poo 

<b°{Ma+6) /     Ka{q) 
Jt-s Jo x{r) 

< I     f3dr = (3s. (4.32) 
Jt—s 

Using (4.32), (4.31) leads to (since F(x)(t) < 0) 

-(l-e)b0(Ma + 6) f Ka(s) 
Jo 

ft-s noo ex(r-q) _ ^ 

xexp - /       b(r) /     Ka(q)y(r - q) ^ dqdr ds 
.   Jo Jo x(r) 

>b0(Ma + 6) f KOL{s)F{x){t)e^ds 
Jo 

= F(x)(t)b0(Ma + 6) [ Ka(8)e^d8. (4.33) 
Jo 

We can now conclude from (4.29), (4.30), and (4.33) that 

poo 

b0(Ma + 6)        Ka(s)[e^W(«-«) - i]ds 
Jo 

/oo 

Ka{s)e^ds 

+ b0(Ma + 6)F(x)(t) f Ka(s)e0sds 
Jo 

poo 

= b0(Ma + S)F(x)(t) /    Ka(s)efiad8 > 0F(x)(t). 
Jo 

That is, (4.28) follows, and consequently we have shown that FS C 5. Then, similar 
to the arguments in the proof of Theorem 4.1 in Gopalsamy and Lalli [16], one can 
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show that FS is also equicontinuous. Based on the above analysis and the Schauder- 
Tychonoff fixed point theorem, we conclude that there exists x* G S such that 

F(x'm=x'(t). 

Since x* satisfies 

!**<*)=i(w(')> 
^x*(t-r) _ "L 

dr 

dr 

(4.34) 

= F{x*)(t) [-6(t) jf00 lira(r)|/(t - r)      ^^ 
/•oo ea;*(t-r) _ i 

= x*(t) \-b(t) ^    Jira(r)y(* - r)—^— 

poo 

= -b(t) /     Ka(s)y(t - s) [c*^*-) - l]cfa, 

it follows that x*(i) is a solution of (4.23). Obviously, x*(i) < 0, and hence (2.1) has 
a solution with no level-crossings about the almost-periodic solution of (2.1). This 
completes the proof. 

5. Two examples 

In this section, we illustrate the calculation of the asymptotic upper and lower esti- 
mates Ma and ma for the two kernels 

K^(s) = ae-as, 

(i) Corresponding to Ka   in (5.1), we have 

Mi1) = $ a" fa + a" 
bo f™K£\s)ve-a°sds      b0 f™ ae-ase-a°sds      b0 \    a 

1 

(5.1) 

(5.2) 

,  (5.3) 

(I)        ao 

b0 J^Kil\s)e-(-o-boM^)sds 

a0a + a0- tfM^ 
= £!»£Lt*Ji_*£\. (5.4) 

b"     a      {        ab0 J v     ' 6° a 

The requirement that mi,' > 0 is satisfied when a > b0a0/b0. Next, corresponding to 
Ki   in (5.2), we have 

1 a" 1 
M^ = ^ 

bo /* Ki2) (S)e-»°°ds      b0 J™ aZse-<*°e-°°°ds' 
(5.5) 

in which 

Jo 
se-<xse-a sds 

(a + a°)2 Uo 
ye vdy 

a 
(a + a0)2' 
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and hence 

m(2) = ££ I  (c7\ 

By (5.6), 
poo poo 

Jo Jo 

= ( a    m)2 f" ye~Vdy = ( —m)2-    (5-8) ya + a0-b°M¥)J   Jo Ka + a0-b0M^)J 

It follows from (5.7), (5.8), and (5.6) that 

,(2) 
(2) \  2 r,      rr*A-n W  „0     / „, j_ „0 \   2 

x_i _ a0 /a + do - FM& ' y _ a0 \OL + Qp      W au / a + a" \  y 
m"' ~ 6° V a )   ~ b0 I    a a b0 \     a    ) J '  ' ' 

It is easy to see that we can choose a > 0 satisfying a2 > a0b0(a + a0)/b0 such that 
the integrals in (5.8) exist. Furthermore for such a, one can see that the assumption 
of Theorem 3.1 holds for some e0 > 0. 

We conclude with the following remarks. It is our opinion that we have obtained, 
for the first time, a uniform lower bound (independent of initial values) for the in- 
tegrodifferential system, and this guarantees uniform persistence. Furthermore, our 
analysis of (2.1) includes autonomous, periodic, and almost-periodic parameters. For 
biological and ecological significance of the variability in the coefficients 'a' and '6', 
we refer to the discussion in [14]. 

6. Numerical simulations 

A few computer simulations of a system of illustrative examples are given below. Our 
simulations are based on the technique (due to Fargue; for details, see Gopalsamy 
[8]) of converting the scalar integrodifferential equations into a system of ordinary 
differential equations and then numerically solving them using Maple and its built in 
graphical output routine. We first consider 

^^ = N(t) [l -  f^ ae-asN{t - *)<&]. (6.1) 

This integrodifferential equation satisfies the assumptions of Theorem 3.1 and can be 
converted into a system of ordinary differential equations by the introduction of an 
auxiliary variable [/, where 

/»oo pt 

U(t) = /    ae-asN(t - s)ds = a e~a{t-s)N(s)ds. 
JO J-oo 

The scalar integrodifferential equation (6.1) becomes 

dN(t) 
dt 

dU(t) 
dt 

= Nm-U(t)], 

= -a[U(t) - N(t)}. 

(6.2) 



INTEGRODIFFERENTIAL EQUATION 61 

The convergence of solutions of (6.1) corresponding to a = 1.189 and four initial values 
are displayed in Figure 2(a). 

FIGURE 2(a). Graphs of the solution N(t) of (6.3) with a = 1.189 and 
the initial values (JV(0),*7(0)) = (0.5,0.35), (0.8,0.7), (1.2,1.2), (1.8,1.7). 

Our next example is the periodic integrodifferential equation 

dN(t) 
dt 

= N(t) 
/»oo 

(2 + sin(t)) - (2 - cos(t)) /    ae-asN(t - s)ds 
Jo 

(6.3) 

We let again 
/•OO 

U(t)= /    ae-asN(t-s)ds 
Jo 

and obtain the nonautonomous ordinary differential system 

dN(t) 
dt 

dU(t) 
dt 

= N(t)[(2 + sm(t)) - (2 - cos(t))U(t)], 

-a[U(t) - N(t)}. 
(6.4) 

The convergence of solutions of (6.3) corresponding to o; = 12.69 and four initial values 
are displayed in Figure 2(b). 

The following integrodifferential equation has periodic coefficients with rationally 
independent periods: 

^^- = N(t)   (2 + sin(t)) - (2 - cos(7rt)) /    ae-asN{t - s)ds\ .        (6.5) 
dt l Jo 1 

We use again the auxiliary variable 
rOO 

U{t) = /    ae-asN(t - s)ds, 
Jo 
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2.5 

1.5 

O.E 

FIGURE 2(b). Graphs of the solution N(t) of (6.5) with a = 12.69 and 
the initial values (JV(0), [7(0)) = (0.5,0.35), (0.8,0.7), (2.2,1.2), (2.8,1.7). 

and convert (6.5) into the almost-periodic ordinary differential system 

dN(t) 
dt 

dU(t) 
dt 

N{t)[{2 + sin(t)) - (2 - cos(7r*))[7(t)], 

= -a[U{t)-N{t)]. 
(6.6) 

The convergence of the almost-periodic solutions of (6.5) with a = 12.69 and four 
initial values are displayed in Figure 2(c). 

2.5 

1.5 

0.5 

FIGURE 2(C). Graphs of the solution N(t) of (6.7) with a = 12.69 and 
the initial values (A^(0), U(0)) = (0.5,0.35), (0.8,0.7), (2.2,1.2), (2.8,1.7). 
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The first of the second category of examples is the integrodifferential equation with 
constant coefficients 

dN(t) 

dt 
= N(t) 

poo 

1- /    a2se-asN(t - s)ds 
Jo 

(6.7) 

We introduce the auxiliary variables U and V by 

poo ^ 

U{t) = /     a2se-asN(t - s)ds 
Jo 

poo 

V(t) = /    ae-asN(t - s)ds 
Jo ' 

a = 2. 

The integrodifferential equation leads to the coupled system of autonomous ordinary 
differential equations: 

dN(t) 
dt 

dU{t) 
dt 

dV(t) 
dt 

= N(t){l-U(t)}, 

= a[V(t)-U(t)}, 

= a[N(t) - V(t)}. 

A set of solutions of (6.7) are illustrated in Figure 3(a). 

(6.8) 

1.4 

1.2 

0.6 

10       12       14 

FIGURE 3(a). Graphs of the solution N(t) of (6.10) with a = 2 and 
the initial values (iV(0), C/(0), V(0)) = (0.5,0.35,0.35), (0.8,0.7,0.7), 
(1.2,1.2,1.2), (1.5,1.7,1.7). 

The periodic integrodifferential equation 

dN(t) 
dt 

N(t) (2 + sin(t)) - (2 - cosCO) / 
Jo 

a2se-asN(t - s)ds (6.9) 
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is converted by the introduction of the auxiliary variables 

poo x 

U{t) = /    a2se-asN{t - s)ds 
Jo 

V(t) = /    ae-asN(t - s)ds 
Jo 

into a system of periodic ordinary differential equations, 

dN(t) 

a = 15.6 

dt 
dU(t) 

dt 
dV(t) 

dt 

= N(t)[(2 + sin(i)) - (2 - cos(t))U(t)}, 

= a[V(t)-U(t)]> 

= a[N(t)-V(t)). 

(6.10) 

Solutions of (6.9) corresponding to four different initial values are displayed in Fig- 
ure 3(b). 

2.5 

1.5 

0.^ 
10       12       14 

FIGURE/ 3(b). Graphs of the solution N(t) of (6.12) with a = 15.6 
and the initial values (iV(0), 17(0), ^(0)) = (0.5,0.35,0.35), (1.8,0.7,0.7), 
(2.2,1.2,1.2), (2.5,1.7,1.7). 

Our final example is the almost-periodic integrodifferential equation 

dN(t) 
dt = m 

nOO 

(2 + sin(t)) - (2 - cos(7rt)) /    a2se-asN(t - s)ds 
Jo 

(6.11) 

As before we let 
nOO 

U(t) = /     a2se-asN(t - s)ds 
Jo 

poo 
V(t) = /     ae-asN(t - s)ds 

Jo ' 

> , a = 15.6 
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and obtain the system 

dN(t) 
dt 

dUjt) 
dt 

dV(t) 
dt 

= N{t)[{2 + sin(i)) - (2 - cos(>Kt))U{t% 

= a[V{t)-U{t)l 

= a[N{t)-V{t)]. 

(6.12) 

Solutions of (6.11) are displayed in Figure 3(c). 

2.5 

1.5 

0.5 

FIGURE 3(C). Graphs of the solution N(t) of (6.14) with a = 15.6 
and the initial values (#(0), 17(0), ^(0)) = (0.5,0.35,0.35), (1.8,0.7,0.7), 
(2.2,1.2,1.2), (2.5,1.7,1.7). 
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