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A GENERAL TYPE OF WEAK TRANSFOPLM 

Anthippi Poulkou 

ABSTRACT. The existence of Fourier-type integrals of the form 

h{a,x)e-ae^da f J — c 

as weak functions in the sense of Lighthill [9] and Jones [5] is established, when 
0: R —>• E is an infinitely differentiable function with everywhere non-vanishing 
first-order derivative, and the kernel function h satisfies certain general condi- 
tions. Properties concerning the derivatives and the weak limits of the above 
weak functions are also obtained. 

1. Introduction and statements of results 

In mathematical physics, especially diffraction of radio waves, microwave problems, 
and optics, a large number of problems deal with the calculation of integrals of the 
type 

//. 
j(x,y)eikf(x^dydx (1.1) 

s 

where j and / are real functions and k is real (see, for example, [2, 7]). The integrals of 
the form (1.1) and also integral transforms, such as Hankel, Fourier, Laplace, Stieltjes, 
and Riemann-Liouville fractional integral transforms, can be viewed as 

f Jo 
g(x)k(a,x)dx, (1.2) 

where g and the kernel k are locally integrable functions on (0, oo) and a is a positive 
parameter. To calculate (1.2), we often use asymptotic techniques [3, 6], provided that, 
of course, the integral (1.2) exists in some ordinary sense. If the previous integral 
cannot be defined according to the classical theory of convergence, then it may be 
regarded as an integral transform of a distribution (generalized function); see [4] or 
[8]. Also, the consideration of (1.2) in a generalized sense makes the techniques which 
give asymptotic expansions of (1.2) as a —> +oo widely applicable. Mainly, there are 
two ways to extend the classical integral transforms to distributions. 

The first one is used, for example, by Rudin [11], for the Fourier transform of 
tempered distributions and the second by L. Schwartz [12, p. 217], for the generalized 
Laplace transform. 

In [4], Jones has given a detailed study of the asymptotic behaviour of (1.2) as 
a —> +oo, defining it as a generalized function (in the terminology of Lighthill [9] 

2 
and Jones [5]) when the kernel k is an oscillatory function, such as eiax and g is a 
generalized function. The presence of a generalized function in the integrand not only 
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increases the range of validity of the analysis, but also simplifies the proofs in some 
aspects. 

In an earlier paper [10], we have examined integrals of the type (1.2), where the 
kernel function k belongs to a class wider than the one considered by Jones [4]. We 
have also defined (1.2) as weak functions, according to [5], so that the class of functions 
represented by (1.2) is larger than that of Jones' [4]. Another type of weak functions 
defined in [10] are integrals of the form 

J — c 

h(a,x)e-iaxda (1.3) 

when the kernel h belongs to a class 

H = U{H(N,c,d) :iVGR, 0 < c < 1, 0<d<l} (1.4) 

where H(N, c, d) consists of all the infinitely differentiable functions, h: R x M —> M. 
with the property that for each r, s = 0,1,2, • • • and each a < b, there exists a constant 
Cr,s,a,6 such that 

Qr+s 
-h{a,x) 

dxrdas < C^s^bi1^ M) 
N—cs+dr 

for a £ M, x £ [a, b] (see Definition 3.1). 
The theory of [10] is not sufficiently c< nprehensive to embrace integrals of a more 

general nature, namely integrals of the t; 3e 

/oo 

h(a,x)e-ia$^da (1.5) 
-OO 

where 9 is a smooth monotonic function and the kernel h belongs to the same class 
H as in [10], primarily because it rests so heavily upon the class H. Thus, a new 
definition has to be introduced. This involves a completely different approach from 
that of [10] and is carried out in this article. Of course, instead of (1.5) we can consider 
integrals by transforming to the inverse function x(9) of 6(x), namely integrals of the 
form 

/ 
j(a,e)e-ia6 da. 

But some caution is necessary, because the mapping may not be bounded and the 
range may be different from the domain. 

The present paper deals with a problem suggested to us by Professor D. S. Jones. 
Its aim is to define integrals of the type (1.5) as weak functions and study some 
properties of them when 6 is an infinitely differentiable function such that 6'{x) ^ 0, 
for x £ R, and the kernel h belongs to a class H as in (1.4). Nevertheless, the class H 
of kernel functions is wide and includes functions such as e^1+a ^ or y(x(l + a2)v) 
with y a good function (see Remark 3.2). In fact, we prove 

Theorem 1. Let h G H, y a good function such that y(0) = 1, and 6: R —> R an 
infinitely differentiable function such that 6'{x) ^ 0 for x G R. Then for x G R, the 
weak limit 

/oo 

y{ea)h{a,x)e-iaeW da 
-OO 
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exists.  This is denoted by 
/oo 

h(a,x)e-ia^x'>da. 
-OO 

Our analysis is carried out in the following way. At first we examine the existence 
of the lim F(e) where 

/oo poo 

<p(x)        y(ea)h(a,x)e-iae^dadx (1.6) 
-oo J — OO 

when y, /i, and 9 are as in Theorem 1, and ip is a fine function which vanishes outside 
[a, 6], Since the inner integral in (1.6) is bounded by 

/oo 

lyMKl + laQ^da, 
-oo 

we have that, so long as N < — 1, Ffe) is uniformly convergent on [—p,p], for every 
p > 0. It is desirable that this uniform convergence should bear no restriction on iV 
and consequently on the kernel function h. For this purpose we introduce a suitable 
first-order differential operator M on the space of smooth functions (see Definition 
3.4). Then the formula of the adjoint K of M is given (see Definition 3.5) and we 
show that the convergence of F(e) depends on the limit behaviour as e —> 0 of the 
integral 

/oo     poo 

/     K{<p(x)y(ea)h(a,x)}e-iae xUadx (1.7) 
-oo J—oo 

(see Proposition 3.6). Next, we prove that K can be replaced by any term of a 
sequence (Pv) of suitable operators, also defined on the space of smooth functions (see 
Proposition 3.13). The advantage of this fact is that, in this way, the integral (1.7) is 
split up into a finite number of integrals (see Definition 3.11 and Theorems 3.8 and 
3.10) with simpler convergence properties. Now we are in a position to establish the 
convergence of the integral F(e) (see Theorem 4.1) and therefore give our main result. 

From Theorem 1 the following two corollaries are derived. The first one deals with 
the weak derivative of the weak function defined in the above theorem and the second 
describes a property of the previously mentioned weak function. 

Theorem 2. If h G H and 6: R —» M an infinitely differentiable function such that 
6'(x) ^ 0 for every x G R, then 

d_ 
dx 

j00 h(a,x)e-iae{x)da= H f^-h(a,x) - ia9f(x)h(a,x)\ e"^^ da 

for x G E, where the derivative on the left-hand side is a weak one. 

Theorem 3.  With the notation of Theorem 2, it holds that for every x G R 
/oo     o poo 

-Z-h(a, x)e-iaeW da = /     i0(x)h(a, x)e-iad^ da. 
-oo oa> J-oo 

Finally, an interesting result is obtained (from Theorem 4.1).   This concerns the 
weak limit of a sequence of weak functions of the same type as in Theorem 1. 
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Theorem 4. Let 6: R —> R be an infinitely differentiable function with Q'fa) ^ 0 for 
every x € R, and (ft^) a sequence such that hn: R x R —>- R and the following three 
conditions hold: 

(i) hn G fl"(iV, c, d) /or e^ery n G N; 
(ii) ttere exist h G i^(iV, c, d) and ao € R such that 

lim hn(ao,x) = h(ao,x) 
n—>-oo 

for every x G R; 
(iii) for every p G N the sequence (J^F^n) as n —> oo converges uniformly on R. 

T/ien 
/oo /»oo 

/ln(a,x)e-ia^x)da= /     /i(a, x)e-'afl(x) da. 
-oo «/ —OO 

2. Preliminaries and definitions 

In this section, we introduce the notation and terminology that we use throughout 
this paper. We note that the definitions and propositions we present below can be 
found in [5]. 

A fine function is an infinitely differentiable function which, together with all its 
derivatives, vanishes outside a finite interval. Every fine function is bounded. 

A sequence of fine functions (ipn) is called f-regular if, for every fine y?, 
/oo 

(Pni^Piz) dx 
-oo 

exists (and is finite). Two /-regular sequences (<pn) and (ipn) are called /-equivalent 
if 

/oo /»oo 

(pn(x)<p(x) dx = lim   /     ij;n(x)(p(x) dx 
^ n—>oo /   ^ -oo «/ —oo 

for every fine <p. An /-equivalence class of /-regular sequences is called a weak function. 
If ti; is a weak function and ((pn) an /-regular sequence that belongs to w, then we 
say that ((fn) defines w and we write 

/oo /»oo 

w(x)(p(x) dx = lim   /     (pn(x)ip(x) dx 

where y? is fine. 
If the /-regular sequence (<£>n) defines the weak function w, then the sequence (<^) 

is also /-regular and defines a weak function which is denoted by wf and it is called 
the weak derivative of w. 

If (wn) is a sequence of weak functions and w a weak function, then we say that 
the weak limit of (wn) 

lim wn 

exists and is equal to w if 
/oo pOO 

wn(x)cp(x) dx = /     w(x)(p(x)dx 
-oo ^ —oo 

for every fine y?. 
Analogous is the definition of lim^-^o w^, where /z is a parameter which runs 

through the points of an interval of R and wM is a weak function for each value of /i. 
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The space of weak functions is complete under weak limits (cf. [5, p. 447]). 
A function y\ E —» C is called good (cf. also [9]) if it is infinitely differentiable and 

lim   \xryW(x)\ = Q 
\x\—*oo 

for any integers r, k > 0, where y^k\x) = -£^y(x) and this notation for the &th 
derivative will be used throughout the paper. 

Analogous to the definition of the weak function is that of the generalized function 
which is defined as an equivalence class of regular sequences of good functions. 

Any generalized function is necessarily a weak function but the converse is not true. 

Remark 2.1. There is complete equivalence between the meaning of weak functions 
and the meaning of distributions (defined by means of linear functionals of fine func- 
tions) given by L. Schwartz in [13]. For more details we refer to [5, p. 495]. 

The definition of generalized functions given by L. Schwartz in [13] uses a different 
approach. The space of good functions is denoted by Q. The dual Q' of Q is the space 
of generalized functions which are called in [13] tempered distributions or distributions 
of slow growth. For a detailed explanation we refer to [5, p. 58]. 

3. Kernel functions and operators 

In this section, we define the class iJ, where the kernel function h belongs (in (3.1)) and 
we give some examples of elements of H (in (3.2)). Then we introduce the operator 
M (in (3.4)), the formula of the adjoint K of M (in (3.5)), and by means of K and 
M we get the form that the Fourier-type integrals can take (in (3.6)). Finally, we 
show that K can be replaced by any term of a sequence (Pv) of suitable operators (in 
(3.13)). Throughout our analysis, it will be assumed that a and x are real. 

Definition 3.1. Let N e R, 0 < c < 1, 0 < d < 1. The class H(N,c,d) consists of 
all functions h: R x R —► R such that 
(i) h is infinitely differentiable; 

(ii) for each r, s = 0,1,2,..., and each a < b, there exists a constant CriSja^ such 
that 

^^    " ^    <Cr,8,aAl + \<>>\)N~Ca+dr 
dxrdas h(a,x) 

for a G R, x G [a, b]. 

Finally we write H = {J{ H(N, c, d) :  iV G R, 0 < c < 1, 0 < d < 1}. 

Remark 3.2. Some examples of functions which are in H (for proper constants 
iV, c, d) are given below (see also [10]), in a way that the class H ends up to be 
a quite rich class of functions. Consequently we have 

1. h(a, x) = {(1 + a2)1/2 + (l + x2)1'2}-1 ff (-1,1,0) 

2. hM^e*1^1'** mbh) 
3. h(a,x) = ei(i+°')vn*)    (/: R _► M, smooth, 0 < v < |) H(0,1 - 2v, 2v) 

4. h(a, x) = y{x(l + a2)v}    (y good, 0 < v < |) H(0,1 - 2v, 2v) 

It should be noted that all the above examples of h can be handled similarly by 
induction. 
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The following Proposition enables us to define our operators. 

Proposition 3.3. Ifn is a fixed positive number and x- M —> M a fine function such 
that x(&) = 1 for a E [—n, n], then for every ft, s = 0,1,2,..., there exists a constant 
C such that 

dk n-x(a)- 
dak <C(l + \a\)-(s+k) 

for every a € 

Proof We use induction and the following arguments. There exists p > 0 such that 
x(a) = 0 for |a| > n + p. Hence, if (1 — x(a))la — Xi{a)i we have 

|Xi(a)| =0, for |a| < n, 

IxiWI < 1+M(a)l = Ci,        for n< \a\ < n + p, 
lal 

|Xi(a)| =-j-j, for|a|>n + p.        □ 

With the above information at our disposal we give 

Definition 3.4. Let 6: M —> M be a function such that (i) 0 is infinitely differentiable 
and (ii) 6r{x) ^ 0 for every x G M, n be a fixed positive number and x: K- -^ K- a fine 
function such that x(a) = 1 for —n < a < n. We set 

{M(c,)}(a, x) = ___,_ + x{a)9{a, x)i 

for (a, x) G M x R and (f: R x R —> R an infinitely differentiable function. 

Definition 3.5. Let 9, x? <£ be as in Definition 3.4. We set for (a, a;) G R x R, 

{^3(,)}(a,,) = {l-g2(^2(x)}x(aMa,x), 

{^(^Xcs) = {ffifoOKa.x) + {^(^Xa.a;) + {ifs^Xo.x). 

The connection between the above defined operators M and K as well as a property 
of M are demonstrated by the following result. 

Proposition 3.6. // h G H, ip is a fine function, 7 a good function and 6: R —> R 
an infinitely differentiable function such that 9'{x) ^ 0 for every x G R, w;e se^ 

/oo      /»oo 

/     v(a!)7(eo)ft(a, a;)e-ia^:,:) dado;, 
-CX5  J — OO 

^)    , 
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for all finite e € R.  T/ien 

/oo     poo 

/     ¥>(a!)7(ea)fr(a, a;)M{e-ia^x)} dadrc 
■OO J — OO 
/OO       pOO 

-oo J—OO 

(where M and K are defined in (3.4) and (3.5) respectively). 

Proof. The first wanted equality is obtained by Definition 3.4 and also 

F = I+J+LL{1- ei,H%,)} *<<«*«"«»• ^-'^ ^ 
(3.1) 

where 

and 

' - '£ iisr&w*1" £ izr^-w-*»s'"-w **■ 02(x) + 6'2(x) ■ 

After an integration by parts J can be written as 

J=-*£ {^h^w}'£ ^.M^-)-'*'^ 

-i£^f^*)£1^7Ms''<«'^-M(-)^ 
(3.2) 

since the function (0'(x) j(02(x) + 6'2(x)))(p(x) is fine and the integral 

f" 1~x{a\(ea)h(a,x)e-iae^da 
J -oo a 

finite (for the latter see Proposition 3.3 and note that 7 is good and h G H). Therefore 
from (3.1), because of (3.2) and an integration by parts of the inner integral of /, the 
conclusion follows.    □ 

It is easily understood along the lines of the proof of the above proposition that 
if, in F, we apply the operator M on g-*0^) for a second time and use the same 
procedure as before, we shall obtain the operator K applied on K^ipyh). So, by a 
repetition of the process, we can get an idea as to the form the integral F may take. 
Thus, we now have the following definition. 

Definition 3.7. Let ip: R x R —► E be an infinitely differentiable function and v = 
1,2,.... We set for (a, x) E R x R, 

{Lvm(a,x) = {{i^) + ir2(V0r}(a,z) 
where Ki and K2 are as in Definition 3.5. 
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Theorem 3.8.  With the notation of Definition 3.7, it holds that, for all integers r, 
/i, j with 

0<T<t;-l,     l</i<u-T,     l<j</x, (3.3) 

there exist constants vbr^j, vcT^ such that 

LVW) = M(V) + Yl ^,3 VBr,M + E "^ VCr,M (3-4) 
r,/x,j r,// 

where 

x {e^^e-^^i^-^^jVCa^),        (3.5) 
(U-T-M) 

and 

{vcT,»mM = {-i)v{{^^)-Y} 

e(.) = ^^rT,-   exw-     ^ e2(a;) + fl/2(a:)' v '      e2(^) + ^(^) 

Proof. We use induction. It is obvious that for v = 1, (3.4) holds with ^o,!,! = lco,i = 
1. The proof of the next step of the induction is a matter of routine by using simple 
differentiation rules.    □ 

We give now the following definition, which will be useful in our calculations. 

Definition 3.9. Let ^: R x E —► M be an infinitely differentiable function and v = 
1,2, • • •. For (a, x) G R x R, we set 

v-l 

{Mv(V;)}(a,x) = {x3E{^iW + ^2Wy}(a,x) 
i=0 

where ifi, ^2, and i^s are defined in (3.5). 

A consequence of the preceding definition and of Theorem 3.8 is 

Theorem 3.10. With the notation of Definition 3.9, it holds that for all integers 
cr, p, g, A with 

0<<7<A-2,    l<p<A-l-<7,    l<q<p,    2<\<v (3.6) 
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there exist constants xba,p,q, 
Ac(7)p such that 

v-l 

MV{V) = x(i - e@) J2 kMi>) + (i - P)X(I - «e) 

A=2 \<T,p,q °,p ) 

where p = 1 for v = 1 and p = 0forv>2 and 0, kA, x~1B(T^^q, 
A~1CCT,p are defined 

in the same way as in (3.5). 

Proof. We use induction on v and we can easily see that the theorem holds from the 
very definitions.   □ 

We are now in a position to give the following definition. 

Definition 3.11. Let -0: E x M —> R be an infinitely differentiable function and v = 
1,2, • • • . We set for (a, x) e R x R, 

{Pv(7jj)}(a,x) = {Lv(<iP) + Mv(il>)}(a,x) 

where Lv and Mv are defined in Definitions 3.7 and 3.9, respectively. 

We shall need the following lemma. 

Lemma 3.12. Let Lv be as in Definition 3.7. For every v = 1,2,..., we have that 

Lv{ip(x)j(6a)h(a,x)} = ^ ipj(x)'jx{^ci)hCT(a,x), 

where the integers j, A, a = 0,..., v and (p, (fj  are fine functions, 7,  7A  are good 
functions, and h, ha G H. 

Proof This is an immediate result of Theorem 3.8 by using Leibniz's Theorem and 
Proposition 3.3. (We have also used the substitution sa = p.)    □ 

A consequence of the above lemma is the following proposition of which the proof, 
done by induction and being trivial, is omitted. 

Proposition 3.13. If F is as in Proposition 3.6 and Pv as in Definition 3.11, then 
for every v = 1,2,...; it holds that 

/oo     poo 
/     Pv{<p(x)j(ea)h(a, x)}e-ia0(x) dadx. 

-OO J — OO 

The following remark is proved by Proposition 3.13. 
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Remark 3.14. Let F be as in Proposition 3.6. Then for every v = 1,2,..., we obtain 

F = (-»)»Jo + Hr E E (•) "^ * + (-^^ E "^+£(-0^3 

+ (1-p)EEE(-oA-1Qyw4 
A=2 CJP,? 7Ti=0 

+ (i-p)EEH)A"1Ac^/5' (3-7) 
A=2 (7,p 

with the integers r, ^, and j satisfying (3.3) and cr,p, g as in (3.6), p = 1 for v = 1, 
p = 0 for i> > 2, and 

/CO /•CX)        Ot; 

/OO 

{ef(a;)e,,-'i(a:)}^--''V(i)(*) 
-OO 

./— ex? 

I 1 ~a
X(a) I   I ^:{7(ea)ft(o,a;)}e-ia*(aB>dair, 

/oo /♦oo ofc 

{l-6(x)e(x)}ek(x)<p{x)J     x(a)g^Msa)h(a,x)}e-iae^ dadx, 
/OO 

{i - ^eCaOHe^e*-1-^)}^-Vm)(z) 
-oo 

{/' ^ z9 ^ (A—i—(T—p) 

j1^}  } £^Wea)h(a,x)}e-+*Mdadx, 

h = r {i - e^ecx)} {e^^^-^Wie? we-(a;)}'}(p-1) V(x) 
J — OO 

{• \ p\ (X — l—cr—p) 

aao 

4. The weak transform 

The kernel function h(a,x) introduced in the preceding section, as well as the use 
of operators defined above, enable us to investigate the uniform convergence of the 
integral F of Proposition 3.6 and therefore prove our main result (Theorem 1) which 
defines the considered Fourier-type integrals as weak functions. So, we can show the 
following result. 
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Theorem 4.1. If h E H, (p is a fine function, 7 a good function, and 9: R —> M an 
infinitely differentiable function such that O'^x) ^ 0 for every x £ R, then the integral 

/oo poo 

(p(x)        j(ea)h(a,x)e-iae(-xUadx (4.1) 
-co J—OO 

converges uniformly on the interval [—p,p] for every p > 0. 

Proof. By Remark 3.14, from the type of the integrand of the integrals Is, I4, and I5, 
we observe that these can be written as 

/oo poo 

Ms) x(a)Ma,x)e-iae^dadx, 
-OO J—OO 

where <£o? X are fine functions and ^ is an infinitely differentiable function. Therefore 
the integrals /3(e), /4(e), /5(£) converge uniformly on the interval [—p,p] for every 
p > 0, since both their inner and outer integrals are, in fact, over finite intervals. 

We consider the following cases for h G H(N, c, d): 

(i) c + d < 1.   By the definition of /Q (see Remark 3.14) and Definition 3.1, we 
obtain 

Io(e)=vF1(e) + £(V)F2(e) (4.2) 

where 
/oo /»oo 

¥>i(») /     ■y(£a)hv(a,x)e-iae{x)dadx, 
-OO J — OO 

/OO /»oo      Oj 

Vi (a:) y     ^j7M^-j (a, ^e"^^ dads, 

(4.3) 

and by <pi we denote the fine function Gv^ such that ipi(x) = 0 for every x £ [a, 6], with 
[a, b] the interval for which (ii) of Definition 3.1 holds and also hv G H(N — cv,c,d), 
and hv-j G H(N - c(v - j), c, rf), j = 1,2,..., v. Similarly, and by using Proposition 
3.3 for the integrals /1 and I2, we get 

Ii(e) = 12(e) = Fiie)    (forr = 0), 

Ii(e) = hie) = F1(e) + J2(£)F&)    (forl<T<v-l). {AA) 

But from (4.3), for the inner integral of ^(e), it holds that for every a < b there exists 
a constant C such that 

/oo poo 

j(sa)hv(a, x)e-iaeM da <C        \i(ea)\ (1 + \a\)N-cv da 
-oo J— oo 

for every x G [a, 6], a G M. For a given iV we can choose v so that N — cv < —1. 
Hence the integral on the right of the above inequality is finite, since 7, being good, 
is bounded [cf. 5]. Therefore the inner integral of Fi(e) converges uniformly on the 
interval [—p,p] for every p > 0. The same holds for the inner integral of i7^) because 
it can be bounded by Co /^(M + My^V^Hl/) d2/> where y = ea. Hence Fi(e), ^(e), 
and consequently (by (4.2) and (4.4)) Jo(e), ^i(e)j and /2(e) are uniformly convergent 
on [—_p,p] for every p > 0. 
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(ii) c + d > 1. Similarly to the above by replacing c by 1 — d. 

Gathering our conclusions, we have that the integral F(e) is split up into a finite 
number of integrals which are uniformly convergent on the interval [—p,p\ for every 
p > 0 and every h £ H. The proof of the theorem is complete.   □ 

We now have all the pieces of information that are necessary to prove the main 
result of this paper. 

Theorem 1. Let h E H, 7 a good function such that 7(0) = 1, and 6: K —» R an 
infinitely differentiable function with O'fa) ^ 0 for x G M. Then for x G M, the weak 
limit 

/oo 

^(ea)h(a,x)e-iae{x)da 
-00 

exists.  This is denoted by 
poo 

h(a,x)e-ia0^da. I J — C 

Proof. From Remark 3.14 and using the same calculations as for the integrals IQ, ii, 
and I2 in the proof of Theorem 4.1, we observe that the integrals J3, J4, and 1$ are of 
the form 

^ — l     /»oo poo 

k=0J-oo J-00 

J(£) = E /     ^ /     xW^TM^-pMe-^ A«te, 
U—nJ — OO J — OO O®' 

(4.5) 

where p = l,...,/c, /i^ G i?(iV — ci,c,d) for z = /c,fc — p. Therefore the integral 
F(e) given by (4.1) is split up into a finite number of integrals of the form Fi(e), 
Fife) and Ife), Jfe), given by (4.3) and (4.5), respectively, which are continuous 
functions on the interval [—p,p] for every p > 0, because of their uniform convergence. 
The limits of Fife) and Ife) as e —> 0 are obtained by replacing 7(£a) by 1 in their 
integrands. Also, for the integrals Fife) and Jfe), we make the substitution y = ea 

which gives ^klfeo) = sk^k\y), k = l,2,...,v, and we consider ^ outside the two 
signs of integration. Then the inner integrals of Fife) and Jfe) are finite (since for 
that of Fife) we have chosen suitable v) and their outer integrals are independent of 
e. Therefore the limits of Fife) and Jfe) as e —► 0 are equal to zero. Consequently, 
we arrive at 

lim Ffe) = G, (4.6) 

where G is the right-hand side of (3.7) with 1 instead of ifea) (in the integrands of IQ 

up to I5). Hence (by (4.1)), 
/OO /'OO 

-00 J — oo 

exists for every fine function (p. Also 

/OO 

7(£a)ft,(a,a;)e-iae(x)rfa (4.7) 
-OO 
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is an infinitely differentiable function of x G M for each value of e which runs through 
the points of an interval of M. In fact, let XQ G M and choose a < b such that XQ e (a, b). 
By Definition 3.1, for every a < b there exists a constant C such that 

/OO nOO 

1{ea)h{a,x)e-iae^ da <C        |7(eo)| (1 + H^do 
-oo J — OO 

for every £, x G [a, 6] and the integral on the right of the above inequality is finite (and 
independent oix). Consequently from [5, Theorem 11.2] there exists a weak function 
which equals the weak limit lim We(x) for x G M.    □ 

e—►O 

5.  Some properties of the transform 

In this section, we obtain the weak derivative of the weak function defined in Theorem 1 
and we also note a property of the above weak function. Accordingly, we state 

Theorem 2. IfheH and 9: R —> M is an infinitely differentiable function such that 
9'{x) ^ 0 for every x G R, then 

d_ 
dx 

f    h(a, x)e-iae^ da = f     \-!^h(a, x) - iaO\x)h(a, x) \ e'™^ da (5.1) 

for x G R, where the derivative on the left-hand side is a weak one. 

Proof By Theorem 1 and [5, Theorem 11.4], we have that the left-hand side of (5.1) 
equals 

lim -f- /     7(ea)ft(a, x)e-iae(x) da 

for x G R (where 7 is a good function such that 7(0) = 1).   But, using the same 
arguments as for (4.7), the above weak limit is, in fact, 

lim /    7(eo) [^-/i(a,:r) - ia8f(x)h(a,x)\ e"^^ da 

which exists for x G R (since §| — ia6'{x)h G H{N + l,c,d)) and is denoted by the 
right-hand side of (5.1).    □ 

Theorem 3.   With the notation of Theorem 2, it holds that for every x G R 
/oo     o poo 

irh(a, x)e-iadW da =  /      i0(x)h(a, x)e-iae^ da 
-00 va J-00 

Proof If 7 is a good function, an integration by parts gives 
/oo o 

-f(€a)^-{h(a1x)e-iae(x)} da 
-00 oa> 

= lim |- Z"00 ^(ea)h{a,x)e-ia0{x) da\ . (5.2) 

It holds that 

where 

lim P(s) = 0, 

/oo /»00       O 
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and <p is any fine function, for the following reason. 
We substitute ea by y in the integrand of P and we consider e outside the two 

integral signs. Then by (4.1), P is F with 7' instead of 7 and by Theorem 1, P is 
equal to a finite number of integrals of the form (4.3) and (4.5) with 7' in place 7, the 
limits of which as e —► 0 are zero. 

Therefore, the weak limit on the left-hand side of (5.2) exists and is equal to zero. 
Hence, by Theorem 1, we conclude that 

/•OO       Q 

j-{h(a,x)e-ia6^}da = Q 
-00 va 

and the theorem is proved.    □ 

J — < 

6. Weak limits 

The following result is useful in calculating the weak functions defined in Theorem 1. 

Theorem 4. Let 9: R —► M be an infinitely differentiable function with 6'(x) 7^ 0 for 
every x G R, and (hn) a sequence such that hn: R x R —► R and tfie following three 
conditions hold: 

(i) ftn G (iV, c, d) /or every n G N; 
(ii) there exist h G H(N, c, d) and ao G R such that 

lim hn(ao,x) = h(ao,x) 
n—>oo 

/or every x G R; 
(iii) /or every p G N tte sequence (-^hn) converges uniformly on R as n —> 00. 

TAen 
/oo /»oo 

/in(a,x)e-ia8(x)da= /     h(a,x)e-iae{x) da. 
-OO «/ —OO 

Proof From (4.6), with ftn instead of ft, we obtain that for every fine <p, 
/oo /»oo 

(^(x) /     7(£a)ftn(a,n;)e-^(a;)dada; = K(n), 
-00 J-00 

where K(ri) is the right-hand side of (3.7) with 1 instead of j(sa) and ftn in place of 
ft. Therefore, by Theorem 1, we arrive at 

/OO nOO 

(p(x) /     hn(a,x)e-iae(x) dadx = lim K(n) (6.1) 
-00 V-00 n->00 

Let Ko(n) up to ^(n) denote the integrals IQ up to Is, respectively, of Remark 3.14 
with 1 instead of ^(ea) and ftn instead of ft. We observe that the inner integrals of 
Ko(ri), Ki(n), and K2(n) are bounded by 

J —00 

when c + d < 1, and by 

•/ — c 

/ 
J —a 

(l + laD^+^^da, 

when c + d > 1, which are finite integrals since we have chosen a suitable v such that 
N — cv < —1 and N + dv — v < -1, respectively, for each case. Therefore the integrals 
^0(^)5 Ki(n), and K2(n) converge uniformly on N. The same holds for the integrals 
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^(n), K^n) and ^(n). Hence we can take the limit as n —► 00 under both integral 
signs, in order to calculate their limits. 

It can be proved by induction that for every p = 0,l,2,..., 

dxPda*  n[ '   ' ^l     j W dxP-i 1 ao^  "l '   'dxie )■ q=0 Xll/ K J 

Consequently, by also using Leibniz's Theorem for the derivative of an integral [1] 
(since the conditions for the exchange of derivative and integral are fulfilled by con- 
tinuity and uniform convergence) and integrating by parts j — i — r times in Ki and 
q — m — s times in ^4, we obtain 

r=0 

and 

^N   (v-T-fJ,) 

x —/in(a> x^e-^M dadx (6.2) 

K4(n)=J2(-1)q~m(q~m) /     u{g-m-s)(x) (6.3) 
s=0 \     s     / J-oo 

where the fine functions 

i)(x) = {el^{x)Qv-^(x)}^-j)^i\x), 

u>(x) = {i - e(x)e(x)}{ep
1(x)ex-1-p(x)}ip-q)^rn\x). 

On account of the assumptions of the theorem (see also interchange of limit and 
derivative in [1]), we observe that the limits as n —► oo of the integrands of Ko(n) 
up to ^5(71) are obtained by replacing the function ^^ by |~ with p = 0,l,...,v. 
Therefore because of (6.2), (6.3) and the definitions of Ko(n), K2(n), Ks(n), K5(n), 
it follows that 

lim K(n) = G, 

where G is defined by (4.6). Hence the left-hand side of (6.1) equals 
/OO POO 

(p(x) /     ^(£a)h(a,x)e-iad^dadx 
-00 J-00 

for every fine (p. By using Theorem 1 we complete the proof.    □ 
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