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ON THE MOTION OF VISCOUS SHOCKS AND THE SUPERSENSITIVITY 

OF THEIR STEADY-STATE LIMITS 

Jacques G. L. Laforgue and Robert E. 0?Malley, Jr. 

In memory of Charles G. Lange, 
who knew the true significance of exponential asymptotics. 

ABSTRACT. This paper constructs an asymptotic shock-layer solution to the initial- 
boundary-value problem for the partial differential equation 

e(f(u)ux)x + g(u)ux = ut 

in a finite spatial domain with nearly-Dirichlet boundary conditions and, to a 
much lesser extent, for the reaction-diffusion equation 

e2(f(u)ux)x + h(u) = ut. 

Using an exponentially compressed time scale, it provides a differential equation 
for the shock layer's motion which displays both the slow convergence of the shock 
to its steady state and the extreme sensitivity of its location to perturbations in 
coefficients and/or boundary conditions. The key to the analysis is the appropriate 
handling of asymptotically exponentially small terms. 

1.  Introduction 

This paper will primarily consider the asymptotic solution of initial-boundary-value 
problems for the scalar convection-dominated evolution equation 

e(f(u)ux)x + g(u)ux = ut (1) 

where / is positive and smooth, g is smooth, x is one-dimensional, and e > 0 is a small 
parameter. A physically significant and well-studied example is Burgers' equation 

euxx + uux = ut (2) 

which Bateman (1915) used to describe discontinuous fluid motion by examining the 
limiting behavior as the nondimensionalized viscosity e —► 0+ (cf. Burgers (1974), 
Whitham (1974), Kevorkian and Cole (1981), Fletcher (1982), Kreiss and Lorenz 
(1989), Kevorkian (1990), and Laforgue and O'Malley (1993, 1994) for coverage of 
more recent work and other applications). 

Equation (1) will generally allow solutions which change rapidly in endpoint bound- 
ary layer regions, but for appropriate boundary values and hypotheses on #, it can 
instead have an analogous single interior shock layer of 0(e) thickness in space. (See 
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Garbey (1989) and Garbey and Scroggs (1991) for finite t results.) For convenience, 
we will introduce 

G(u)= f g(s)ds (3) 

and rewrite (1) as 

{ef(u)ux + G{u))x=ut. (4) 

For simplicity, we shall consider the initial-boundary-value problem for (4) on the 
semi-infinite strip 

-1 < x < 1,    t > 0 

with piecewise-const ant data 

{ — 1        for x = —1,   t > 0    and    for — 1 < x < XQ, t = 0, / x 
(5) 

1 for x =  1,   t > 0    and    for XQ < x < 1,   t = 0. 

Moreover, we shall assume that G satisfies 

G(-l) = G(l)    and    G(u) < G(±l) for - 1< u < 1, 
(6) 

with g(-l) < 0 < g(l). 

The boundary values ±1 provide exact solutions of the integrated steady-state 
equation and, as e —> 0, we would expect to obtain a solution u(x,t,€) of (4)-(6) 
which increases steeply from —1 to 1 on each constant t > 0 line in an 0(e)-narrow 
shock layer in the x variable. For definiteness, we take the point xe(t) where 

u(xe(t),t,e) = 0 (7) 

as the shock layer location. Thus, we expect that 

,    .   x       f-1,        -l<x<xo(t), 

\ 1, xo(t) <x<l, 

as e —» 0, where a;e(£) varies smoothly beginning (nearly) from the prescribed jump 
(or "zero") location XQ of the initial value function. We shall obtain a differential 
equation for xe(t) which can be interpreted as arising from an improved Rankine- 
Hugoniot condition, which takes account of the asymptotically exponentially small 
errors made by the moving profile in satisfying the boundary conditions. We shall be 
particularly interested in the long-term evolution of x€(t) and its ultimate approach 
to a steady state as t —» oo. 

We note that the asymptotic solution to (4)-(6) for sufficiently large t would fea- 
ture an endpoint layer near x = — 1 if the boundary value there were changed to 
u(—l,t,e) = —14-5 for any fixed 6 > 0 (cf. Figure 1). The layer would appear 
near x = 1 if 6 < 0. This indicates that having an interior shock must be extremely 
sensitive to perturbations of the boundary values, as was noted computationally by 
Allen (1988). We will, indeed, find a supersensitivity to asymptotically exponentially 
small changes in the boundary values u(±l,t, e) allowing the shock to be displaced 
by 0(1) at t = oo. In Sections 3 and 4, we provide a detailed study of the dramatic 
effect of such perturbations. The observed supersensitivity reflects the diminutive size 
of the dominant eigenvalue of the linearized problem and the resulting need to use an 
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asymptotically exponentially long time scale to capture the approach to the steady- 
state. Our preliminary study of related reaction-diffusion equations in Section 4(b) 
shows that they, too, are amenable to a parallel attack. 

o 
CO 

FIGURE 1. Burgers' shock motion for e = 0.01 and u(-l,t) = 0.99. 

2.  A preliminary shock layer analysis 

We will first attempt to describe the shock layer for any moderate size t by introducing 
the stretched spatial coordinate 

rj = (x- x€(t))/e, (8) 

which is zero at the shock layer location and has a doubly-infinite interval of values 
as e —» 0. Attempting a regular perturbation expansion 

u(rj,t,e) ~uo(f7,*) + eui(7/,*)H  

for the shock-layer solution of (4)-(6), together with a corresponding expansion 

xe(t) = xo(t) + ex1(t) + -- 

for the shock-layer location, we naturally need to solve the transformed equation 

{f(u)un + G(u))v = eut - -^u^ (9) 
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on —oo < rj < oo, with w(±oo,t, e) = ±1 and u(0,t, e) = 0. The leading terms of the 
proposed power series would satisfy the nonlinear ODE problem 

uo(±oo,t) = ±1,    uo(0,t) = 0, 
(10) 

where t is simply a parameter.   An integration with respect to rj from either ±oo 
implies that /(-uo^Or? + G(uo) — ^(±1) = 0 and —2dxo/dt = 0, so 

and 

Xo(t) = XQ 

uofat) =ip{rj)    for 77. 
X — XQ 

are independent oft. Integrating the translation-invariant equation /(y?)^ = G(=bl) — 
G(<p) by separating variables, we uniquely define the monotonic shock-layer profile (p(rj) 
implicitly as 

JO 

f(s)ds 
G{s) (11) /o   G(±l) 

since we will fix <^(0) = 0 to correspond to the zero of u(x, t, e). In the special case of 
Burgers' equation, this yields the familiar shock profile (p(rj) = tanh7y/2. In general, 
the asymptotic behavior of (p as rj —> ±00 is easily determined, since the integral 77 
has a logarithmic singularity as <p —» ±1 (because the integrand has a simple pole at 
5 = ±1). Re-expressing (11) as 

= -^-[ln(^ + 1) - lnL_] + 0{<p + 1)    as tp 

1 + 5, 

-1, 

provides us the approximation 

-1 + L_e A-Tj as rj -00, (12) 

where L_ = exp /-i (G(-r)-(G(g) - TTj) ^] > 0 and ^_ ^ -5(-l)//(-:L) > 0. 
More accurate approximations to (p and its derivatives as 77 —> —00 also follow readily. 
Likewise, 

^)- 1 - L+e'^11 

where 

L+ = exp jfG 
A+m 

as 77 —> 00, 

ds 

(13) 

>0 
^G(l)-G(s)      1-5, 

and A+ = g(l)/f(l) > 0. The exponential approach of ^(77) to ±1 as 77 —> ±00 could 
also be shown directly through local linearizations. This results because such motion 
links fixed points on a heteroclinic orbit (cf. Elphick et al.  (1990) and Balmforth et 
al. (1993) for related work based on analogous homoclinic orbits). 

Equating the O(e) terms in (9) then gives the linear problem 

dx1 

(f(<P)u>i)r,T, + (#(^1)77 = —djrVv Wi(±oo,f) = 0,     ui(0,f) = 0. 
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Integration yields the unique trivial solution x1^) = 0 and ui(rj,t) = 0. Continuing 
to higher orders, we formally obtain the stationary shock solution 

u(x,t,e)=v(^^J+0(eN) (14) 

for any integer TV > 0, since the higher-order terms all are found to be zero. 
We immediately note, however, that (14) cannot be valid at t = 0 since the initial 

data has a simple jump at XQ, while ip displays an 0(e)-thick transition layer about the 
point. Anticipating approximate evolution of the solution of (4)-(6) to <p((x — Xo)/e) 
in an initial O(e) ^-interval, we naturally introduce the stretched time variable 

together with the corresponding spatial variable rj = (x — Xo)/€, and seek a solution 
u(r], r) of the parameter-free initial-boundary-value problem 

^(ujUjj + G(u))   = uT1     —oo < rj < oo, r > 0 

f-l,    77<0 (15) 
U^'0^ i     1,    77 > 0 ^=b00' ^ = ±1' 

Because (15) isn't generally explicitly solvable, we will use results of Il'in and Oleinik 
(1964) which show that (for f(u) = 1) (15) has a unique solution u(r),r) which tends 
to its only possible (up to translation) steady state </?(??)> i-e-5 that 

1/(77,r) -"y viw — Vo)    as    r -> 00. (16) 

The phase shift rjo can be obtained as follows. Integrating the differential equation of 
(15) from 77 = —00 to 00 shows that jT00(

u(ViT) ~ u(r],0))dri = 0 for all r. Letting 
r -+ 00, then, 770 must satisfy the equal area rule 

/0 /»oo 

(<P(V - Vo) + l)dv + /    (<p(v - Vo) - l)dv = 0. 
-OO Jo 

In fact, P^T/O] = — 2, so the equation is linear with the unique solution 

1 r p® r00 

Vo = o    /     Mv) + 1)*7 + /    ((p{v) - ^)dr)   . 
z   U-oo JO 

As an example, the evolution equation 

(17) 

euxx + - [i J — 2jMa, = ut (18) 

has the exact shock profile (p(ri) = — 1 + 2(1 + (y/2 — l)e_7''/5)_2 and the phase trans- 
lation rjo = —5(1 — ln("\/2 + 1)) in the initial 0(e) i-layer. 

In the special case of Burgers' equation, (15) has the unique solution 

e"/2erfcf =??) - e""/2 erfcf ^) 
ufr T) = \2^ J V2^/ 

e,/2erfc(^)+e-')/2erfc(^) 

where erfc(2;) = -7= f™ e~s ds (cf. Laforgue and O'Malley (1994)). Because 
erfc(—00) = 2, we indeed obtain the expected limit ^(77) = tanh77/2 as r —> 00. 
The symmetry of / and G imply that of <p so 770 = 0.   For a more general initial 
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function u(x,0) than the jump function of (5), we could often use the method of 
characteristics to form a shock in finite time and then consider its later evolution as 
described here (cf. Oleinik (1963), Murray (1968), Lax (1973), and IPin (1992)). 

Ultimately, we must expect the "stationary" shock (14) to migrate from its "initial" 
location 

xe
0 = Xo + erio. (19) 

For Burgers' equation, symmetry shows that the shock must finally move to the mid- 
point of the spatial interval, x = 0. In general, any steady state must satisfy the 
boundary-value problem 

(ef(u)ux + G(u))x = 0,    TZ(±1, e) = ±1. (20) 

The two-point problem has the implicit monotonic solution 

r   f(v)dv 

presuming the constant of integration K(e) can be selected so that u(l,e) = 1. Re- 
calling the assumptions (6) on G and classical techniques for the asymptotic approx- 
imation of integrals (cf. Wong (1989) and O'Malley (1991)), it follows that K(e) is 
unique and slightly greater than G(±l) and that the asymptotically significant contri- 
butions to the integral come only from i;-values near ±1. To be specific, the conditions 
u(l,e) = 1 and u(xe(oo),e) = 0 imply the two asymptotic relations 

? „ __L HK(e) - G(-l)) - -^ HK(e) - G(l)) 

and 

X-^±l^-±HMte)-G(-l)). 

Eliminating Injif(e) — G(±l)) ~ —(xe(oo) + l)A_/e in the first relation yields the 
limiting steady-state shock location 

so(oo)=A)=^;~^. (22) 

This agrees with the known result for Burgers' equation and with results of Howes 
(1984, 1986) for flat) ■= 1. We note that this steady state is independent of any initial 
condition u(x, 0, e) replacing that of (5) and, in particular, of XQ. 

Under hypothesis (6), the classical Rankine-Hugoniot condition (cf. Smoller (1983)) 
predicts an arbitrary shock location for the inviscid (e = 0) problem. Likewise, the tra- 
ditional matched asymptotic expansion procedure for singularly perturbed problems 
fails to specify the steady-state solution (cf. Reyna and Ward (1994a)). Moreover, 
computations for Burgers' equation show that convergence of the shock layer to its 
steady state is extremely sluggish (cf., especially, Kreiss and Kreiss (1986)). 
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FIGURE 3. Shock layer motion. 
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Figures 2 and 3 illustrate the very slow monotonic motion of the Burgers' shock 
from XQ = 0.8 to a;e(oo) = 0 for the only moderately small e = 0.1. Figure 4 shows 
the same slow shock motion when we instead begin with the continuous initial data 

xO,0) 
f-1, -l<x<0.6, 

[5a;-4,     0.6 < x < 1, 

corresponding to XQ = 0.8. 
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FIGURE 4. Burgers' shock for continuous initial data. 

Numerical and analytical work by Allen (1988) and Bohe (1990, 1994) shows that 
the steady-state shock location is extremely sensitive to asymptotically exponentially 
small changes in the coefficients and boundary data for (1) or (20). Indeed, if we 
change the right end value in (5) from u(l,t, e) = 1 to 1 - be~a/e for some constants a 
and b with 0 < a < 1, the steady-state location xo(oo) for the limiting Burgers' shock 
moves from 0 when & = 0to-l + afor&<0 and to 1 - a for b > 0 (cf. Laforgue 
and O'Malley (1993, 1994) and Figures 5 and 6). This extreme ill-conditioning and 
the very slow convergence to the steady state both reflect the existence of an asymp- 
totically exponentially small eigenvalue, -fe-1/e, for the linearization of the problem 
about the steady-state (cf. Kreiss (1991) and Laforgue and O'Malley (1994)). Or- 
dinary numerical methods will certainly be challenged to overcome such exponential 
ill-conditioning, though the WKB-like reformulation and approach of Reyna and Ward 
(1994a,b) and Ward and Reyna (1994) attain success. 
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3.  Long-term shock layer evolution and supersensitivity 

Let us now seek the asymptotic solution u(x, t, e) of the perturbed problem 

'tef{v:)ux + G^))^ = ut,     -1 <& < 1,     t > 0, 

u(-M,e) = -1,    <l,t,e) = 1 - be-a/e, a > 0, 
{(23) 

-1        for -l<x < aro, 

1 for XQ < x < 1. 

To determine how the shock now evolves to its steady state, let us introduce the 
exponentially-compressed time scale 

a = te-a^, (24) 

the corresponding stretched spatial scale 

„ = ^^ (25) 

which is zero at the (slowly-moving) center of the shock, where u(a;6(cr), cr, e) = 0, and 

Xeft) = xe
0 = XQ + er/o 

with rjo defined in (.17). The scale used in (24) might be motivated by either observing 
that the exact solution of the perturbed Burgers' equation has the asymptotically 
exponentially small rate constant ie_a/e or by conducting numerical experiments. 
We will show that such a scale, with the substitute a = A defined in (31) below, is 
fundamental to the shock's evolution in the unperturbed situation when b = 0. In 
terms of rj and cr, the solution u(rj, cr, e) of (23) must satisfy the initial-boundary-value 
problem 

-l-xJcr)   ^     ^             l-xe(a) ^A on    rj- = e-±-t<ri<ri+ = j±^,    a > 0, (26) 

•u(?7_,(7,e) = -l, u(0,(7,€)=0,     u(rj+,(T,e) = l-be-a/e, 

u(ri, 0, e)    to be specified. 

More carefully than before, (26) is now posed on the algebraically-expanding spatial 
interval [77_,77+], where both r)± = 0(1/e) are simultaneously parameterized by e and 
cr. Since the initial O(e) ^-interval (on which the shock profile ^(77) of (11) emerges) 
becomes asymptotically exponentially small with respect to cr, we shall neglect it here 
and simply impose the smoothed initial condition 

ufa,0,e) = y>(*7) C2?) 

for (26) instead of the given discontinuous data of (23). Note that the initial phase 
shift 770 is accounted for in defining xe(0). Moreover, we shall seek an asymptotic 
solution to (26)-(27) of the form 

ufa, a, e) = (p(ri) + e^'m (77, a, e) + • • • , (28) 
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where we naturally ask that ui satisfy the corresponding linear variational equation 

dx 
(/OPK)™ + (9(<P)Ul)r, = —^VV (29) 

obtained by equating coefBcients of e~a//e in (26). Observe that the time scale selected 
allows us to capture in the second term of (28) the same exponentially-small size as the 
given perturbation in the boundary condition. A higher-order approximation than (28) 
would, most likely, require the use of a multiple-time scale approach (cf. Kevorkian 
and Cole (1981)). Note that the leading term y?(r/) in (28) is not stationary, since 77 
varies slowly with a. Moreover, because 99 fails to satisfy the end conditions of (26) 
by asymptotically exponentially small amounts (cf. (12) and (13)), and because the 
exact size of these quantities is not yet known due to their dependence upon xe(cr) 
through 77, we shall ask the correction term e~a/eui to compensate by satisfying the 
boundary conditions e_a/e?ii(77-, (j,e) = — L-eA-ri- ande_a/e^i(77+,cr, e) = —6e~a/e-|- 
I/+e~A+r7+. We now rewrite these conditions as 

ui(?7-,<7,e) = -L^-^e^-^-A 
(30) 

where we have introduced the harmonic mean 

AEE   
2

A
A+A

-   >0 (31) 

and the "steady-state limit" 

A> = 
A+-A- 
A+ + A-' 

both basic to solving the unperturbed problem when 6 = 0. We proceed to integrate 
the translation-invariant equation (29) with the side condition Wi(0, a, e) = 0. We first 
obtain 

dx 

for some integration constant 7(0", e). Since (pv = (G(±l) — G((p))/f((p) satisfies the 
homogeneous equation, another integration implies that 

(O'^'O^l o^D-GMO)^ (32) 
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Applying the boundary conditions (30) then uniquely determines the two unknowns 
7 and ^ in (32). Solving for ^, we find, in particular, the differential equation 

-^■V,r,(V-)(Pri(V+) J0     G(l) - G(V(C)) Jo     G(l)-G(<f(0) 
n+ dC r- <p(0d( n+       dc,        n 

J0    G(l) - G(<p(0) J0 G(-l) - G(tp(Q) 

-    L-e ^W+Vo     G(1)-G{V(C)) 

Jo 
dC 

G(-l)-G(<p(Q) 

(33) 

for xe. The estimates (12) and (13), moreover, imply that 

G(±l)-G(tp(C))~ 9(±1) 
^fe) / 

Jo 

for p = 0 and 1, neglecting only asymptotically exponentially small terms. It therefore 
follows that the shock layer location xe(a) can be found by solving the differential 
equation 

(2 + • • • A = 0(1)6(1 + ..•)- e^-A^e \g(-l)L^e^-x^A-^(l + • • •) 

+ g(l)L+e^-MA+/e(l + •••)] (34) 

on a > 0 with the initial value XQ. Here, the ellipses denote asymptotically exponen- 
tially small terms. 

For the unperturbed problem with b = 0, we take a = A to obtain 

2eA/e^e  = _0(_1)L_e(A)-*eM_/e _ £(1)1:^-A))A+/e + . . .  ^ (35) 

corresponding to an analogous differential equation in Reyna and Ward (1994a). This 
result for the unperturbed problem is quite basic. The fundamental expansion pa- 
rameter here is e-A/e, corresponding to the known size of the dominant eigenvalue for 
Burgers' equation, the more general eigenvalue estimate of Reyna and Ward (1994a), 
and the physical argument of Elphick et al. (1990), based on assuming weak interac- 
tions between the shock and the boundaries. Most significantly, our analysis verifies 
an improved (viscous) version of the Rankine-Hugoniot condition. This follows from 
integrating the differential equation (4) over — 1 < x < 1 to obtain 

jt J   u{x, t, e)dx = (ef(u)ux + Giu))^ = e(/(lK(l, *, e) - /(-l)^(-l, t, e)), 

since G(u(—1)) = G(u(l)). However, u ~ (p((x - xe)/e) implies that u ~ -1 on -1 < 
x < x€J u ~ 1 on xe < x < 1, and eux{±l, t, e) - <p,((±l-xe)/e) - L±A±e-A±^Tx^/e, 
so we obtain 

_2^i - 0(l)L+e-A+<1-a:e)/c + g{-l)L.e-A-^x^/€, 
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in agreement with (35). It won't be necessary for us to obtain the explicit solution to 
the initial-value problem. However, in the special case when A+ = A-, we note that 
the solution is 

Xe(t) = {        A     |i_tanh(A(4-er)e-'/Tj (36) 

where 

r-iM^S^) 
and T = ^(-^(-l)^(l)L_L+)-1/2eA/e. In (35), one term on the right will clearly 
dominate, depending on the position of x€ with respect to /?o, so xe(a) will move 
rapidly and monotonically from XQ to the steady-state location 

xe(oo) = Po + In 
-g(-l)L- 

exponentially small terms 
A++A-~-\   g(l)L+ 

(improving on (22)). Its stability can be further checked by noting that 

dxe 

dx€ 

da 
<0. 

xe(oo) 

For 6/0 and a > A, the second and third terms on the right of (34) dominate, so 
the asymptotic limit is again that just found for b = 0. 

For 6/0 and 0 < a < A, we more conveniently rewrite (34) as 

2^=9(l)b(l + ...)-9(-l)L^ 

-<7(l)L+e(a;«-/3+>A+/e(l + ---) 

where 

-l</3_(o) = -l + </3o</3+(a) = l- — <1. 

(37) 

(38) 

Note that /?_, /3Q, and /3+ coalesce as a —> A~, while /3± —> ±1 as a —> 0+. Now 
suppose 6 < 0. Then, if — 1 < XQ < /?_, the middle term in (37) dominates, so 
xe(a) increases exponentially rapidly toward its steady state /?_ + 0(e). However, if 
/?_ < XQ < (3+I the first term dominates and xe(a) will decrease linearly to /?_ over 
a finite cr interval. Finally, if /3+ < XQ < 1, xe(a) will decrease exponentially fast to 
/3-j- and then linearly to /3-. This evolution can be observed in the computed example 
shown in Figure 6, where P± = ±0.5. Analogous conclusions could be obtained for 
b > 0. A solution xe(a) of the initial-value problem for (37) could also be obtained 
numerically, but the qualitative results are already obvious. In particular, up to 
asymptotically exponentially small terms, the steady-state solution is 

xe(oo) = < 

«°> + :HT 
A) + 

A++A- 
■In 

-fl(-l)£- 

ff(l)i+ 

if b < 0 and 0 < a < A, 

if b = 0 or a > A, (39) 

if b > 0 and 0 < a < A. 
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Since the steady-state location, for b ^ 0 and a < A, depends linearly on — - + 
In |6|, the logarithm of the perturbation in (23), it is appropriate to call problem (23) 
supersensitive. Moreover, since the limit is nonuniform near b = 0, we might introduce 
a perturbation ±e-a(e)/e, letting a vary with e, in order to numerically obtain the 
spectrum of possible limits within (/?_, /3+). Note that we will obtain an endpoint 
layer, instead of an interior shock, as a —± 0+. When a > A, the perturbation is 
too insignificant compared to the fundamental small parameter e-A/e, so it no longer 
shifts the limiting steady state away from /SQ. When b ^ 0, however, the O(e) term 
in (39) is nonuniform near a = A. In particular, for a = A, (34) has the steady 
state xe(oo) = Po + elnY where Y is the unique positive root of g(l)L+YA++A- — 
g(l)bYA- + g(—i)L- = 0. Finally, observe the breakdown of the steady-state limits 
(39) as either g(—l) or g(l) tends to zero and the resulting need for more analysis of 
the asymptotics of the profile ^(77) of (11). 

In the special case of Burgers' equation, we obtain the exact solution (and a jus- 
tification for our asymptotic formalism) through use of the remarkable Cole-Hopf 
transformation 

/       ,     \ ^7  /    u(s,t,e)ds 

Introducing the stretched variables ( = x/2e and r = t/4e, I;(£,T, e) will satisfy the 
heat equation. Separating variables, we readily get the Fourier series solution 

i/(C, T, e) = ao cosh(z/o(C - lo))e^T + Po sinh(Ao(C - <$o))eA°r 

00 

+ 6^(aj cos(^(C - 7i))e-^2r + ft sin(Aj(C - ^e"^) 
i=i 

where all the unknown coefficients can be explicitly determined through the initial 
and boundary conditions. Long-term behavior is predominantly determined by only 
the first two terms. For b = — 2 and 0 < a < 1, for example, the boundary conditions 
imply that 

z/o = H- 2e-a/e + 2e-(2-a)/e + • • • , 

Ao = 1 - 2e-(2-a)/e + • • • , 

and 

7o = ^(-l + a) + -" 

(cf. Laforgue and O'Malley (1994) and (1995a)). The exponentially small difference 
between the first two eigenvalues VQ and AQ (for e small) ultimately becomes significant, 
as does the phase shift in the leading term. Inverting the Cole-Hopf transformation, 
we get the solution 

u = * = ,0tanhu0 (
X-±^ + ..-)+0 (^c(i-)/.e-(«.-/.)/«>) 

rx-x€(te-
a/ey 

~ tanh 
2e 

This confirms the super sensitivity of the perturbation, the slow approach to steady 
state, and the nearly constant profile. 
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It is critical to realize that our success in analyzing the long-term shock layer 
motion and in describing its supersensitivity is because we carefully accounted for 
asymptotically exponentially small effects. This reflects the fact that the linearized 
problem (29)-(30) for the correction term ui has an asymptotically exponentially 
small eigenvalue. We obtained the differential equation for the shock layer's motion 
by solving the boundary-value problem for the appropriately scaled correction ui to the 
shock profile ip in the assumed asymptotic solution (28) to our perturbed problem (23). 
The analyses by Reyna and Ward invoke a projection or orthogonality related to the 
approximate eigenvector (pv corresponding to the exponentially small eigenvalue (cf. 
also Elphick et al. (1990) and Brown et al. (1994)). The need to do such "asymptotics 
beyond all orders" arises in an increasing number of significant applications (cf. Segur 
et al. (1991)). Lange (1983) was a significant precursor. 

4.  Two more general problems 

(a) Let us first consider the multi-perturbed advection-diffusion problem 

[ef(u)ux + G(u) + bo(u)e~a/e]x = ut    on - 1 < x < 1 and t > 0, 

u(±l, t, e) ± ec±^(±l, t, c) = ±1 + b±e-a/e, 

u(a:,0,e) = \   1 ^      . 1 [1, #o < # < 1, 

where /, G, and 6o are smooth, / > 0, G = f™ g(s)ds satisfies (6), 0 < c±A± < 1 
for A± = ±g(±i)/f(±i), a > 0, and e -► 0+. Compared with (4)-(6), we have 
introduced three asymptotically exponentially small perturbations of the same order 
and somewhat more general boundary conditions. Due to the nonnegativity of c±, the 
corresponding shock layer profile ^(77) will again satisfy <p(±oo) = ±1. Thus, <p with 
<^(0) = 0 will again be defined implicitly by (11) and the decay estimates implied by 
(12) and (13) for ^(77) and ^(77) will also hold as 77 —► ±00. Seeking an asymptotic 
solution 

u(r], cr, e) = (p(ri) + e"a/ewi(?7, cr, e) + • • • 

for (40) (as in (28)), with 77 (as in (25)) ranging from 77- to 77+ (as in (26)), we now 
require ui to satisfy the linear boundary-value problem 

dx 
da (4!) 

Mv±, <?, e) ± c±ulr,(r}±1<T, e) = b±± L±(l - c±A±)ea/eeTA±r>±. 

The general solution of the linear ordinary differential equation for m with wi(0, or, e) = 
0 is 

ui(*7,0-,e) = -<PT,(V) / 
^0 

Vy(0) + ^(C)-7 
G{±l)-G(<p(Q) 

dC (42) 

for some arbitrary constant of integration 7(0", e). Applying the boundary conditions 
at 77-i- will uniquely determine the unknowns ^ and 7 in (42).  Solving, as in (33), 
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we obtain an initial-value problem 

2^~B- g(-l)L-(l - c_A_)e(a-A-(1+x<W* 

- g(l)L+(l - c+A+)e(-a-A+(1-x'We, (43) 

x£(0) = xe
0 =xo + er)o, 

for the shock layer location xe((r) where 

B = g(-l)b- + bo(-l) - g(l)b+ - 6o(l) 

is defined through the perturbations b±e~a/e and bo(±l)e~a/e in (40). We determine 
the same ultimate steady-state shock locations /?_, /3o, and /?+ as in (38), but now the 
limits corresponding to (39) depend on the sign of B, rather than b. We also have the 
sluggish approach to the steady state, as well as supersensitivity to the perturbations 
defining B. Note that the effects of the various perturbations cancel when B is zero. 
Reyna and Ward (1994a) show that the shock layer is destabilized when our upper 
bounds on c± are exceeded, as one might anticipate from the resulting sign changes 
in (43). 

(b) Now, let us consider the reaction-diffusion problem 

e2(f(u)ux)x + h(u) + bo(u)e-a/e = uu 

u(±l, *, e) ± ec±^(±l, *, e) = ±1 + b±e-ale, 

J-1        for - 1 < x < x0, 

II lor XQ < x < 1, 

with natural smoothness assumptions on /, h, and bo, positivity of f(u) and a, the 
condition that 

H(u) =  /    f(s)h(s)ds    satisfies 
Jo 

H(l) = H(-l) and H(u) < H(±l) for \u\ < 1, (45) 

while h(±i) = 0 and ^(±1) < 0, 

and 

0 < c±A± < 1    for    A± = ^-h,(±l)/f(±l). 

Such problems arise in models of phase separation and coarsening (cf., e.g., Carr and 
Pego (1989), Fusco and Hale (1989), Reyna and Ward (1994c), and Ward (1994)), 
though often with Neumann, rather than our nearly Dirichlet, boundary conditions. 
The resulting "metastability" is of substantial physical interest. Related wave motion 
in mathematical biology is considered in Britton (1986), Murray (1989), and Grindrod 
(1991), and a variety of applications are included in Fife (1988). Our asymptotic 
solution, obtained by introducing an appropriate exponentially compressed time scale, 
is of direct relevance even when the perturbations in (44) are absent. These ideas are 
further developed in Laforgue and O'Malley (1995b). 
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Introducing the stationary stretched spatial coordinate 77 = (x — xo)/e, we obtain 

(/OK)^ + h(u) = ut- bo(u)e-a/€, 

u(rj±,t, e) ± c±ur)(r}±,t, e) = ±1 + &±e"a/e, 

u(    0 €) = h1        for7?-^<0> 
' \ 1 forO<r?<77+, 

where r]± = (±1 — Xo)/e. We will assume that the solution of this problem attains 
a pseudo-steady state (p(r]) (for moderately large t values) which is defined by the 
boundary-value problem 

(f(<p)<Pr,)r, + h((p) = 0,     -00 < 77 < 00 

p(±oo) = ±1,     ^(0) = 0. (    j 

An argument guaranteeing the development of such a profile without an initial layer 
translation, under convenient bistability assumptions but with different initial condi- 
tions, is given in Fife and Hsiao (1988). We have neglected the exponentially small 
perturbations in (46) and recognized that the positive signs of c± provide exponential 
decay for ip as 77 —► ±00. Development of a shock profile ip is illustrated numerically 
in Figure 7 for / = 1 and h = 2u(l — u2), where ip(rj) — tanh 77. Problem (46) can 
be solved by multiplying the differential equation through by f{ip)<Pn and integrating 
from either ±00 to obtain f{<p)ipv — ^2(H(±1) — H((p(rj)). Separating variables then 
defines ^(77) implicitly as 

pep 

v= / 
Jo 

f(s)d8 
(47) 

/o    y/2(H(±l) - H(s)) 

Since the integrand has a simple pole at s = ±1, it follows that 

<p(ri) = ±lTL±eIfA±r> + 0(eT2A±n)    as i] -► ±00 (48) 

for positive constants 

r±1 / A±f(s) ] 
L± = exp ■I Jo y2(ff(±l) - H(s))      ITS 

ds 

Estimates can also be obtained for derivatives of p{r]) as 77 —^ ±00, which agree with 
formal differentiation of (48). 

To study the exponentially-long time behavior and the shock layer movement for 
(44), we now introduce the exponentially-compressed time 

p = tee~a'e (49) 

and the corresponding stretched spatial variable 

ri = (x-xe(p))/e, 
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dxe 

dp 
V2(H(±l) - H{fp)) + &o(v)/(v) 

(50) 

FIGURE 7. Early formation of the profile <p{rj) (shown for e = 0.1). 

centered at the shock layer location xe(p) where the solution u passes through zero. 
In terms of these new variables, ^(77, />, e) satisfies 

U(v)uri)ri + h{u) = e~a/e(eup - -i^-Ur, - bo(u)), 

(l + a?6(p)) ^              _ l-xe(p) 
for 77- = — -^ <rj<rj+ = —^    and p > 0., 

u(ri±, p, c) ± c±uv(ri±, p, e) = ±1 + 6±e"a/e, 

^(77,0, e) = ^(77),     u(0, p, e) = 0. 

Seeking a solution of the form 

u(r}, P, e) = ^(r/) + ^1(77, p, e)e-a/e + • • • , 

we naturally ask that ui satisfy the linearized problem 

U(v)ui)<nri + h'i^ui = —j^Vr, - bo((p), 

ui(ri±,p,e)±c±ulri(ri±,p,e) = b± ± L±(l - c±A±)e^eTA±ri±, 

i£i(0, p,e) = 0. 

Multiplying this ordinary differential equation in 77 by f{ip)ipr) implies that 

(51) 
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so we have (ui/tp^jj.   Integrating, we find that the general solution of (51) with 
ui(0,p,e) = 0 is 

i rv r  C^^TCIT     ,  
ds 

+ l{p, e) [^(il)-^^))]-1^ (52) 

where 7(p, e) and ^ both follow from the boundary conditions 

MO 
[Ln„(nj-\ 4- r.-i-Ln fr?_i_^   /        l^/4-\/2    / -Mri±)±c±vm{r}±)) j^    [f + ^^l       y/H(±l)-H{8)d8 

C±(prJ{V±) 
2(H(±1) - H(tp(T,±)) 

+ /       b0{s)f(s)ds 
Jo 

7 + v^^P/ y/H{±l) - H(s)ds 
dp Jo 

+ / bo(s)f(s)ds 
Jo 

[H(±i)-H((p(c))ridc 

= b±±L±(l-c±A±)e^eTA±n±. 

Evaluating the coefficients asymptotically, we obtain 

■ye±A^±(l + c±A± + ---)      j2dxzSvs/H(±l)-H{s)ds 

2/(±l)ft'(±l)L± 2   dp        /(±l)ft'(±l)L± 

x (1 + c±A± + • v±A±71± 

= ±&± + L±(l - c±A±)ea/£e:F^±'7± 

Uo     b^Sms)dS)e 2f(±l)h'(±l)L± 
± ft'(±l) +       • 

Finally, eliminating 7 provides the differential equation for the shock layer location 
Xe{p) 

^±(J1^2(H(±1)-H(s))ds + .-^ 

=   -  f    b0(s)f(s)ds - N+et<i-lA+{l-xe))le + N_e{a-2A.(l+x€))le 

+ D+e-A+{1-x')l€ + D_e-A-{1JrX')l€ + • • • (53) 

where rj± have been rewritten as functions of xe(p) and 

N± = -2f(±l)h'(±l)L2
±(l - c±A±)/(l + c±A±) > 0, 

D± = 2f(±l)L±[b±h\±l) + 6o(±l)]/(l + c±A±). 
(54) 

Equation (53) must be integrated over the semi-infinite interval p > 0 with the initial 
condition x€(0) = XQ. 

The solution of (53) when /^ bo(s)f(s)ds ^ 0 is like that of (37) for 6/0, i.e., the 
first three terms dominate and the shock layer will move monotonically with increasing 
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p from #o to one of two different limits for xe{po). Taking the signs of the coefficients 
in (53) into account, we ultimately attain an asymptotic balance between the first and 
second (third) terms of the right-hand side when the first term is positive (negative). 
Thus, we obtain the steady-state limits 

xe(oo) = < 

i;+2i;ln(~/i b°(s)mds/N+) +. 

J   bo(s)f(s)d. when :s<o, 

-1 + 
2A- 2A. 

■ln( 
^ 

(55) 

s)f{s)ds/N-) + - 

when 
/> 

s)f(s)ds > 0. 

In these cases, then, the selection of the limiting shock location ±(1 — a/2A±) is deter- 
mined by the perturbation bo(u)e~a/e in the differential equation and is independent 
of the perturbations b±e~a/e in the boundary conditions. The slow evolution of the 
shock can be analyzed as before. We note that these steady states are ordered so that 

2A- A+ + A_ 2AA 

for 0 < a < 2A = (4A_A+)/(A+ + A-). Moreover, the steady states f3± tend to the 
nearest endpoint as a —► 0+ and to /?o as a -^ 2A~. For a > 2A, the second two terms 
of (53) dominate, as can be seen by rewriting the equation as 

= -   f    bo(s)f(s)ds + e("-2A)/t(-N+e2A+(xc-M/e + N_e2A.(p0-Xe)/e^ + . . . 

The corresponding steady state 

a;e(oo) = p0 + 
2(A+ + A_) 

ln(JV_/JV+) + -"    fora>2A (57) 

is independent of J_1 bo(s)f(s)ds. A separate study for a — 2A will be omitted. 
When all the perturbations are absent (i.e., b§{u) = 0 and b± = 0), any steady state 

must involve a balance between the second and third terms in (53). Thus, (57) again 
holds. The steady-state limit is clearly nonuniform for J_1 bo(s)f(s)ds near zero when 
0 < a < 2A. Determining the evolution of the shock for the unperturbed problem 
is relatively straightforward. Its approach to the steady state will be exponentially 
slow with respect to time t, in contrast to p. Furthermore, the fundamental expansion 
parameter e~2A/e then represents the asymptotic order of the dominant eigenvalue of 
the linearized problem. 
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When /_1 bo(s)f(s)ds = 0, as would occur when 60/ is odd, (53) can be rewritten 

eA^ (£ vWil) - H(s))ds + ■ ■ ■) 
= D_e(l3o-xe)A^/e _|_ p    e(xe-P0)A+/e 

For a > A, the third and fourth terms dominate, so we again obtain (57). For a < A, 
it is essential to realize (cf. (54)) that the signs of D± are those of b±h'(±l) + b0(±l). 

Suppose, first, that xe - f30 < -e. Then, the first and third terms on the right side 
of (58) will dominate the second and fourth terms, respectively, presuming £>_ ^ 0. 
Omitting the negligible terms, we write the remaining equation as 

ea/e^ 

dp 
f    y/2(H(±l) - H(s))ds - JD_eW--^M-A + N_e2tf--xe)A-/e + . . . 

where /3_(a) = -1 + a/A_ as before. Note that /3_(f) < /3_(a) < po for 0 < a < A, 
while /?_(0) = -1 and 0_(A) = fo. If xe > 0_ (respectively, xe < /3_), and L>_ < 0, 
the first (respectively, second) term on the right of the equation dominates, so xe(p) 
moves monotonically to the stable rest point 

xe(oo) ~ -1 + -£- + -1- ln(-^—), (59) 

provided 

1 

bo(s)f(s)ds = 0 
-1 

and £>_ < 0. In particular, then, the limiting steady state will be /3_(a) if -1 < 
XQ < PQ and &_ft'(-l) + &o(-l)<0. It is supersensitive with respect to both 6_ and 
bo(-1). This dependence on XQ (and a similar dependence observed below) show that 
the initial condition directly influences the steady state achieved. If £>_ > 0, we will 
instead have ^ > 0 as long as xe -fio remains <C -e. Then, any trajectory beginning 
with XQ < Po will ultimately reach PQ . 

If we proceed analogously to examine the differential equation for the shock layer 
when PQ < XQ < 1, we will find the stable steady state 

xe(oo) ~ 1 - -jL + J- ln(^+/iV+), (60) 

provided ft+ft^l) + &o(l) > 0. If D+ < 0, we would instead find x0(oo) < pQ. 
Finally, we must consider (58) when p0 - xe = O(e).  The first two terms on the 

right of (58) then dominate and we obtain the stable rest point 

x€(oo) ~po + A    e+A_ hi(-D-/D+), (61) 

provided JD_ > 0 and D+ < 0 (i.e., ±(^'(±1) + 6o(±l) < 0). With opposite signs, 
the rest point is unstable. Our preceding analysis then shows that the steady state 
for (58) will be (59) whenever ZQ < Po and (60) whenever XQ > p0. It also shows that 
(59) or (60), respectively, hold whenever £>+, £>_, and po - XQ are all negative or all 
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positive. The cases when either £)_ = 0 and XQ > Po or D+ = 0 and XQ < po follow 
analogously. 
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