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EXPLOSION IN A DIFFUSIVE STRIP DUE TO A CONCENTRATED 

NONLINEAR SOURCE 
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Dedicated to the memory of Charles G. Lange. 
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ABSTRACT. The possibility of a blow-up solution to the heat equation with a 
concentrated source in a finite strip is examined. It is found that blow-up always 
occurs for the Neumann problem, whereas for the Dirichlet problem it depends 
upon the length of the strip and proximity of the source site to the boundary. For 
those situations in which blow-up does occur, the growth rate is determined for a 
certain class of nonlinearities. 

1.  Introduction 

We examine the explosive behavior of the solution to the heat equation in a one- 
dimensional strip of finite width that contains a concentrated nonlinear source of heat. 
The problem will be treated for both the Neumann and Dirichlet type boundary con- 
ditions. Our investigation is carried out by converting the parabolic initial-boundary- 
value problem to a nonlinear integral equation, which determines the temperature at 
the site of the concentrated source. The resulting nonlinear Volterra equation of the 
second kind lends itself to analytical techniques developed in [6], [7]. 

Our analysis will show that the Neumann problem always leads to a blow-up so- 
lution. For the Dirichlet problem, whether or not a blow-up occurs depends upon 
the parameters of the problem. In particular, it is found that blow-up can always 
be prevented by locating the concentrated source sufficiently close to an edge of the 
domain. In those situations where blow-up does occur, for either the Neumann or 
Dirichlet problem, we will use asymptotic methods to determine the blow-up growth 
rate of the solution for a variety of nonlinear source functions. 

Consider the nonlinear heat equation 

dv d^v 
^(M) = a^OM) + F[v(x,t),x],    0 < x < I, t > 0, (1) 

for the temperature v(x,i)mdL finite strip. There has been extensive research on blow- 
up solutions for this type of parabolic problem when the nonlinearly has no explicit 
spatial dependence, i.e., F = F(v); see [1, 3] for references to such work. While some 
investigations such as [5] have considered F = F(v,x), there was a required spatial 
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smoothness. The emphasis here is on the situation in which the nonlinear source has 
a strongly concentrated and localized spatial dependence of the form 

F[i;(a;,t),a;] = S(x - a)g[v(x,t)],    0 < a < l, (2) 

where 8(x — a) is the Dirac delta distribution. This model is motivated by applications 
in which the ignition of a combustible medium is accomplished by the use of either a 
heated wire or a pair of small electrodes to supply a large amount of energy to a very 
confined area. 

For (l)-(2), we impose the initial condition 

v(x, 0) = vo(x),    0 < x < £, 

and either of the boundary conditions 

dv Ov 
_((),£) = —(£,£) = 0,     (Neumann problem), 
ox ox 

v(0, t) = v(e, t) = 0,     (Dirichlet problem). 

(3) 

(4) 

It is typical of explosion models that the nonlinear source function g(v) is smooth 
and has the properties 

g(v) > 0,    g'iv) > 0,    g"(v) > 0,    v > 0. 

It will be further required that 

f00   dv 
~ Jho   9(v 

< 00, 

(5) 

(6) 

for some specific ho > 0. 
To investigate a possible blow-up solution of (l)-(6), we will convert this problem 

to an equivalent integral equation for the temperature at the site of the concentrated 
source, i.e., v(a,t). As a first step, we introduce an integral representation of (l)-(4) 
in the form 

v(x,t)= I   [ G(x,t\Z,s)F[v&sU]dZds+ [ G(x,t\Z,0)vo(Z)dZ.       (7) 
Jo Jo Jo 

Here G(x,t \ €,s) is the Green's function for the linear heat equation with either 
Neumann or Dirichlet type boundary conditions. In particular, for the Neumann 
problem, G = GN, where 

GN(x,t | f,s) 

T-T-/ \fl      % \-^        fn7r£\        /rn7rx\ 
= H(t-^{-i + l2^cos{—)cos{—)ex» 

K .71=1 V / 

H(t-s)_   ^   f    _ [   (a; - | - 2n^2 

11   ^   \ 
I      n= —oo   v 

n27r2 

£2 (t-s) 

*[<*-*)]*„£ 
.exp 

i(t-s) 
+ exp 

(a; +1 - 2n£)2 

4(t-s) 

(8) 
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while for the Dirichlet problem, G = GD, where 

GD(x,t | £,s) 

= H(t-s)\-^ sin 
n=l 

oo 

      sm I   sm Jexp 
n27r2 

t-s) 

H(t - s) 

2W*-3)]*nfr F ^ {exp 
(x-t- 2n£) 21 

4(* - *) 
exp 

(x + Z- 2n(,)2 

4(t- 

(9) 

Each Green's function has been expressed in spectral as well as image representation 
(see [8]), since both forms will be used in the analysis to follow. 

Substitution of the expression (2) for the source function in terms of the delta 
distribution into (7), and evaluation of (7) at x = a yields 

v(a,t)=       G(a,t\a,s)g[v(a,s)]ds + h(t),    t>0. (10) 
Jo 

Here h(t) is defined in terms of the initial data by 

h(t)= [ G(M|£,0)t/o(OC (11) 
Jo 

with requirements that it is sufficiently smooth and 

ti(t) > 0,    0 < fto < h(t) < /loo < oo. (12) 

Thus, the initial-boundary-value problem (l)-(4) has been reduced to the nonlinear 
Volterra equation (10) for v(a,t). The kernel G(a,t \ a,5) follows from (8) for the 
Neumann problem and from (9) for the Dirichlet problem. In the analysis to follow, 
we will investigate (10) for blow-up solutions and the growth rate of such blow-up. 

2.  Criteria for blow-up 

To analyze (10) for possible solutions, it is convenient to express that integral equation 
in the form 

u(t) = Tu(t) =       k(t- s)g[u(s) + h(s)] ds,    t > 0, (13) 
Jo 

where we have defined 

u(t) =v(ayt)-h(t). (14) 

The form of the kernel k(t — s) depends upon the choice of boundary conditions (4). 
For the Neumann problem, it follows from (8) that 

k(t - s) = kN(t - s) 

I 2 v^ 2 (WKCLX 

= 1 + 12^C0S (^r)exP V l ) 

2W*-*)]'nf rE exp 

n27r2 

n2e ■ 
L (*-*). 

{t-s) 

+ exp 
(a — n( 
(t-s 

^2^ 
(15) 



EXPLOSION IN A DIFFUSIVE STRIP 437 

while for the Dirichlet problem, it follows from (9) that 

k(t — s) = &D(£ — s) 
r        9    9 .   /n./7rn.\ m.^'ir* 

n=l 

9 /n7ra\ 
1 (—)' = 7 £siir I "^r- i exP £2 

exp 
n '■I2 

(t-s) 
exp 

(a - nl)2 

(t-s) 
(16) 

Our analysis of (13) will utilize the techniques of [6]. First, contraction mapping 
arguments will be employed to establish the existence of a continuous, non-negative, 
increasing solution for 0 < t < t*. lit* < oo, then certain inequality arguments can be 
applied to (13) to establish the non-existence of a continuous, non-negative solution 
for t>t** >t*. Thus, there is implied a blow-up as t —> i,  t* < i < t** < oo. 

The positivity of any solution to (13) is clear in view of the positivity of k(t — 5), 
h(t), and g(v). To see that any solution also must be increasing, differentiate (13) to 
obtain 

u'(t) = k(t)g(ho) + [ k(t- s)gf[u(s) + h(s)][u\s) + ti(s)]ds. (17) 
Jo 

Since u(t) > 0 for t > 0, then u'(t) > 0 at least on some small interval, 0 < t < i. 
Furthermore, it is impossible for uf(t) = 0, because an evaluation of (17) at t = i would 
yield that the right-side is positive. Thus u'(t) > 0 whenever the solution exists. 

The existence and uniqueness of a continuous solution of (13) that satisfies 

0 < u(t) < M < 00,    0<t<t* (18) 

follows from the application of contraction mapping arguments. Those arguments 
require that the integral operator T maps the space of continuous functions satisfying 
(18) into itself, so that 

Tu(t) < g(M + ftoo)/^) < M,     0<t<t*. 

This inequality depends upon 

I(t) = 7   k(t - s)ds, 
Jo 

(19) 

(20) 

which is an increasing function in either case (15) or (16).  For arbitrary ui(t) and 
U2(t) which are continuous and satisfy (18), the contraction property of T follows from 

sup   \Tu1(t)-Tu2(t)\<g'(M + h00)I(t)   sup   |ui(i) - w2(t)|, (21) 
0<*<t* 0<t<t* 

provided that 

g'(M + hooWt) < 1,    0 < t < t*. (22) 

The appropriate choice of M to satisfy both (19) and (22) is the smallest solution 
of 

M = g{M + h^/g'iM + h0 (23) 
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It then follows that the limiting value of t* is determined by considering 

I(t*) = [M/g(M + h(XJ)). (24) 

This yields a lower bound on the extent of the interval [0,t*) over which there is 
existence and uniqueness of a solution to (13). 

Whenever the satisfaction of (24) is limited by some t* < oo, then there is the 
possibility of a blow-up in the solution of (13). We examine this issue by considering 
the possible non-existence of a continuous solution to (13) for all t > £**. Under the 
assumption that (13) has a continuous solution for 0 < t < ti, it follows from (13) 
that 

u(t) = Tu(t) > J(t) = /  kih - s)g[u(s) + h(s)]ds,    0<t<tu (25) 
Jo 

since k(ti — s) < k(t — s) for either (15) or (16). It then follows that 

J'(t) = fe(ti - t)g[u(t) + h(t)] > kfa - t)g[J(t) + fto]. (26) 

Integration of the differential inequality (26) yields 

/ -7^ > /    k(t1-s)ds = I(t1). (27) 
Jho 9\v)      J0 

The assumption that u(t) is continuous for 0 < t < ti, insures that J(£i) < oo, and 
hence (27) implies 

/»oo      1 

K= ^T>I(tl). (28) 
Jho 9yv) 

Thus, a contradiction of the existence of a continuous solution occurs if ti = t** < oo 
is such that 

I(t**) = K < oo, (29) 

where the boundedness of K, has been required in (6). 
The existence of a t** < oo which satisfies (29) is the essential criterion for blow-up. 

This relationship represents a balance between the diffusive nature of the kernel, as 
reflected by /(£**), and the constant ft, which depends upon both the growth of the 
nonlinearity g(y) and the value of ho as determined from the initial data. 

The implication of our analysis is that if there is blow-up, i.e., u(t) —► oo as t —> t, 
then 

0 < t* < i < £** < oo, (30) 

where t* and t** are determined by (24) and (29), respectively. We will examine this 
possibility for both the Neumann and Dirichlet problems. 

For the Neumann problem, we use the spectral representation of the kernel in (15) 
to obtain 

IN(f) = ^ kN(t - s)ds = - + _ ^ _ cos   [—) l-exp( ^- .(31) 
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It is clear that JJVOO —* °o as t —» oo, and hence (29) will eventually be satisfied. That 
is, these always exists some i** < oo such that 

IN(t**)_=K. (32) 

Thus, for the Neumann problem, we always have blow-up. 
For the Dirichlet problem, we use the spectral representation of the kernel (16) to 

obtain 

/   n2n2t 
1-exP(—p- 

aU — a)      21 v^  1    .  2 /mvax        (   n27r2t\ 

n=l x / 

(33) 

In this case, it is possible to fulfill the contraction mapping requirements of (19) and 
(22) with t* = oo by satisfying 

att-a) 1 M 
£ g'^M + hoo)     giM + hco) y   ) 

We can always satisfy (34) by placing the concentrated source close enough to either 
edge of the strip, so that a(l — a) is sufficiently small. This guarantees a unique, 
continuous solution of (13) for all t > 0, and hence no blow-up. 

On the other hand, it is possible to fulfill the blow-up criterion (29) whenever the 
parameters are such that 

a(£ — a) ,,. 
-^-j-1 > «• (35) 

For example, it is possible to satisfy (35) by placing the concentrated source at the 
center (a = £/2) of a sufficiently long strip. Then there exists a t** < oo such that 

lD(t**) = K, (36) 

and hence blow-up. Thus, for the Dirichlet problem, we find that blow-up either may 
or may not occur. If (34) is satisfied, there is no blow-up; while if (35) is satisfied, 
there is blow-up. 

3.  Growth rate at blow-up 

It is assumed here that we have the case, for either the Neumann or the Dirichlet 
problem, in which there is blow-up. That is, (13) has a unique solution and 

u(t) —►oo,    as    t —► i < oo. (37) 

Based upon this assumption, we will develop a self-consistent asymptotic analysis of 
(13) that determines the leading-order behavior ofu(t) as t —> t for a class of nonlinear 
source functions g(v) which arise in various applications. In particular, we consider 
g(v) which satisfy (5) and are certain special cases of those nonlinearities which have 
the asymptotic growth property 

g(v) - ^m(log^)-n exp(^)    as v -> oo, (38) 

with m,n,p > 0. 
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It should be mentioned that our analysis does not determine the explicit value of 
the blow-up point t. The analysis of Section 2 provides criteria for its existence, as well 
as the bounds t* < i < t**. In general, numerical methods are required to determine 
i. 

Under the assumption that (37) holds, we introduce the transformation, 

rj = (i-t)  1 - ryo,    77o = (i)  1,    w(r]) = u(t). 

Thus, the blow-up behavior (37) becomes 

w(rj) —> oo,    as    rj —> oo. 

The transformation (39) converts (13) to the form 

(39) 

(40) 

w(v)= f  k{(v-v')[(v' + Vo)(v + Vo)]   'MVW,    77>0, (41) 
Jo 

where 

Vto) = (V + Vo)~29 {w(v) + h[i-(r1 + rjo)-1]} . (42) 

The advantage of this formulation is that certain techniques developed in [2] can be 
utilized for the asymptotic evaluation, as rj —> oo, of integrals like that found in (41). 
Those techniques have been employed effectively on related problems in [4, 7]. 

Following the methods of [2], let rjf = rjr, so that (41) becomes 

wfr) =77/(77), (43) 

where 

1(77)= /  ^{77(1 -T)[(77T +770X77 + 770)]   ^^(ryrjdr. (44) 
Jo 

Since our interest is in an asymptotic solution of (43) as 77 —► 00, we will utilize the 
specific forms of the kernel to simplify (44). It follows from the image representation 
of the kernels in (15) and (16) that 

7(77) = 
77 + 770 

irr) 
00    pi 

'{^v 
+ E /   (l-T-r^ex; 

n=lJo 

1     ^      f1 

±2   S   /   C1-1")-* exP 

r)   2 ^(rjr)dT 

n2£2(r]-\-rjo)(rjT + rjo) 
^{rjr)dT 

77(1-r) J 

(a - n£)2(rj + 77o)(77T + 770) 

77(1-r) 
<$>(r]T)d' 

■}■ 
(45) 

where 

$(777-) = (77T + 770)2 ^(77r) 

= (VT + 770)"^ {w(riT) + h[i- (77T + 770)-1] } . (46) 

In (45), the ± selection corresponds to k = k^ and k = kp, respectively. 
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It can be shown that the exponential terms in (45) are small, as rj —► oo, compared to 
the one non-exponential term. This is seen by considering a representative exponential 
term in the limiting form 

iJfa) = limojr (1 ■ r)   2 exp 
P(V + VO)(VT + Vo) 

It follows that 

R(rj) < lim 4i: 

77(1 - r) 

(l-r)   2$(?7r)dr 

$(»7T) dr,    0>O.    (47) 

-Pve (48) 

By selecting e — r)~z, as 77 —> 00, it is clear that terms of the form (47) are exponen- 
tially small compared to that with (3 = 0. 

Thus, we see that, for the asymptotic analysis of (43), it is appropriate to consider 

1 r1 

Hri)~2j   M1-T)]   
3*(7/r)dr,    r) 00. (49) 

By using this leading-order behavior of I{rj) in (43), we will be able to determine the 
growth of w{rj) near blow-up for certain nonlinear source functions in the form of (38). 

To investigate the asymptotic behavior of /(ry) as 77 —> 00, the technique of [2] is to 
employ the Parseval formula for Mellin transforms to obtain 

(50) 

1   C00 _i I{V)~2J0   {W1-1")]   \H(l-r)}Hvr)dT 
1 nc+ioo 

= —: / M[n-i(l-T)-iH(l-T);l-z]M[$(r]T);z)}dz, 

where the Mellin transform is defined by 

poo 

M[V(T)]Z] = /     r'^v^dr. (51) 
Jo 

In (50), the vertical path of integration in the complex 2:-plane lies within the common 
strip of analyticity for the two Mellin transforms. 

Further simplification of (50) follows from 

M[7r-i(l-r)-i^(l-r);l-^=^|-:^- (52) 

and 

M [$(r/r); z] = rj'zM [*(r); z]. (53) 

Thus, it follows that, in place of (43), we can consider the asymptotic equation 

rc+ioo p^ _ ^ 
w(ri) 

4:7ri 

pc-\-ioo 

0 J c—100 r(i-*) 
M [$(T); Z] (iz,     77 —> 00. (54) 

Our analysis of (54) will seek to determine a self-consistent match of the leading-order 
behavior of each side of this asymptotic equality. 
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In order to proceed with the asymptotic analysis of (54), we need more specific 
information about M [$; z]. That desired information is determined by the asymptotic 
behavior of $(77) as 77 —► 00. From (46), 

Hr}) = (ri + rio)   *g {w{rj) + h [i - (rj + 770)   ^ } 

~ ri~2g [w(rj)],    as rj —► 00. 
(55) 

We will examine (55) for certain special cases of the nonlinear dependence in the form 
of (38). 

We first consider the case of a combined algebraic and logarithmic nonlinearity of 
the form 

g(w) ~ wm(logw)~n
1    m > 1,    n > 0,    as w —> 00. (56) 

For this case, we assume that 

w(r]) ~ Arjr(logr])k,    r > 0,     as 77 —► 00, (57) 

where A, r, and k are to be determined. It follows that 

$(77) - ^mr-n77mr-t(log77)fcm-n,     as 77 -> 00. (58) 

For 2mr > 1 and fcra - n = iV = 0,1,2,..., it follows from [2] that M [$; 2?] has a pole 
3 
2 of order A/r + latz = |— rar, so that 

^r*   i      (-l)N+1Amr-niV! 3 
M [$; z ~ -— T^—TJ    as 2? -> - - mr < 1. 

[z-d-mr)]^1' 2 
(59) 

To compute the leading asymptotic contribution from the integral in (54), the ver- 
tical path is displaced to the right. In doing so, the pole implied by (59) is encountered 
before the simple pole of r(l — z) at z = 1. Thus, (54) takes the form 

WOw) -    2r„r(mr) 

Matching the two sides of (60) yields 

1 

k ^    A™r{mr       D^mr-l^g^fcm-n^ as 77 —> 00. (60) 

k = 
n 

2(m-l)' m-1' 

2r m 
2(m- 1). 

[2(m - i; )]nr 
.2( 

1 
m-1) 

(61) 

with the restriction that 

n 
m — 1 = j\r = o,i,2,... (62) 

Thus, we have found that when the nonlinear source function behaves like (56) with 
the restriction (62), then 

w(i]) ~ V/2(m~1)(l0g?/r/(ro_1)>    as V -» oo- (63) 
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We next consider the case of a combined algebraic and exponential nonlinearity of 
the form 

(64) g(w) ~ wm exp(wp)i    m > 0,    p > 0,    as w -> oo 

For this case, we assume 

n 
^(ry) ~   log(A7y2) - log ry + log A as 77 —» 00. (65) 

Here A is to be determined as well as a restriction on p and m that must hold.  It 

follows that 

\ — 

^(^^^(o)    ?7~1(log7?)^'    asj?->oo. (66) 

In order to obtain an asymptotic balance in (54), it is found necessary to take m/p = 
N = 0,1,2,.... It then follows that M [$; z] has a pole of order N + 1 at z = 1, so 
that 

Af[*;, as 2 —>• 1. (67) 
(z - 1)^+1 

To compute the leading asymptotic contribution from the integral in (54), the 
vertical path is displaced to the right. In this case, the pole at z = 1 implied by (67) 
coalesces with that from 

r(i-z) 
z-l 

,    as z —► 1, 

to give rise to a pole of order N + 2 at z = 1. Thus, (54) takes the form 

^L •,        x —+1 

^log7/;   ~2(iv + i)r(§) (log vY 

Matching the two sides of (69) yields 

as 77 —» 00. 

1\p     7r2 

m + , = l.    ^[])^'JV + 1'rG) = (i)"      T' 
with the restriction that 

m = 
N 

p. -,   ;v = o,i,2,.... 

(68) 

(69) 

(70) 

(71) 
N + l'-   "     N+V 

Thus we have found that when the nonlinear source function behaves like (64) with 
the restriction (71), then 

w(rj) -log rj as 77 —> 00. (72) 

Here we have dropped the contribution from the constant A which is implied by (65), 
because a more complete asymptotic analysis beyond the leading order might well 
yield additional constant terms. 
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4.  Summary and conclusions 

Our analysis of the nonlinear parabolic problem described by (l)-(6) reveals that 
boundary conditions play a crucial role in the occurrence of blow-up. It was found that 
blow-up always occurs in the Neumann problem; whereas, it can always be prevented 
in the Dirichlet problem by locating the concentrated source sufficiently close to an 
edge. It was further determined that when blow-up does occur, the asymptotic growth 
is the same for both the Neumann and Dirichlet problems. 

For the Neumann problem, there is always blow-up and an upper bound t** on its 
occurrence follows from (31) as 

21 ^—^  1        2 fn
/Ka\ 

n=l 

1 — exp 
n27r2r* 

P 
- r— 
~ Jh0 g(v 

< oo. 

For the Dirichlet problem, it follows from (33) that no blow-up will occur if 

a(£ - a) 
< 

M 

(73) 

(74) 
g'iM + hoo)     giM + hoo)' 

This inequality can always be achieved by placing the concentrated source sufficiently 
close to one of the edges of the strip. On the other hand, it follows from (35)-(36) 
there will be a blow-up, with an upper bound t** on its occurrence, whenever the 
quantity a(£ — a)/£ is such that 

n=l 

nW* \ _ a{(. - a) 

Jh0   9(v 
>0. (75) 

A lower bound t*  on the occurrence of blow-up follows from (23) for the Neumann 
problem as 

t*      21 
oo     1 

n=l 

9 /n7ra\ 
5 (—) 

1 — exp 
n27r2r 

and for the Dirichlet problem as 

a(£ — a) 21 v^  1   /rmra\        ( 

n=l v 

& 
M 

giM + hooY 

M 
g(M + h0 

(76) 

(77) 

If blow-up does occur as t —> £, t* <i <t**, the leading-order asymptotic growth 
is the same for both the Neumann and Dirichlet problems. When the nonlinearity is 
of the form 

g(u)~um(loguy m > 1,    n > 0,    as u (78) 

then 

u(t) 
2r 2(m-l) 

[2(m - l)]»r 

with the restriction that 

2(m-l) 

n 
771 — 1 

(*-*)* 

= N = 0,1,2,.. 

logy 
t-t 

as t -> i,   (79) 

(80) 
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When the nonlinearity is of the form 

g(u) rsj u171 exp (up),    m > 0,    p > 0,    as u —► CXD, (81) 

then 

^J^filogJ-V ,     ast^t, (82) 
2    0£-£ 

with the restriction that 

m = l-p,    p=j^L^i    N = 0,1,2,... . (83) 
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