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ABSTRACT. A thin cylindrical ceramic sample is placed in a single mode microwave 
applicator in such a way that the electric field strength is allowed to vary along 
its axis. The sample can either be a single rod or two rods butted together. 
We present a simple mathematical model which describes the microwave heating 
process. It is built on the assumption that the Biot number of the material is 
small and that the electric field is known and uniform throughout the cylinder's 
cross-section. The model takes the form of a nonlinear parabolic equation of 
reaction-diffusion type, with a spatially varying reaction term that corresponds 
to the spatial variation of the electromagnetic field strength in the waveguide. 
The equation is analyzed and a solution is found which develops a hot spot near 
the center of the cylindrical sample and which then propagates outwards until it 
stabilizes. The propagation and stabilization phenomenon concentrates the mi- 
crowave energy in a localized region about the center where elevated temperatures 
may be desirable. 

1.  Introduction 

The use of microwaves to sinter or join ceramics is rapidly .gaining acceptance in indus- 
try where the efficient production of high quality materials is important. Efficiencies 
are increased because microwaves penetrate a material and rapidly deposit energy 
there, in direct contrast to conventional heating schemes where heat diffuses into a 
material from its surface. However, a disadvantage of microwave heating technology is 
the need of control systems to prevent thermal runaway and other related instabilities. 

The control and dependability of these processes requires a deep understanding of 
the inherent physics which are described by a formidable nonlinear initial boundary- 
value problem. This system is comprised of the time-harmonic version of Maxwell's 
equations, the heat equation, an equation of state relating the effective electrical con- 
ductivity to the temperature, and a thermal boundary condition on the surface of the 
ceramic material which balances conduction, convection, and thermal radiation. The 
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nonlinear character arises from the dependence of the electric field upon the effec- 
tive electrical conductivity, which is a function of the temperature, the dependence of 
the temperature upon the microwave power deposition, which is proportional to the 
product of the effective electrical conductivity and the magnitude of the electric field 
squared, and the radiative heat loss, which varies as the fourth power of the temper- 
ature. In addition, the boundary-value character of the problem is also challenging 
because the electromagnetic fields and the ceramic material are confined in a cavity 
or waveguide applicator of a complicated geometry. 

The systematic analysis of these equations under a variety of physical limits has 
primarily been restricted to one-dimensional geometries (see reference [4] and the bib- 
liography therein), but has recently been extended to three dimensions [4] in the small 
Biot number limit. However, in all these cases the effect of the waveguide applicator 
or cavity was neglected, i.e., the ceramic samples were irradiated by plane waves in 
free space. Nonetheless, the small Biot number theory predicts the phenomenon of 
thermal runaway and suggests methods for its control. 

The problem we model and study in this paper is concerned with the sintering 
and joining of ceramic fibers in a microwave applicator. As such, it is not described 
by the theories mentioned above because of the presence of the applicator and also 
because of the small aspect ratio a/d of the fibers, where a is the radius of the fiber 
and d is its length. In this paper, we take into account the effects of the applicator by 
assuming that the electric field is uniform throughout the cylinder's cross-section and 
known along its length. That is, the ceramic cylinder is thin enough not to perturb 
the electric field to leading order. Thus, the heating process is modeled by a nonlinear 
heat equation and boundary condition. 

There are three small parameters that arise from a dimensional analysis of the 
simplified model problem. The first is the aspect ratio defined above, the second is 
the Biot number Bi, which is a measure of convective heat loss at the surface, and 
the third is £2, which is a measure of radiative heat loss there. As described above, 
we have developed an asymptotic theory to study the microwave heating of ceramic 
slabs and other compact geometries [3, 4] as Bi —► 0. In these studies B2 ~ Bi so 
that the physical effects of both radiation and convection have been incorporated into 
the theory. This asymptotic theory can be employed to analyze the present problem 
with the proviso that the parameter e2 = (a/d)2/Bi is order one. The net result is 
that the temperature remains spatially uniform across the ceramic's cross-section and 
satisfies a nonlinear reaction-diffusion equation along its length. In this equation, the 
reaction term accounts for adsorption of microwave energy and loss of thermal energy, 
which arises from convection and radiation at the sample boundaries, and the diffusion 
coefficient is e2. 

Two types of problems naturally arise depending upon the orientation of the ceramic 
cylinder in the applicator. If the sample is placed so that the electric field has no spatial 
variation along its axis, then the reaction-diffusion equation has constant coefficients. 
Equations of this type have received considerable study because of their applicability 
in a wide variety of physical settings [9]. That the present equation supports traveling 
transition layers comes as no mathematical surprise. However, in the present physical 
context it does explain the mechanism for the formation and propagation of hot-spots 
[5, 6] which are seen in experiments [8, 11]. 

On the other hand, if the ceramic fiber is placed so that the electric field varies along 
its axis, then the equation has a spatially varying reaction term. The analysis and 
understanding of the solutions to these types of equations are less well understood than 
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those described above [1]. We shall analyze such an equation using standard matched 
asymptotic methods and show how its solution evolves into a hot spot centered on the 
region of maximum electric field strength. The hot spot then propagates outward from 
its inception and stabilizes to form a region of elevated temperature. This stable region 
of elevated temperature can be exploited in fiber sintering and has already been used 
in joining processes [2]. Moreover, our analysis shows how the size and dynamics of the 
spot depend upon the temperature dependence of the material's thermal properties. 
These dependencies are often ignored because the experiments are more sensitive to 
changes in the effective electrical conductivity with temperature. However, they are 
essential in understanding the final width of the spot. 

2.  Formulation 

A thin cylindrical ceramic sample is positioned in a single mode waveguide applicator, 
so that the electric field along its axis varies as the fundamental mode of the waveg- 
uide. The sample is held in place at its ends by two thermally insulated, microwave 
transparent push-rods. Although the electric field is altered by the presence of the 
ceramic, for the present analysis we assume that this effect is negligible and that the 
time-harmonic electric field is given by 

E = £osin(7rZ/d)j (1) 

where d is also the height of the guide, ^o is the strength of the incident mode, and j 
is a unit vector perpendicular to the axis of the cylinder. This assumption effectively 
decouples the equations for the electromagnetic field from the equation for the energy 
of the sample, and allows us to focus solely on the sample's thermal field. In addition, 
we assume that the sample is thin enough to ensure that variations in the electric field 
are negligible across its circular cross-section. 

In light of these assumptions, the temperature, T, satisfies the energy equation 

iL(pCpT) = V • (KVT) + ^p-EZ sin2(7rZ/d),    0 < Z < d,    0 < R < a,    (2) 

where R = y/X2 + Y2 is the radial distance from the cylinder's axis, p is the density of 
the ceramic, Cp is its specific heat, K is its thermal conductivity, and a is its effective 
electrical conductivity. Although variations of the thermal parameters K and Cp are 
small over the temperature range required for sintering or joining when compared to 
the change in the electrical conductivity, they are included in the following analysis, 
since they may have a profound effect on the dynamics of the heating process. 

We also require that the temperature satisfies the surface heat balance 

K^-T + h(T - TA) + se(T4 - Tj) = 0,    R = a,    0 < Z < d, (3a) 
uR 

where ft is a constant corresponding to heat loss from the surface by convection, s is 
a constant measuring radiative heat loss, e is the emissivity of the surface, and TA is 
the ambient temperature of the surrounding medium. To simplify the analysis that 
follows, we assume that the ambient temperature remains constant. At the ends of 
the sample, we prescribe the boundary conditions 

—T = 0,    Z = 0,d,    0<R<a, (3b) 
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and we take the initial temperature of the sample to coincide with the ambient tem- 
perature, i.e., 

T(X,y,Z,0)=:TA. (4) 

Equations (2)-(4) constitute a nonlinear initial-boundary-value problem for the 
temperature T within the sample. The nonlineax character of this simplified problem 
results from the dependence of the electrical conductivity a and the thermal parame- 
ters K and Cp on the temperature and by the radiative losses at the sample boundary. 
This is the generalization of the mathematical models for microwave heating as studied 
by Tian using finite difference simulations [10] and by Kriegsmann using asymptotic 
methods [5, 6]. 

3. The simplified theory 

There are three small parameters which arise from a dimensional analysis of equations 
(2)-(4). The first is the Biot number Bi = halKA, where KA = K(TA) is the 
value of the thermal conductivity at the ambisnt temperature T4, and the second 
is B2 = seaT\/KA- The former is a measure: of the relative effects of convection 
and conduction and the latter is a measure of the relative effects of radiation and 
conduction. Typical values of Bi and B2 for ceramics are of the order of 0.01, see, 
e.g., [7]. The third small parameter is the aspect ratio of the cylinder a/d. 

In building our simplified theory, we first introduce the dimensionless variables 

T h 
z = Z/d,    u= — -l,    rj = t, (5a) 

IA CL\P^P)A 

where Z is nondimensionalized with respect to the cylinder length , u is the relative 
deviation of T from TA, and t is nondimensionalized with respect to the ambient 
convective time a(pCp)A/h. Then we define the dimensionless parameters 

aaAE* B2       2      (a/d)2 

p=MrZ> a=£? e =^r' (5b) 

and the dimensionless functions 

/W.iffl,   *.m   r-*Q?f>, (50 
VA &A (P^PJA 

where the subscript A indicates that the quantity is evaluated at TA- Here a is the 
ratio of the convective and radiative Biot numbers and p is a dimensionless power. 

Finally, we employ similar methods to those found in References [3, 4] to deduce 
an asymptotic approximation to the solution of (2)-(3) in the limit Bi —> 0. The 
parameters a, p, and e are held fixed in this limiting process. We find that the 
temperature is given by 

T(X, Y, Z, t) = 3^(1 + uiz, t) + 0{B1)) (6) 
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where u(z,i) satisfies the dimensionless initial-boundary-value problem 

-2{u + a[(u + l)4-l]},    0<J8<1, 

^ = 0,    z = 0,l, (7b) 

u(z,0) = 0,    0<z<l. (7c) 

We note here that the leading-order approximation to the temperature is independent 
of the cross-sectional variables but that the O(-Bi) correction term depends upon them. 
The latter gives rise to spatial inhomogeneities which are important in some heating 
applications. They will not be calculated here. 

The nonlinear initial-boundary-value problem (7) constitutes the mathematical 
statement of our small Biot number theory for the heating of the ceramic rod. 

4. Analysis 

We note here that in some applications where ceramic fibers are sintered in a single 
mode applicator [11], the parameter e is very small. For other experiments, such as 
joining, e may not be as small. The asymptotic limit e —> 0 is quite relevant in the 
former case and is expected to give qualitative results in the later. In mathematical 
terms, the theory which follows is strictly valid for the ordering Bi <^ e2 <^ 1. That 
is, Bi <C a/d <^ -s/Bi, so that the diffusion term in (7a) is larger than the neglected 
terms of O(Bi). Setting e = 0 in (7a), we obtain the ordinary differential equation 

|-(r(l + «)) = pf(u) Sm
2(irz) - 2{u + a[(u + I)4 - 1]}, (8) 

the solution of which depends upon z parametrically and satisfies the initial conditions 
(7c). 

A reasonable model for the effective electrical conductivity leads to the function / 
being given by the Arrhenius-like law [12] 

f(u) = l + c1e-^
u (9) 

where ci and C2 are positive constants. If we fix z and define P = psin2(7rz), then 
the solution of (8) and (7c) increases monotonically from its initial value u = 0 to a 
terminal value v, which is given implicitly by the solution of 

p-oM^t'^y-1'}. do, 
A graph of G(v) is shown in Figure 1, from which we deduce that there can be either 
one or three solutions of (10) depending upon the value of P. If P < Gm then the 
terminal solution v lies on the lower branch, whereas if P > GM then it lies on the 
upper branch. If Gm < P < GM, then there are three solutions: one on the upper 
branch, another on the lower branch, and the third solution on the middle branch. A 
simple analysis of (8) shows that solutions on the upper and lower branches are stable 
and that solutions on the middle branch are unstable. 

We observe that, because of the spatial variation of the power P along the axis 
of the waveguide and sample, at different points along its axis, the ceramic sample 
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G(v) 

FIGURE 1 

experiences different values of P, and so there m the possibility that a steady temper- 
ature distribution may be on the upper branch in one part of the sample while it is on 
the lower branch in the remainder. This is indeed the case if we take the maximum 
dimensionless power p > GM • If we define z\ and Z2 by 

zi = - arcsin(v/GM/p), Z2 = 1-zu (11) 

then P > GM in the interval zi < z < zi, a:ad a steady temperature distribution 
in that part of the sample must lie on the upper branch. We have sketched this in 
Figure 2. 

If we try to resolve the discontinuity in this steady state approximation by introduc- 
ing boundary layers at z\ and Z2, within which the diffusion term of (7a) is important, 
then we are immediately struck with the disconcerting fact that such a solution does 
not exist. To see this, we introduce the stretched variable z — (z — zi)/e into (7a), set 
■£- = 0, and obtain 

d /, d 
5 (tS-)+ /(.)[<?«-cwi-o, \z\ < 00, (12) 

where G is defined in (10). The boundary conditions for (12) are clearly u —► vu as 
z —> oo, where vu is the value of u on the upper branch corresponding to GM (see 
Figure 1), and u —► VM as z -> -oo.  Thus, u' —> 0 as \z\ —> co.  Upon multiplying 
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FIGURE 2 

(12a) by k-fjr=u, integrating the result from ±00, and using 
obtain 

/ U k{u)f{u)[GM -G{u)]du = 0. 
JVM 

0 as \z\ 00, we 

(13) 

However, from the definition of GM, we deduce that the integrand is positive so that 
no heteroclinic connection exists. 

We resolve this apparent contradiction by removing the constraint that -g- = 0 in 
the above analysis. That is, we shall look for a traveling wave solution of (7a) which 
has the form 

u = (f)(z),    where    z —     and    r = er?. (14) 

Inserting this ansatz into (7a), we obtain, at leading order, 

Tz ^l0) + C'i(r(1 + 0)) + KWV^ <zr + C) - Gm = 0       (15a) 

where the prime on C denotes a derivative with respect to its slow time argument 
r = er?, and the equation is to be solved on the interval — 00 < z < 00. We deduce 
similar boundary conditions to the above and find again that, as in (12b), 

d 
—</> —► 0    as    z —> ±00. 
dz 

(15b) 
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Now, however, asymptotic matching implies that the solution (j) has the limits 

<l>—> <I>±(C)    as    z—> ±00, (15c) 

where <p+(C) > <f)-(C) are those roots of psin2 7r(zi + C) = G((j)) which lie on the 
upper and lower branches of the S-shaped response curve of (10), respectively. Finally, 
we observe that the boundary-value problem (15a)-(15c) is not well-posed because of 
its translational invariance in z. To remove this ambiguity, we choose 

m = l[Mc)+4>-(c)}- (isd) 

Multiplying (15a) by kj=<p, integrating the resulting expression with respect to z, 
and applying (15b) and (15c), we deduce that 

/ *#)/(£) [p sin2 Tr(z1 +C)- G(0)] # 

C = - ^^ -„  (16) 
J    k(4>)(T-4>) [T + T(l+ <!>)}dz 

where the dot above F denotes its derivative with respect to (j). 
This equation is a first-order nonlinear ordinary differential equation for the position 

of the slowly moving traveling wave, or front, which has the initial condition C(0) = 0 
and connects the solutions on the upper and lower branches of (10). We note that the 
dependence of the right-hand-side on C is implicit and, in particular, the integrand in 
the denominator depends upon C through the solution of the boundary-value problem 
(15). 

We now can deduce the dynamics of the heating process qualitatively by considering 
(16) when p > GM- Initially, the rod heats up according to (8), so that a discontinuous 
temperature profile begins to form with discontinuities at z = z\ and z = Z2 and a 
hot spot on the interval zi < z < Z2> as shown in Figure 2. At this time, considering 
the dynamics of the left half of the sample, 0 < z < 1/2 alone, since the solution is 
symmetric about the sample's midpoint, C = 3, and, from (16), C is negative if we 
assume that the term F + r(l + (j)) is positive, as is the case for physically realistic 
applications. Thus, C decreases and the front begins to move to the left, from z — zi, 
on the slow time scale r = erj. This elevates a Larger portion of the rod to the higher 
temperatures of the upper branch, i.e., the hot spot begins to grow. 

This description is given under the proviso that 

^r(^)(i + ^)>o 

which, from the definitions of (j) and F, is equivalent to the statement that the internal 
energy density of the ceramic, pCpT, is an ir.creasing function of the temperature. 
This is true in ceramics and in almost all materials, away from phase transitions. 

We now turn to the further development and stabilization of the hot spot. Not- 
ing the definitions of 0±(C), it follows that the derivative with respect to C of the 
numerator on the right hand side of (16), i.e., 

N = / fc(0)/(0)[psin2 rizi + C) - G(0)] #, (17) 
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IS 

r0+(C) 

^"-H fc(^)/(^) sin 27r(z1 + C) #, (18) 
4>-(C) 

which is strictly positive, since 0 < zi + C < 1/2, and k and / are positive. Also, 
since </>4-(0) = vu, 0-(O) = ^M, and GM = psin2(7rzi), we deduce from (17) that 
N(Q) > 0. Similarly, if we define C so that Gm = psin2 7r(zi + C), then ^+((7) = vm, 
(j)-{C) is the corresponding point on the lower branch of the S-shaped curve, and, 
consequently, N{C) < 0. Hence by continuity of iV with respect to C, there is a 
unique C = C* < 0 such that iV(C*) = 0. Since the denominator D(C) of (16) 
is, for the reasons given above, strictly positive, we deduce that the solution of the 
differential equation Cf = —N(C)/D(C) with initial condition (7(0) = 0 is monotone 
decreasing and tends to C* as r —> oo, with its final approach being exponential 
in r. Thus, the hot spot grows in size and finally stabilizes to occupy the region 
zi + C* < z < 1 - zi - C*. 

We now can consider the influence of a temperature-dependent thermal conductivity 
on the equilibrated value (7*. First, we recall that C* is such that 

rMC) 
7V(C*) = / k((f))f((j))\psm2 7r(zi + (7*) - G(0)] ^ = 0, (19) 

and consider the case when the thermal conductivity is constant, so that fc(0) = 1. 
Then, since 4>-(C) and 4>+(C) are such that the local power at the boundaries of the 
hot spot is P = psin27r(2:i + (7*) = G(0±(C*)), the graphs of f(u)G{u) and Pf(u) 
intersect transversally at u = 0_((7*), ti = 0+(C*), and, from (19), also at some 
value between, i.e., on the interval 0_((7*) < w < ^(C*).. Equation (19) implies 
that the unique value (7* is such that the areas of the two lobes between the graphs 
of f{u)G{u) and Pf{u) are equal. When k((j)) is not constant but, for example, is a 
monotone increasing function of (j) with A;(0) = 1, as is the case for typical ceramics, 
the influence of the temperature-dependence with C fixed is such as to increase the 
area of the right-hand lobe (at larger (j)) more than that of the left-hand lobe. This 
increases N(C), so that, since -^N > 0, the temperature-dependence of k is such as 
to decrease the equilibrating value (7* to more negative values, and hence increase the 
final width of the hot spot in the steady state. 

5. Numerical examples 

To illustrate the analysis presented in the previous section quantitatively, we use 
numerical means to solve the two-point boundary-value problem (15) that determines 
C(T). Although (15) could be solved by a straightforward shooting method, some 
care must be exercised to avoid the exponential growth in z of solutions to (15a) as 
the saddle points of the heteroclinic connection are approached. The procedure we 
developed to solve (15) has two parts: first, we restate the problem in the form of 
two coupled initial-value problems on the interval z > 0, and then we use a numerical 
shooting method to determine C as a function of C. Once this is achieved, C(r) can 
be determined by numerical quadrature. 
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The coupled pair of initial-value problems replacing (15a,d) are 

+ C"^(r(l + Vi)) + /(^i)bsin2 7r(zi +.C7) - G(V'i)] = 0, 

- C"^(r(l + V2)) + /(V'2)[psin2 7r(zi + C) - G^)] = 0, 

^(0) = -^(0)=7, 

(20a) 

(20b) 

(20c) 

(20d) 

where (20b) arises from reflection of the original equation (15a) and the interval z < 0 
about z = 0, and the parameter 7 is to be determined. These equations are solved 
for fixed C with C < C < 0 on the finite interval 0 < z < L where L is taken to 
be sufficiently large. The function C and the parameter 7 depend on C, and are 
determined by demanding that 

tfi-Aityi-MC))==0,   z = L, 
V'S - A2(</>2 - <MC)) := 0,     Z = L, 

(21a) 

(21b) 

where Ai and A2 are the negative eigenvalues, corresponding to exponential decay 
toward the saddle points as z —> 00. Once ifti and fa are determined, the solution to 
(15) is given by ipi(z) when z > 0 and by ip2(—z) when z < 0. 

5 u 
^3 

FIGURE 3 

The numerical implementation of (20)-(21) :s straightforward and will not be dis- 
cussed here. We have set F = 1 in the calculations in order to isolate the effects of 
the temperature dependent thermal conductivity, fc(</>). Furthermore, we have fixed 
the values of ci and C2 in (9) to be 500 and 13.7, respectively [12], and we have taken 
the values of the parameters p and a of (5b) to be p = 9 and a = 0.05. The interval 
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for C is given by C — (I/TT) arcsin(^/Gm/p) — (I/TT) arcsin(^GM/p) < C < 0, which 
insures the existence of 0±. 

In Figure 3, the solid curve shows the functional dependence of Cf on C for the 
case k = 1, and the dashed curve corresponds to 

AM = i + -^ 

which models a material whose thermal conductivity increases with temperature. The 
value of C* for this case is less than that for k = 1, and this is in agreement with our 
discussion at the end of the previous section. Finally, the dotted curve in Figure 3 
corresponds to 

fc(0). -0/2 

which models a material whose thermal conductivity decreases with temperature. The 
value of C* for this case is greater than that for k — 1. 

The dynamical evolution of C(T) readily follows from the functional dependence of 
C on C. The results, showing \C\ plotted against r, are given in Figure 4 where the 
solid, dashed, and dotted curves correspond to the three thermal conductivities just 
discussed. In each case, C(T) decreases monotonically from 0 to its respective value 
of a. 

0.16 

u 

0.12 

FIGURE 4 

6.  Conclusion 

The implications of the analysis for the sintering of ceramic fibers and joining of 
ceramic cylinders is now evident. In the first case, the hot spot forms, propagates, 
and then stabilizes. If the temperature in the relatively warm region of the hot spot 
is sufficient for sintering, then the fiber can be slowly pulled through the guide, thus 
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insuring that the entire sample is processed. This is used as a means of sintering 
ceramics in practice [11], and the rate at which the fiber is to be drawn is found 
experimentally. In the second case, the hot spot is to encompass the butt joint at 
which the two ceramic cylinders are to be joined, and, if the temperature in this 
region is sufficient for the materials to fuse, then a strong joint can be obtained [2]. 

We close by briefly describing another type of solution that is possible if the applied 
electric field has a minimum at the center of the fiber. This may occur by exciting the 
applicator in one of its higher spatial modes. If the maximum of the electric field is 
such that P > GM and the minimum is such that P < GM, then hot spots will form 
at both ends of the fiber. These spots will grow in size and stabilize according to the 
mechanism described at the end of the last section. 
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