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AN ADAPTIVE BARRIER METHOD FOR CONVEX PROGRAMMING 

Kenneth Lange 

Dedicated to the memory of my brother Charles. 

ABSTRACT. This paper presents a new barrier method for convex programming. 
The method involves an optimization transfer principle. Instead of minimizing 
the objective function f(x) directly, one minimizes the amended function f(x) — 
ji^^.x^lnxi to produce the next iterate xn+1 from the current iterate xn. If the 
feasible region is contained in the unit simplex, then this strategy forces a decrease 
in f(x). The barrier parameter ii is kept constc^nt during the process and not sent 
gradually to 0 as in the classical barrier method. Under mild assumptions on 
f(x) and the linear constraints, the method converges to the global minimum of 
f(x). If this minimum occurs in the interior of the feasible region, then the rate 
of convergence is linear. 

1. Introduction 

The current revival of interior point methods in convex programming has stimulated 
a healthy interest in perfecting the classical logarithmic barrier method [3, 5, 18]. 
This paper discusses an adaptive version of the logarithmic barrier method motivated 
by the EM algorithm from computational statistics [2, 11]. At the heart of the EM 
algorithm is a maximization transfer principle. Instead of maximizing the objective 
function directly, the EM algorithm maximizes at each iteration a related, but simpler 
function. In the process, the objective function is increased. In convex programming 
the difficulty is not so much that the objective function is complicated, but rather 
that optimization is hindered by nonnegativity constraints. Introduction of adaptive, 
logarithmic barriers effectively removes the nonnegativity constraints at each iteration 
while permitting parameters to converge to zero over a sequence of iterations. 

The pioneering work of Karmarkar [9] contains the germ of the optimization transfer 
principle. However, in Karmarkar's projective scaling algorithm, the operation of the 
principle is obscured by repeated re-centering. In the algorithm to be presented here, 
explicit re-centering is de-emphasized, and the optimization transfer principle emerges 
more clearly. 

The standard convex programming problem is to minimize a convex function f(x) 
subject to the constraints Ax = b and x > 0. Here # is a column vector with s 
components, A is an r x s matrix of full rank, and 0 is a vector of zeros.   In the 
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logarithmic barrier method, the modified function 

s 

/(x)-M"Eln^ (^ 
2 = 1 

is minimized for a sequence of constants /xn tending to 0. The new method keeps the 
barrier parameter /i constant, but changes the barrier function (1) slightly. Suppose 
that one of the constraints 5^=1 QijXj = h has all coefficients a^- positive. If this is 
the case, then a trivial reparameterization makes it possible to replace this constraint 
by 5Zi=i Xi = 1. If no constraint has all coefficients positive, then Karmarkar [9] has 
noted for a linear objective function how to add a bounding constraint and a slack 
variable so that Yli=ixi = 1 ls Part 0^ ^e constraint structure. 

Assuming that the constraint 2i=i Xi = 1 is present, consider the function 

s 

fW-n^xfhiXi (2) 
i=l 

defined using the current iterate xn > 0. Our new method operates by taking the 
next iterate :rn+1 to be the minimum of (2) subject to Ax = b. Because f(x) is convex 
and — fjb^2i=i x7 ^xi is strictly convex, the minimum is uniquely defined and satisfies 
xn+i > Q Equally important is the fact that f(xn+1) < f(xn), with strict inequality 
unless xn+1 = xn. This assertion can be proved by observing that /i$^=1 x™hixi has 
its maximum subject to X^=i x% = 1 and x > 0 at x = xn. Hence, 

i=l i=l 
s s 

</(*")-M£< In*? + M£<In IX. 

i=l i=l 

</(*»)-/*£>? Ins?+ /,£>? In a? 
1=1 

= f(xn). 

Thus, minimization of (2) translates into a decrease of f(x). The algorithm continues 
until the generated sequence xn converges. 

Several features of the new algorithm are noteworthy. First, the monotonicity 
property f(xn+1) < fix71) promotes numerical stability. Second, in common with 
ordinary barrier and penalty methods, the algorithm does not prescribe how to find 
the minimum of (2). In this sense, perhaps the term method should be substituted 
for algorithm. However, the EM algorithm suffers from the same ambiguity, and we 
will use the terms algorithm and method interchangeably. We will briefly discuss a 
one-step Newton's method for numerically computing the next iterate. Third, the 
algorithm is adaptive. Those components xf that seek to converge to a boundary 
xi = 0 are allowed to do so because of the presence of the multiplier x™ in the barrier 
term — fix™ InXi. Fourth, the barrier constant fj, is truly constant. 

The remainder of this paper illustrates the application of the algorithm in one 
theoretical example and one numerical example. After these examples, convergence 
properties of the algorithm are investigated. Under fairly mild conditions on f(x) 
and the linear constraints Ax = b, the algorithm can be shown to converge to the 
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minimum of f(x) over the feasible region. If the minimum occurs at an interior point, 
the rate of convergence is linear, with faster convergence for smaller fi. The rate of 
convergence to a boundary point is left unresolved. Also left unresolved are issues of 
computational complexity. For general convex functions, complexity analysis is apt to 
be difficult. A reasonable place to start might be the linear or quadratic case [6, 20, 
14]. 

Of course, it remains to be seen whether the algorithm is merely a mathematical 
curiosity or whether it offers an effective, practical method of optimization in the 
presence of nonnegativity constraints. It may be that the algorithm must be modified 
to form a successful stand-alone strategy or part of a hybrid strategy for optimization. 
For instance, the barrier constant // in (2) might be gradually reduced to 0 as it is 
in the ordinary barrier method. One can also contemplate using the algorithm when 
f(x) fails to be convex. These considerations a':l suggest that the algorithm warrants 
a more thorough examination than the modest one undertaken here. 

Finally, a reviewer of this paper has kindly pointed out recent related work of Cen- 
sor and Zenios [1] on proximal point algorithms. Censor and Zenios also provide a 
convergence analysis for the optimization transfer principle in convex programming. 
However, their arguments are quite different from those presented here. Our devel- 
opment has the added advantage of lending more insight into the case of nonconvex 
programming. This issue is addressed in our concluding discussion. 

2. Examples and numerical implementation 

2.1. A theoretical example. The loglikelihood for a multinomial distribution 
takes the form ^^rajlna^, where rrii is the observed number of counts in cate- 
gory i and Xi is the probability attached to category i. Maximizing ^2l=1miln.Xi 
subject to the constraints Xi > 0 and ^21=1 xi " 1 gives the explicit maximum likeli- 
hood estimates xi — ra^/ra. Here m denotes the total number of counts X^=i m^ To 
compute the maximum likelihood estimates iteiatively, define the Lagrangian 

s s s 

- 2^ m* In a^ - //^a^lna^ + K22Xi _ ^' 
i=l i=l i=l 

Setting the ith partial derivative of the Lagrangian equal to 0 gives 

Xi Xi 

Multiplying this equation by Xi produces 

-rrii - fix™ + Xxi = 0, (3) 

which in turn can be summed on i and solved for A. Substituting the result A = m + fi 
in (3) yields x™^1 = (rrii + //:r™)/(ra + //)• (This argument for m = 0, incidentally, 
shows that /i]Ci=i ^r^na;* 1S maximized by x =■ xn subject to X^=i xi — !•) At first 
glance, it is not obvious that xn tends to rrii/m, but the algebraic reduction 

n+i _ m* _ mi + //aff _ m^ 
1 m m + ii m 

=        /*       (xn        mM 
m + n m 

shows that x™ approaches ra^/ra at the linear rate /i/(m + //). 
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Notation. In deriving and displaying various formulas, a compact notation is helpful. 
Let R(y \ x) = f(y) — l^J2i=ixi^nyi' Because R(y | x) has two arguments x and 
y, there are various first and second differentials depending on which arguments are 
differentiated. Define 

d™R(y | x) = df(y) - M 
xs 

Vs 

dMR{y\x) = dzf{y) + ii 

0\ 

dXYR(y \x) = -ii 

Vo 

0\ 

W", / 

(4) 

(5) 

These formulas simplify in an obvious manner when y — x. 
All vectors except first differentials like <i/(y) and d10R(y | x) are taken to be 

column vectors. A superscript t indicates vector or matrix transpose. Let / denote 
an identity matrix and 1 and 0 denote vectors or matrices of all 1's or O's. To convert 
a vector z with entries zi to a diagonal matrix with diagonal entries Zi, write z as a 
capital letter Z. 

2.2. An approximate version of the algorithm. For those problems lacking an 
exact solution a:n+1, one step of Newton's method offers a natural approximation [6, 
7]. In practice, a crude approximation of #n+1 may be acceptable. As long as the 
surrogate function R(x \ xn) is decreased, then the objective function f(x) is decreased 
as well. 

Newton's method can be implemented by minimizing the second-order Taylor's 
approximation 

R{xn + Sn | xn) - R(xn | xn) « dll)R(xn | xn)6n 

+ -(8n)td20R(xn |^n)^ (6) 

subject to the constraints Abn — 0. The next iterate is then defined by a:n+1 = a:n+<5n. 
Because d10R(xn | xn) = df(xn) — /ilt and 1*5 = 0 is implied by the constraint 
]Ci=i x'i — I? df{xn) can be substituted for d10R(xn \ xn) in (6). The minimum point 
of (6) then satisfies 

df(xny + d2{}R(xn | xn)Sn + A'X71 = 0 (7) 

for some vector An of Lagrange multipliers.   Solving (7) for Sn and then applying 
A6n = 0 yields 

Sn = -d20R(xn | xn)-1[d/(^n)t + A'X71}, 

Xn = -[Ad20R(xn | x^A^Ad^R^x71 \ x71)-1 df (x71)1. 

Combining these two results gives 

6n == _Gn(j _ At[AGnAt)-1AGn)df(xn)\ (8) 

where Gn = d2()R(xn \xn)-1. 
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The matrix d20R(xn \ xn)  1 appearing in (8) is ill-conditioned when any xf is close 
to 0. The remedy is to re-express 

d20R(xn | xn) = (Xn)-i [(X71)^ d2f(xn)(Xn)i +fil](Xn)- 

and 

d20R(xn | x71)-1 = (Xn)^[(Xn^d2f(xn)(Xn)i +//J]~1(Xn)i. 

To avoid violating the boundary constraint £n+1 > 0, one can choose a small 
positive constant e and replace ^n+1 = xn + 8n by xn+1 = xn + a8n, where a is 
the largest number in [0,1] consistent with xn+1 > exn. If some x™ is near 0 and 
the corresponding 6f is negative and relatively large in magnitude compared to xf, 
then this test can slow convergence. An ad hoc repair is to set 8f = 0 when 6™ is 
negative but very small in magnitude. This tactic permits more progress in those 
components at some distance from the boundary and escape from the boundary by a 
small component Xi when warranted. 

2.3. A numerical example. The linear programming problem of Klee and Minty 
[10] demonstrates the exponential complexity of the simplex method. This problem 
amounts to maximizing the rath component of an ra-dimensional vector x subject 
to the inequality constraints 0 < xi < 1 and jSxi-i < xi < 1 — /3a^_i for i in 
{2, ...,ra}. Here /? is a constant satisfying 0 < (3 < 1/2. The maximum occurs 
at x — (0,..., 0,1)*. The Klee-Minty example can be rephrased in standard form by 
defining wi = xi and Wi = (xi — (3xi-i)/fi1-1 for i = 2,..., m [4, pp. 95, 110]. Setting 
9 = 1/(3 and introducing slack variables Wi for i — m -f 1,..., 2ra, the transformed 
problem consists of minimizing f(w) = — X/I^i^ subject to w > 0 and the linear 

constraints 2 X^7=i wj ~^wi +wm+i — 9l~1 for i -■ 1,..., m. Adding these m constraints 
gives a single constraint, 

2m 

E CiWi = 

1 

where 

l-(9m 

1 < i < m, 

m + 1 < i < 2m, 

with all coefficients positive. Since expanding A to include this constraint creates 
a new constraint matrix of less than full rank, it is better to minimize f(w) — 
H Yli=i Ci™? ln wi subject to the existing constraints rather than the objective function 
(2). The optimal point w has Wi = 0 for i — 1,..., m — 1 and wm = #m-1. 

Table 1 records the performance of the approximate convex programming algorithm 
with increment 6n given by (8) for m = 8 and /? = 1/4 in the standard form Klee- 
Minty problem. The algorithm started at the point x1 = (.001,..., .001) in the original 
variables. The barrier constant was fi = .1, and the boundary constant was e = .01. 
Any component w™ with proposed increment 6? > —10-6 was ignored in calculating 
the maximum a E [0,1] consistent with wn + ct6n > ewn. With a computed in this 
manner, w™+1 was set to the proposed value w? + a8f whenever the proposed value 
was positive; otherwise, w™+1 was set to w™. 

It is evident from Table 1 that the approximate algorithm converges reasonably 
fast. When the barrier constant {1 = 1, the algorithm converges to the same final 
value in 51 iterations, and when fi = .01, it converges in 19 iterations.   The affine 
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Iteration Value of f(w) Iteration Value of f(w) 
1 -16.38 10 -16357.26 
2 -151.24 11 -16381.00 
3 -1538.61 12 -16382.71 
4 -15074.90 13 -16383.39 
5 -16208.39 14 -16383.69 
6 -16269.88 15 -16383.94 
7 -16305.08 16 -16383.98 
8 -16329.23 17 -16383.99 
9 -16345.83 18 -16384.00 

TABLE 1. Table 1: Iterations on the Klee-Minty Example 

scaling algorithm experiences similar difficulties to the simplex method in solving this 
problem [13]. 

3.  Convergence of the algorithm 

Proof that the algorithm is globally convergent requires precise assumptions. Suppose 
that f(x) is convex and continuously differentiable on the compact feasible region 
{x : Ax = &, x > 0 }. If the algorithm is to make sense, then the interior {x : Ax = 
b, x > 0} of the feasible region must be nonempty. The matrix A is assumed to be of 
full rank and to have 1* as its first row; correspondingly, b has first component bi = 1. 

For any subset S C {1,... ,s}, let Sc be the complement of S. If the manifold 
Ms = { x : Ax = b; Xi > 0, i G 5; Xi = 0, i G Sc } is nonempty, then assume that it 
contains at most a finite number of stationary or critical points of /(#). Stationary 
points can be characterized in terms of the projection matrix Ps mapping any row 
vector v* onto its entries vi for i e S. If S has |5| elements, then Ps is an s x |5| 
matrix. Now y G Ms is stationary if and only if 

df(y)Ps + jy'APs = 0 (9) 

for some Lagrange multiplier i/. To solve for z/ in (9), it is convenient to assume that 
APs always has full row rank r. 

On any manifold Ms, each stationary point coincides with a minimum point of f(x) 
restricted to M5. If Ms contains two minimum points, then the convexity of f(x) 
implies that the line segment between them consists entirely of minimum points. Thus, 
the number of stationary points on Ms is either 0, 1, or 00. The third possibility can 
be ruled out when f(x) is strictly convex. It can also be ruled out for f(x) linear when 
the linear programming problem is both primal and dual nondegenerate [4, pp. 21, 
197]. In this case every stationary point of Ms is an extreme point of the feasible 
region, and Ms contains an extreme point only when Ms reduces to that extreme 
point. 

Mindful of these definitions, we commence our verification of the global convergence 
of a sequence xn generated by the algorithm. 

Lemma 1.   The sequence xn satisfies limn_>c 

positive limit lim.k- 

rn+l - x" = 0.   Furthermore, if a 

linu v.^fc w nfc+i _ 
►00 x™1* > 0 exists for the ith component of a subsequence xnk, then 

1 as well. 
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Proof. The inequalities 

s s 

M5>"iiia;rl</']r>"lna:" 
i=l i=l 

R(xn+1 \xn)< R(xn I xn) 

can be rearranged to yield 

0<M5>?1II«K+1) 
i=l 

n-fl> 

Since /(xn) is decreasing and bounded below, this second pair of inequalities implies 

that limn^oo n=i xi Hxi/x?+1) = 0- 
Now suppose the first claim of the lemma is false. Then for some subsequence xnk, 

liminffc-^oo ||a;nfc+1 — xnk\\ > 0. Invoking compactness and passing to a subsequence if 
necessary, we can further assume that lim/^co xnk = y and lim/c^oo xnk+1 = z exist 
with y ^ z. Applying the known information inequality [19, p. 58] 

i=l Xi i=l 

to the subsequence xnk and using the fact that ]imn_^00 Y^i=i x? M^?/x7+1) = 0? w^ 
can conclude that 

s 

This last equality can only be true if Zi = yi fcr all i with yi > 0. Since X)i=i Vi = 

^21=1 Zi = 1, in fact, all zi = yi. This contradiction proves the first claim of the 
lemma. The second assertion of the lemma follows from the first assertion and the 
fact that the quantity 

^W-^+1)2 = ^«+1)2(j|r-i)! 

is being driven to 0. 

Lemma 2. Suppose y is a limit point of the sequence xn. If S is the set {i : yi > 0}; 

then y coincides with the unique stationary point of the manifold Ms- 

Proof. Let lim/^oo £nfc = y for some subsequence xnk. Because xnk+1 minimizes 
R(y | xn) subject to the constraints Ax = b, the::e exists a Lagrange multiplier vector 
Anfc such that 

df(xnk+1) - niv"")* + (Anfc)*i4 = 0*, (10) 

where unk is the column vector with ith entry x^k /x^^1. There are a variety of ways 
of solving for the Lagrange multiplier Anfc in (10). The most expeditious in the current 
context is to employ the projection Ps introduced in equation (9). By assumption 
the matrix APs is of full rank. Hence, multiplying (10) on the right by PsPsA* and 
solving yields 

(Anfc)' = -[df(xnk+1)Ps - ii(ujnk)tPs]PsAt(APsPfsAt)-1. 
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Because Ps annihilates those entries u™k with i outside 5, Lemma 1 and the continuity 
of df(x) jointly imply the existence of the limit A00 = lim/^oo Anfe. This fact now 
makes it possible to multiply (10) by Ps on the right, take limits, and conclude that 

df(y)Ps - /il'P* + (X^YAPs = 0. (11) 

Since the first row of A coincides with 1*, equation (11) can be rewritten as 

df(y)Ps + (A00 - vetfAPs = 0, (12) 

where ei is the vector having first entry 1 and remaining entries 0. But equation (12) 
is precisely condition (9) characterizing the stationary point of Ms. 

Theorem 3. The sequence xn converges to the global minimum of f(x) subject to the 
constraints Ax = b and x > 0. 

Proof. Since there are only a finite number of manifolds M^ and at most a finite 
number of stationary points per manifold, Lemma 2 indicates that the set of limit 
points F of xn is finite. F is nonempty because the feasible set is compact. According 
to a result of Ostrowski [16, p. 173], T is also connected because the sequence xn 

satisfies linin-.oo ||a:n+1 — xn\\ = 0. The only way a finite set can be connected is for 
it to reduce to a single point. Thus, lin^^oo xn = x00 exists. 

It remains to show that x00 satisfies the Karush-Kuhn-Tucker conditions [8, p. 221]. 
As in the proof of Lemma 2, it is possible to take limits in the equation 

fji^Y = d/(xn+1) + (X^A 

because limn-^oo Xn — A00 exists. This shows that limn^oo ujn = u00 exists and 
satisfies 

M^00 - 1)* = dfix™) + (A00 - perfA, 

where again ei has first entry 1 and remaining entries 0. Owing to Lemma 1, if 
x™ > 0, then mf0 - 1 = 0. If x™ = 0, then we must verify that a;,00 - 1 > 0. However, 
^nfc+i ^ xnk milsj. faoid for Some subsequence xnk in order for linin-^oo x™ = 0. It 
follows that 

rik 

w™ - 1 = lim 4^ - 1 > 0. 
* i Tlk-\-i- — 

This establishes the Karush-Kuhn-Tucker conditions and proves that x00 furnishes the 
global minimum. 

Given that every sequence xn converges to the minimum of /(#), it is natural to 
ask for the local rate of convergence. If M{x) denotes the algorithm map, this rate 
of convergence is determined by the dominant eigenvalue of the differential dM{x) 
at the optimal point z00, provided x00 is an interior point [15, p. 145]. Making the 
assumption that x00 is an interior point, it is possible to compute dM(x00) by implicit 
differentiation. 

Theorem 4. Suppose that f(x) is twice continuously differentiable and that the global 
minimum x00 is an interior point. If d2f(x00) is positive definite on the null space 
of A, then the sequence xn converges to x00 at a linear rate.  If d2 fix00) is positive 
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definite on all of Rs, then this rate is no greater than the dominant eigenvalue of the 
matrix 

[d2f(x™) + MP^)-
1
] - V*00)-1- (13) 

Proof Consider an interior point x. The stationarity condition satisfied by y = M(x) 
and its associated Lagrange multiplier A can be expressed as 

d10R(y\x)t + AtX = 0, 

Ay-b = 0. ^    ' 

Differentiating the left-hand-side of this system of equations with respect to both y 
and A gives the matrix 

(d?0R(y | x)    A*N 

which is invertible because d20R(y \ x) is positive definite on the null space of A and 
A has full rank [12, p. 312]. Hence, the implicit function theorem [8, p. 171] implies 
that M(x) and A are continuously differentiable functions of x on the interior of the 
feasible region. 

As in the proof of Lemma 2, we can solve for A in the first equation of (14) by 
multiplying on the left by (AAt)~1A. This yields 

Qd10R(M(x) \x)t = 0, (15) 

where Q = I — At(AAt)~1A is the orthogonal projection onto the null space of A. 
Differentiating equation (15) with respect to x and rearranging produces 

Qd20R{M(x) | x)dM(x) = -Qd11R{M{x) \ x). (16) 

It is possible to deduce from (16) that all eigenvalues of dM{x00) lie on the half- 
open interval [0,1). Suppose u ^ 0 is an eigenvalue of dM^x00) with eigenvector u. 
Since dM^x00) maps into the null space of A, it follows that Qu = u. This holds even 
if u is complex. Now convert both sides of (16) into quadratic forms by multiplying 
on the left by the conjugate transpose w* and on the right by u. Solving for u and 
using Qu = u and dM{x00)u = urn then yield 

ifd^RlMix™) I x00^ ,    x 
u = 7— — (—. (17) 

u^d2{)R{M{x<>:>) | x^u 

In view of formulas (4) and (5) and the fact that M(x00) = a:00, equation (17) becomes 

= nu*{X~)^u  
u*d2f(x00)u + ^(X00)-1^ K    ) 

Because d2f(x00) is positive definite on the null space of A, expression (8) implies 
that 0 < ou < 1. Since LJ is real, its eigenvector u can be taken real as well. 

The last assertion of the theorem follows from the fact [8, p. 85] that the maximum 
value of the Rayleigh quotient (18) over {u E Rs : u i=- 0} coincides with the dominant 
eigenvalue of the matrix (13). 
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3.1. Example. The objective function f(x) = — Yji=imi^I]-xi minimized in our 
multinomial example has a diagonal Hessian matrix with ith diagonal element rrii/xf. 
At the maximum likelihood values x™ = rrii/m, the matrix (13) consequently reduces 
to fj,/(m + fijl. Now not only does the maximum value of the Rayleigh quotient (18) 
coincide with the dominant eigenvalue of the matrix (13) [8, p. 85], but the whole set 
of critical values of the Rayleigh quotient coincides with the set of eigenvalues of this 
matrix. It follows that the Rayleigh quotient (18) has the constant value /i/(m + //), 
and consequently the dominant eigenvalue, and indeed, all eigenvalues of dM(x) equal 
jj,/(m + /i) as well. 

4. Discussion 

It is worth noting to what extent our theoretical development extends to noncon- 
vex functions f(x). The approximate version of the method, which depends on the 
quadratic approximation (6), is adversely affected if the Hessian d20R(xn \ xn) fails 
to be positive definite on the null space of A. Fortunately, subtracting the logarith- 
mic barrier term MSi=ixr^nxi from f(x) tends to convexify the problem so that 
d20R(xn | xn) can be positive definite even when d2f(xn) is not. This fact suggests 
that taking the barrier constant /x too small would be a mistake for nonconvex f(x). 

Much of the convergence analysis for the exact version of the method carries over 
without change. The local convergence analysis presented in Theorem 4 only requires 
the existence of the differential dM{x) of the algorithm map M{x) in a neighborhood 
of the minimum point x00. Existence of dM(x) locally is assured by the implicit 
function theorem under the hypotheses of the theorem. Thus, Theorem 4 extends 
to nonconvex f(x) subject to the interpretation that xn']~1 may only supply a local 
minimum of (2). Many of the features of global convergence also extend naturally. 
If the key assumption that f(x) has at most a finite number of stationary points on 
each nonempty manifold Ms is retained, then the proof of Theorem 3 shows that the 
iterates xn of the algorithm converge to a point x00 satisfying the first-order Karush- 
Kuhn-Tucker conditions. Of course, in the absence of convexity, we now have no 
guarantee that x00 furnishes either the global or even a local minimum of f(x). This 
theoretical handicap should not deter practical application of the method. 

Finally, taking a cue from the work of Censor and Zenios (1992), one can generalize 
the convex programming algorithm to problems with concave inequality constraints 
gi(x) > 0 instead of the nonnegativity constraints Xi > 0. A surrogate function for 
f(x) in this more general setting is 

R(x | xn) - f(x) - /x^[(fcOrn)lii<fc(aO - dg^x^x}. (19) 
i 

The point x = xn is the maximum point of 

/i^[^(xn)ln^(x) - dg^x^x] 
% 

by virtue of the concavity of ln^(a;). If an initial interior point x1 can be found in the 
sense that all gi{xx} > 0, then every subsequent point xn+1 generated by minimizing 
(19) is an interior point that decreases f(x). This algorithm is potentially useful for 
the broad class of geometric programming problems [17]. 
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