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THE DOUBLE CONFLUENT HEUN EQUATION: 

CHARACTERISTIC EXPONENT AND CONNECTION FORMULAE 

Wolfgang Biihring 

ABSTRACT. The connection relations between the solutions of different type are 
obtained for the double confluent Heun equation, a second-order linear differential 
equation with two irregular singular points of unit rank. For the relevant quan- 
tity which determines the characteristic exponent and also enters the connection 
coefficients, two entirely different representations are given. One is essentially a 
finite determinant (of size 4 by 4 or 3 by 3 or 2 by 2, depending on details of the 
derivation) the elements of which are Taylor series at half the convergence radius 
with recursively available coefficients. The other one is an asymptotic expansion 
in terms of the recursively known coefficients of the formal power series solutions 
of the differential equation at one of the irregular singular points. In terms of 
the same coefficients, a series representation converging like a power series at half 
the convergence radius is obtained for the other relevant quantity which enters 
the connection coefficients. Of the same type is a numerically stable explicit 
representation of the coefficients of the Floquet solutions. 

1.  Introduction 

Heun's differential equation [19], which is a Fuchsian differential equation with four 
regular singular points, has received renewed attention recently [44], together with 
its various confluent forms [13], [14]. The present paper is concerned with the double 
confluent Heun equation, a linear second-order differential equation with two irregular 
singular points of unit rank. If they are located at zero and infinity, the equation 
contains four parameters B, D, L, K, and may be written 

z2f" + zf + (-K2*2 + Bz-L2 + Dz'1 - K2z-2)f(z) = 0. (1.1) 

The other standard forms proposed in the literature [13] would be less convenient than 
(1.1) for our investigation, which reviews and further develops methods for computing 
connection coefficients. A treatment based on the symmetric canonical form, with 
more emphasis on the other aspects which are not covered here, may be found in the 
contribution of Schmidt and Wolf to a forthcoming monograph [43]. 

Equation (1.1) is more complicated than its special case where B = D = 0, which 
has been treated by several authors, either directly [11, 16, 17, 35] or by transformation 
into the Mathieu equation [2, 3, 21, 39, 45, 46], the properties of which are well-known 
from [1, 4, 15, 30, 32, 41, 47], to mention a few of the numerous references. 

In order to avoid unnecessary complications of presentation, we assume that the 
parameters J5, D, L, K,

2
 are real. Then it suffices to consider L > 0. 
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Relative to the singular point oo, there are formal power series solutions of (1.1), 

oo 

n=0 (1.2) 

foo2(z) = exp(-Kz)z-i+^B'K'> Y, an(B, D, -K)n\ (-2^)"", 

where the coefficients are given by a four-term recurrence relation, 

an = an(B,D,K), 

CLQ = 1, a_2 = a_i = 0, 

■.^{(-H+^-X'-M!^)--       <u) 

n-1 (n-2)(n-l) J 

The formal solutions (1.2) are asymptotic expansions as z —> oo in suitable sectors of 
the complex plane. 

Since a replacement of z by 1/z leaves z2f" + zf unchanged and so the whole 
differential equation (1.1) is transformed into itself if simultaneously the parameters 
B and D are interchanged, we may write down immediately the formal power series 
solutions relative to the singular point z = 0, 

oo n 

/oi(z) = exp(^)z*+i(i>/-)^oB(2?>-B,«)n!(^)   , 
n=0 (L4) 

OO 

n=0 

These formal solutions are asymptotic expansions as z —> 0 in suitable sectors of the 
complex plane. 

In the ring-shaped region 0 < \z\ < oo, there are Floquet solutions 

oo 

f^z) = z^1   ^2   cnzni    M ^ {-^ v}    (if 2z/ is not e(lual to an integer),   (1.5) 
n— — oo 

where the coefiicients obey the five-term recurrence relation 

-«2c£+2 + £><£+! + (M + n - L)(At + n + L)< + BcJJ.! - «2<_2 = 0.     (1.6) 

There are several equivalent definitions of the characteristic exponent fi as well as 
several different methods for computing it. 

Looking at (1.6) as an infinite homogeneous system of linear equations, the task may 
be reduced [51] (after the equations have been divided by appropriate n-dependent 
factors to ensure convergence) to evaluating its determinant for fi — 0. Such infinite 
determinants, which are known as Hill determinants [51], may be evaluated numeri- 
cally as the limit ./V —► oo of cut-off N by N determinants after, by analytical means, 
the speed of convergence has been improved [33, 34, 48]. 

Another method for computing the characteristic exponent uses numerical integra- 
tion of the differential equation [49] and the requirement that analytic continuation 
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along a path which surrounds the origin once reproduces each of the Floquet solutions 
apart from a constant factor. 

Numerical values of the characteristic exponent and of the coefficients of the Floquet 
solutions may be computed iteratively from (1.6) viewed as a non-linear eigenvalue 
problem [36] for an eigenvalue // such that the sum over n of the absolute squares of 
the coefficients remains finite. 

It is the main purpose of this work to obtain, for the differential equation (1.1), 
the linear relations between the solutions of different type, in particular between the 
asymptotic solutions at the two irregular singular points. For the relevant quantities 
which enter these connection formulas, including the characteristic exponent, we want 
to obtain explicit expressions which are not only of theoretical interest but are also 
suitable for computing numerical values. 

As suggested by the classical theory of linear differential equations with an irregular 
singular point of unit rank [23], [50], we consider contour integral solutions with the 
Laplace kernel. Our treatment may be viewed as a generalization and further develop- 
ment of the special, considerably simpler case investigated earlier [11] combined with 
our recent new method [12] for computing the characteristic exponent, which is quite 
different from all the methods mentioned above. 

For one of the relevant quantities, which determines the characteristic exponent 
and enters the connection coefficients, we obtain an explicit asymptotic formula in 
terms of the recursively available coefficients an(B,D,K) of the formal solutions (1.2). 
For the same quantity, we get also other expressions in terms of a finite determinant 
the elements of which are Taylor series at half the convergence radius with recur- 
sively available coefficients. Here the size of the determinant is four by four, three 
by three, or two by two, depending on some details of the derivation. The other 
relevant quantity which enters the connection coefficients (but is not needed for the 
characteristic exponent) is obtained in terms of convergent series which converge like 
a power series at half the convergence radius, involving the characteristic exponent 
and the coefficients of the formal solutions. Of the same type is a numerically stable 
explicit representation of all the coefficients of the Floquet solutions, which follows as 
an interesting by-product of our investigation. 

2.  Contour integral solutions 

2.1. Integral representation. In order to introduce the various quantities needed 
in this investigation, we closely follow our earlier work [12]. There are, however, 
some differences due to the different forms of the underlying differential equation. In 
particular, the quantity K here is a parameter of the differential equation rather than 
standing for +1 or —1. 

Extracting first an arbitrary power of z for later flexibility, we consider solutions 

f(z) = zx(27ri)-1 f exp(Kzt)V(t) dt. (2.1) 
Jc 

Then the weight function V(t) is seen, by standard techniques [23], to be a solution 
of the ^-equation 

(j2 _ yyW + {(7 + 2X)t - -}¥& + (3 - A - L)(3 - A + L)V" 

- KDV - K4V(t) = 0, (2.2) 
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and the possible contours C are such that the integrand term (or bilinear concomi- 
tant [23]) 

(2A+ !)£+- v Qxp(KZt){-DV + -(A2 - L^izV - -V') + z 
[ K K \ K       I 

1   n Bi   \'     1 /r Bi   \" 
-H[(2A+1)t+«]7)+^([(2A+1)'+7r]y) 
+ ^3(t2-l)y-z2[(t2-l)y], 

i i 
+ -J[(t2-l)V)"-^[(t2-l)V}, (2.3) 

has the same value, identically in z, at both termini of the contour. 
At infinity the ^-equation has an irregular singular point. It can be shown that the 

associated four independent solutions behave asymptotically, when t —► oo, as 

exp(2£^)t-1+iA+i£2^/^ 

with s = 1, i, —1, —i, respectively. Due to the common factor exp(Kzt), (2.3) tends to 
zero when t —> oo in a certain sector of the t-plane. So there are permissible contours 
which start at and return to infinity in appropriate directions depending on arg(ft£). 

2.2. Floquet solutions of the ^-equation. Besides the irregular singular point 
at infinity, the ^-equation (2.2) has two regular singular points at t = — 1 and t = 1. 
Outside the unit circle, we have Floquet solutions 

v^t) = t*-"-1^*), 
+ 0O 

*M(*)=     E    dn*"n. 

(2.4) 

(2.5) 

where the coefficients obey the recurrence relation 

-K
4<+2 + KD(H - A + n + 2)<+1 

+ (n + n- L)(fi + n + L)(fj, - A + n + 1)(/J - A + n + 2) d% 

+ —(fjL-X + n){n - A + n + l)(/x - A + n + 2) <_! 

- (n - A + n - l)(/i - A + n)(/t - A + n + l)(/x - A -+ 

which, by comparison with (1.6), is satisfied if 

2)C 

_ r(/i-A + l + n) 
"   r^-A + i)   K   Cn- 

(2.6) 

(2.7) 

Possible values of fi are therefore /JL = — is or [i = +1;, where v is the characteristic ex- 
ponent as before. There are two further solutions which, however, are entire functions 
of t and so do not contribute to the contour integrals we will consider. 
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2.3.  Solutions relative to the regular singular points of the t-equation.    The 
exponents of the ^-equation relative to the regular singular points t = ±1 are 0, 1, 2, 
A - 1/2 zb B/{2K). Provided that A ± B/(2K) is not equal to half an odd integer, the 
solutions can be written, 

V+(t) = F(K,l-t),     |*-1|<2, (2.8) 

Uj-(t) = Gjfa 1 - t),     \t-l\< 2, j = 0,1,2, (2.9) 

and 

where 

V-(t) = F(-K, 1 + t),     \t + l\< 2, (2.10) 

U^(t) = Gj(-K,l + t),     \t + l\ <2, j = 0,1,2, (2.11) 

GJ(K,X) = xj ^2 An(K,3)xn,     |a;| < 2, (2.12) 
71 = 0 

F(K, X) = X
X
-*

+
^

B/K)
H(K, X), (2.13) 

H(K,x) = J2An(K,X-- + --yn,     \x\<2, (2.14) 
n=0 

with the initial coefficients chosen arbitrarily as 

Ao(K,q) = l    (forg = 0,l,2,A-|H-|f), (2.15) 

A1(K,,0) = 0,    A2(K,0) = 0,    A1(K,1) = 0. (2.16) 

The other coefficients then are determined by the recurrence relation 

A  (      N       (g + n-A-L)(^ + n-A + L) 
2(g + n)(g + ra - A + ^ - ^B jK) 

+ 2(g + n)(g + n-l)(g + n-A + i-^/^)^-2(^ q) ^^ 

~ 2(g + n)(q + n - l)(q + n - 2)(g + n - A + f - IS//c) An-3(/C'g)' 

where A_i(«,g) =^_2(^,g) = 0;n>0ifg = 2, A- | + |f; n > 1 if g = l;.n > 2 if 
(7 = 0. 

2.4. Analytic continuation in the t-plane. By equations (2.8)-(2.11), we have 
two fundamental sets of solutions, valid in different but overlapping domains. Any 
solution of one set may be expressed as a linear combination of the solutions of the 
other set, in particular 

2 

V+(t) = E(-K)V-(t) + J^Ml/rOt). (2.18) 
3=0 

The coefficients E and Bj may be determined by evaluating this equation and its first 
three derivatives at t = 0.   They therefore appear as the solution of the system of 
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linear equations 

f F(-K,1)     GO(-K,1) GI(-K,1) G2(-sl)\ {E(-K)\ 
F'(-K,1)     G'0(-K,1) Gi(-M) G'2(-K,1) BO(-K) 
F"(-K,1)    G'{(-K,1) G'{(-K,1) G'2'(-K,l) B1(-K) 

\F"'(-K,1)   GV(-K,1) G'{'(-K,l) G'1'(-K,1) \B2(-K)J 

and may be considered as known numbers. Introducing 

-F'(K,1) 

F"(K,1) 

\-F"'(K,l)J 
(2.19) 

we have 

G(—K, x) — y^jBj(—K)Gj(—K,x)) 

3=0 

U+(t) = G{K,l-t), 

U-(t) = G(-K,l + t), 

V+(t) = E(-K)V-(t) + U-(t). 

Similarly, we have 

V-(t) = E(K)V+(t) + U+(t). 

It then follows, for consistency of (2.23), (2.24), that 

17+(t) = {1 - E(-K)E(K.)}V-(t) - E(K,)U-(t), 

U-(t) = {1 - E(-K)E(K)}V+(t) - E(-K)U+(t). 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

2.5. Multiplicative solutions in the t-plane. Near the origin, let us start with 
the solution 

W(t) = aV+(t) + 7C/+ (t) (2.27) 

or, by means of (2.23), (2.25), 

W(t) = {aE(-K) + 7[1 - E(-K,)E(K)]}V-(t) + {a - <yE(K)}U-(t),    (2.28) 

and consider analytic continuation along a path in the form of a simple closed loop 
surrounding the two regular singular points 1, —1 in the positive sense. We want 
(2.27)-(2.28) to become a multiplicative solution [5], that is, a solution which, after the 
loop has been traversed, is reproduced apart from a constant factor. It is convenient 
to write this factor in the form 

pexp(2z7rA). (2.29) 

In the same way as in [12], we then can find that a and 7 must satisfy the homogeneous 
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system of linear equations 

E(-K){P - exp(27riA)}a + [1 - E(-K)E(K)]{P + exp(-7ri—) \<y = 0, 

.B* 
— Ip + expyiri—) >a + E(K){P — exp(—27riA)}7 = 0 

and that, as a consequence, 

p — exp(—2z7r/i), 

(2.30) 

(2.31) 

where \i G {—v, v} is the characteristic exponent as before, which is determined by 

cos( 

or 

[cos (717/)]2 = 

Here we have introduced 

e(Ac) = 

IB-] 

(7r['i+2«])COS(7r[/i~2«])=e("'6)c(/c) 

'lirBx 

(2.32) 

(2.33) 

1 TB\
E

(
K
^ 

r(A + !-§£)r(-A + i-i£) 
(2.34) 

a quantity which is independent of A, as will be shown below.  In view of (2.31), all 
the quantities depending on p will carry an index /z. 

Now (2.28) can be simplified by means of (2.30), so that we have 

W^t) = 

(a^V+^+^U+it), if|i-l|<2 

expi-i^X - M - l]){exp(2i7r[A - l))™^ + \fh(-K) a„V-(t) 
I cos(7r[A<-^-]) 

+s^±mE^u-it)},   a 1*+11 < 2, 
(2.35) 

with 

7^ = exp I ZTT 
■       1     IB 

.A"2 + 2« 
|   cos(7r[M+|f]) 

^(^)sin(7r[A — f.i]) 
Un (2.36) 

from (2.30). We may choose the arbitrary normalization to be 
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Q^ = exp 
1 IB 
2 + 2^ 

)r(-* + e(«) 
2      2 KJV cosing+^]) 

(2.37) 

so as to get the two parts of (2.35) looking similar and differing in some signs and 
a common phase factor only. Furthermore, according to (2.29), (2.31), we are con- 
structing a multiplicative solution which obeys the same circuit relation as (2.4) and 
therefore is proportional to (2.4) outside the unit circle. We thus obtain finally 

w^t) = { 

ri      1      1B,^,   ,      1      IB, 
«P(-«r[A-2 + 2-])r(-A+----: '(") 

cos(7r[/i ■ 2 K,M 

v+(t) 

+ r(-A + - + 1      1 B  cos(7r[A 2 KIJ e(-K) 
2 K    sin(7r[A — fi\) 

if \t-l\ <2, 

exp(—i7r[A — fx — 1])< exp(i7r[A — 
IB 
2 K" 

])r(- 

cos(7r[M-|f]) 

-A+2 + 2«> 

lBn^+(*), 

e(-K) 
COsCTTl/i-if]) 

F-(i) 

+ r(-A lB,cos(7r[A+|f 

cps(7r[^+if]) 

if |t + l| <2, 

[A^Gu-A + l)^), 

£/-(*) 

(2.38) 

Here the constant A^ may be determined by comparison of the first and third part 
of (2.38) evaluated at t = 2 or by comparison of the second and third part of (2.38) 
evaluated at t = —2. We do not display these formulas, but shall obtain below another, 
more attractive formula for AM. 

The phases of the different square roots in (2.37)-(2.38) should be chosen so that 
their sum is zero, which is possible and necessary because of (2.32). In any situation 
such that the denominator vanishes, the square root should be rewritten by means of 
(2.32). 

3.  Special contour integral solutions 

We consider contours which start at and return to infinity near the positive imagi- 
nary axis, surrounding in the positive sense one or both of the finite singular points, 
respectively. With the phase convention arg(l — t) — arg(l +1) = 0 on the interval 
(—1,1) of the real axis and arg(t) = 0 on the positive real axis, we then may define 
the solutions 

/_,(,) = exp(„[-A +1 - if ])r(-A + i - if y+M<*/.V 

x (27ri)"1  /        exp(hizt)V+(t)dt,    0 < arg(^) < TT, (3.1) 
Jioo 
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1       1B\ fMz) = r(-A+ i + i|)«^i-i(^)^ 

x (27ri)"1  / exp(K;2i)y_(t)dt,     0 < arg(K^) < TT, (3.2) 

/'(-1+,1+) 
x (27ri)""1  / exp(^t)V^(t) dt,     0 < arg(^) < TT. (3.3) 

In addition, we may consider such integrals with contours which are rotated by an 
angle i/; and so yield the analytic continuation for 0 < arg(/cz) — ip<7r. In the case of 
(3.1), we have —37r/2 < if; < 7r/2, and in the case of (3.2), we have —7r/2 < ip < 37r/2, 
since in each case the presence of the other singular point inhibits larger rotations. 
We thus have extended the definition of the solution (3.1) to the sector —Sir/2 < 
a,rg(Kz) < 37r/2 and of the solution (3.2) to the sector —7r/2 < arg(^2:) < 57r/2. In 
these sectors, the solutions are represented asymptotically by the respective formal 
solutions (1.2), which follow if the series in the integrals are integrated term-by-term 
and use is made of the fact that 

AHK'A-2 + 27J = r(A+i + if+rl)
2    0»(B'-D',6> ^ 

by comparison of the recurrence relation (2.17) for q = A — 1/2 + B/(2K,) with the 
recurrence relation (1.3). 

In the case of (3.3), the contour surrounds both singular points and so the angle of 
rotation ^ is not restricted. Term-by-term integration of the series yields the Floquet 
solutions (1.5), which therefore are valid for arbitrary values of aigfaz). 

4.  Linear relations between the solutions 

4.1.  Connection between the Floquet solutions and the formal solutions. 
Next we consider the solution 

&Mz) = Kx-^zx{2m)-1 I expfazQW^t) dt, 
J ioo 

0 < arg(tt2:) < TT. (4.1) 

As it stands, it essentially represents the Floquet solutions, by (3.3) and the last line 
of (2.38). The contour is equivalent to the sum of the contours which surround only 
one of the singular points, each of which yields one of the local solutions at infinity 
by (3.1) or (3.2), respectively. Accounting for the various constant factors, we obtain 

+ exp(i7r /i+---— ^K-5+k(B/K) 

 r-r TBT{f°°2(z) (4-2) COS TTyU-^f ) 
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for /i € {z/, -z/} using the more detailed notation e(ft) = e(B,D,K). It then follows 
that 

/ooi^-exp^   ?7r[2 + 2KJJK sin(27ri/) 

e(B,£>,K) 

cos(7r[-i/+|f])" 
x <! exp(^) J ,„/T i BnA-^"'//-.(^) 

e(B,D,K) 

008(^4- |f])' 
-expHTT^Z-^f^A^V^) ^ (4-3) 

/oo2(,) = ^-^e(B'AK) 

sin(27rz/) 

«B>D>-*   *-.«-f-M 

-\l enD'~"^Mz))> (4-4) 

provided that the characteristic exponent is not equal to an integer or half an odd 
integer; otherwise each of (4.3), (4.4) is the starting point from which the relevant 
formula follows by an appropriate limiting process. 

4.2.  Circuit relations.    The circuit relations for the Floquet solutions are 

Ue^'z) = e^^Uz), (4.5) 

where m is any integer. By means of (4.3), (4.4), the circuit relations for the local 
solutions at infinity may then be found as 

where 

fooi(e2m™z) = Tii/ooiO*) + Tia/ooaO*), 

/oo2(e2m^) - Tai/ooiO*) + Taa/ooaO*), 

m        sin( 1 - 2m]'iri>)     rt.       /    .   B\   .   /   B \ sin(2m7rz/) 
Tn = —-—7—r—- +2zexp  -ZTT—   sin TT—      .

V
. —r^, 

sin(7rz/) V       2K: /       V   2/c/   sin(27rzy) 

B, D, —K) sin(2m7r^) 

cos(7rz/)        sin(7n/) 

(4.6) 

ria = -^/» exp f-frg)e(B'p' -K) ^.^ 
\        K /     coslTrz/)        siniTrz/) 

(4.7) 
rr    _    , ..-g//c e(Bi Di K) sin(2m7ri/) 

cos(7rz/)      sin(7rz/) 

^        sin(fl + 2ml7rz/)     rt.       /   .   B \   .   /   5 \ sin(2m7ri/) 
r22 = —^V^—r—- -2iexp[-m—   sin TT—   ^——r^. 

sin(7ri/) V       2/^/       \   2K J   sin(27rz/) 

These circuit relations give the solution to the so-called lateral connection problem [8]. 
They also provide a simple and convenient description of the Stokes phenomenon, 
which has again received attention by many authors, for example, by Kohno [27], 
Braaksma [10], Immink [22], Martinet and Ramis [31], Balser et al. [6], and by the 
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authors mentioned below in the context of the limit formulas. The entirely new aspect 
of smoothing the Stokes discontinuities, raised by Berry [9] and further investigated 
by Olver [38] and others (the references may be found in [38]), is beyond the scope of 
the present work. 

4.3.  Connection between the local solutions at the irregular singular points. 
By the substitution (B,D,z) -► (D,B, 1/z), we obtain from (4.2) 

V C0SMM + ff]) 

+ expIiw (it 
1      ID \K-i+i(D/K) 

e(D,B,-K) 
TDTT-'

02
^/ cos^-if])- (4.8) 

for jj, e {z/, —i/}. It then follows that 

foi(z) = exp^-i 
ri    ID 

2 + 27 y h + h(D/K)e(D'B>-K) 
sin(27rz/) 

" {'**>yJ%:*%r)'^
D-B>"-M') 

sin(27rz/) 

J    /     e(D,B,-K)      A .^ 
cos(7r[-^-|f]) 

e(jD'JB, T^rMA B)Kvf.v{z) \. (4.10) 
cos(7r[i/-!£]) 

From (4.9)-(4.10) and (4.2), the coefficients in the linear relations 

fol(z) = Qllfool(z) + Ql2foo2(z), 

f02{z) = Q2lfool(z) + £22/002(2) 
(4.11) 

may then be found to be 
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Qu =**[(*-*>/"] exp 127r UJ 
1 lDi\e(D,B,-K,) 
2 ~ 2^ cos(7r^)     2 sin(7r^) 

x < -A 

+ . 

e(B,D,K) e(L>,5,K 

cos(7r[z/+|f])Ycos(7r[-i/+|f]) 
3-^—r^exp^Tri/) 

e(g»A«) 6(1?^^) exDM7rz. 
coS(7r[-I/+ if]) Vcos(7r[z,+ if]) 

Q12 = /cal^+^/^exp(-ITT — ) /     N     0  ■   /     x 
2^ cos(7r^)     2sin(7ri/) 

e(B,D,-K) 
r~B~ 

e(D,B,K) 
Y^77ru exp(2i7rv) 

cos^-ifDVcosM-^+if]) 

e(B,D,-K 
IB-[\\I      i r' ,'iDnr-^exP(~2J7ry) f' coS(7r[-^-if])Vcos(7r^+if]) 

Q21 = K-f[(^)/^(A5^)       1 
cos(7rz/)   2sin(7rz/) 

(4.12) 

2(1), B, e(B,£>,K) 

cos^+ifDVcosM-^-if]) 

e(B,D,K) e(D,B,-K) 
TDT COsW-^+lfDVcOsCTT^-if]) 

e(D,B,K)       1 
Qa2 = lii[(B-i»/-]eXp(i7r[i-i|]) 

cos(7r^)   2sin(7r^) 

TB" cos(7r[^ - |^]) y cos(7r[—z/ 
e(AS,-«) 

i-^rr^ exp(z7rz/) 
2 « ]) 

e{B,D;-K) 
YW{\ ^"-i/exp(-Z7ri/) 

where 

cosW-^-ifDVcos^-if]) 

(4.13) 

The connection relations between the various solutions are given by (4.2)-(4.4), 
(4.6)-(4.7), (4.8)-(4.10), and (4.11)-(4.13). Two functions of the parameters, e(«) = 
e(B,D,K,) and A^^B^D), enter, besides the characteristic exponent JJ, which is also 
determined by e(^) according to (2.33). We are going to obtain explicit expressions 
for these quantities. 

5. Expressions for e(ft) 

5.1. Asymptotic expansion for e(tt).    It is convenient to use Pochhammer sym- 
bols 

(x)n = x(x + 1) • • • {x + n - 1) 
T(x + n) 

(5.1) 
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in order to state the following result. 

Theorem 1.   With 

m{-~ K> ~ ™\ ^ s  \4-3—TB— ^a , i—TBT ^  '   ' "^ 

(5.3) 

if;e /ia^e 

e(-*) = 7rC„(/c)   1 + X) /Atlij.";   M-*) + ©(n-^1) (5.4) 

as n —> oo. 

This theorem, which gives the quantity e(«) in terms of the coefficients an(B,D,K,) 
of the formal solutions (1.2), may be viewed as a special case of the corresponding 
theorem for a more general differential equation [12]. It is based on the work of Schafke 
and Schmidt [42] and may conveniently be derived by means of Darboux's method 
[37] as explained in detail in [12]. There is much freedom in choosing appropriate 
values of n and M in order to get accurate numerical results. Also, the parameter A is 
quite arbitrary except that A — B/(2K) or A + B/(2K) must not be equal to or should 
not be close to half an odd integer. If not conflicting with this restriction, the choice 
A = L (or A = —L) is most advantageous, as shown below. As long as n is finite, the 
right-hand side of (5.4) depends on A, but this dependence disappears asymptotically 
as n —> oo. For we have 

n\n\ 
r(-A+l + 5f +n)r(A+i + if +n) 

= n1-B'K[l + 0{n-1)\ (5.5) 

as n —> oo. So, comparison of corresponding results for different values of the compu- 
tational parameter A may give an idea of the achieved accuracy. 

Theorem 1 implies the limit formula 

e(-K) = 7r lim — = . R   "•"', = r-s -2BlKaJB,D,K). (5.6) V     '        — r(-A+i + |f +n)r(A+| + if +n) 

Such limit formulas have been obtained, apart from factors which tend to 1 as n —► oo, 
by Jurkat, Lutz and Peyerimhoff [24, 25, 26], Hinton [20], Kurth and Schmidt [28], 
and, more recently, Balser, Jurkat, and Lutz [8]. In addition, Balser et al. [8] give 
an equivalent infinite series representation. Proceeding in the same way, we may get 
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from (5.6), using (5.5) and (1.3) 

e(-K) = 7r2B^ 
r(-£ + i + if)r(i + i + if) 

2KD 
1 + 

(-L+| + If)2(L + i + lf)2 

(j-l)!(i-l)! 
+ §(-i + § + 3f)^ +§ + §£). 

2KD 
aj-2{B,D,K)- 

4K
4 

(i-2)(j-i) 
aj-3(B,D,K) (5.7) 

Also, some of the authors mentioned above in the context of the Stokes phenomenon 
give limit formulas for the Stokes multipliers. 

From a computational point of view the applicability of both the series representa- 
tion (5.7) and the limit formulas such as (5.6) is questionable, however, because the 
rate of convergence is slow. Thus Theorem 1 implies significant progress. 

5.2. Another expression for e(«). Alternatively, we may compute the related 
quantity E(K) by solving the system of linear equations (2.19) by means of Cramer's 
rule and the fact that the determinant DQ of the system is a Wronskian of the t- 
equation (2.2) equal to 

A> = -(A- 

We then have 

1B> 
2 K, 

IB )(-H")(-H^+|-^ <"> 
E(-K) -D1 

(A-!-if)(A- §f)(A- IS.) 
2 K) 

2A-§ + i(B/«) 

where 

Dx 

F(«,l) Go(-«,l) 
-F'(«,l) G&(-K,1) 

F"(«,l) Gg(-«,1) 
-F"'(«,l) G^(-«,l) 

GiC-K,!) 

Gi(-«,1) 
Gi'(-«,1) 
Gi"(-«,1) 

G2(-«,l) 
<%(-«, 1) 
G'2'(-K)l) 
G'2"(-K)l) 

(5.9) 

(5.10) 

The elements of this determinant are Taylor series at half the convergence radius with 
recursively known coefficients according to (2.12)-(2.17). Using (2.34), we then have 
finally 

e(-ft) = 
7r£>i 

r(A + ! + !f)r(-A + ! + 1M. 
2   K 

.2A-f+l(B/^). (5.11) 

Again A is a computational parameter on which the value of (5.11) does not depend. 
Inspection of (2.17) shows that here, notably if L is not small, it is advantageous to 
choose A equal or near to L or —L, but with the reservation that A d= B/(2K) must 
not be equal or should not be near to half an odd integer. 

It will be shown in Section 7 below that a similar expression can be found with 
a 3 by 3 determinant in place of Z>i if A is kept at our disposal, or even with a 2 
by 2 determinant if a special value of A is used which, however, is different from the 
recommended value. 
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The method of evaluating e(«) by means of (5.10)-(5.11) or by the corresponding 
modified equations in Section 7 below is well suited for computing accurate numerical 
values and in so far competes with the method of Theorem 1. Depending on the values 
of the parameters of the differential equation, it may be that one or the other of the 
methods is more advantageous. 

6.  The constant A^ and the coefficients of the Floquet solutions 

An expression for A^ = A^B, D) can be obtained, according to Naundorf [35], if use 
is made of the asymptotic representation of the exponential function by Heaviside's 
exponential series [18], 

oo ^ 

expO) -   V      .   ^c^,^6 as x -> oo, | argO)| < TT. (6.1) 2-—'   1 (n + b + 1) 
n= — oo      v / 

By means of (6.1) with <5= ^ + |^+/xfor the first or 8 = \ — \ ^ + // for the second 
equation, the formal solutions (1.2) get the same analytical structure as the Floquet 
solutions (1.5). Inserting the so modified formal solutions in (4.2) and then comparing 
the coefficients of the power series on the left and right-hand side, we obtain 

^^-V^TfkSr^l^f^^)2^^"'^ 
■(-«ri 

/   e(B,D,-K) 

cos(7r[A*-if]) 

"E^.j;^,)'-'-^--).       <«) 
where the series converge like a power series at half the convergence radius. 

Balser et al. [8] obtain a relation such as (6.2) in a different way using the "associated 
functions" introduced by them [7] or by Schafke 40], but our method of deriving (6.2) 
on the basis of Naundorf [35] seems to be simpler and more convenient. 

Each of the two terms on the right-hand side of (6.2) alone satisfies the recurrence 
relation (1.6) for the coefficients c% of the Floquet solutions and tends to zero as 
n —> oo, even if /i is different from the characteristic exponent, but generally increases 
without limit as n —>• — oo. It is only with the correct value of // that the sum of the 
two terms tends to zero as n —> — oo too and so has the appropriate behavior required 
for the cfi. 

If we normalize the Floquet solutions by CQ = 1, we may use (6.2) with n = 0 to 
get 

y COS(7r[/i-h 2-J) ^r(^+ 2 + 2^ + /) 

e(ff,D,-/0 
rir 1R    Y^     ' , R 2-W.B, £>,-*;). (6.3) 

After A^ has been determined in this way, (6.2) with other values of n, positive or neg- 
ative, gives an explicit representation of the normalized coefficients c^ of the Floquet 
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solutions. However, for negative values of n the representation (6.2) becomes more 
and more unstable numerically, each small value being the result of heavy cancellation 
of large terms. We therefore want to derive another representation, which is stable 
just for negative values of n while it becomes increasingly unstable if n is positive. 

The substitution (B, D, z) —► (D, B, 1/z) leaves the differential equation unaltered, 
and the coefficients c^ = c%(B,D) of the Floquet solutions satisfy 

c%(D,B) = cZZ(B,D), (6.4) 

provided that the normalization is always chosen in the same way, 

eg (B, D) = 4(D, B) = Co "(B, D) = c'^D, B) = 1. (6.5) 

Corresponding to (6.2), we therefore also have 

/   e{D,B,-K) 

which may be rewritten with (n, fi) replaced by (—n, — JJ,). For n — 0, this yields, with 
the normalization (6.5), 

*-(*■»> - jj&xi^^H+rr'**™ 
e(D,B,-K)     ^ ?! .   ,„ „ 

(6.7) 

By means of (6.3) and (6.7), the quantities r^ appearing in the coefficients (4.12) of 
the connection relation (4.11) can be computed from (4.13). 

So far we have needed (6.2) and (6.6) for n = 0 only, but it might be interesting to 
consider them for all n. Using each result only in the stable region of the n-values we 
may state the following result. 

Theorem 2.   With the quantities (6.3) and (6.7), the coefficients of the Floquet solu- 
tions (1.5) are 

>   — « T-R -2-lai(B,D,K) Z-J TV/, J- 3    ,    1 B_   1   „   1   /x iV     5      5    y A^Z?) 1     y cos(7r[M+ if ]) ^ r(M+ § + if +n + I) 

+ (-K)"J   y^^Ew ^4B ^2-%(B, £>, -«)} ycos(7r[M-if])^r(M+|-if +n + 0 ^ 



364 BUHRING 

for n = 0,1,2,..., and 

^- A_,(A^)r Vcos(7r[-/,+ |f])^r(-/, + | + If-n + /)2   ^'^ 

2 XJJ  l=n i {-V + 2  " 2 ^ - n + ^ J 

+ (_«)»    /      ^CA^-ZC) 
cos(7r[-^ - ^]) ^ r(-M + | - !£ - n + o 

(6.8) 

/orn = 0,-1,-2,.... 

The upper expression tends to zero for n —► oo and satisfies the recurrence relation 
(1.6) for n = 2,3,..., the lower expression tends to zero for n —> —oo and satisfies the 
recurrence relation for n = — 2, — 3,..., and this all would be true even if the value of 
the characteristic exponent is incorrect. It is only for every correct value of /i that the 
two expressions match and the recurrence relation is satisfied for n = —1,0,1, too. 

7.  Further representations 

There are different representations for the various solutions of the differential equa- 
tion (1.1) considered above. 

If in the local solutions at each of the irregular singular points an exponential factor 
appropriate to the other singular point is extracted, we may find 

oo 

/ooiC*) = expMz-^W") exp(^) £ bn(B, D, K, s)n\ (2^)"", 

oo 

foo2(z) = exp(-Kz)z-i+^B/K) exp(^) ^ bn(B, D, -K, s)n\ (-2^)-" 
n=0 

s e {—ft, ft}, where the new coefficients satisfy a three-term recurrence relation, 

bn = bn(B,D,K,s), 

bo = 1, 6_2 = 6_i = 0, 

1  f r/ ■        1     IB       \ /       1      IB       \     o 6^^{K-L-2 + 27+n)(L-2 + 27+n)-2^ bn-i (7.2) 

2[KD + Bs + 2Ks(n-l)]u      \ 
+ — :— -bn-2 >, n = l,2,.. n — 1 J 

The old and new coefficients are related to each other by 

n . 
ml 

a« =  E      U       '      M(2«g)W-ro&m, ^^ n! (n — m)! 

ml 
n\ (n — m)\ 

b" = E    ,,m!    M(-2«a)w-roai 

(7.3) 

m=0 



THE DOUBLE CONFLUENT HEUN EQUATION 365 

Again, if an exponential factor appropriate to the other singular point is extracted, 
we also have 

00 n 
f01(z) = exp^y+iW") exp(sz) J2 bn(D, B, K, a)n\ (^)   , 

(7-4) 

Mz) =exp(-'^)zi-^D^exp(sz)J2bn(D,B,-K,s)n\ (-^)", 
n=0 

s G {—K, K}. Different representations of the Floquet solutions, with coefficients obey- 
ing a four-term or three-term recurrence relation, may be obtained if appropriate 
exponential factors are extracted. We have 

00 

/^) = ^exp(^)exp(rz)   £   e^nz
n,    M e {-^}, (7.5) 

n= — oo 

(s2 - K
2
K+2 + {D - 2s (M + n + i) }e£+1 + {(M + n - L)(ji + n + L) - 2rs}e»n 

+ {B + 2r (/* + n - 1) Jc^! - (r2 - «2)e^2 = 0. (7.6) 

So if r = 0 and 5 G {—«,«}, the coefficients satisfy a four-term recurrence relation. If 
5 = 0 and r G {—ft, ft}, they satisfy a four-term recurrence relation. If r, s G {—ft, ft}, 
they satisfy a three-term recurrence relation. The choice r = — 5 = ft would essentially 
correspond to a solution of the canonic equation [13, 43]. The Floquet solutions of 
the canonic equation therefore have coefficients which satisfy a three-term recurrence 
relation. This is interesting in so far as (if the characteristic exponent is already known) 
the coefficients can then be computed also by means of continued fractions, a method 
which has been investigated extensively in the context of the Mathieu equation. 

It should be noted that some quantities which appear here in the following part 
of Section 7 have a local meaning for this section only and their definitions here are 
different from those of the corresponding quantities in the other sections. Moreover, 
inside this section, the same symbols are used for different but analogical quantities 
in the case of the third-order or the second-order ^-equation, respectively. 

In place of the integral representation (2.1), we now might consider 

f(z) = exp('-^A(27ri)-1 / ex$(Kzt)V(t) dt (7.7) 

with 5 = ftor5 = —ft and obtain a third-order ^-equation, 

{t2 - 1)1/'"+ [(5 - 2A)* - -1V" + [-2ft5t + (2 - A - L)(2 - A + L)]V' 
L ft J 

+ [-KD + (2A - S)Ks]V(t) = 0. (7.8) 

With the appropriate contours, this integral representation essentially yields the Flo- 
quet solutions in the form (7.5) with r = 0 and the formal solutions at infinity in the 
form (7.1)-(7.2). As a consequence, a modified version of Theorem 1 is also true in 
which all the coefficients an(5,D,ft) are replaced by the corresponding coefficients 
6n(5,£),ft, 5) with 5 = ft or 5 = —ft, but we cannot see any advantage in this mod- 
ified representation of e(ft).   The other method for computing e(ft) by means of a 
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finite determinant according to (5.10)-(5.11), however, becomes more attractive by 
the reduction of the order of the ^-equation. For we now have 

e(-/c) = 
TTDI 

r(A+i + if)r(-A + | + |f) 
with the 3 by 3 (rather than 4 by 4) determinant 

2A-f + i(B/«) 

i?l = 
F(K,1)      GO(-M)    GI(-K,1) 

-F(«,l)    GoC-w.!)    GU-K,!) 
F"(K,1)     GZ(-K,1)    G'{(-K,1) 

(7.9) 

(7.10) 

where F, Go, Gi are formally the same as above in (2.12)-(2.14), but in terms of new 
coefficients defined here by the starting values 

1 ID 
Ao(K,q) = l    (for g = 0,l,A-- + --), 

A1(K,0) = 0, 

and the new recurrence relation 

.   .      .      (q + n- X-L)(q + n- X + L) -2KS 

2(5 + n)(g + n - A + | - fB/K) 

(7.11) 

(7.12) 

+ 
KD + 2(q + n-\-±\ K,S 

% + n)(q + n-l)^ + n-A+|- |S/«) 
An_2(«,g), (7.13) 

where ^4_i(^, g) = 0; n > 0 if q = 1, A — | + |^; n > 1 if g = 0. The new formula 
(7.9) contains the computational parameter A, which is still at our disposal except for 
the obvious restrictions, but its value is independent of A. 

With the special choice [43] 

ti *-5l1 + 7)- (7.14) 

it is even possible to find a second-order ^-equation, which is 

(i2 - i)V" + [(3 - 2A)t - -| V + [(1 - A - L)(l -X + L)- 2Kst]V(t) = 0, 

and the formula 

e(-K) = 
TTDI 

r(A + i + if)r(-A + | + if 
with the 2 by 2 determinant 

.2A-| + i(B/«) 

£>! = 
F(K,1)      C?O(-K,1) 
-F'(K,1)    G'0(-K,l) 

(7.15) 

(7.16) 

(7.17) 

where F, Go are formally the same as above in (2.12)-(2.14), but in terms of new 
coefficients defined here by the starting values 

117-? 
Ao(K,q) = l    (for g = 0,A-- + -—), 

Z        Z K 
(7.18) 
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and the new recurrence relation 

(q. + n - A - L)(q + n - X + L) - 2^5 

2(g + n)(g + n-A+| - |B//c) 

^5 

.   .      N       i c/.-r it — A — ±J \ q T a — A -r -^; — ^^*  .        /      x 

■ /   ,    w   ,        , ,1—r^rNAn-2(«,g), (7.19) 
(g + n)(g + n - A + f - f J5/«) 

where A-ifaq) = 0 and n > 0. It should be noted that A in (7.15)-(7.19), which 
has been kept for convenience of presentation, is fixed and always given by (7.14). So 
the new formula (7.16) breaks down in the exceptional cases when (D/s ± B/K)/2 is 
equal to an integer. 

Although generally the representation of e(ft) in terms of the 2 by 2 determinant 
is more attractive than that with the 3 by 3 determinant, the latter has the advan- 
tage that here the parameter A is still at our disposal and so the breakdown in the 
exceptional cases may easily be avoided by a suitable choice of A. 

8. The special case where B = D = 0 

The results of this work simplify considerably when B = D = 0. Then the dependence 
on the sign of K, disappears for various quantities, so that we have 

M-ft) = an(ft), (8.1) 
E(-K) = E(«), (8.2) 

e(-ft) = e(«) = e. (8.3) 

If we impose the condition that CQ   = 1 (that is different from zero), then the 
characteristic exponent is determined modulo 2 by 

cos(7r/x) = e, (8.4) 

and so the various square roots in (2.37), (2.38) etc. become equal to 1 and disappear 
from the results. Also, we then have 

■<&,+! = 0, (8.5) 

cX = ^n- (8.6) 

Further aspects of this special case are treated in [11, 17, 35, 8]. 

9.  A simple example 

It might be interesting to see what happens in the case of the simpler differential 
equation 

z2f" + zff + [-K2z2 + Bz-L2}f(z) = 0, (9.1) 

for which the origin is a regular singular point with indices — L, L. Here the coefficients 
an of the formal solutions can be given explicitly and then the hm essentially become 
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hypergeometric series which can be summed by means of Saalschiitz's formula [29]. 
So, as in [12], we obtain from Theorem 1 

e(-tt) = 
7r25/«  (-£+| + ^|)n(£+^f)n 

The n-dependence of this expression disappears for the choice A = L (or A = —L), and 
this is the reason why this choice of the computational parameter A, recommended 
above, is so advantageous. Then (9.2) simplifies and yields 

e(-«) 
7r2B/K 

IB 
2~K )cosHLnf]) 

n-i + i + ifTO + i + if)* 
and so 

e(—/c)e(Ac) = cosf TT 

and, by (2.32) or (2.33), 

// = —L^L  mod 1, 

as expected. 
For fi = L, (6.2) now becomes 

(9-3) 

(9.4) 

(9.5) 

ArrL _    n   /o-R/K,r(L+ 2 + 2 « 

)r(L + | + if+n) 

1 £    r   i   1   i   1 # 

X2i?l 
~I/+ 2 + If' ^ 2 + 2 « 

1 B L+l + ^+n 

+ {-K)nJ2B/' ;r(i + |-|f 
]?(£+§ +If) r(L+§-If+n) 

X2J;,1 

'      r   ,    1        1 B     T   ,    1        IB 
_Ij+ 2 _ 2^' Iy+ 2 _ 2"^ (9.6) 

The hypergeometric series in (9.6) can be evaluated analytically in the special cases 
when B = 0 or when n = —1. 

For B = 0 we have, using (15.1.26) of [1], 

ALc£ = 2-L-"-1/2 

r(i + in)r(I + i + in){K" + (-Kn' (9.7) 

an expression which vanishes if n is odd or if n is even and negative, as expected for 
the (modified) Bessel functions. 

For B ^ 0, we can evaluate (9.6) immediately when n = — 1, since then the (upper) 
hypergeometric function becomes equal to 

m    (        -r 1 15 1\ A, 1\ 
lFo(-i+2 + 2«;;2) = (1-2) 

lxI,-i-i(B/«) 
2-i,+i+l(B/«).        (9.8) 
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By means of the appropriate Gaussian recurrence relation (15.2.27) of [1], the values 
of the hyper geometric series for all the other negative n may be obtained. Then the 
two terms in (9.6) are seen to cancel for all the negative n, as expected. 

Acknowledgements. The author is grateful to one of the referees for a hint that 
it should be possible to find a second-order ^-equation, and to another referee for the 
suggestion to include some more references. 
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