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UNIFORM ASYMPTOTIC EXPANSION 

OF CHARLIER POLYNOMIALS 

Bo Rui and R. Wong 

ABSTRACT. The Charlier polynomials Cn (x) form an orthogonal system on the 
positive real line x > 0 with respect to the distribution da(x), where a(x) is a 
step function with jumps at the non-negative integers. Unlike classical orthogonal 
polynomials, they do not satisfy a second-order linear differential equation. An 

infinite asymptotic expansion is derived for C^ (nfi), as n —► oo, which holds 
uniformly for0<£</3<M<oo. Our result includes as special cases all seven 
asymptotic formulas recently given by W. M. Y. Goh. 

1.  Introduction 

The Charlier polynomial Cn(x) can be defined by the generating function 

e-™{1 + wr = T£ciaHx) — ,    a^O. (1.1) 
n=0 

It has the explicit expression 

CJ-'M=£(:)(:>!(-«)-', 
k=0 

and satisfies the orthogonal relation 
/»oo 

/     c£\x)C$*\x) da(x) = ann\ 6mn, 
Jo 

where a(x) is a step function with the jump 

e~aax 

da(x) = :—,     x = 0,1,2,..., a > 0. 
x\ 

The three-term recurrence formula is 

ciUx) = (x-n- a)Cia\x) - anCfUx). 

For additional properties, see Chihara [2, pp. 170-172], Szego [12, pp. 34-35], and the 
references cited there. 

In regard to the asymptotics of the Charlier polynomials, not much is known in 
the literature. Unlike the classical orthogonal polynomials such as Jacobi, Laguerre, 
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and Hermite, the Charlier polynomial does not satisfy a second-order linear differen- 
tial equation. As a consequence, we are unable to use the vast amount of powerful 
asymptotic methods developed in the differential equation theory (see the definitive 
work by Olver [10]). Although it satisfies the second-order difference equation 

aA2Cia\x) -(x + l-a- n)ACia\x) + nC^ix) = 0, 

we cannot make use of it unless a? is a fixed number. This is mainly due to the fact that 
obtaining uniform asymptotic expansions of solutions of second-order linear difference 
equations is still not possible; see [18, 20]. There is, of course, another possible 
alternative approach to this problem, that is to use its Cauchy integral representation 

±-Cia\x) = -^ / e-aw(l + wfw-71-1 dw, (1.2) 
n! ZTTI Jc 

where the contour C can be a circle centered at the origin with radius less than 1, and 
to apply the classical method of steepest descent (see Copson [3] or Wong [19]). But 
this approach also requires x to be a fixed number. 

In a recent paper [6], Goh has studied the asymptotic behavior of Cn{x) when x 
is a parameter depending on n. He divides the positive :r-axis into seven regions: 

(1) {x : x = (In, 1 + e < (5 < M}, 

(2) {x : x = n + a + an1/2, 2a1/2 + s < a < M}, 

(3) {x : x = n + a + 2a1/2n1/2 + tn1/6, t bounded}, 

(4) {x : x = n + a 4- an1/2, -2a1/2 + e < a < 2a1/2 - e}, 

(5) {x : x = n + a - 2a1/2n1/2 + ^i1/6, t bounded}, 

(6) {x : x = n + a + an1/2, -M <a< -2a1/2 - e}, 

(7) {x : x = pn, e < f3 < 1 - e}, 

where e and M are positive real numbers, and constructs an asymptotic formula for 
Cn (x) in each of these regions. For large values of n, it is clear that these seven 
regions do not dovetail. Consequently, there are certain portions of the positive x-axis 
that are not being covered. 

Goh's results remind us of the work by Tricomi [15] concerning Laguerre polyno- 
mials Ln(x). Tricomi set v = 4n + a + 2 and derived asymptotic formulas for x in 
each of the four regions: (i) x = O^1/3), (ii) av < x < bv, (iii) x — v = ©(z/1/3), and 
(iv) x > cv, where a, &, c are fixed and 0<a<6<l<c. Tricomi's results were later 
considerably improved by Erdelyi [4]. More precisely, Erdelyi gave two asymptotic 
formulas for Ln{vt), as n —> oo, where t is real. One formula holds uniformly for 
-co < t < a and the other for b < t < oo, where a and b are two fixed numbers, 
0 < b < a < 1. These two intervals overlap and between them cover the entire x-axis. 
Erdelyi's method is based on the differential equation satisfied by Laguerre polyno- 
mials. Recently it has been shown that the same results can be obtained from their 
integral representations; see [5]. 

The Charlier polynomials are connected to Laguerre polynomials by the relation 

<#>(*) =n!L<rn)(a), 
see [2, p. 171]. Motivated by the recent works on Laguerre polynomials [5, 11, 13], we 
present in this paper an asymptotic expansion for Cn   (n{3), which holds uniformly 
for 0 < s < (3 < M < oo.  This region covers all seven intervals considered by Goh. 
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We believe that our result actually holds uniformly for 0 < £ < (3 < oo, i.e., (3 may 
be unbounded. To justify our claim, one will most likely make use of an argument 
similar to that given by Olde Daalhuis and Temme [9]. We will leave this problem to 
a future study. It is also reasonable to ask whether there exists a uniform asymptotic 
expansion for Cn (nfi) in the interval -oo < /? < 6, where 0 < £ < 6 < 1, but we 
again will defer this problem to another investigation. An asymptotic formula for 
Cn (x) when x < 0 has been obtained earlier by Maejima and Van Assche [7] using 
probabilistic arguments. 

2. Reduction to a canonical integral 

Returning to (1.2), we write 

nl   n   v     ;      27rz Jc w 

where 

Flw.P, — ) = /31og(l + w) -logif; w. 
\ nJ n 

First we make the simple change of variables 

1-5 

so that 

where 

nrn {m~   2mJCs
e s{l-sy w 

/(,,/?, 1) = (1 - (3) log a - log(l - a) - ^ (2.2) 

and Cs is a circle which contains 5 = 1, but not 5 = 0, and is centered at a point on 
the positive real axis. For (3 > 0, it can be shown that the circle Cs can be deformed 
into a loop which begins and ends at 5 = — oo and encircles the origin in the negative 
sense. This can be achieved by considering the integral in (2.1) with Cs replaced by 
the contour F shown in Figure 1, which consists of a large circle |s| = R and a loop 
embracing the cut along the negative 5-axis. For /? > 0, the contribution from the 
large circle tends to zero as i^ —► oo. Thus we obtain 

1 s>a      /»(0+) J 

n!   n      H'        2-KI J^ 8(1 -s) v     ' 

The saddle points of f(s,(3,1/n), i.e., the zeros of df/ds, are located at s — s+ and 
s = s_, where 

S±=2P \ n/       \ \ nJ n 
(2.4) 

These saddle points coalesce when f3 = (3+ and (3 — (3-, where 

/^(li^)2. (2.5) 

Note that both /?+ and /?_ are positive. 
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FIGURE 1. Contour T 

Near 5 = 0, the function /(s,/3,1/n) in (2.2) has the expansion 

/(*,/},!)= (1-/3) log« + a-^ + £ + 4 + -". \        nJ s I       6 

Motivated by the first three terms in this expansion and by the transformations used 
in Temme [13] and Qu and Wong [11], we introduce the transformation 

/(5,/3,-) = (1 -/?) logu + u - ^^ + cKM. (2.6) 

For (2.6) to be analytic in the region of interest, we must have ds/du ^ 0 or oo. 
Furthermore, we require that u = 0 corresponds to s = 0. Now 

/s(s,/3, 
1\ ds_ _ 1-/3 
nJ du 

+ 1 + 
E(0,n) 

(2.7) 

and fs vanishes at s = 5+ and s = s_. Since the right-hand side of (2.7) vanishes at 
u — U-f- and u — U-, where 

u± 
(/3-l)±v

/(/3-l)2-4£;(/3,n) 
(2.8) 

we must make 5 = s+ correspond to w = u+, and 5 = 5_ to u = U-. This gives 

(1 - p)logs+ - log(l - 5+) - ^^ = (1 - 0)logu+ + u+ - — + q      (2.9) 
S+ U+ 

and 

(1 - /?) log s_ - log(l - 5_) - ^^ = (1 - /?) logu_ + «_ - — + «.   (2.10) 
5— U— 
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For convenience, in (2.9) and (2.10) we have suppressed the dependence of E and q on 
/? and n. Since u+ and U- are the roots of the quadratic equation ii2 + (l—j3)u-\-E = 0, 
we have 

7i+ + u- = (3 — 1    and    u+U- = E 

from which we also obtain 

By the same argument, we have 

s+ + s_ = -(/3H 1]    and    s+6 
D V        n       J P\       n 

The last two equations together give 

la 
]3n' 

(l-s+)(l-s_) = -    and 
p n \s+      s 

1. 

Using these relations, we have upon adding and subtracting the two equations in (2.9) 
and (2.10) 

and 

where 

and 

(1-/3) log 

(l-/J)logJE + 2g = p1(/3,n) 

((3-1)- y/{f}-\y-AE 

(2.11) 

+ 2V(^-l)2-4JB = p2(/?,n),    (2.12) 

Pl{f3,n) = (1 - 0) log -^ + log/3 + (1 - /?) - ^ (2.13) 

P2(/3,n) = (1-/3) log 

+ log 

(/? - 1 + q/n) + y/tf - 1 + a/n)2 - 4fa/^ 

(0-1 + a/n) - y/(0 - 1 + q/n)2 - 4/3q/n 

(0+1- a/n) + V(/3 - 1 + a/n)2 - 4/3q/n 

(0 + 1- q/n) - VC9 " 1 + a/n)2 - ^a/n 

The following result is useful. 

(2.14) 

Lemma.   The system of nonlinear equations (2.11) and (2.12) has a unique solution 
(Ej q). For fixed (3 G (0, oo) and n -+ oo, we have 

E(0,n) = -0^-^-(l- 
e n I 

0+1 2__ 
(1-/3)2      e(l-/J): 

_pP/((3-l) 
(-)+0(i 

if (3 ^ 1, and 

E(0,n) = - + o(-)      if 0=1. 
n        \nJ 

(2.15) 

(2.16) 
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Also we have 

<?(/?, n) = (l-/3)+/3 log/3 + P 
L1-/3     (l-/3)e r'^h'ik)™ 

if (3 ^ 1, and 

q{fi,n) = -—    if (3=1. (2.18) 

Proof We first observe that E is positive and tends to zero as n —> oo, since the 
singular term —E/u on the right-hand side of (2.6) must cancel with the singular 
term —a/ns on the left-hand side of the equation, see the second sentence following 
(2.6). Hence, if we put 

y/(J3-l)*-4E 
a=—J=l—' 

then |a| < 1. In terms of a, equation (2.12) can be written as 

log 
P2 

1 + a      /?■ 
-2a. 

(2.19) 

(2.20) 

The function on the left is monotonically decreasing in — 1 < a < 1 with slope < — 2, 
and the function on the right represents a straight line with slope —2. The graphs 
of these two functions clearly intersect once and only once; see Figure 2. Therefore, 
equation (2.20) has a unique solution a. By (2.19), E is uniquely determined, and q 
is obtained from (2.11). 

FIGURE 2. a-plane 
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As remarked above, E tends to zero as n —* oo. Hence, (2.12) can be written as 

(l-l3)]QgE-j2-pE + o(E) 

= (/?-l)log--/31og/3 + (/3-l)logn + §^- + o(i))     (2.21) 
a p — In        \nJ 

as n —► oo. Taking dominant terms on both sides, we get 

log Etz— log n,    as n —> oo. 

This gives the first approximation to the solution of (2.12).  To improve this result, 
we set 

log E = - log n + <5(/?, n) (2.22) 

with 6(P,n) = o(logn). Inserting (2.22) into (2.21) yields 

(l-/3W,n) = (/3-l)log--/31og/3 + o(l), 
a 

and hence 

$(/?, n) - log[^^Z^-1)] + o(l). (2.23) 

Coupling (2.22) and (2.23), we obtain 

le 
+ 0(1). log E = — log n + log 

To improve this approximation further, we write 

logE = -logn + log[-^/5/^-1)l +e(0,n) (2.24) 
e 

and substitute it into (2.21). This leads to 

The desired result (2.15) now follows from (2.24) and (2.25). 
Equation (2.16) is obtained in a similar manner. The results in (2.17) and (2.18) 

are obtained by substituting (2.15) and (2.16), respectively, into (2.11).    □ 

We remark that by continuing this process, higher-order terms in the asymptotic 
expansion of £?(/?, 1/n) can also be obtained. 

In §3, it will be shown that the transformation (2.6) is one-to-one and analytic 
along the whole infinite loop path of integration in (2.3), and that the shape of the 
loop will be preserved under this transformation. Thus, changing to the variable u, 
we have 

pa+nq     /»(0+) 

where 

±CP(nf3) = ^— J_      u-W"1)-1 exp{n(u - -).}%) du,        (2.26) 

i.,.A ...       u       ds _s    {u-u+){u-u-) /iw - (1 _ s)s du - u ■ p^ _ s+)(s _ s_) • V-<") 
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The second equality in (2.27) is obtained from (2.7). Note that the function h(u) in 
(2.27) depends also on the parameters n and /?; thus h(u) = h(u,(3,n). However, for 
simplicity, we shall not indicate the dependence explicitly. 

3.  The transformation (2.6) 

The properties of the mapping between s and u are best seen by introducing an 
intermediate variable Z defined by 

(l-/3)logs-log(l-s) ^M = Z = (i_/3)i0gU + u_^ + g.       (3.1) 
s u 

We first restrict ourselves to the case ■/? > 1. The upper half s-plane is shown in Fig- 
ure 3. To make the function on the left-hand side of (3.1) single-valued, we introduce 
two cuts in the s-plane, one extending from s = 0tos = — oo along the negative real 
axis, and the other extending from 5 = 1 to s = +oo along the positive real axis. 

FIGURE 3. s-plane (/3 > 1) 

In polar coordinates, we write s = re10, where —TT < 9 < TT. Since we are concerned 
only with the upper half plane, 6 is restricted to 0 < 0 < TT. Note that in this case, 
we have — s — re2^-71"). Hence, along the top of the cut from s = 1 to s = +oo, 
1 — s = (s — l)e-nr. For example, consider the point E' located at s = 1 + 8 in Fig- 
ure 3. Since 1 — s = 8e~2'7r and log(l — s) = log 8 — in, the image of Ef in the Z-plane 
is given approximately by — log 8 + ZTT. In a similar manner, one can find the points 
A,B,Bf,...,E and F in the complex Z-plane. (Some of the lines in Figure 4 are only 
asymptotically straight as n —> oo and as e, 8 —» 0.) Note that as s traverses once 
along the indented boundary ABB'C'DEE'FA in Figure 3, Z also traverses exactly 
once along the corresponding curve in Figure 4. We treat the straight lines .B'C, CD 
and DE in Figure 4 as distinct parts of the boundary (see [16, p. 375, lines 22-25]). 
Hence, by Theorem 4.5 in [8, vol. 2, p. 118], /(s) = (1 - /3)logs - log(l - s) - a/ns 
is one-to-one in the interior of the region bounded by this curve (see also [14, §§ 6.45 
and 6.46]). 
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FIGURE 4. Z-plane (/? > 1) 

We next consider the mapping g: u -* Z defined by p(w) = (1 — P)logu + u — 
E/u + g. By the same argument as above, when u traverses once along the boundary 
of the region ABB'CDEE'FA in Figure 5, Z goes once around the corresponding 
curve in the Z-plane. (Again, the lines in Figure 5 are only asymptotically straight.) 
Hence g is one-to-one in the interior of the region ABB'CDEE'FA in Figure 5. An 
approximation to the boundary curve E'F in Figure 5 is given by the equations 

and 

where u = x 4- iy. 

V (1 — /?) arc tan —h y = TT    ifx>0 
x 

(1 -/^Tr + arctan-) + y = TT    if x < 0, 

FIGURE 5. n-plane (/? > 1) 

The transformation s <-» w is obtained by composing /_1: Z —> s and g: u ^ Z. 
Since the transformations s ^ Z and u <-+ Z are one-to-one within the boundary 
ABB'CDEE'FA, so is 5 <-> -u. Since the function /(s) denoting the left-hand side of 



CHARLIER POLYNOMIALS 303 

(3.1) satisfies f(s) — /(s), and since the function g(u) denoting the right-hand side 
of (3.1) has the same property, the mapping of the lower half s-plane is deducible 
from Figures 3 and 5 by reflection with respect to the real axes. This establishes the 
one-to-one and analytic nature of the function u(s, f3) in the s-plane, except possibly 
at 5 = s± and on the two cuts from s = 1 to s = H-oo and from 5 = 0 to s — — oo. 
From the above argument (cf. Figures 3 and 5), it is also evident that neighborhoods 
of the points s = s± are mapped into neighborhoods of their corresponding images. 
Hence, 7i(s, /?) is bounded and analytic at these points. The same is true for the point 
s = 0; see also the theorem in [11]. 

To emphasize what has been proved, we state again that the mapping s <-+ u, when 
/3 > 1, is one-to-one and analytic from the cut s-plane to its image in the 'U-plane. 
In a similar manner, the same properties can be established when 0 < /3 < 1. In the 
latter case, the regions bounded by ABCDD'EE'FA in the s-, Z-, and w-planes are 
shown in Figures 3', 4', and S7, respectively. Arguments similar to ours have been used 
previously by Copson [3, §49], Olver [10, Chapter 9; §12.3], and Frenzen and Wong [5]. 
We have therefore proved (2.26) for the cases 0 < /3 < 1 and /3 > 1. The fact that this 

FIGURE 3'. s-plane (0 < /? < 1) 

FIGURE 4/. Z-plane (0 < /? < 1) 

equation holds also for /? = 1 can either be demonstrated as in the other two cases 
or be using a continuity argument. To show that u(s,f3) is continuous in /?, we first 
recall that it has already been proved in [11] that u(s,/?) is in fact analytic in both 
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-1    U-    u+     0 

FIGURE 5'. iz-plane (0 < /? < 1) 

variables in a neighborhood of 5 = 0 and /3 = 1. Thus we may assume (3 ^ 1. In this 
case, it is easily seen from (2.13) and (2.14) that pi(/3,n) and P2{P,n) are continuous 
in /?. It is also clear from (2.20) and Figure 2 that a is a continuous function of 
(3. Consequently, by (2.19) and (2.11), E and q are continuous in /?. When 5 = 0, 
u is identically zero and hence is continuous in (3. For fixed s / 0,1, the function 
/(s,/3, l/n) on the left-hand side of (2.6) is continuous in /?. Now write this equation 
in the form G(u, E, q, f) = 0, with G being a differentiable function in each of its 
variables. As long as dG/du ^ 0, by the Implicit Function Theorem there exists a 
function u which is differentiable with respect to E, q, and / and hence continuous 
in (3. dG/du vanishes only at u = u+ and u = U-, but from (2.8) it is evident that 
both u+ and U- are continuous in (3. (Recall that u = u± corresponds to s = s±.) 
It should be pointed out that the function u actually depends also on the parameter 
7 = l/n. However, its continuous dependence on 7 can be proved in a similar manner. 

4.  Uniform asymptotic expansion 

We now return to the integral in (2.26). Put ho{u) = h(u) and write 

ho(u)    =    ao + -bo(u- -)+ uJ 

E 
(1 - (3) logu + u [ugo(u)] 

ao + ^("-f) (u — u+)(u — u-)     ,  . 

Since u+u- = E (see §2), the coefficients ao and bo are given by 

ao = 
h(u+) + h{u-) 

bo = 
h(u+) — h(u-) 

li+ — U- 

(4.1) 

(4.2) 

Thus 

^o(^) = (u — u-){u — w+) 
^o(w) - -Mu+) + fto(w-)] 

1 fto(u-) - ho(u+) /   _ ^ 
2 w_ — ?/+        V        IA 

(4.3) 

Clearly, ^o(^) is analytic for u ^ u± and has removable singularities at u = u± since 
.E = ^+ii_.  From this we conclude that go(u) is analytic everywhere in the domain 
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of ho(u). Now substitute (4.1) into (2.26) and recall the integral representation [17, 
P. 176], 

This leads to 

-.CW{np) = e^E-^-^laoJ^^priVE) + boVEJ^^nVE) + e1}, 
To* 

where 

En(p-l)/2     A0+)f E   , E 

ei = r—:  / (l-0)logu + u exp<n\(l-l3)logu + u \}go(u)du. 
ZlTl        J-oo    '- liJLL u J J 

To the last integral we apply an integration by parts. The integrated term vanishes, 
since s(u) ~ —e~u/P and ho(u) = 0(ueu^) as u —* —oo for fixed (3 > 0; see (2.6) and 
(2.7). The final result is 

n      2m      J_00 I   \       uJ) 

where 
fti(tx) = -ug'^u). 

A similar technique of integration by parts has been used by Temme [13, eq. (5.13)]. 
The above procedure can be repeated. Thus, we define recursively 

ho{u) = h(u), 

i   /  \                I,   /        ^      (u-U_)(IA —W_|_)     ,  N .. ,. 
^(w) = flfc + rfefc (w - - ) + —9k(u), (4.4) 

/ifc+i(w) = -^fc(w), 

As in (4.2), the coefficients ajfc and 6^ are given by 

hk{u+) + hk{u-) hk(u+) - hk(u-) 
flfc = ~ ,    bk = • (4.5; 

2 ■       u+ — u- 

Using induction, we can show that hk{u) = 0(l/u) as u —> —00, for fixed ft and for 
all k > 0. From this it follows that we also have gk(u) = O(l), as u -^ —00, for fixed 
(3 and for all k > 0. Furthermore, we can show that for k > 0, ^(IA) and /ifc(u) are 
analytic functions. Thus, for each k, both a^ and 6^ are continuous in (3 G [e, M], 
0 < £ < M < 00. Repeated application of integration by parts then gives 

p-i 

^C^(nf3) = ea+^£;-^-1)/2{/n(/3_1)(2nV/E)^a,n-fc 

fe=0 

p-1 

+ VEj;(/3_1)(2nv/l) J2 bkn~k + £P}.       (4-6) 
A;=0 

where 

Sp      UP       2m       J_00 

u_n(/,_i)_i exp|n^ _ _ j j^j du_ (4 7) 
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In order to show that (4.6) is a uniform asymptotic expansion for 0 < e < (3 < 
M < oo, we prove that there exist positive numbers Mp and Np, independent of /?, 
such that 

M < ^|J„(/3-1)(2nv/E)| + ^VE\j'nW_1)(2nVE)\. (4.8) 

Since dp and bp are continuous in /3 € [^jM], this estimate shows that the error term 
Cp has the same behavior as the first neglected term in the expansion (4.6). 

The proof of (4.8) is divided into two separate cases: (i) 1 < (3 < M < oo and 
(ii) 0 < s < (3 < 1. Note that the argument 2n\[E of the Bessel function in (4.8) is 
large in both cases, and that the integral in (4.7) can be written in the form 

e   = J_£;nW-i)/2 
v      nP -I en[(l-(3)logu+u-E/u}h   fu\^Lt 

oo u 
(4.9) 

Here it should be pointed out that the function hp(u) depends on the parameters 
n and /?; see the comments following (2.27). To estimate the integral in (4.9), we 
shall make use of the saddle point method, the stationary phase approximation and 
Laplace's approximation. Although hp{u) which is recursively defined through (4.4) 
is a complicated function, it is analytic in u for all relevant values of n and /5. As 
a consequence, the dependence on n and /? does not affect the final results; see [10, 
Chapter 9, Section 2]. We may therefore suppress this dependence in the following 
discussion. 

We first consider case (i) and subdivide it into two subcases: (ia) n(/3 — 1) is 
unbounded and (ib) n(/3 — 1) is bounded. In subcase (ia), we observe that the function 
ip(u) = (1 — (3) logu + u — E/u has two saddle points located at u = u±. The steepest 
descent path through U- is along the positive real axis, whereas the steepest descent 
path through u+ is tangent to a vertical line through u+. Therefore, we deform the 
loop path of integration in (4.9) so that it passes through w+; see Figure 6. By the 
saddle point method [3, p. 93], we have 

FIGURE 6 

1   pm(0-l)/2    1   rn\(l-(3)loxu++u+-E/u+}hp(U+) -27r 

nP 27ri u+     y n^p'^u^)^ 

as n —» oo. Since u+ ~ (3 — 1 (cf. (2.8)), this reduces to 

e, ~ ^-^ - !)-(-« exp^, - 1) - ^}M^)_^_. 

(4.10) 

(4.11) 



CHARLIER POLYNOMIALS 307 

From the uniform asymptotic expansion of J^iyz) and Jliyz), as v —> oo, given in [1, 
pp. 368-369], it is easily verified that 

and 

The estimate in (4.8) now follows from (4.11). In subcase (ib), we note that n(/? — 1) 
is bounded, whereas 2n\^E approaches infinity. Hence 

u± _ E-tH^/snpziB = g-i ±, vqlf3F3T? » ±!^, (4,4) 

as n —> oo. This suggests that we deform the loop path of integration in (4.7) so that 
it consists of two straight lines along the negative real axis and a circle centered at 
the origin with radius y/E. The circular portion of the integral is equal to 

—^- /   exp{in[(l-p)0 + 2y/Esm6}}hp(y/Eeid)d6. (4.15) 
27Tnp J_7r 

The critical points of the phase function in (4.15) are located at 

v± = arc cos —= « ± —. 
2VE 2 

Hence, by the stationary phase approximation [19, p. 77], the expression in (4.15) is 
asymptotic to 

1    /     i      \1/2 

{^(iv^K^1-^/^2^-^ 
2nP \7my/E; 

+ ^(-i^e-^^1-^^2^^-^ }. (4.16) 

The portion of the integral in (4.7) along the two straight lines is given by 

1     rpn((3—l)/2  r poo i 
_r  rez7rn(l-/3)    /       e-n[((3-l)logr+r-E/r}h   (rei^\^L 
v?       2iTi      \ J^E P r 

_e-inn(l-P)    f      e-n[(l3-l)loSr+r-E/r]h   ^g-^x^l 

JVE P r )' 

(4.17) 

The function ^(r) = (0—1) logr+r — E/r is monotonically increasing in y/E < r < oo, 
and ty'(\/E) ^ 0. Therefore, by Laplace's approximation [19, p. 57], the expression in 
(4.17) is bounded by 

iK^H'-^'^i)' (4-18) 

Note that ij;'(y/E) > 2 in this case. Comparing (4.16) and (4.18), we conclude that 

ep = E-1li\hp{iVE)\0{n-P-1l2). (4.19) 
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This is sufficient to justify (4.8), since J^(x) and J^(x) do not have common zeros, 
and since 

J„(/3_1)(2nv/l) ~ (^=j      cosS^nVE-ni/S- 1)| - || 

and 

V^j;(/3_1)(2nV^) ~ -(^)      sin|2nV^-n(/3 - 1)| - j}, 

as n -^ oo, when n(/3 — 1) is a bounded quantity. 
We next consider case (ii) and again divide it into two subcases: (iia) n(/?—1) -^ — oo 

and (iib) n(/3 — 1) is bounded. Since E is positive, the argument for subcase (iib) is 
similar to that of case (ib) and hence will be omitted. In subcase (iia), we note that 
u- < u+ < 0, u- rsj ft — 1 and u+ ~ 0; see Figure 5'. It can be shown that the steepest 
descent path through U- is along the negative real axis and that the steepest descent 
path through u+ is tangent to a vertical line through u+. Therefore, we deform the 
loop path of integration in (4.9) so that it passes through U- on both edges of the cut; 
see Figure 7. By the saddle point method, we have 

FIGURE 7 

ep - -Li^-i>/'(l - /3)»(i-0-i/' exp{n(/3 - 1) - ^ } 

x sin[7m(l - f3)}hp(p - 1) (4.20) 

as n —> oo. Here we have made use of the fact that U- ~ (3 — 1. To show that (4.20) 
implies (4.8), we note that 

Jn{(3-l)^nVE) 

7m(l - /?) 
sin[n(l — /3)7r] 

1 /3\«(l-^) l~P  ) enE/(l-f3) 
eVE 

(4.21) 

and 

Jn(B-l)^VE) 

27rn(l - p)E 
sin[n(l — P)7r] 

1 _/9\n(1-/3) 
i: E ) enE/(l-(3) 
eVE 

(4.22) 

when n —»• oo and /? < 1 (i.e., n(/3 — 1) —■> — oo). Asymptotic formulas (4.21) and (4.22) 

can be obtained from the uniform asymptotic expansions of Hi   (VZ) and Hi \VZ) as 
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v —► oo given in [1, pp. 368-369], and by using the connection formula 

J_„(*) = ^e^H^iz) + e-^H^iz)}; (4.23) 

see [10, p. 239]. This completes the proof of (4.8). 
The leading coefficients ao and b® in (4.6) can be calculated as follows. From (2.27) 

we have 

ds u+        ds 
h{u-) = T ^—- ,    h{u+) = "        — .        (4.24) 

(1 — s-)s- du   u=u- (1 — s+)s+ du   u=u+ 

Since u = u± correspond to 5 = s±, differentiating (2.7) with respect to u gives 

(3-1      2E 

(4.25) 
/ds\2 

u=u±     13-1 1 2(a/n)' 

si        (1-S±)2 4 
To determine the sign of the square root of the right-hand side of (4.25) for ds/du at 
u = iz±, we note from the second equality in (2.27) that h(u±) is positive when u^ 
are real. Hence we must take the positive square root. The values of ao and bo are 
now easily obtained from (4.2). 

5. Local behavior 

Taking the dominant term of the expansion in (4.6), we have 

^Cia\n(3) ~ ea+"^-n('3-1)/2{aoJ„(/3_1)(2nv/l) 

+ b0VEJ^_1)(2n^/E)}, (5.1) 

as n —► oo, holding uniformly for 0 < e < (3 < M < oo. If x — n(3 is restricted to 
one of the seven regions encountered in the introduction, then (5.1) should reduce to 
one of the asymptotic formulas given by Goh [6]. Here we shall consider only the four 
regions: (1) 1 + s < (3 < M < oo, (3) (3 = (3+ + t/n5/6, (5) /? = /?_+ t/n5/6, t real, 
and (7) 0 < e < (3 < 1 — s. Arguments for the other three regions are similar. 

For f3 > 1 + e, we have from (2.4) and (2.8) 

(3-1 a/n E 
s+ ~ —a—,     S- ~ -5 7,     w+ ^ p — 1,     U- ~ 

Hence, by (4.24) and (4.25), h(u+) ~ A/9 and h(u-) ~ 1. Consequently, 

ao~^(V£+l),     bo^-^—j. (5.2) 

Inserting (2.17), (4.12), and (4.13) into (5.1) gives 

which agrees with equation (5) in [6]. 
For 0 < 0 < 1 - e, we have 

a/n (3-1 E 
S+~^-T, ----^g", ^^r «-~/3-l. 
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Hence, h(u+) ~ 1 and h(u-) ~ y/fi.  Therefore, (5.2) again holds.  Applying (2.17), 
(4.21), and (4.22) to (5.1), we obtain 

^Cka)(nP) ~ (rA^)1/2e«/(i^)/?^(l - /Jjnd-ft Mn{i _ P)*]^ 

which is equation (84) in [6]. 
In the case when /? is near /?+, the computation is more complicated. Here we have 

/3 = /?+ +4^ = 1 + 2^+4^, (5.3) 

t being a bounded real number. From (2.13) and (2.14) it follows that 

Pi(P,n) - 2A/-logn-2A/-loga+ —^logn 
V n y n n5/b 

t 
n5/6 

and 

loga+^fl + log-) (5.4) 
n V a/ 

4 t3/2 1        /   1   \ 4 t3/2 1 _ 

(In the derivation of the last asymptotic equality, we have actually considered two 
separate cases: t > 0 and t < 0.) As in the proof of the lemma in §2, we now solve E 
in (2.12) asymptotically for t > 0. First, substituting (5.3) and (5.5) into (2.12), we 
readily see that E ~ Coa/n, where Co is a constant < 1. Next, we set E = Coan-1 +p 
where p = o(n_1), and again substitute it into (2.12). This leads to the results Co = 1 
and p = 0(n-4/3). Now, we write 

n n^i6 

where e = o(n-4/3). Substituting this expression into (2.12) yields Ci = 0 and 
e = 0(n-3/2). Continuing in this manner, we arrive at the final result 

A combination of (2.11), (5.4), and (5.6) also gives 

9~--. (5.7) 

It can be shown that the same results hold for t < 0. It is interesting to note that both 
(5.6) and (5.7) could have been derived formally from the lemma in §2, although the 
results there were proved only for fixed /3. To obtain the behavior of Jn^p_1^(2ny/E) 
and Jf

n(j3_1J2n^/E) in this case, we use the uniform asymptotic approximations of 

J^i/z) and JHuz) given in [1, pp. 368-369]. With v = n{(3 - 1) = 2^/ah + tn1^ + a 
and 

2ny/E   _  2v/an + a + o(l)   _ t       1 + n(/3-l)      2-v/an + tnVe + a 2v
/an1/3        vn 

we have 

0(^)' 

^n(/3-i)(2n/E) ~ (an)"5 Ai(ta-5) (5.8) 



and 

By (5.6), 
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j;(/3_1)(2nV^) - -(an)"* Ai'fa"*). (5.9) 

,„    ^ tn /n\ \/an4-(t/2)n1/6+a/2 

Inserting (5.7), (5.8), (5.9), and (5.10) into (5.1) gives 

/^n+(t/2)n1/6+a/2 1       ,  x ,    /r?\ \/a^+(*/2)n±/u+a/2 
icW(n/3)~e3a/2(^) / (an)-1/6Ai(ia-1/,J), (5.11) 

since ao ^ 1 and (5.9) is of lower asymptotic order of magnitude than (5.8). Here our 
result again agrees with that of Goh [6, eq. (30)]. 

In region (5), we have 

/-, ^ .<     ~   fa        t        a 

n5/b V n     n '        n 

Straightforward calculation from (2.13) and (2.14) gives 

/^    x      f~   [&        t        ax,     /a\      a 
pi /3,n   -   2W — - -   log  -   + - 

V   y n     nbib      nJ       \nJ      n 

and 
,0    , 4(-t)3/2 1        /   1   \ 

where (—t)3/2 is real and positive when t < 0.  By the perturbation technique used 
before, we obtain 

_a      /a\3/2       f   1   A 
n      Vn/ Vn3/2/ 

This result can again be derived formally from (2.15). Note that n(/3 — 1) is negative in 
the present case. Hence, to obtain the behavior of Jn{p-i) {2ny/E) and J,

n{Q_1\ (2n^/E), 

we again appeal to (4.23) and the uniform asymptotic expansions of Hi) \vz) and 
Hi2\vz) given in [1, pp. 368-369]. With v = -n{(5 - 1) = l^fah - tn1/6 - a and 

2A/E t      1 
1 ' 

/3-1 2v^n1/3' 

the results are 

Jn(/3_1)(2nV^) - (an)-1/6^^—/3)^ ^(e-^/3^-1/6) 

+ e-(^-7r/3)iAi(e7rt/3to-l/6j] 

and 

j;(/3_1)(2n/B) - 2(an)-1/3[e(^+4'r/3>i Ai^e-^/^a"1/6) 

+ e-(^+4-/3)i Ai'Ce^/^a-1 /6^ 



312 BO AND WONG 

Clearly,   y/EJf
n^_1J2ny/E)  is  of lower  asymptotic  order  of magnitude  than  is 

Jn^_i^(2ny/E). Since ao ~ 1 and bo ~ |, the second term in (5.1) can be neglected. 
From (2.11), it is easily calculated that 

3a 
a ~ —. 
^      2n 

Therefore, (5.1) gives 

1       /   x o    /« /r?\ (-2y/an+tn1/6+a)/2 
±C^(n0)~e3^(^y    V (an)"1/6 

x 2Re[e-(2V^-*™1/6-«-i/3)- Ai(e,r</3ta-1/6)], 

or equivalently 

1 „,^, ,       *„i<>fn\{*-")l*. 
n 

C^\X)^e^^yX~n)/ \an)-^(-ir 

x 2Re[e(a;7r+7r/3)i ^(e^/3^-1/6)], (5.12) 

where x = n/3 = n — 2^/cm + tn1/6 + a. As in [6], this result can also be expressed in 
terms of Scorer's function 

Hi(z) = A /     e-1'*1***1 dt. 
K Jo 

To do this, we make use of the facts 

[e-W6 Hi^e71"*/3) + e*i/6 Hi(ze-7ri/3)] = 2 Ai(-z) 

and 
Ai(z) + e2"^3 Ai(ze2^/3) + e"2^/3 Ai(ze-2^/3) = 0; 

see [10 p. 332 and p. 55]. The final result is 

l^)(,)~e^(^)(-)/2(an)-/e(_ir 

x {Re[e(a:,r+7r/6)iHi(to-1/6e-7ri/3)] - sin7rzHi(-£a-1/6)},     (5.13) 

which is equation (51) in [6]. 
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