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EQUISUMMABILITY OF CERTAIN SEQUENCES 

OF HADAMARD PRODUCTS OF TAYLOR SECTIONS 

AND INTERPOLATORY POLYNOMIALS 

R. Briick, J. Miiller, and A. Sharma 

ABSTRACT. In [1, 2] the classical equiconvergence theorem of Walsh was extended 
by the application of summability methods in order to enlarge the disk of equicon- 
vergence to regions of equisummability. A further generalization was achieved in 
[3], where sequences of Hadamard products of a fixed power series with interpola- 
tory polynomials were considered. The aim of this paper is to continue this work 
by investigating commutators of interpolatory polynomials and Hermite interpo- 
latory polynomials. 

0. Introduction 

Let g be a function holomorphic in the disk D^ := {z G C : \z\ <i^}for some R > 1, 
let Ln(- ]g) be the Lagrange interpolatory polynomial to g in the (n + l)-st roots of 
unity, and denote by S^ the n-th partial sum of the power series expansion of g about 
0. Then the classical equiconvergence theorem of J. L. Walsh [8, p. 153] states that 

lim[Ln(z;g)-S°n(z)]=0 
n—+oo 

compactly in B#2 (i.e., uniformly on compact subsets of D^). 
In [1, 2] the first author applied certain summability methods in order to enlarge 

the disk of equiconvergence to regions of equisummability. Roughly speaking, one of 
his results may be stated as follows. If A is a summability method which sums the 
geometric series 7(2:) = S^Lo zu to 1/(1 — z) compactly in an open set S containing 
the unit disk D, then the sequence (Ln(' ;g) — S£) is compactly A-summable to 0 in 
a certain open set £. This set £ always contains the disk D^2, and it depends on S 
and the singularities of g. 

Recently, the first two authors [3] generalized this result by replacing the "test 
function" 7 by an arbitrary power series /, and by considering the sequence 
(S^ * (Ln(- \g) — SfO), where * denotes the Hadamard product of two power series. 

The aim of this paper is to extend their result in two directions. In [5], Lou 
considered commutators of interpolatory polynomials, namely 

^mnte a> P) := Lm (z\ (3, Ln(-; a, g)) - Ln (z] a, Lm(-; /3, g)), (0.1) 
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where m = q(n + 1) - 1 for some q e N, a,/3 G 'DR, and Ln{']a,g) de- 
notes the Lagrange interpolatory polynomial of g in the roots of the equation 
^n+i _an+i = ^ ie^ Ln(w.a^) =g(w), if a ^ 0, and Ln(zi0,g) = S^z) (z E C). 
We will generalize Lou's result by applying summability methods A to the sequence 
(5^ * JD^WG ; a, jS)). Furthermore, we will generalize a theorem of Cavaretta, Sharma, 
and Varga [4] concerning Hermite interpolation. 

This paper will be arranged as follows. In the first part, we give some notations and 
preliminaries concerning Hadamard products and summability methods. In the second 
part, we state our main results concerning commutators of interpolatory polynomials 
as considered by Lou [5], and Hermite interpolatory polynomials. The third part 
contains the proofs of the main results, and in the fourth part, we make some remarks 
on the existence of summability methods. 

1. Notations and preliminaries 

1.1. Hadamard product and its properties. For two power series F(z) = 
Yl™=oavzL' and G(z) = Yl<ZLobvzl' with positive radii of convergence RF and RG, 
respectively, the Hadamard product F * G of F and G is defined by 

oo 

(F *G)(z):=J2 "'>*>'>*''• 
i/=0 

Obviously, the radius of convergence of F * G is at least RFRG- 

Furthermore, we need the Hadamard multiplication theorem in the version of the 
second author [6] which gives a lower estimate for the region of holomorphy of F * G. 
To state his result, we introduce the following notations. For arbitrary sets A, B C C, 
a e C and k e N, we set Ac := C \ A, AB := {ab : a e A,b G B }, aA := {a}-A, 
Ak := { ak : a e A }, and A * B := (Ac-Bc)c. ISOeADB, then it is easily seen that 
0 G A * B, and 

A*B= p| aB= p| bA. 

For open sets A, B C C with 0 G A n B, the set A * B is also open but not necessarily 
connected, even if A and B are so. If 0 G A, we denote by AQ the component of A 
which contains 0. For an open set O C C, let H(Q) be the topological vector space of 
all functions holomorphic in Q with the usual topology of locally uniform convergence. 
Let (p G 11(0) for some open set Q C C such that 0 G ft. Then, for a G C^ \ {0} 
(where C^ := C U {oo}) and k G No := N U {0}, we define <pajjfe G HfaSl) (where 
ooft = C) by 

1   dk 

k\dukK    ^ ;; 

1 <Pa,k(Z) :=  < 

for a G C, 
-z I a 

..lk)(ti\yk 

k\ 
(pw(0)zk for a = oo. 

Finally, we denote by 7(2:) the geometric series X^o -^ as we^ as its analytic contin- 
uation 1/(1 — z). 

Theorem H ([6]). Let fti, f^ C C be open sets such that 0 G fti PlJ^. T^en, /or anz/ 
F G iJ(Oi); ^/iere ezis&s a unique continuous linear map Tp: i7(02) —^ .ff"(fti * ^2) 
5wc/i *fta* TF{-fa^){z) = Fa,k(z) for all z G Oi * O2; a G C^ \ O2; and fe G NQ. /n 
particular, TF(G) = F * G in a neighbourhood of 0 for all G G H^), and therefore 
the power series F * G admits an analytic continuation into the region {Cli * ^2)0- 
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In the following we always write F * G instead of 1>(G). 

1.2. Summability methods. Let X C M, and let x* G M U {±00} be an accumu- 
lation point of X. Suppose further that A = (an)^0 is a sequence of complex-valued 
functions on X. A sequence (S^^LQ of complex-valued functions defined in an open 
set 0 C C is called compactly A-summable in ft to the function 5, if the series 

00 

cr(x',z) := Y^an(x)sn(z) 

converges compactly in Q, (i.e., uniformly on compact subsets of Q) for all x G X, and 
if 

lim a(x'1 z) = s(z) 

compactly in ft. In this case we write 

A — lim sn(z) = s(z)    compactly in ft. 
n—>oo 

Now we introduce three classes of summability methods A. For that purpose, let 
f(z) = Yl^Lo fvzV be an arbitrary power series with positive radius of convergence Rf. 

(S) We say that A satisfies the condition (5) for some open set 5 C C containing 0, 
if the power series 

(j)(x;w) := y2an(x)wn 

n=0 

converges for all w € C and all x G X, and if 

lim (j){x]w) — 0    compactly for w G S. 
x—>x* 

(ft, f) We say that A satisfies the condition (ft, f) for some open set ft C C contain- 
ing 0 and some power series /, if the power series in two variables 

00   00 

<l)f(x] u, w) := Y^ ^2 an+v(x)fvUvwn (1.1) 

converges for all (u, w) G C x D, and all x G X, and if 

lim (l)f(x]u,w) = 0    compactly for (u,w) G ft x B, 
x-^-x* 

where D:=Di. 

(ft, /,p) We say that A satisfies the condition (ft,f,p) for some open set ft C C con- 
taining 0, some power series / and some p G N, if the series 

CO      00 

tf^u^iv) := ^^an+I/(x)F^('i;K^n (1.2) 

converges for all (u, w, v) G C x D x C, all x G X, and j = 1,... ,p, where 

j'-i 

F»j(v) -= Yl f-^sv3    (v e €, j E N, v G No), (1.3) 
s=0 
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and if 

lim (/)•!■ (x] it, w, v) — 0    compactly for (u,w,v) E ft x D x C 

and for j = 1,... ,p. 

Note that the condition (fi, /, 1) coincides with the condition (O, /). For the exis- 
tence of such summability methods, we refer to Section 4. 

2.  Statement of results 

2.1. Commutators of interpolatory polynomials. Let G C C be a region con- 
taining the disk D^ := {z G C : |z| < R} for some i^ >. 1, and let g G H(G). 
Furthermore, let 

/(*) = £>*" 
be an arbitrary power series with positive radius of convergence Rf.   For q G N, 
n G No, m = g(n + 1) — 1, and a,/3 G D^, we set 

!?&»(*;<*, /?) := (# * i?^(-; a, /?)) (z)    (z G C), 

where -D^n(z;a,/^) is defined by (0.1). Since m > n, we have 

D9
rnn(z-,a,(3) = Ln(z]a,g)-Ln(z\a,Lrn('',P,g))    (z G C). 

In [5], Lou proved that 

lim D^n(2:; a,/?) = 0    compactly in DB, 
n—>oo 

where 
R1^ 

R:-- 
max{|ce|^,|/3|^}' 

We will generalize this result by applying summability methods A of the form (fl, /) 
to the sequence (Z}^(- ,a,/3)). For that purpose, we define the sets 

fi:=fi(G,n):=nri(K^)fcn). 

fc=0Z=lc£GV M / 

and 

f :=f(G,n):=finf2, 

where we set c/0 := oo for c ^ 0, oo^ := oo, if A; G N, and ook := 1, if k — 0. 

Theorem 2.1. If A satisfies the condition (ft, /) for some ft and f, then there holds 
for every g G H(G) 

A — lim D^n(z\ a,(3) = 0    compactly in £(G, ft). 
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Remarks,    (i) If BR' C ft for some R' > 0, then £ D D^, where 

R'R1^ 
R := max{|a|«,|^} ^ 

and £ is an open set. In the special case / = 7 and Rf = 1, Theorem 2.1 and 
Lemma 4.1 (see Section 4) imply Theorem 3.1 of [1] (in a slightly weaker version), 
which itself is a generalization of the above mentioned result of Lou [5]. Furthermore, 
for a = 0, /3 = 1, and q = 1, we obtain Theorem 1 of [3] which generalizes Theorem 1 
of [2]. 

(ii) If a = 0 and 0 ? 0, then £, = C, £2 - flSi n^G^//?)^ and £>&£(*; M) - 
(S£ * (5g - sZm{"'fi'9)))(z),-80 that 5 D.Ofl/fli+,/101,. In particular, for /3 = 1, / = 7, 
and A being the usual convergence, Theorem 2.1 and Lemma 4.1 imply Theorem 1 of 
Rivlin [7]. 

(hi) If p = 0 and a ± 0, then £2 = C, £ 1 = [)?=« f}cM
c(c/a^n)> and D™& ^ 0) = 

(5^ * (Ln(-;a,g) - Ln(- ;a, S'^)))(z), so that f D I^R'iji+vial3- In particular, for 
a = 1, / = 7, and A being the usual convergence, Theorem 2.1 and Lemma 4.1 imply 
Theorem 1 of Cavaretta, Sharma, and Varga [4]. 

(iv) For the existence of summability methods A satisfying the condition (O, /) we 
refer to Lemma 4.2. 

Corollary 2.1. // A satisfies the condition (S) for some open set S D D, and if 
Qf C C is an open set containing 0, then there holds for every f G Hfo') and every 
geH(G), 

A - lim Dffn(z; a, (3) = 0    compactly in £ := £(G, S, ft'), 
n—>oo 

where 
£(G, 5, fi7) := £(G, fi' * S) = fi' * £((?, S) =  f] {(JU£(G, S)). 

Proof The assertion follows immediately by combining Lemma 4.2 (see Section 4) 
and Theorem 2.1. 

Remark. If DR/ C ft7 for some R' > 0, then £ D D^, where R is defined by (2.1). 
Therefore, Corollary 2.1 also generalizes all results mentioned in the remarks after 
Theorem 2.1. 

2.2. Hermite interpolation. For p G N and n G No, we denote by i^n+i)-^* ;#) 
the Hermite interpolatory polynomial of g, gf,..., (/p_1) in the (n+l)-st roots of unity, 
i.e., 

H%l+i)-ito9) = 9W(v>)    (fc = 0,l,...Jp-l) 

for all w G C satisfying wn+1 = 1. Then we set 

D°n(z) := if^+D-^z; <?) - S^j.^z)    (z G C) 

and 
D^(z):=(Sf

p{n+1)_1*Dp(z)    (zeC). 

In [4] Cavaretta, Sharma, and Varga proved that 

lim D^n(z) = 0    compactly in D^i+i/p. 
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We will generalize this result by applying summability methods A of the form (Q, /,p) 
to the sequence (D^fi). For that purpose, we define the set 

oo      p 

£H:=£H(G,n):=   f|f|   f| vJ^+'Sl), 
k=0 j=l   c£G 

(fc,i)/(0,p) 

where ipj : C —> C is defined by ipj(z) \= zj. 

Theorem 2.2. If A satisfies the condition (£l,f,p) for some Q and f, then there 
holds for every g G H(G) 

A - lim Dl^(z) = 0    compactly in £JJ(G, fi). 

Remarks,    (i) If D^/ C fJ for some iZ' > 0, then £# D D^, where 

'i^'i^2 forp=l, 

R— I 11 
(ii'iJPjVCp-i)    for — < ^ < -,     p > 2, 

RP 

and £# is an open set. In the special case / = 7 and #' = 1, Theorem 2.2 and 
Lemma 4.3 (see Section 4) imply a special version of Theorem 4.1 of [1] which itself is 
a generalization of the above mentioned result of Cavaretta, Sharma, and Varga [4]. 
Furthermore, for p = 1 we obtain Theorem 1 of [3]. 

(ii) For the existence of summability methods A satisfying the condition (fi, /,p), we 
refer to Lemma 4.3. 

Corollary 2.2. // A satisfies the condition (S) for some open set S D D, and if 
ft' C C is an open set containing 0, then there holds for every f G 11(0,') and every 
geH(G) 

A - lim D{^(z) = 0    compactly in £H := £H{G, S, O'), 

where 

£ij(G,5,0,):=^(G,n,*5) = n,*^(G,5)=  f] (UJ£H(G,S)). 

Proof. The assertion follows immediately by combining Lemma 4.3 (see Section 4) 
and Theorem 2.2. 

Remark. If BR> C ft' for some R' > 0, then £H D D^, where R := R'RWP. 

Therefore, Corollary 2.2 also generalizes all results mentioned in the remarks after 
Theorem 2.2. 
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3.  Proofs of main theorems 

We recall the well-known interpolation formula of Hermite 

1     f        g(t) f"+1 - *"+1   ,. 
Ln(z:a,q) = -—: / — — at VJ

   ^
J
      27ri Jw=r t - z t"*1 - an+1 

l\t\=r 

where \a\ < r < R. Therefore, 

= tiLs(')^h^tf~'z'dt {z€Ch    (3-1) 

(Si . Ln(.;«,9))W = i /      KO^snbm E'"""^"* 
Z7rZ J\t\=r Z a u=0 

1     f        ,^f(z\       tnJrl        dt    , 

(3.2) 

In particular, we obtain for a = 0 

^*^w = ^/t|=r^
5-(f)f (^c)- (3-3) 

Proof of Theorem 2.1. We divide the proof into several steps. 

STEP 1.    At. first we derive an integral representation for D^(-;a,/3).   For that 
purpose, let max{|a|, |/3|} < r < R. Then we have by (3.1) 

= 2^/,   ^.'-U-S'"^"^'"'"''"''"""''1''* ("C)' J\t\-r H k=0 i/=0 

and therefore, 

Ln(Z;a,Lm(.;M) = ± f       ^ ga*("^ f^^-^i),^ 

5W * a      t dt   (zeC). 
2m J\t]=r t - z tm+l - /?m+1 tn+1 - Q!n+1 

(3.4) 

Subtraction of (3.4) from (3.1) yields 

g(t) am+1 - /3m+1 tn+1 - 2:n+1 

/|t|=r 

Proceeding as in the proof of (3.2), we obtain 

1       r n(t} ryrn+1 — /?m+1 /n+1 — 2:n+1 

£&;(*;«. ffl = ^J /     9(')Si (f) ^,»(«i «• ffl *    («€€), 
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where (note that m = q(n + 1) — 1) 

^'n^  '     ' ^^ '       (^m+l _ pm+l\r-f-n+l _ an+l J ' 

STEP 2.    Setting 

oo 

n=0 

we see that ^(x;-) is an entire function for every x G X and 

i      r oo    n v , ' 

1 /* OO       OO rl+ 

Ml J\t\=r „_n^_n V ^ / ^ 1*1=^ ^=0n=0 

(3.5) 

Now we write 

K ft-a 3)      1      (^r+1-(/?Ar+1 
9
'nl '   'Pj " 1 - (a/t)^1 1 - (/^A)^1 

_ Y<^m+1     //3\^+1-| ^/a\fc(n+i)^//?y'(m+i) 

fc=o i=o 

^    ~     ~   ,ax (fe+g)(n+l) ^ygCn+l) 

A;=0 j=0 

and we set, for k,j G No, 

(3.7) 

where (f)f(x;u,w) is given by (1.1). Putting (3.5), (3.6), and (3.7) together, we obtain 

oo q— 1   oo 

k=q k=0j=l 
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STEP 3.    Now we consider a compact subset C of £. We have 

< — < 1    for all k £ N, 

and 
(3 3,      |/j| 

< -^ < 1    for all k G No, j G N. 

Let /i := max{ \z\ : 2: G C}, and choose ^ > 0 such that D^ C ^.  Then there exists 
N G N sufficiently large such that N > q, 

z /a 
(-]     < 6   for \t\ = r, \z\ < fi, k > N, 

and 

t \t. 

?(?)*(?)H-5   for^ = r' N^^' A;GNo' ^iV- 
Setting M(r,g) := max{ |^(t)| : \t\ = r } and 

e(x) := max{ |0^(a;;i/,if;)| : |ii| < (5, |iy| < - max{|a|, \P\} }, 

we obtain for z G C 

00 q—1    00 

k=0j=N 

< 
/   00       |    ,    £ 

fc=oi=Ar 

^l)*^ 

< e(a;)M(r, p) r-r  
fl.-» <* 

-a;*). (3.8) 

STEP 4. Finally, it suffices to consider a single term Tkj(x;z) for fixed k,j G 
{1,..., iV — 1}. For simplicity, we assume that a ^ 0 and (3^0, because the other 
cases can be handled similarly. We set 

and consider 

S:={C-1:C^fi}U{0}, 

K:={^C:.Qk^)JqeC.E}. 

Since 0 G ft, E is a compact set, and therefore, it is easy to see that also K is a compact 
set. We show that K C G. For that purpose let c 0 G. Then z G c(c/a)k(c/P)jqn for 
all z G C, or (z/c)(a/c)k((3/c)jq G O for all z G C. By the definition of E this implies 
(c/z)(c/a)k(c/(3)jq 0 £7 for all z G C, or c(c/a)k(c/pyq (£C-E which yields c ^ if. 
Therefore, we can choose a cycle F such that 

indr(a;) = 
1    for u G ifUDr, 
0    for cu £ G. 

Then, replacing the path of integration in (3.7) by F does not change the value of the 
integral. From the construction of F it follows that 

Mf(!)*(?)',"^r} 
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is a compact subset of Q. Setting Mr := max{ \g(t)\ : t G F }, and 

Si(x) := max< \(j)f(xiu,w)\ : ix G 5, \w\ < -max{|a|, |/3|} k 

we obtain 

max|Tfci(x;z)|<^Mrlength(r)(^)fc(My\1(x)_,o    (x - x*).    (3.9) 

From (3.8) and (3.9) it follows that 

max^a;; z)! —> 0    (x—>a:*) 

which completes the proof. 

Proof of Theorem 2.2. Let 1 < r < R. Then it is well-known that 

g(t) (tn+1 - iy - (zn+1 - 1)P 

M*|=r ^^ (^+1-1)P ^p(n+l)-lUj^).=  ^—T   / TTTTT^ TTT  dt 

= — f    9{t)   y(p\-i) yy-i 
— \\1 r- 

j(n+l)-l 

x.    ^    f'<n+1>-,'-Vdi    (^eC). 
^=0 

Therefore, 

(^(n+l)-! *-Hp(n+l)-l(- ;ff»(«) 

j(n+l)-l 

(3.10) 

Now we obtain from (3.3) and (3.10) 

where 

Kpn(z> t) :=  ^n+l _ typ 2^ ^ J (~1)P   3t3 ^    ^(n+l)-! (^ J " ^(n+l)-l [jj 
3 

p-1 

^|Q(-i)«^+«s/(n+1H1(|) Un+l 
'     3 

.(tn+1-l)P 
-1 'sk™+i)-iuJ- 
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We write 

'p + k-l\ 1 

k=0 

and we set 

(jn+l _ iy        2^[^ jfc J t(k+p)(n+l) ' 

«><=(r+k*-%y-» 
Then we have 

oo   p-li(n+l)~l 

^(^*) = EZ1 E a*i (fc+p_i)(n+1)/.(^) 
fc=o i=i     i/=o 

oo   p(n+l)-l 1 

+ 13   E   afcp^Tiy^(t) 
A;=l       i/=0 

oo      p j(n+l)-l 

(fc,i)^(o,p) 

oo       p 

For abbreviation, we write J^j instead of ^ ^ in the following. Setting 
fc=0   j=l 

(fcj)^(0,p) 

oo 

^0;z,£) := ^an(x)K/n(2,t), 
n=0 

we obtain 

oo   j(n+l)-l 
. ^/ (1Y i  

i+i) 

oo oo i/l 

k,j v=Qn=[v/j} 

00    ^ (Z^ 1 

fcj i/=0 n=0 

Writing v = mj + 5, with m G No and s G {0,1,..., j - 1}, yields 

j —1   oo      oo 

f~\t   .     ^*\  L 
J-l    oo      oo mj + s J 

1p(x; Z,t) = '^2 O-kj Yl X! £ an+mW/mj+s (j) t(fc+p-j)(n- 
fcjj 5=0 n=0 m=0 

fc,j n=0 m=0 

- 2^ afcj tk+p-j Vj V^' ^fc+p ' fk+p-j '  ^ ) ' 
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where (ftUx; u, w, v) and Fmj are given by (1.2) and (1.3), respectively. Finally, setting 

oo 

#E;z):=£an(a:)£>£?(z), 

and 

Tkj(x- z) := ^ J^^g(t)-j-—(j)j [x\ ^T?, -j^—, -) -, 

we see that ip(x]') is an entire function for every x G X, and 

oo       p 

k=0 j=l 

(fe,i)#(o,p) 

Now the assertion follows by proceeding as in Steps 3 and 4 of the proof of Theo- 
rem 2.1 with some simple modifications. 

4.  Some remarks on the existence of summability methods 

Finally, we state some results on the existence of summability methods considered 
in Section 1.2. At first, we remark that most of the classical summability methods 
for analytic continuation of power series (Euler's methods, Borel's method, Lindelof 's 
method, etc.) satisfy the condition (5) for certain regions 5 which contain the unit 
disk D, and which are star-shaped with respect to 0. The next two lemmas can be 
deduced from the proof of the lemma in [3]. 

Lemma 4.1. If A satisfies the condition (S), and if D C S, then A also satisfies the 
condition (5,7). 

Lemma 4.2. If A satisfies the condition (S), iflbcS, and if f G II(ttf) for some 
open set Q,' C C such that 0 G Ctf, then A also satisfies the condition (Q,' * S,f). 

We remark that fi' * 5 = Sf, if fi' = C \ {1}, or if fi' = C \ [l,oo) and S is 
star-shaped with respect to 0. 

Furthermore, there is no converse of Lemma 4.2, i.e., there exist summability meth- 
ods A satisfying the condition (£2, /) for some ft and some / such that A does not 
satisfy any condition (5). For example, if we set X := (0,00), x* := 00, and 

J x    for x > 0 and n = 0, 

1 0    otherwise, 

then (j)f(x\u,w) = 0 for every power series / with /(0) = 0, so that A satisfies the 
condition (C, /). But A does not satisfy any condition (5), since (/)(x]w) = x —> 00 
(x->x*). 

The last result in this section gives a sufficient condition for a summability method 
A to satisfy the condition (££,/,p), and it generalizes Lemma 4.2. 
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Lemma 4.3. If A satisfies the condition (S), ifD C 5, and if f G Hfo') for some 
open set Qf C C such that 0 G £1', then A also satisfies the condition (Qp, f,p) for any 
p G N, where 

p j—i 

fip :=. f| (fi^.) * 5)     and    fi^ = ( f) e2^fc/^,)'     (j G N). 
i=i k=o 

Proof. We use the notations (1.1), (1.2), and (1.3). It suffices to prove that for j G N 

lim <pAx; u, w, v) = 0    compactly for (u, w, v) G (^ -x * S) x D x C.      (4.1) 

We set 
oo 

These power series have radii of convergence at least Rf, and 

tffa •, w, v) = Fj * (/)7(a;;., w). (4.2) 

Now we show that Fj G iJ(n/ -J. We have 

oo    j-i j—i 
F^z) = E(E^+^S)^ = E^K> 

where 
oo 

9js(z) := / Jvj+sz". 

Then, for ti; / 0, we consider 

oo oo 

Gjs{w) := gia(wi) = YJUj+sWuj = w-^fvi+s™^- 

Setting 
oo oo s 

ljs(W) := Y,™^3 = *>' E^' = IZ^J' 

we observe that jjs is holomorphic in ^ := C \ { e271"^/-7 : k = 0,1,... ,j — 1}, and 

W
S
GJS(W) = (/*7js)(w). 

By Theorem H, /*7js is holomorphic in fl'*^- = Hi^o e271"2^^7, and therefore, GjS G 
i^ft' * Oj) for s = 0,1,..., j - 1. This implies gj3 G #(^'(j)) for 5 = 0,1,... J - 1, 

and thus Fj G #(%))• 
Finally, the assertion (4.1) easily follows from (4.2) and Theorem H which completes 

the proof. 
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