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ASYMPTOTIC SOLUTION OF A LAMINAR FLOW 

IN A POROUS CHANNEL WITH LARGE SUCTION: 

A NONLINEAR TURNING POINT PROBLEM 

A. Dean MacGillivray and Chunqing Lu 

ABSTRACT. The boundary-value problem 

e/G") = [/ /'" - /' /"],    /(0) = /"(0) = /'(I) = 0,    /(I) = 1, 

is a version of Berman's problem and its solutions describe a laminar flow in a 
channel with porous walls. When 0 < e <C 1, the problem is a singular perturba- 
tion problem and physically corresponds to large suction through the walls. This 
case is known to possess three solutions, types I, II, III. The asymptotic anal- 
ysis of the type III solution—the only nonmonotone solution for small positive 
e—is the subject of the present investigation. A feature of the analysis is the in- 
troduction of a transition layer approximation whose domain of uniform validity 
overlaps with the outer and the boundary-layer approximations. The asymptotic 
approximations are consistent with two theorems proved, and the validity of the 
asymptotics is strongly supported by evidence from numerical experiments. 

1. Introduction 

In this paper, we find the asymptotic behavior of type III solutions [13], [22] of one of 
Berman's problems. This has been an open problem in asymptotic analysis for many 
years. 

Berman, in his investigation of the flow of an incompressible viscous fluid along a 
channel with parallel rigid porous walls [3], discovered a time independent similarity 
solution for the stream function. His procedure can be outlined briefly as follows. 
Assume the geometry of the channel is given as y e [—ft, ft], x G (—oo, oo), where 
ft is the half-width of the channel. Berman assumed the stream function ip could be 
written as 

^ = [hU(0)-Vx}f(J), (l.i) 

where (7(0) is an arbitrary velocity at the station x = 0. Let 77 = y/h. Then the 
velocity components are given by 

u=^{hU(0)-Vx}f'(r1), 

v = Vf(V). 
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Substitution into the Navier-Stokes equations yields a third order differential equation 
for/, 

fm = R[ff"-(f')2] + k, (1.3) 

where A; is a constant, and R = Vh/v is the Reynolds number of the flow based upon 
the velocity V. Note that if V < 0 (injection through the walls), then R < 0, and if 
V > 0 (suction through the walls), then R > 0. As usual, v denotes the kinematic 
viscosity. 

The boundary conditions u = 0 and v = ±V at y = ±h imply /'(il) = 0 and 
/(±1) = ±1. Equation (1.3) and these boundary conditions admit symmetric and 
antisymmetric flows. If the flow is assumed symmetric, then / is an odd function of 
77, so that /(0) = /"(0) = 0. It is convenient to differentiate (1.3) once. When this is 
done, and the boundary conditions for a symmetric self-similar solution are imposed, 
the following boundary-value problem is obtained: 

ef{iv) = (//'" -/'/"),    0<V<1, (1.4) 

m = no) = 0, (1.5) 
/(1) = 1,    /,(l)=0, (1.6) 

where e = 1/R. The asymptotic analyses of (1.4), (1.5), (1.6) for small values of e are 
singular perturbation problems, [6], [7], [11], [18]. In particular, the case 0 < e <C 1, 
which corresponds to large suction, (i.e., R > 1) leads to three such problems, one 
of which is the subject of this paper. 

This problem and related problems have been studied by Berman [3], Proud- 
man [12], Yuan and Finkelstein [21], Terrill [16], Terrill and Thomas [17], Robin- 
son [13], Skalak and Wang [15], and Zaturska et al. [22]. The importance of exponen- 
tially small terms in some of the analyses was commented on by Van Dyke [18]. 

The boundary-value problem (1.4-1.6) admits three distinct solution branches, orig- 
inally found by Robinson [13] using numerical experimentation. He classified them as 
type I, type II, and type III solutions. Because the present paper is concerned only 
with the type III solution, we give only a brief summary of type I and type II solutions. 

Type I and type II solutions. Type I solutions exist for all positive and negative 
values of i2. Type II solutions do not exist below a certain critical positive value for R. 
Workers in this area seem agreed that this critical value, as determined by numerical 
experimentation, is close to 12.165, and in fact type II and type III solutions emerge 
from the common solution that appears when R w 12.165. As R increases without 
bound, solutions of type I and of type II become very similar, being separated over 
most of the interval [0,1] by an exponentially small quantity. According to Robinson's 
asymptotic analysis, their common behavior is essentially linear, f ~ rj whereas, for 
large R, the solutions of type III first decrease from zero, reach a minimum, and then 
increase until 77 = 1 is reached, where /(I) = 1. See Figure 1.1 for the case e = .01. 

Mathematical justification for the existence of solutions of type I was proved by 
Shih [14] using fixed point methods. More recently, the existence of all three types 
was proved by Hastings et al. [5]; see also proofs by Wang and Hwang [19]. A rigorous 
asymptotic analysis of solutions of type I for large negative R appears in [8]. Included 
there are proofs of several conjectures based on numerical evidence obtained by Yuan 
and Finkelstein [21]. Recently, McLeod [10] has proved the validity of the asymptotic 
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FIGURE 1. Plot of the type III solution of equations (1.4)-(1.6) for 
e = .01. The solution was obtained using the NDSolve command for 
Mathematica 2.1 for SPARC; for further information refer to Table 1 
in Section 5. The relatively large value of e was used in order to show 
the behavior as the boundary at rj = 1 is approached. 

approximations for large R, previously obtained by Robinson for type I and type II 
flows. 

Type III flows. We now turn our attention to the type III flows. A rigorous proof 
of the existence of all three types was given by Hastings et al. [5]. However, type III 
solutions have yet to be analyzed for R > 1, although efforts in this direction were 
made by Robinson [13] and by Zaturska et al. [22]. Both groups attempted to use 
the method of matched asymptotic expansions applied to (different) assumed outer 
and boundary-layer expansions. Certain constants which could not be determined by 
matching were estimated by a comparison with computer-generated solutions. Their 
resulting predictions are discussed in Section 5. 

Robinson [13] apparently had some doubts about the validity of matching the outer 
approximation with a standard boundary-layer solution. We believe his comments 
show he clearly understood the subtle nature of the asymptotic problems involved. 
We shall introduce Robinson's insightful comments later. 

Zaturska et al. [22], on the other hand, suggest their asymptotic analysis, if pushed 
to sufficiently high order, might determine the constants mentioned above, and their 
reliance on numerical curve fitting could be avoided. For a discussion about constants 
left undetermined by matching, see Bender and Orszag [2], especially p. 468 and prob- 
lems 9.32, 9.33 on p. 482, and the important paper by Grasman and Matkowsky [4]. 

Our study of the type III solution, like those of Robinson and of Zaturska et al., is 
based on the method of matched asymptotic expansions. But in addition to the outer 
and boundary-layer approximations they considered, we have introduced a third ap- 
proximation which has some similarities to the sort of transition approximation found, 
for example, in the study of the relaxation oscillations of Van der Pol's equation [6], 
in the sense that it provides a bridge between the outer and boundary-layer approxi- 
mations. However, as we shall see, its analysis is quite unusual; specifically, new ideas 
about incorporating transcendental terms into the matching process are introduced. 
Nevertheless, we shall refer to it as the transition approximation. 

Some of the ideas introduced in the present problem have found application in a 
completely unrelated area, namely nonlinear oscillation theory, [9]. 

The remainder of the paper is organized as follows. Section 2 contains two theorems 
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and their proofs. Theorem 1 proves that if R is sufficiently large, then the location 
of the single zero (the turning point referred to in the title) that exists for type 
III solutions occurs in the vicinity of rj = 1. Theorem 2 proves that the type III 
solutions and their second derivatives are unbounded on compact subintervals of (0,1) 
as R —> oo. Of course, any asymptotic analysis must conform to these properties. The 
formal part of the asymptotic analysis begins in Section 3, which is divided into two 
parts. The first part presents the analysis of the outer asymptotic approximation which 
is uniformly valid on closed subintervals of [0,1). The second part of Section 3 presents 
the analysis of the boundary layer which is present at and in the vicinity of 7] = 1. 
As outlined above, we supplement these with a third transition approximation. Since 
this transition approximation is the key to the success of our analysis, it is presented 
separately in Section 4. In Section 5, we compare our theory with numerical results 
using Mathematica 2.1. Confirming evidence using COLSYS has been provided by 
Robert Miura and Ray Spiteri. Mathematica is accessible to most readers, who can 
easily check our results and/or do some independent checks for themselves. Section 6 
has some concluding remarks. 

2. Rigorous results 

There are several ways to argue that the internal zero (see Figure 1.1) of the type 
III solutions approaches rj = 1 as ejO, including a reliance on computer-generated 
numerics [13], and numerics combined with physical arguments [22]. An heuristic 
argument based upon the original boundary-value problem also can be made. However, 
we needn't relay on any of these approaches, since this result is contained in Theorem 1 
stated and proved below. We also prove, in Theorem 2, that the type III solutions 
tend to —oo as R —► oo on compact subintervals of (0,1). 

It is convenient to begin with a list of previously proved facts concerning type III 
solutions f(rj : e). 

(a) f{iv)(v) < 0 on (0,1]; see [15] or [8, Lemma 1]. 

(b) Solutions with /'(0) < 0 exist for all sufficiently large R\ [5]. 

(c) Properties (a) and (b), together with the original boundary conditions can be 
seen to imply that, for sufficiently large R, the graph of /" first rises from 
zero, reaches a maximum, then crosses the rj axis at a point y€ to become 
negative. See Figure 2.1 for a typical profile. 

(d) Properties (a), (b), (c) imply /(??) has a unique internal zero, z€. It is proved 
in [5, Lemma 11] that z6 <ye. 

(e) Differentiating (1.4) gives e/M = / fW - /"2, so that /M is negative for 

Theorem 1. lime_>o+ z* = lim€^o+ Ve = 1, and lime_>o+ ff(yc) = oo. 

The proof is an obvious consequence of Lemmas 1 and 2 below. 

Lemma 1. lime_o+(2/e — z€) = 0. 

Proof. For contradiction, make the tentative assumption that there is an a > 0 and 
a decreasing sequence {e^} with limit 0 and yei — zei > a. Sequential compactness of 
[0,1] implies the existence of a subsequence, again denoted by {e^}, such that {z€i} and 
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FIGURE 2. Plot of fff(r]). Note the concavity is everywhere down, a 
consequence of rigorous property (a). 

{yei} converge to z^, y^, respectively, and 2/oo - ^oo > a. With no loss of generality, 
we can assume 

Za < Zoo + -a    and   3/e. > Zoo + -o. 
6 6 

(2.1) 

Remark. For notational simplicity, we often write fi = /(T?; e;), Zi = zei, and T/J = y€i. 

The constant signs of fi, //, //', ffv\ and //^^ on the interval [ZQO + a/6, Zoo + 
5a/6] and the corresponding monotonicity of fi, //, //", //^ will be used to show 
that the sequences {fi}, {fi}, {//'}, {//''J, and {//^} are all bounded on [z^ + 
a/3, ^oo + 4a/9], so that the Arzela-Ascoli theorem can be used. The boundedness 
of {fi} is obvious since fi lies between 0 and 1 on [^,1]. It is also easy to show 
{fi} and {fi"} are bounded on [^oo + a/6,z^ + 2a/3]. For {//} this is obvious, 
since otherwise {fi} would become unbounded on the interval [zoo + 2a/3, ZQO + 5a/6], 
which is impossible. As for {//'}, we note that because //' is positive and concave 
down on the interval, the area under the graph of //' exceeds the area of a triangle 
drawn with vertex at the maximum and base on the line segment joining ZQQ + a/6 
and Zoo + 2a/3; a large maximum would make //(^oo + 2a/3) large, which as we saw 
above is impossible. 

We next note that {fi"} is bounded on [^oo + a/3, z^ + a/2], since otherwise 
fi"(zoo + a/3) —► oo for some subsequence of {ej or //"(^oo + a/2) —> -oo for some 

subsequence of {ej. In the former case, //'(^ + o/3) - fi"(zoo +o/6) = J^^JQ fi" 

will be unbounded. Since fi"(zoo + a/6) is positive, {//'(zoo + a/3)} is forced to be 
unbounded, a possibility ruled out above. If, on the other hand, //"(^oo + a/2) —► 
-oo for some subsequence of {e^}, an integration on [zoo 4- a/2,200 + 2a/3] leads to 
{fi"(zoo + a/2)} being unbounded, a contradiction to the above proved fact that {//'} 
is bounded on [^oo 4- a/6, z^ 4- 2a/3]. 

Finally, the sequence {/i(n,)} must be uniformly bounded on [^oo 4-1/3, Zoo 4-4a/9], 
since otherwise //*^^(^oo +4a/9) —> -oo for some subsequence {e*}, and consequently 



234 MACGILLIVRAY AND LU 

(recall fi^ is negative and decreasing) 

rZov+a/2 

/;"'(*oo + a/2) - //"(soo + 4a/9) = /       _    /^v)(0 df 

approaches -00, so that, by taking subsequences, fa /(z00-{-a/2) —> —00 or fa (ZQO + 
4a/9) —*• 00. In either case, the boundedness property of //" proved above is violated. 

Applying the Arzela-Ascoli theorem, we see there is a subsequence {e^} such that 
the sequences {fa}, {//}, {//'}» {//"} converge uniformly on [2^00 + a/3, ^oo + 4a/9] 
to a function /^(TJ) and its first three derivatives, respectively, and furthermore, the 
boundedness property of fa^™' established above leads immediately to the conclusion 
that /i(7/) satisfies the differential equation 

h ti" - ti h" = 0   on the interval    / = [^ + a/3, z^ + 4a/9]. (2.2) 

It is quite easy to show that neither h nor h" can vanish on the closed interval 
I. For example, if h vanished at some point 770 G /, then for small e*, /$ is small on 
[^,770], forcing fa' to be small and positive on [zi, ZQQ + a/4], say. This in turn means 
//' , being nonnegative and concave down on [0, ZQO + a/4], must be small at z^ +a/4. 
Since farf(0) = fa,r(yi) = 0, we now have three separated points where fa" > 0 is small. 
Together with the downward concavity of//', this means //' has a small upper bound 
on [0,1]. The same sort of circumstance is reached if h" vanishes anywhere in /, since 
then, for large z, \fa"\ is small at three separated points, again leading to //' having 
a small upper bound on [0,1]. Thus, if either h or h" vanish on /, one can certainly 
make fi"{r]) < 1    on    [0,1] for all sufficiently large i. Integrate once: 

fiM = fi'(0)+ f fi"1Ji)dt-<r, 
Jo 

since     /2'(0) < 0. Integrating again, we obtain 

Jo 

a contradiction. Thus, ft, ft" cannot vanish on /. 
Now that we know ft cannot be zero, we can use (2.2) to find (ft"/h)': 

d  (h"\      ft ft'"-ft'ft"     n ■ = 0. (2.3) 
drj \ h J ft2 

Hence ft" = eft, with c > 0. Immediately we find h^ = c2ft. Now, if c ^ 0, ft" 
is concave up throughout /. But downward concavity (in the sense that the chord 
joining two points on a curve lies on or below the curve) is preserved in the limit; ft" 
cannot be concave up, and consequently c = 0. Thus ft is linear and ft" is identically 
zero on /, contradicting our above result that ft" can vanish nowhere on /. 

Thus our original tentative assumption that ye — ze did not approach zero as e|0 
fails, and the proof of Lemma 1 is complete.    □ 

Lemma 2. ye —> 1 as ejO. 
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Proof. If the lemma is false, then there is a sequence {e*}, €i|0, such that yi —► yoo < 1; 
this uses the sequential compactness of [0,1]. Introduce points a, 6, c, d, e, such that 
2/oo<a<&<c<d<e<l. Without loss of generality, we can assume yi < a. We 
first note that /*, // are positive on [a, 1] and //', //", //*v' are negative on [a, 1]. 
From this, if {f^™'} were unbounded on [a, c], then an integration on [c, d\ would make 
{//"} unbounded on [a,d\; if this were true, then an integration on [<i,e] would make 
{//'} unbounded on [a,e]. Were this true, an integration on [e, 1] would make {//} 
become unbounded on [6,1], which in turn would make {fa} become unbounded on 
[a, 1], a contradiction. Therefore, {/i}, {//}, {//'}, {//"}, and {fi^} are bounded 
on the common interval [6, c]. 

Applying the Arzela-Ascoli theorem, we find the limit function h satisfies the differ- 
ential equation (2.2). h cannot vanish on [6, c] because if h(r)o) = 0 for some rjo E [&, c], 
then fi(rjo) can be made small, forcing // to be small on [a, (a + &)/2], which in turn 
forces I//'| to be small at (say) the midpoint a+ (6 — a)/4. Thus \fif\ is small at three 
separated points, a circumstance ruled out in the proof of Lemma 1. As before, we 
are led to h" = ch and h^ = c2 ft, but now c < 0. Since the downward concavity of 
//' is preserved in the limit and h is positive, we see it is necessary that c = 0. Thus 
h" = 0 on [6, c], and as seen above, this is a contradiction. The proof of Lemma 2 is 
now complete.    □ 

Corollary, /'(i/^e) —► oo as e —> 0. 

Proof. Since f(ze; e) = 0, /(I; e) = 1, and ze —> 1, the Mean Value Theorem tells us the 
maximum positive value of the derivative must be unbounded. Since this maximum 
occurs at the inflection point 2/e, the conclusion follows.   □ 

Theorem 2. (a)  lime_o /"(??; e) = oo for any r? E (0,1), 
(b)   lime-+o f(m €) = -00 for any rj e (0,1). 

Proof of part (a). Select any point 771 E (0,1) and choose e small enough that ye > 7?i. 
Since ftf{r)\y€) is concave down and /"(0) = fn{yt) = 0, we have /'" < f,f{rii)/r]i on 
(Vi^Ve)-, and hence 

/»(,) < i^ah (2.4) 
^1 

for rji < r] < ye. On (0,771), we see /"' > f"(rii)/(r}i - ye), and an integration from 771 
to 77 < 771 gives 

/"(,) < f"(<nXv<-i)m (2.5) 

An integration of Z"^) over [0,7/e] with (2.4) and (2.5) yields 

"mitye-Vi)  ,  2/e2 -771 nye)<lnm) 
Ve - Vl Vl 

+ /,(0). (2.6) 

Prom the corollary, f'{ye\e) -* 00 as e -*• 0. This, together with ye -+ 1 as e -> 0 and 
/'(O) < 0, implies ///(77i) -)- 00 as e -> 0. This completes the proof of part (a).    □ 
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Proof of part (b). Now let 770 £ (0,1) be given. We will show lime—o /(^o; e) —► —00. 
Consider /" on the interval [770/2, (1 4- f7o)/2]. From part (a), /" becomes large at the 
endpoints 770/2 and (770 + l)/2 as e —> 0. Its concavity implies /" becomes large, as e —> 
0, uniformly on [770/2, (770 + l)/2]. An integration on this interval leads immediately 
to the conclusion that 

maxt-/7 (770/2), /' ((770 + 1)12)) -* 00    as    c -► 0. (2.7) 

Since f'(rj) < f(vo/2) for 77 G [0,770/2] and /'fa) > /'((770 +1)/2) for 77 G 
[(77o + l)/2, 2fe], we see that /(770/2) < 770/2 x /,(77o/2) and /((770 +1)/2) < 
-f'((Vo + l)/2) x (^ - (770 + l)/2). Equation (2.7) then implies 

mm (>(?)•'(^—-'-<•• 
and consequently /(770) —> -00 as 6 —> 0. This completes the proof of part (b) of 
Theorem 2.    □ 

3. Asymptotic analysis of the outer and boundary-layer approximations 

In this section, we treat first the outer asymptotic approximation, then the boundary- 
layer asymptotic approximation. First some notation. Recall f(rj) vanishes for exactly 
one point z€ in (0,1). That is, f(z€) = 0. We also define A = 1 — z€. We refer to z€ 

as the crossover point. Mathematically, it is the turning point for a nonlinear turning 
point problem. Note that the turning point z€ is unknown a priori. 

A. Outer approximation.    If one formally sets e = 0 in (1.4), the reduced equation 

fofi>"-tifo=0 (3.1) 

is obtained. This equation and the two boundary conditions at 77 = 0 are satisfied 
by linear functions, CsinhKrj and C sin ^77, a result first discussed by Proudman [12]. 
For /'(0) < 0, we expect the outer solution to be valid at least until the turning point 
is approached, and this consideration eliminates the linear solution and the hyper- 
bolic sine from contention, leaving an expression proportional to sin (^77/(1 — A)). Of 
course, the constant of proportionality should be negative. For now, we write 

/ - -Ksin T-^-r,    « > 0, (3.2) 

uniformly on compact subintervals of [0,1 — A). 

B. Boundary-layer approximation. We know from Section 2 that A —» 0 as 
e —> 0. Conceivably A = O(e), but the numerical evidence says not, and, in fact, 
convincingly tells us that A > e. Consider Figure 1.1. There the boundary layer 
thickness is ~ .01, A « 0.2. The situation in Figure 1.1 is typical, as the reader 
can verify, and so we adopt the working assumption, subject to confirmation at the 
conclusion of the asymptotic analysis, that 

e<A<l. (3.3) 

(The actual asymptotic behavior of A will be determined by matching, and its leading 
behavior turns out to be 0(e|loge|).) Since /must rise from zero to unity in this 
distance A, one might expect df/drj to be 0(1/A) = o(l/e), and this expectation is 
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convincingly supported by computer experiments. Of course, / ~ 1 in the boundary- 
layer region. Introducing the boundary-layer variable x* defined by 

ex   =1 — 7/, 

the differential equation (1.4) becomes 

*'-(&-£&). (3.4) dx*4 \  dx*3     dx*dx*2
/ 

Again, / ~ 1 in the region of interest, so we write 

/(**)~l + a/i(a*;€) + ••-, |a| < 1. (3.5) 

Assuming in addition that in the region of interest df/drj = o(l/e) or equivalently, 
df/dx* = o(l), substitution into (3.4) yields 

/(x*) = 1 + o(l - x* - e-x*) + • • • , (3.6) 

where a = a(e) is a constant yet to be found, but in any case satisfies |a| <C 1 as e —» 0. 
(It turns out that 

but although this result is simple, its justification is quite subtle, as we shall see in 
the next section.) 

4. Transition layer asymptotics; exponential terms 

The transition approximation is to be valid on some interval containing the turning 
point 7] = ze = 1 - A. One of the major difficulties in deriving the transition approxi- 
mation is the fact that the leading term must be a solution of the full original equation 
(1.4). See, for example, a problem treated by Kevorkian and Cole [6]; see especially 
their equations (2.5.16), (2.5.25), and their Figure (2.5.3). On this point, they make 
the extremely important observation: the exact solution of the full differential equa- 
tion need not satisfy the boundary conditions—(1.5), (1.6) in the present case. In 
particular, any linear function is an exact solution of (1.4). (Computer experiments 
suggest the solutions behaves linearly from the vicinity of the crossover point up to 
the beginning of the boundary layer, where / is close to unity.) 

To study the transition approximation, we introduce the independent variable 

r=V-^. (4.1) 

When (1.4) is written in terms of r, the result is 

Adr4      Vdr3      drdr2)' K     ' 

The assumption that the leading term of the transition expansion is linear gives 

An attempt to match the leading term 7T with the boundary-layer solution (3.6) is 
immediately seen to be successful because the exponential decay in (3.6) leaves us with 
a linear approximation that can be made to agree with the linear solution of (4.2) in 
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the vicinity where / ~ 1, yet outside the boundary layer of thickness 0(6).   Since 
A > 6, this leads to 

7 = 1 

and so 

/ - r. (4.3) 

Matching this linear behavior with that of (3.6), we obtain a = ■% when we write (4.3) 
in #* variables. That is, the boundary-layer solution (3.6) becomes 

/~l + ±(l-3*-e-*') + .... M) 

Remark. This seems a good place to insert some important comments made by 
Robinson [13]: 

An investigation of the numerical results for large R indicates that 
none of the individual terms of (2.7c) are completely dominant 
throughout the viscous layer. Thus no simplification of the equa- 
tion, that would be valid throughout the layer, could be made and 
the full equation would have to be solved [our italics]. 

Robinson had great insight and clearly understood the delicate nature of the asymp- 
totics involved. 

The transition asymptotic approximation we have thus far reads 

/ = r + fci(c)/i(r) + *a(c)/2(r) + • • • , (4.5) 

where ki = o(l),    fe = o(ki), and we now must find fi and /2 as well as the gauge 
functions fciand fe. Substitution into (4.2) leads to 

A dr* dr*       dr2 ' [     ' 

which is a second order linear equation for 

d2/i u = 

and one solution is 

u = -^' ^ 

U = T. (4.8) 

A second solution is, as can be immediately verified: 

Ar2 A        fT     A    2    l 
U2z=-e2e.T   -{ T       e2es ds. (4.9) 

£    Jo 

Now, if U2 were retained as part of u, matching with the outer expansions would be 
impossible for the following reasons: to be of the correct order, the coefficient would 
have to be exponentially small. But although the part of the solution that contains 
U2 could grow to O(l), the matching requires that the corresponding terms in the two 
expansions (the outer and the transition) have the same functional behavior on an 
overlap domain. The second solution U2 has an exponential behavior, but the outer 
solution (or, rather, its second derivative) does not; therefore, U2 cannot contribute to 
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cPfi/dr2. (This is an example of the advantage of using matching over "patching"; 
see Van Dyke [18, p. 81].) 

Absorbing a multiplicative constant into fci, integrating (4.7) and (4.8) twice, and 
recalling /i (0) = 0, we obtain 

/i(r) = y+rir (4.10) 

where ri is a constant. 
We now substitute (4.5) into (4.2) using (4.10.) It turns out that to balance terms, 

one should set fo = A^. The result, after some algebra, is the following linear nonho- 
mogeneous equation for /2: 

Llk = Tlk^lIi^ (4ii) 
A dr1 dr*       dr2       3 ' K       ' 

Differentiating once, we obtain 

which is a first order linear equation for (fife/dT* with general solution 

<Ph = _^eAT2 r .le_^ ds _ z^^ (413) 

where B<i is a constant to be determined. 
Obviously (4.13) has the potential to make the fourth derivative as well as the third, 

second, first, and zeroth derivatives become exponentially large if |r| is bounded away 
from zero. However, and this is crucial, it is possible to choose B2 to prevent such a 
blowup for negative r where matching with (3.2) is to take place. To determine this 
value of B2, we first find the asymptotic behavior of the integral in (4.13) for r = — |r|, 
r bounded away from zero. A standard calculation yields 

r-\T\ 

/        s2e~£s2ds 
Jo 

=-(!f[£-( £|r|    -*|r|»   , i r-£H2 

wi 
e-27i<i   +—__—e"m   +.. 

(4.14) 

Thus (4.13) becomes, for r < 0,    r bounded away from zero, 

d4/2 A   A  2 
—e^ -(in^^-^^'W dr4 e 

-B2e%T~, (4.15) 
A„2 
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from which it is clear that those terms which blow up exponentially are neutralized 
by choosing 

Miff. 
leaving the simple result 

d^2 -   r + ... (4.17) 
dr4 

Antidifferentiating four times gives 

and so, from (4.3), (4.10), and the above expression, 

/ = T + h Cj + nr) + kl(^ + dy + C2y + Car + C,) +•••, (4.18) 

valid for r < 0 and r bounded away from zero. 
We are now ready to match the expression (4.18) with the outer solution (3.2) 

which we write using its Taylor series in powers of (77 — z€): 

TTTJ 
—K sin ' 

1-A. 

Kn(T] — ze)      K [Tr(i] — z() 
1-A 6 V   1-A 

Now (4.19) is to be matched with (4.18), which, of course, means r is negative and 
bounded away from zero and 77 - ze approaches zero as e —> 0. In order to facilitate 
the comparison, we rewrite (4.19) in terms of r: 

.      f     KT)     \ ( TTTA   \ K   ( TTTA  \ K     (  TTTA  \ ,A ^^ 

-KSm{i^A)-K{i^A)--e{T^A) +l2o(rrAJ +--(4-20) 
Now we compare the terms in (4.18) with those in (4.20). We see immediately from 

the linear terms that ri = 0 and 

K.
1
-^. (4.2!) 

We can next match the leading cubic terms in (4.18), (4.20), or we could instead 
match the quintic terms. If we compare the former, we obtain immediately 

If, on the other hand, we match the leading r5 coefficients, that is, (TTA/I - A)4/120 
from (4.18) and kf/120 from (4.20), we find 
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These two independent determinations of ki agree if the negative sign in (4.23) is 
selected. 

Remark. The consistency of (4.22) and (4.23) is gratifying. If fci as determined by 
comparing the cubic terms did not agree with that given by matching the r5 terms, 
then the entire analysis would be in doubt. Notice that the leading cubic terms in the 
transition expansion come from different terms, namely from /i and /2, respectively. 

We now turn our attention to the question of matching the transition expansion 
with the boundary-layer solution. At this point we know 

boundary layer: 

f(x*) = l + ±(l-x*-e-x')+---, (4.24) 

transition: 

where /2(T) is obtained by antidifferentiating (4.13) four times. Since our matching 
is to take place where / ~ 1, i.e., where r ~ 1, we need only the asymptotic behavior 
of (4.25) for r - 1. From (4.13) and (4.16), we have 

1/2   /^ d4f2         A  Ar2   r  2 _AS2J       (2eV,z ^ _ 
 e^r    I   s2'e   ^s ds-l-r)      -^r-e^ 

dr* e J0 \Aj        2 

VTT e£r2 +T + --- . (4.26) 
o^\ 1/2 

A 

Multiplying by k\ — [(A7r/(1 — A)]4 and noting only fa contributes to the fourth 
derivative, we find 

= -""J(a^F)^Mi^)4-" -      «-27> tl-     -*!*(    A7/2 

dr4 

We write this in terms of the boundary-layer variables by substituting 

err* 

into (4.27), yielding: 

(f)^-^(i),/,^-*>,^v(1-£)+... 

+ (rrA)4*'<1-x>+-- <428) 
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We compare this with the fourth derivative of the boundary-layer solution (4.4) after 
multiplying by (A/e)4: 

-(f) 
3 

e-*\ (4.29) 

Comparison of (4.28) and (4.29) shows the overlap domain must be such that 

-^-x*2 < 1    and   x* > 1, (4.30) 

leaving constant coefficients of e~x   in both expressions which, when equated, gives 

Squaring both sides and rearranging, we find the transcendental equation which de- 
termines A, 

(A/«)eA/'_       1 (432) 
(1-A)8   "27r(7re)8- (      ' 

This result is in a sense the culmination of our labors. The values of A which satisfy 
this transcendental equation determine all of the constants explicitly. That is, ours is 
an ab initio theory, with no dependence on computer-generated solutions of (1.4) to 
compute undetermined constants, in contrast to the reliance on curve-fitting in the 
theory of Robinson and in the theory of Zaturska et al. With such explicit formulas at 
hand, we can compare our theory with computer experiments. We also can make the 
necessary check on our working assumption that A > e. Indeed, (4.32) yields (after 
taking the logarithm of both sides, selecting the dominating term, and rearranging): 

A(e) 8e loge     as     e -> 0 (4.33) 

which shows A > e. 
Equation (4.33) gives us the asymptotic behavior of A. We shall, however, use 

Mathematica's FindRoot command to find precise numerical values for A, because we 
wish to see how well our theory agrees with computer experiments. This we do in the 
next section. Before leaving this section, let us add two more consistency checks to 
those already made. First, the crucial property of the fourth derivative is that it be 
negative; recall that this is a rigorous result. The transition asymptotics indeed give 
negative values for all r, including r = 0. Secondly, from (3.2), (4.21), and (4.33), we 
see that / approaches — oo as e —► 0, and /" approaches oo as e —► 0, in agreement 
with Theorem 2 proved in Section 2. 

5.  Comparison of theory with computer experiments 

We have used Mathematica, version 2.1 for SPARC. Robert Miura and Ray Spiteri 
have kindly supplied us with results obtained using the program COLDAE, which 
with its predecessor COLSYS was developed at the University of British Columbia by 
Ascher, Christiansen, and Russell [1]. 

We have organized our comparison of theory with computer experiments around 
three tables, which we now discuss. 
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Discussion of Table 1. The command NDSolve of Mathematica solves an initial- 
value problem. Our equation is fourth order, and so, in addition to the conditions 
/(0) = 0, /"(0) = 0, one must guess values for /'(0) and /'"(O)* with successful 
guesses being those which result in /(I) being close to unity and /'(I) being close to 
zero. Columns 2 and 3 of Table 1 are values of successful guesses, with columns 4 and 
5 showing the resulting values for /(I), and /'(I)- Columns 6 and 7 give values of A, 
which, recall, is defined to be the distance from the single internal zero z€ of the solution 
to the right hand boundary. Column 6 is the value determined using the computer, 
and was read off from the data of the numerical solution; the subscript MATH indicates 
this is a computer-determined value using Mathematica. Column 7 is the value of A 
obtained by numerically solving the asymptotic expression (4.32) produced by our 
asymptotic theory. The last column gives the percentage deviation of the entries in 
columns 6 and 7; it is a measure of agreement between theory and experiment. It 
can be seen that this percentage deviation diminishes in a very satisfying manner as 
e approaches zero. 

The numbers in the columns are obtained from the output, and, not surprisingly, 
more digits are displayed than are really meaningful. We feel a reasonable estimate of 
the number of digits that are actually significant is always at least three, and in most 
cases four or more. The main justification for this claim is that when one compares 
the output of Mathematica with that from COLSYS, the agreement is very good to 
three places in all cases, and often more. For instance, in one of the most difficult 
cases, with e = .00002, the A values agree to five figures. Data obtained by Miura 
and Spiteri includes error estimates which are not included in our tables; most of the 
time these estimates imply accuracy far beyond four digits for the COLSYS results. 
In any case, 3 or 4 digit accuracy is adequate to keep intact the numerical evidence 
supporting the validity of our asymptotic theory. For the purposes of our theory, the 
reader may simply ignore the extra digits. Evidence for this is seen by comparing the 
last column of Table 1 with the last column of Table 3. The entries are remarkably 
similar and, most importantly, both confirm the validity of the asymptotic theory. 

Table 1 does not include values of A from the theory of Zaturska et al. [22] because 
they do not explicitly provide a means for its theoretical determination. However, it 
is not unreasonable to assume one can use their equations (5.24) and (5.27) for this 
purpose, arriving at the problem of solving 

-1 + e1/47r(.0894) (-1 + —2 + e-ll-n)l<\ = 0 

for AZDB = 1 — TJ. At e = .0003226, which is in the middle of their curve fitting range, 
this gives the theoretical value of .00889318, a deviation of over 40% from the computer 
experiment value. At other values of e, the results are far worse. If this is indeed an 
acceptable means of using their theory to predict A, it strongly suggests their theory 
has some shortcomings, quite apart from the disagreement with computer experiments 
to be illustrated in Table 2. It should be emphasized that Zaturska et al. [22] do not 
provide us with a formula for A. This is unfortunate because curve fitting becomes 
more convincing if parameters other than those used for the curve fitting itself agree 
with experiment. 

Discussion of Table 2. Here we compare the theories of Robinson [13] and of 
Zaturska et al. [22] with computer experiments. Both use values of /'(O) at three 
values of e computed using their computer and software to evaluate constants in the 
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form of their assumed expansion. By definition, then, perfect agreement occurs at 
these selected values. What remains to be confirmed then is agreement at values of 
e differing from these three values. Thus, column 2 repeats column 2 from Table 
1. We infer from his paper that Robinson uses computer-generated values of f'(0) 
computed for e = .002, .0018, and .001 to compute the undetermined constants in 
his theory. Upon using these, his theoretical values must by definition agree perfectly 
with his computer solutions and be close to ours determined using Mathematica. His 
predictions for /'(0) are shown in column 3. Notice that outside the range of e-values 
used for the curve fitting, the predicted /R(0) values swing away from the numerical 
values. For example, when e = .0001, the deviation (column 4) is about 17%. At 
e = .00002, the deviation is 39%. For some larger values of e (e = .01 and .005), the 
table shows the deviation is large. In fact, the only values of e where the deviation is 
small is in the range where the curve fitting took place. 

For their curve-fitting, Zaturska et al. [22] use their computer-generated values of 
/'(0) at R = 2000, 3100, 4500 which correspond to c = .0005, .00032258, .000222.... 
This means (by definition) perfect agreement with their computer results at these 
e-values, and one would, of course, expect very good agreement with our numerical 
results using Mathematica. And indeed, column 6 bears this out. However, as one 
moves outside the range of 6-values used for the curve fitting, one finds the predicted 
values moving away from the Mathematica values. For instance, for e = .0001, there 
is almost a one percent discrepancy as compared with only .22 percent at 1/4500, and 
at e = .00002, the discrepancy has already climbed to 6.6%. Thus, as e gets smaller, 
the error increases instead of diminishing as one would expect of a valid asymptotic 
theory. 

Column 7 gives the predicted values of the present theory. We need not remind 
the reader that ours is an ab initio theory, with no curve-fitting. Column 8 shows 
the deviation from the computer-determined values. The deviation steadily decreases 
from almost 23 percent when e = .01 to 3 percent when e — .00002. 

Discussion of Table 3. Robert Miura and Ray Spiteri at the University of British 
Columbia have computed numerical solutions of the problem (1.4)-(1.6) using the 
program COLDAE, which is an advanced version of the familiar COLSYS [1]. Since 
in our asymptotic theory the determination of A is central, it is especially important in 
comparing our theory with computer experiments that the numerical values COLSYS 
gives for A are close to those obtained using Mathematica. The reader can readily see 
that this is indeed the case. Column 2 lists the values that COLSYS obtains for /'(0), 
and should be compared with the second column in Table 2. Column 3 repeats our 
theoretical results from column 7 of Table 1. Column 4 gives the values of A given by 
the COLSYS experiments of Miura and Spiteri. Column 5 gives the difference of the 
theoretical and experimental values of A (columns 3 and 4) expressed as a percentage. 
Once again, it is clear that the agreement is very good and improving (as it should) 
as e decreases. 

6.  Summary 

We have described the nonmonotone solution of one of Herman's problems (type III 
in Robinson's classification). We began by proving in Section 2 for e|0 that the 
turning point at zt approaches 1 and that / approaches — oo and /" approaches oo on 
compact subintervals of (0,1). Then we used formal matched asymptotic expansions 
to find, among other things, specific formulas for locating ze and for calculating /. 
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e /cOLSYs(0) AML AcOLSYS %deviation 
.01 -6.19996 .2092631718 .182428 14.71 
.005 -8.612086 .134698778 .1248447 7.89 
.002 -15.71590 .0692068984 .06628865 4.40 
.001 -26.48372 .04024279557 .03894195 3.34 
.0005 -46.01893 .0229009207 .02228796 2.75 
.0003225806 -65.95747 .0159013046 .01551393 2.49 
.0002222222 -90.02266 .0116109964 .01134848 2.31 
.0001 -177.4640 .00585697941 .005741415 2.01 
.00002 -723.469 .0014256883 .0014032 1.60 

TABLE 3. Results from computer experiments using COLSYS, cour- 
tesy Miura and Spiteri. Columns 2 and 4 show the values COLSYS 
gives for /'(0) and A. Our theoretical values for A are rewritten in 
column 3, and column 5 displays the discrepancy between the com- 
puter results in column 4 and the theoretical results in column 3, 
expressed as a percentage. Compare with the last column in Table 1. 
The results support our asymptotic theory. 

These asymptotic results are completely consistent with the rigorous results. Finally, 
we found that predictions based on our asymptotic theory compared very favorably 
with the results of computer experiments done by ourselves using Mathematica, and 
independently by Miura and Spiteri using COLSYS. 

An interesting and, at the same time, essential feature of the asymptotic analysis is 
the introduction of a transition approximation which covers the region of the turning 
point. The construction of this intermediate expansion, and its matching with the 
outer and boundary-layer approximations, incorporates and exploits some ideas about 
exponential terms, which may have application to other problems and, in fact, have 
already been applied to one problem outside of fluid dynamics [9]. 

Previous attempts to obtain the asymptotic behavior of the type III solution were 
made by Robinson [13] and by Zaturska et al. [22]. In Section 5, we have compared 
their theories with computer experiments and conclude that the form of their results 
(which incidentally are different from each other) is not supported by the numerical 
evidence. Specifically, Robinson proposes /'(O) ~ OLR

-1
 and Zaturska et al. propose 

/'(0) ~ l3R~3/4, where the constants are determined by computer. Our theory, whose 
results are supported by the computer experiments, shows the asymptotic dependence 
of /'(0) on e = 1/R is not a simple power at all, but instead is given by /'(0) ~ 
-1/A, where A satisfies the transcendental equation (4.32). This surprising result was 
obtained from the careful study and analysis of certain exponential behavior properties 
in the transition approximation and the rational incorporation of this behavior into 
the matching principles of the method of matched asymptotic expansions. 
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