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THE NEVANLINNA PARAMETRIZATION 

FOR SOME INDETERMINATE STIELTJES MOMENT PROBLEMS 

ASSOCIATED WITH BIRTH AND DEATH PROCESSES 

Christian Berg and Galliano Valent 

ABSTRACT. We consider two indeterminate moment problems: One corresponding 
to a birth and death process with quartic rates and the other corresponding to the 
Al-Salam-Carlitz ^-polynomials. Using the Darboux method, we calculate their 
Nevanlinna matrices and several families of orthogonality measures. 

1.  Introduction 

The first examples of indeterminate measures were found by Stieltjes in 1894, cf. [25] 
and one of his examples reads 

poo 

/     xn-logx{l + Xsm(27rlogx)} dx = V5rci(n+1)2,    n = 0,1,..., 

where A G [—1,1]. It gives a one-parameter family of absolutely continuous measures 
on [0, oo[ which all have the same moments sn = y/7rexp((nH-l)2/4). The polynomials 
which are orthogonal with respect to this family of measures are a special case of the 
Stieltjes-Wigert polynomials, cf. [33] or [10, p. 172]. 

Generally speaking, polynomials corresponding to an indeterminate Hamburger 
moment sequence raise two important problems: 

1) The description of all (positive) orthogonality measures v. 
2) The characterization of those orthogonality measures v for which the polynomials 

are dense in L2(i/). 
The first problem was solved by Nevanlinna [21], who constructed a matrix of entire 

functions 

(A(z)    C(z)\ 

with determinant identically equal to one, and showed that the Stieltjes transform of 
any possible orthogonality measure v = v^, is given by 

/ 
dj^u)_A(zMz)-C(z)     ^CxK; {12) 

z-u       B(z)<p(z) - D(zy 

where <p is a Pick function. See Section 2 for the precise definitions. 
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170 BERG AND VALENT 

The second problem was solved by Marcel Riesz [22], who proved that the polyno- 
mials are dense in L2(v) precisely when v is Nevanlinna extremal (short: N-extremal), 
i.e., a measure whose corresponding Pick function is constant 

ip(z) = t,   £eRu{oo}. 

By 1923, the theory of the indeterminate Hamburger moment problem was essentially 
accomplished, but no concrete example of this beautiful piece of work was available 
in the literature. 

The first measure which was recognized as being N-extremal was pointed out by 
Chihara for the ^-polynomials of Al-Salam and Carlitz ([2], [10, p. 195]) without use 
of (1.2). For further details see [7]. Moak [20], considering g-analogues of Laguerre 
polynomials, was the first to express the functions B, D in terms of known functions, 
viz. the g-Bessel functions. The g-Laguerre polynomials are essentially the generalized 
Stieltjes-Wigert polynomials, cf. [10]. Chihara and Ismail [12] have worked out the full 
Nevanlinna matrix (1.1) corresponding to the Al-Salam-Chihara polynomials. More 
recently Ismail and Masson [18] obtained the same result for the g-Hermite polyno- 
mials, and they have given several examples of N-extremal as well as non-N-extremal 
measures in a closed form. 

In this paper we shall consider two rather different indeterminate problems. The 
first one has to do with the orthogonal polynomials related to a quartic birth and death 
process already considered in [29], [28], [7], and the second one with the Al-Salam- 
Carlitz ^-polynomials [2], [10], [7]. The paper is organized as follows. Section 2 gathers 
basic information on indeterminate Hamburger moment problems. The Nevanlinna 
parametrization of all the measures is described with emphasis put on the N-extremal 
measures. We have included a simple criterion in terms of the Pick parameter ip for 
the measure u^ to have a continuous density (cf. 2.1.1, 2.1.2 below). 

In the case of a Stieltjes moment sequence, one has to distinguish between deter- 
minacy/indeterminacy in the sense of Hamburger and in the sense of Stieltjes, where 
indeterminacy in the sense of Stieltjes means that there exist at least two different 
measures on the interval [0, oof with the same moments. We use the self-explanatory 
notation as in [7] to indicate the different cases: det(H), det(5), indet(i7), indet(5). 
For a moment sequence which is indet(5), we characterize the subclass of positively 
supported N-extremal measures vt by t G [a, 0], where the constant a is expressed in 
terms of B and D as well as in terms of the recurrence coefficients. 

Birth and death processes lead to Stieltjes moment problems, and we have gathered 
some useful formulas expressing fundamental quantities in terms of the birth and death 
rates (An),(^n). 

This section concludes with a detailed discussion of continuity properties of the 
Nevanlinna matrix and the orthogonality measures in terms of parameters on which 
the moment sequence depends; these results are needed in Section 4. 

In Section 3—as a first example—we consider a birth and death process with quartic 
rates. Using generating functions determined in [30], the asymptotic analysis of the 
corresponding polynomials is carried through by the Darboux method and leads after 
long calculations to the full Nevanlinna matrix. In a preceding paper [7], C and D 
were determined in a more elementary way. The order, type, and Phragmen-Lindelof 
indicator are determined for these entire functions, e.g., the order is \. The present 
case seems to be the first, where one of the functions in the Nevanlinna matrix can be 



NEVANLINNA PARAMETRIZATION 171 

expressed by elementary functions, namely 

D{z) = -z1'2 sin(-^-iro) sinh(^-ifo), (1.3) 

where KQ is a constant. 
The equation giving the support of the N-extremal measures is derived; in two 

particular cases (corresponding to the endpoints of the interval [a, 0]), it can be solved 
in closed form, and the corresponding masses are given. Several examples of non-N- 
ext remal measures are worked out which exhibit a density and (or) discrete masses. 

Using the orthogonality measures, we have expressions for the moments. This 
leads to a generating function for the moments already determined in [28]. We find 
the asymptotic behaviour of the moments by the Darboux method: 

Sn — 
4(4n +1)! 

KAn+2 1 + 0(i)) (1.4) 

In Section 4, we consider the Al-Salam-Carlitz ^-polynomials with x replaced by 
x + 1 in order to treat them from the point of view of a birth and death process. The 
birth and death rates depend on two parameters a > 0 and 0 < q < 1. The regions of 
det(if) and indet(ii") are invariant under the transformation a *-► 1/a. We examine 
how the orthogonal polynomials and the corresponding entire functions behave under 
this transformation. From the general study in Section 2, we know that the entire 
functions depend continuously on the parameters (a, q) in the region of indeterminacy. 
This is useful in the calculations because the case a = 1 has to be excluded in the 
basic calculations because of degeneracy of the formulas. The invariance properties 
mentioned also makes it possible to restrict the calculations to a < 1. 

Otherwise the procedure resembles that of Section 3. Using generating functions for 
Fn given in [2], [7] and for Fn given in [7], we apply asymptotic analysis to determine 
the full Nevanlinna matrix. The calculations in this case are much simpler than the 
quartic case because the generating functions are meromorphic, whereas they have 
singularities along the cut [l,oo[ in the quartic case. The entire functions of the 
Nevanlinna matrix are all of order zero. The support of the N-extremal measures can 
be determined explicitly for two values of the parameter t = 0, t = ti, where 

ii=ii(a) = -l/£(a),    «a) = M: 0i 291 
l/a,0 
q/a ',q (1.5) 

valid for q < a < 1/q. Here [q]^ = 11^(1 -qn). Concerning the basic hypergeometric 
series r^s, we refer to Rahman and Gasper [14], but since q is fixed throughout the 
paper, we have omitted q and write 

As 
a\,...,ar 

h,...,bs 
;* : r^s 

ai,..., ar 

bi,...,bs 
\q,z 

When the problem is indet(5) (1 < a < 1/q) the values t = 0,t = £i are again the 
endpoints of the interval [a, 0]. When the problem is det(5), indet(iif) (q < a < 1), we 
do not have this interpretation. The two values only agree in the border case a = 1. 
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The corresponding measures are 

-.n nn 

00    a~nQn2 

^^^l^^^-"-1*' (L7) 

where ex denotes the Dirac measure at x. By convex combinations of these measures, 
we obtain non-N-extremal discrete measures. We also have calculated a one-parameter 
family of orthogonality measures with analytic densities. 

For sake of completeness, we have calculated the unique orthogonality measure in 
the case det(iif). It turns out (cf. Theorem 4.8.1) that (1.6) also gives the orthogonality 
measure for 0 < a < q, while (1.7) gives the orthogonality measure for 1/q < a. 
Summarizing, we have the following orthogonality measures given by (1.6) and (1.7): 

m(a)    for    0 < a < 1/q, 0<q<l 

<7(a)    for    0 < q < a, 0 < q < 1. 

We remark that a^ is concentrated on [0, oof precisely when a > 1. 

2. The Nevanlinna parametrization 

2.1. The Hamburger case. Let us consider an indeterminate probability measure 
[i on the real line. The set V of measures r on E having the same moments as /i, i.e., 

sn= lxndfji(x)= lxndT(x),    n = 0,l,..., (2.1) 

is a compact convex subset of Mi(lR), the set of probability measures on M with the 
weak topology, i.e., the weakest topology for which the mappings fi \-> f f dfi are 
continuous, when / is continuous and vanishes at infinity, cf. [1, p. 31-32]. 

Nevanlinna [21] showed that V can be parametrized by the one-point compacti- 
fication V U {00} of the space V of Pick functions, i.e., the holomorphic functions 
(p: C\R->C given by 

/uz + 1 
da(u), (2.2) 

u    z 

where 5 > 0, t € E and a is a positive finite measure on E. (The Pick functions form a 
locally compact subset of the space of holomorphic functions on C\E, cf. [4].) A func- 
tion of the form (2.2) clearly satisfies (p(z) = (f(z) and Im(p(z) > 0 for Imz > 0, and 
holomorphic functions in C\E with these two properties have a unique representation 
of the form (2.2), cf. [1], [24], [26]. 

The parametrization is established via a homeomorphism <p 1—» u^ of V U {00} onto 
V given by 

/ z — u       B{z)(p{z) — D(z) 

where A, B, C, D are certain entire functions depending only on the moment sequence 
(sn)n>o (or equivalently on V), cf. (2.12) below. Detailed proofs can be found in [1], 
[9], [24], [26]. We follow the terminology of [1]. 
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Given v € V, we find <p 6 V U {00} so that v = vv by solving the equation 

J4(z)^(z) - C(z)       f dv(u) 

B(z)<p(z) - D(z) 

/du(v 
Z-' 

Given (p €V U {oo}, we find fp G V by the Stieltjes-Perron inversion procedure: We 
have 

, / x 1 -r    ^('20(£('2;) - C(z)      _ , N    r ^(g) := -- Im g(j>Mj8) _ ^ = P, ♦ Mx)   ioTz = x + ly,y>0, 

where 

is the Poisson kernel for the upper half-plane, and it is well-known that lim^o Py*V(p — 
Vy weakly. In other words, the measure with density dy{x) with respect to Lebesgue 
measure converges weakly to v^. Many standard results about harmonic functions in 
the upper half-plane can be applied in this situation. In particular, if v^ is absolutely 
continuous of the form h(x) dx, then Irniy.+o dy(x) = h(x) for almost all x G M. 

In computations, the following is useful. 

Proposition 2.1.1. Suppose ip G V has boundary values 

(p(x+) =  lim ip(x 4- iy)   for x G /, 
2/-.-0+ 

where I is an open interval, and the convergence is uniform on compact subsets of I. 
If furthermore, B(x)(p(x~t) — D(x) ^ 0 for x G /, then v^ has a continuous density 
on I given by 

d(a0      1 Tm<p{x+) 
>K\B(x)<p{x+)-D{x)\2' 

Proof. Using (2.13) below, we get that lim^o dy{x) = d(x) uniformly for x in compact 
subsets of / and the assertion follows.    □ 

Remark 2.1.2. If <p G V has the representation (2.2) with a = g(u)du and g is a 
C1 -function satisfying 

«•>-<>(£) for \u\ —* oo, a > 3, 

then <p has continuous boundary values 

(p(x+) = SX + T- irH(h)(x) + iirh(x),    x G R 

(the limit exists uniformly for x in compact subsets of E), where r = t — / ug(u) du, 
h(u) = (1 + u^g^), and H denotes the Hilbert transform 

^0 * J\u\: 
H(h)(x) = lim- I       h{x    U) du, 

cf. (5) in [4]. Furthermore, Im</>(a;+) = 7rfe(x), so if g{x) > 0, then B{x)(p{x+)-D{x) / 
0. 

To see this, one proceeds as in [4] using standard results about W. 
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The four functions in (2.3) can be defined in terms of the orthonormal polynomials 
(Pn)n>o with respect to M, and the polynomials (Qn)n>o of the second kind given by 

Q i(a.)= [Pn{x)-Pn(y)dn(y). (2.4) 
J x-y 

We stress that Pn is of degree n with positive leading coefficient.   This convention 
together with orthonormality determines (Pn) uniquely. 

The polynomials Pn as well as Qn satisfy the three-term recurrence relation 

xPn(x) = bnPn+1(x) + anPn{x) + 6n_iPn_i(x),    n > 1 (2.5) 

together with the initial conditions 

Po(aO = l,    Pi(x) = Y(x-ao),    Qo = 0,    Qi(x) = -, (2.6) 

where 

an = f xP*{x)dii{x), bn = j xPn{x)Pn+1{x)dii{x),    n > 0. 

Using (2.5) and (2.6), the following formulas are easily established 

(2.7) 

An(z,w) = (Z-W)^2 QkWQkW 
k=0 

= bn-1{Qn{z)Qn-1(w) - Qn-i(z)Qn{w)), 
n-l 

Bn{z, w) = -l + {z-w)YJ Pk(z)Qk(w) 
k=0 

= bn-l(Pn(z)Qn-1{w) - Pn-i{z)Qn(w)), 

n-l 

Vn(z, w) = {z-w)YJ Pk(z)PkH 
k=0 

= bn-i {Pn(z)Pn-l (w) - Pn-1 (z)Pn(w)) , 

and these polynomials verify the identity 

An(z,w)Vn(z,w) + Bn{z,w)Bn(w,z) = 1. (2.8) 

Because of indeterminacy the following series 

oo oo 

x>fc(2)i2, X;I^WI2 (2-9) 

/c=0 A;=0 

converge uniformly on compact subsets of C, cf. [1]. By (2.7), the polynomials An,Bn, 
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and Vn converge uniformly on compact subsets of C x C to the entire functions 

oo 

A(z, w) = (z-w)^2 Qk{z)Qk{w), 

oo 

B(z,w) = -! + (*- w)Y^Pk(z)Qk(w)9 (2.10) 
A;=0 

oo 

V(z, w) = (z-w)J2 Pk(z)Pk{w), 
k=0 

satisfying 

A(z, w)V{z, w) + B(z, w)B(w1 z) = l. (2.11) 

Setting 

A(z) = A(z,0),    B(z) = B{z,0),    C{z) = -6(0,*),    D{z) = V(z,0), (2.12) 

we obtain the four entire functions from (2.3). They satisfy 

**(*(?)   £$)=1'    ^C (2.13) 

The matrix in (2.13) is called the Nevanlinna matrix for the indeterminate moment 
problem. Note that there is a change of sign in the functions in (2.10) compared with 
[9]. M. Riesz proved (cf. [1]) that each of the four functions / = A,B,C,D is of 
minimal exponential type: For any e > 0, there exists C£ > 0 such that 

|/(*)|< C7ee
el*l,    zee. 

In other words, the order of / is at most one, and if the order is one, then the type of 
/ is zero. 

Recently Berg and Pedersen, cf. [5], have established that the four functions A, £?, 
C, D have the same order, type, and Phragmen-Lindelof indicator function. 

The solutions (^)*GKU{OO} in V corresponding to (p G V U {oo} being a constant 
t (including oo) form a remarkable class of measures called the Nevanlinna extremal 
solutions, (short: N-extremal solutions). By a theorem of M. Riesz [22], they are 
exactly the measures u E V for which the polynomials are dense in I/2(z/). 

The entire function B(z)t - D(z) has only real zeros; they are all simple and form 
a countable discrete set At C M. The measure ut is concentrated in A*, and the mass 
at A e At is the residue 

A(X)t - C(X) 
Bflx)t-Df(X)' 

which is known to be equal to p(A), where 

oo _1 

*(*)= (ElWI2)"- (2.14) 
k=0 

The set of measures v £ V for which the polynomials are dense in L1^) is precisely 
the set of extreme points of the compact convex set V, cf. [1, p. 47]. We stress that V 
is one of those infinite dimensional compact convex sets for which the extreme points 
are dense in V. For other density results about V, see [4]. 
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A measure v = v^ £ V is called n-canonical, n = 0,1,..., if ip G V U {oo} is a 
rational function of degree n. For a rational function <p = p/q where p and q are 
polynomials without common zeros, the degree of <p is the maximum of the degrees 
of p and q. The 0-canonical solutions are precisely the N-extremal solutions. By a 
theorem due to Buchwalter and Gassier [8], the n-canonical measures are precisely 
those v G V for which the closure of the polynomials in L2(i/) has co-dimension n. 

If (p G V is a quotient of entire functions <p = p/g, in particular if </? is rational, 
then we get by (2.3) that u^ is a discrete measure with point masses at the zeros of 
Bp - Dq. 

If cp E V, then Imip is a non-negative harmonic function in the upper half-plane, 
so by the mean-value property for harmonic functions, either Im (p = 0 or Im <p > 0 
everywhere in the upper half-plane. In the first case, (p is a real constant, and in the 
second case (p maps the upper half-plane into itself and, similarly, maps the lower 
half-plane into itself. This shows that the class V \ E of non-constant Pick functions 
is stable under composition. As examples of non-constant Pick functions, we mention 
—1/z, za

y0 < a < 1, and tanz. In particular, if (p is a non-constant Pick function, 
then so are — (1/V), <pa, 0 < a < 1, and tan (p. 

We next define an involution * in V U {oo} by 

y>* = ,     0* = oo,     oo* =0. 

Via the homeomorphism <p i-» z/^, this yields an involution ~ in V : ^ = z^,*. The 
(unique) fixed point under the involution * is the function 

{-.. 
, .       . „,       Im z > 0 

Im 2 < 0. 

The corresponding solution z/^0 G V has an analytic density with respect to Lebesgue 
measure, cf. [4] 

More generally, corresponding to <pt>7 G V given by 

/ x      I t + n,    Imz > 0 /rt ^N ^,7W=r     /     T       /n (2.16) 
^-27,    Im2<0, 

where t G E and 7 > 0, we have 

*V7 = J{(^(*) - D(x))2 +l2B2{x)}-1 dx, (2.17) 

cf. [4]. The representation (2.2) for (2.16) is given by 5 = 0 and 

a= 1(1 + u2)-1 du. 

We shall now relate the convex structure of V to the structure of V U {00}. For 
(p,ilj €VU {00} and s G [0,1], there exists g = g(<p, ip, s) G V U {00} such that 

sup + (1 - s)ity = iv 
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Inserting this into (2.3) leads to the following formula after some calculation 

In particular, using s = | and constant functions <p,^, we get 

i(^ + ^ = V^)='2§j^    *€K (2.19) 

2^ + ^oo) = vg, g(z) = 2t- —y -(vt + Voo) = v9, g{z) = 2t-1^,    teR. (2.20) 

This gives a quick proof of the fact that B/D e V, which may otherwise be deduced 
from the formula 

lm{B{z)D{z))=lm{z)Yj\Pk{z)\2. 
k=0 

2.2. The Stieltjes case. In the sequel, we assume that the moment sequence (2.1) 
is a Stieltjes moment sequence, i.e., (2.1) has a solution r supported by [0,oo[. Since 
the zeros of Pn and Qn are located in ]0, oo[, we see that 

If 

Pk(x)Pk{0) > 0,    Pk(x)Qk(0)<0   ioix<0. (2.21) 

71-1 

Bn(x) = Bn(x,0) = -l + xYfPk(x)Qk(0) 
fc=0 

bn-l{Qn-l(0)Pn(x) - Qn{0)Pn-l(x)}, 
n-1 

(2.22) 

Dn(x) = Vn{x, 0) = x ]£ Pk(x)Pk{0) 
k=0 

= 6n-l{Pn-l(0)Pn(a?) " Pn(0)Pn-l(^)}, 

we see that Bn(x) < Bn+i(x) < B(x)1 Dn(x) > Dn+i(x) > D(x) for x < 0, and in 
particular for x < 0: 

B(x) > B2{x) = -1 + xQi(0)Pi(x) = jox(x - oo) - 1, 

D(x) < Dxix) = x. 

It follows that the zeros (/3n) and (8n) of B and D, respectively, can be arranged in 
increasing order fii < 02 < • • •, ^i < #2 < • • • with /3i < 0, ^i = 0. From [1, p. 114], 
we have 

n-l 

B'n(x)Dn(x) - Bn(x)Df
n(x) = ^ Pk(x)2, (2.23) 

fc=0 

hence 
oo 

B'(x)D(x) - B(x)D'(x) = ^2 Pk(x)2, (2.24) 
fc=0 
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SO that 

B'{j3n)D(pn) > 0,    BVJD'tfn) < 0, 

and it follows that the zeros interlace: 

/?!  < Si = 0 < /?2 < 62 < 03 < S3 < ' ' • . 

The following result can be obtained combining [26, pp. 600-604] and [11]. We give 
an independent proof. 

Lemma 2.2.1.  The function ip(x) = D(x)/B(x) is strictly decreasing in each of the 
intervals ]-00, fa [, ]/3i, /?2[, ]^27 fo[ > • • • with 

(P(Pj-) = -^i    (p(f3j+) = oo,    j = l,2,.... 

Furthermore 

D(x)       ,.      Pn(0)  ^„ 
a :=   lim   —74 = lim     *" ' < 0. 

a;-^-oo B{X)       n-+oo Qn(0) 
(2.25) 

Proo/. We get 

^) = -i:*g)
(y

2<0   forx^/3,, 7 = 1,2,..., 

and the first assertions are clear. The number 

a :=   lim    _/ , 
x^-00 B(x) 

is clearly < 0. 
Using (2.23), we similarly see that Dn(x)/Bn(x) is strictly decreasing in the inter- 

vals outside the zeros of Bn. By (2.22), we have 

Dn(x)      Pn-i(0) .._.. 
Q;n :=   hm   —y-r- = pr )-^. (2.26) 

x^-00 Bn(x)        Qn-l(0) 

The sequence (a:n) is strictly increasing since 

„ -n    - Pn(0)Qn-l(0) - Pn-l(0)Qn(0) _ -I ^ „   (t) --. 
n+1    n ~        g„(o)gn-i(o)        " &„-iQ„(o)Qn_1(o) > u' ^•27, 

Let x be the smallest zero of B2 and let # < x-    We claim that the sequence 
Dn(x)/Bn(x) is strictly increasing. In fact, this is equivalent to 

•Pn+iQg)      fln+iQg) 
i5n(^) Bn(x) 

which by (2.22) is equivalent to 

Dn(x)      Pn(0) 

Bn(x)      Qn(0y 

but this holds by (2.26) and (2.27). 
We finally get 

D(x) (      Dn(x)\ (      Dn(x)\ 
a = sup mTV = sup  sup ~R7Z\    = sup   sup W7Z\    = suPan. 

x<xtf(X)        x<x\   n    nn{X) J n    \x<x tfn{X) J n 
□ 
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Remark 2.2.2. The number (2.25) is significant. It follows from Lemma 2.2.1 that 
supp(z/t) C [0, oo[ for t £ [a, 0], and for t £ [a, 0] including oo then Ut has one negative 
mass point. If a < 0, then the moment problem is indeterminate in the sense of 
Stieltjes. If a = 0, then I/Q is the only N-extremal measure concentrated on [0, oo[, 
and it turns out, cf. [11], that the moment problem is determinate in the sense of 
Stieltjes in this case. 

For results about the density index of i/t see [6]. 

2.3. Relation to birth and death processes. A birth and death process is de- 
fined by the sequences (An)n>o of birth rates and (^n)n>o of death rates, restricted 
by An > 0,^n+i > 0 for n > 0 and ^o > 0, cf. [17]. 

In order to solve Kolmogorov's equation, one has to study the polynomials Fn(x) 
defined by the recurrence 

(An + Mn - x)Fn(x) = fjLn+1Fn+1(x) + An_iFn_i(a?),    n > 0 (2.28) 

with the initial conditions 

JF-i(aO=0,    Fo(x) = l. (2.29) 

In addition, we shall need the polynomials Fn(x) satisfying the same relations (2.28) 
and (2.29), but with (An,^n) replaced by (An+i,^n+i). 

Defining 

TTQ = 1,       TTn =      0'"    "^ ,       71 > 1 (2.30) 
Ml * * ' fJ-n 

and 

an = An + /in, K = >/An/zn+i,    n > 0, (2.31) 

it is well-known that the polynomials 

Pn(x) = (-ir-^=Fn(x),    Qn(x) =-(-l^^M (2.32) 

satisfy (2.5) and (2.6) corresponding to a Stieltjes moment sequence (2.1). 
In the following, we shall always assume ^o = 0. Using (2.28), it follows easily by 

induction that 

Fn(0) = TTn,      71 > 0, 

TTn r-* Uh.TTh ' 

Fn^(0)     ^    l (2.33) 
— 71 > 1, 

/^l71"™ ^1 VkKk 

and hence 

so by (2.25) 

^(0) =     /y.    1    X-1 

- = -(E^7)"- (2-34) 
■*=i ^^ 
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The equations (2.7) can now be written 

'Fn-2(Z) Fn-lM       Fn-l{z) Fn-2{W) 

„, x        x ^n(^)Fn-2H        Fn-l(^)fn-lW\ ^35) 
Bn(z,w) = An_i7rn_i ——— I ^.ou; 

Vn(z,W) = An-iTTn-i 

the en 
totic behaviour of 

7rn_i       7rn 7rn       7rn_i 

To compute the entire functions ^4, ^, P in the indeterminate case, we need the asymp- 

Fn(z±        Fn-^Z) 

forn -> oo. This will be worked out in Sections 3 and 4 for particular rates. 

2.4. Parameter-dependent indeterminate problems. Suppose that the mo- 
ment sequence (2.1) depends on a parameter 7 so that (sn,7)n>o is a normalized 
indeterminate moment sequence for each 7 £ T, where T is a subset of a euclidean 
space or more generally a metric space. In the sequel, we need a continuity result in 
7 for the entire functions in (2.10), and we write Pnni^.Q^^.A^z.w), etc., for 
the objects corresponding to (snn). 

Proposition 2.4.1. Suppose that (sn„) is a continuous function 0/7 for each n and 
that the series 

00 00 

2X7(0), 2X7(o) (2-36) 
n=0 n=0 

converge uniformly for 7 in compact subsets ofT. Then the functions Ay, B1, V1 

from (2.10) are continuous on C2 x F. 
The mapping (^,7) ^ z/^7 /rora (P U {00}) x T into Mi(K) de/inerf 6j/ 

^,7 W ^ AfcM*) " ^r^) ?    ^GCXM, (2.37) 

cf. (2.3), is continuous, and, in particular, the N-extremal measures utn depend con- 
tinuously on (t,7) € (EU {00}) x r. 

Proof. It is easy to see that Pnn(z), Qnn(z) are continuous functions of (^,7) G Cx T 
for each n by the classical formulas which express Fn and Qn in terms of the moments. 
We shall next see that the series 

00 00 

Eip»"(*)i2' £IWZ>I2 (2-38) 
n=0 n=0 

converge uniformly for \z\ < R, 7 G To for each R > 0 and each compact subset 
To C T. Prom this follows the continuity of the functions in (2.38) on C x T and of 
Ay(z,w), B«r(z,w), V7(z,w) as functions on C2 x T. 

The proof that XXo lpn,7(^)|2 converges uniformly in \z\ < R,l G To is a mod- 
ification of the proof in [1, pp. 17-19], but, for completeness, we shall include the 
argument. 

/ 
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We shall use the formula 

n-l 

Pnn(z) = Pn,7(0) + z J2 an,*(7)ft,7(*)>    n > 1. (2-39) 

where 

anfib(7) = ft,7(0)Qnf7(0) " ^n,7(0)Qfc,7(0) (2.40) 

are the coefficients in the orthogonal expansion of the polynomial 

Pnn(z) - Pn>7(0) 
z 

By (2.40), we get 

oo    n—1 oo oo oo oo 

E E <^) < 2 E Oo) E ^,7(0)+2 E ^,7(0) E ^2.7(0)' 
n=N k=0 n=N k=0 n=N k=0 

and since the functions in (2.36) are continuous for 7 £ T and hence bounded on 
compact sets, we see that given e > 0 there exists No(e) such that for 7 e To 

00 00       n—1 

E 0»<!.   E E<*W<2J5J- 
n=iVo(£) n=iVo(e) A;=0 

For iV > No(e), \z\ < R, 7 € TQ, we then get from (2.39) 

E    l^»,7(*)l2<2    E    Pn
2,7(0) + 2H2    £   \E^kh)Pk^)~ 

n=No(e) n=No(e) n=No(e) k=0 

<e+2ie J2 (E^^lEi^wi2) 
n=No(£)    k=0 k=0 

N 

k=0 

and hence 

N No(e)-l 

(1-e)    E    \Pnn(z)\2<e + e   £    1^,7 Wl2- (2-41) 
n=No(£) k=0 

Choosing e = i, we get for N > Ni := A^o(|), |^| < R, 7 € To 

E   |Pn,7W|2<l+E   |Pn,7W|2. 
n=iVi n=0 

By continuity 
iVi-l 

K :=      sup       V lpn,7(^)|2 < 00, 
l*l<«.76ro  ^ 
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but this shows that the series J2 |Pn)7(z)|2 converges pointwise and satisfies 

oo Ni — 1 oo 

n=0 n=0 n=Ni 

for \z\ <Rne TQ. By (2.41), we finally get for N > No(e) 

N 

S    |P7l,7W|2<147(2 + 2K)    for |2| < R, 7 e TQ, 

n=No{e) 

which shows the uniform convergence for \z\ < i?, 7 G FQ. 

From (2.39), we find 

n-l 

Qn,7(^) = Qn,7(0) + z Yl anA^)Qk^(z), 
k=0 

from which we similarly see that Yl IQn^i^l2 converges uniformly for \z\ < R, 7 E FQ. 

Concerning the last statement, let (<Pni7n) -^ (^7) in (^U i00}) x F and let 1/ be 
a weak accumulation point for the sequence (&vn,7n). ^y (2-37), we then have 

/ 
du(u) = Ay(z)(p(z) - Cy(z)      zeC^- 
z — u      By(z)(p(z) — D1(z)'> 

showing that v = v^^ by unicity of the Stieltjes transformation. Since any weak 
accumulation point for the sequence {y^n^n) is equal to ^>7, the latter is the weak 
limit of the sequence.    □ 

Remark 2.4.2. With the above terminology, the recurrence coefficients from (2.5) 
can be written anj7, 6n>7. To require that 5n)7 is continuous in 7 for each n is equivalent 
to the requirement that an,7 and 6n,7 are continuous in 7 for each n. Furthermore, if 
the moment problem corresponds to a birth and death process with rates An>7, /^n^, 
then continuity in 7 of these rates implies continuity of sn,7 for each n by (2.31). 

3. A quartic birth and death process 

We shall consider the following quartic rates 

An = (47i + l)(4n + 2)2(4n + 3), /xn = (4n - l)(4n)2(4n + 1),    n > 0,     (3.1) 

already considered in [19], [28], [29]. Note that /XQ = 0 and 

1     f(l/2)n\
2       11       x      ^ 64  2 

^n = -A —7     1—        ~ -; 2 '      -^n-l^n-l = VnKn ~ —n  , (3.2) 
4n 4-1 \    nl    )        47rnJ TT 

and it follows from known criteria that the corresponding moment problem is indet(5), 
cf. [7]. 
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3.1. The generating functions.    The polynomials Fn(z),Fn(z) corresponding to 
the rates (3.1) have the generating functions 

f.JLi,,,^.*^^, (,3) 
71=0 

(l/2)n   n^^ {zw)V* 

^ (l/2)n+1    Mx 6 y0 zi/4 

/       *(«)■ 

+ 2;"-'tW^3(^W:)-»))^ 

(3.4) 

valid for z E C, w G C, |it;| < 1. These formulas are special cases of the generating 
function (54) in [30]. The first corresponds to c = 0, // = 0 and the second to c = 1, 
11 = 0. 

Let us briefly recall the terminology employed above. The formula 

6(w) - / 
./o 

du 
(3.5) 

VT^tF' 

defines a conformal mapping of C \ U/Lo **[!' 00[ OIlto ^e sQuare wi^ corners di% 
zb i^, where 

4&-/1-* -2i>: (3.6) 

is the complete elliptic integral in the lemniscatic case corresponding to the modulus 
k = l/y/2. The inverse function is 

. = *(*) = ^ = 4^^, (3.7) 

where we follow the terminology of [32] omitting k in the notation. 
The trigonometric functions of order 4, cf. [13], are entire and given by 

oo 4n+Z 
*,(*) = ^(-IjnJL---,    1 = 0,1,2,3. (3.8) 

n=0 (4n + 0! 

(Notice that 6i here differs from ^ in [30] by a factor exp(ilj).) Since these functions 
play a prominent role in our analysis, let us give their most useful properties. Their 
derivatives are 

<% = ~^3,     ^i = So,    82 = ft,     ($3 = 02 (3.9) 

from which we deduce tf}4' + 0/ = 0, / = 0,1,2,3, which explains their name. Putting 
j = exp(i^), one can write the functions as linear combinations of the exponentials 
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exp(r^), r G {±j, ±j}, cf. [30], and the simplest cases are 

60(z) = i(e^ + e-jz + e^ + e~~jz) = cos(-^J) cosh(-^=\ 

= -(cosh(jz) + cosh(^)), (3.10) 

62(z) = I(^ + e"^ - J* - e-h = sin^) sinh(^) 
4z 

= -(coshO^) - cosh(^)). (3.11) 

These functions satisfy addition theorems; for instance, 

6o{z + w) = «o(^o(w) - ^(^M - «i(«)«3(w) - ffs W«i(w),        (3.12) 

and similar results for / = 1,2,3. 
Due to the special form of 6i it is seen that we do not have to worry about which 

branch of the fourth root we are using in (3.3) and (3.4). We shall now transform 
these formulas. 

Proposition 3.1.1.  The following generating functions hold for z G C, \w\ < 1 

£> + „ - F„(^ = M£W), (3,3) 

££ (l/2)n+l     Ml 

1        [W) 62{z^(9(w1/i) - «)) sd(V2u) J 1 du. 

(3.14) 

/ Jo 

The right hand side of these equations are holomorphic m C \ [l,oo[ 

Proof. Applying the operator wd/dw + 1/4 to (3.3), we get (3.13). 
Integrating by parts twice in (3.4) and using the identity 

m* = m~*wr (m3\ 
d02\  3!  y' 

where t(9) is given by (3.7), we get 

^ (n + iy.Fn(z)   4w+5 _ fM 63(z^(6(w)-u))sd(V2u)^ 

^0(l/2)„+1    Mi 'Jo ^ V2     ^ 

Differentiating with respect to w and replacing w4 by w leads to (3.14).   □ 



NEVANLINNA PARAMETRIZATION 185 

3.2. Asymptotic analysis. The essential tool in the asymptotic analysis of Fn(z), 
Fn(z) for n —> oo is the Darboux theorem [27, p. 207], which states that the large 
n behaviour is controlled by the nearest singularity of the corresponding generating 
function, here w = 1, which is the only singularity on \w\ = 1. 

Let us start with (3.13). The change of variable v = u4/w in (3.5) gives 

,i/^ = -1/4 eiw1'4) = 
Jo   v* 

dv 
= wll\Fl 

1/2,1/4 
5/4 

;w (3.15) 
!;3/4VT~^ vw 

by Euler's integral representation of the hypergeometric function. We transform the 
hypergeometrie function to the variable 1 — w using [15, formula 9.131(2)] and get 

e{w^) = ^-\w^{i-w)^2FlY^M W 

valid for \w\ < 1, |1 — w\ < 1, and the right-hand side gives the analytic extension of 

0{wltA) in C\]—oo, 1]. Using w1/4 = (l — (1 — w))     , we therefore find for w close 
to 1 

tf(w^) = ^ + (l-li,)i/»(-i-1(1-„) + ...). (3.16) 

Putting z = Z^-^KQ/V^ and u = ^1//4(-| - |(1 - w) H ), the Taylor expansion of 
<$o in a neighbourhood of z gives 

= (1 - w)-^6o(z) + (1 - «,)V2©!)tta 

+ (1_W)3/2VM..4 
4! 

u4 H h fiw), 

where (p is the sum corresponding to odd k which is holomorphic in a neighbourhood 
of 1. Using the expression for u and (3.9), we find the above is equal to 

(1 - wy^Hoiz) - \{l - w)1l2z1l282{z) 
o 

- 1(1 - wfl* [zVH2{z) + ^{z)] + • • • + <p{w). 

Inserting the expansion 

n=0 

for a = -|, |, | and collecting the coefficients to w71, we finally get the following 
asymptotic expansion 

= ^o(5) + ^fT.
1/252(5) 

-(2»-iKL-»)[^W + 5»W]+0(g)- 
(3.17) 
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In the asymptotic analysis of (3.14), we need the following entire functions 

Al(z) = ^ f 6i(uz)cii(Kou)du,    1 = 0,1,2,3. (3.18) 
v 2 Jo 

We make the substitution t = yj2{e(w1^) - u), put a = (T(W) = KQ - y/20(wllA) for 
|iu| < 1, and transform the right-hand side of (3.14) to 

We next write this as IQ — Ii, where 

Prom (3.16), we get 

a = y/2(l-w)(<- + -(l-w)+ ■■■). (3.20) 

a) Asymptotic behaviour of JQ.    We use the Taylor expansion of en at the point 
t and get 

where the odd powers sum to a function ipi which is holomorphic in a neighbourhood 
of 1. 

The integrals 

ck = JQ   ^^-^cnMWdt 

can be evaluated by means of the functions A/ in (3.18) using integration by parts. 
Putting z = zl^Ko/\/2 as before, we find for k = 0,1,2, which is enough to get an 
expansion which is 0(l/n3): 

co = \/2A2(5), 

1 z1'2 

ex = -^62{z) + -j=-Ao{z), 

C2 = -^S0{~Z)-^A2{~Z)' 
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b) Asymptotic behaviour of Ii.    Defining 

and using the Taylor series for H at KQ, we get 

v^fT^)^       (j + i)! 

where 
00     k   i    / '\ /  1/4 \ i~P 

Now cn^-Ko) = 0 for j ^ 4n + 1, cn^ifo) = —1/V2, and we need only consider 
even powers < 4 of a in order to find an expansion which is 0(l/n3). After some 
calculation, we find 

and hence 

Jo - h = 2-1/2(l - w)-1^A2(z) + hi - w^Aoiz) 
O 

,1/2 
+ ^(1 - W)3/2 (Ao(i) - ^rA2(i)) + • • • + ^(u,), 

where <p2, ^3 are holomorphic functions in a neighbourhood of 1. 
Using the expansion of (1 — w)0, as before, we finally get 

^2n-3l)(1L-3)M-^))+Q(^)- 
(3.21) 

3.3. The Nevanlinna matrix.    Plugging (3.2), (3.17), and (3.21) into (2.35) and 
letting n —* oo leads after some computation to the following result. 

Proposition 3.3.1.  The entire functions (2.10) are given for {z,w) G C2 by 

A{z,w) = -(-=A2(z)A0(w) - Ao(z)-j=A2(w) ), 

B{z,w) = —(6o(z)Ao{w) + ^62(z)-^=A2(w)), 
ft \ Vw / 

4 
V(z,w) = -(VzS2(z)So(w) - 6o(z)^62(w)), 

TT 

where, for simplicity, 

(Note that A2(z)/y/z and yfzb^z) art entire functions in z). 
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From (3.18), we find 

r.n 11, dn. = 
4 

Ao(0) = -= /      cnudu = -, (3.22) 
v 2 7o 

r^o 1 1      /*  0 

^ := lim -^/±2{z) = —7= /      u2cnudu re 0.12. (3.23) 

Proposition 3.3.2.  The Nevanlinna matrix consists of the following entire functions 

A(z) = -±=A2(~z) - -£Ao(z),    C(z) = -Ao(z), 
y/Z TT TT 

B(z) = -6o(z) - -ZVZStiz),    D(z) = -V^62(z), 
TT TT 

where z = z1/4^/^. 
They are all of order 1/4 and type Ko/y/2, and they have the common Phragmen- 

Lindelof indicator 

h(9) = ^ (Icos | + sin | V    6 e E. (3.24) 

For D we have the following expressions 

m = ^-.(-j-*) Sinh(—JT.) = -i, n (l - f5;;;F7j;;F). (3.25) 

Proof. It has been proved in [5] that all four functions in a Nevanlinna matrix have 
the same order, type, and indicator. Therefore, it is sufficient to study the simplest of 
them, namely D. Using the formula (3.11) for 82 and the canonical products for sin 
and sinh, we find (3.25). It follows that the order pp of D is equal to the exponent of 
convergence of the zeros finir/Ko)4, i.e., the smallest number r > 0 such that 

^ (2n7r/tfo)4T < 0O' 

Hence, we conclude that po = |. In order to get the type, it is easier to compute first 
the indicator function hn defined by 

M*Hlimsupl0g'D^'. 
r—►00 T^PO 

Using (3.25), we find for z = re19, 9 € [0,27r[ 

|i?(re^)| = -V^((sinh2 u + sin2 i;)(sinh2 v + sin2 u))1/2, 

1 9 1 9 
where u = -K^r1/4 sin -, v = -Kor1^4 cos -, and we get 

AJD(») = 2^0 (sin 4 + cos 4)'    * G t0' 27r[> 

which shows that /i^ as periodic function with period 27r is given by (3.24). Therefore, 
the type ap is 

<jD = sup /ID(^) = -7=. n 
0 v2 
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Corollary 3.3.3.  The numbers £, a given by (3.23) and (2.25) are connected by 

<* = -1, 

which leads to the formula 

4-^3 

Proof. We have 

1,1,1,3/4     . 
3/2,3/2,7/4 '" 

B(z) 

rKo 3   r 
= —p /     u2aiudu    (=120. 

v 2 Jo 
(3.26) 

= -£ D(z)        s     4yfi62(zy 

and for z = — #, ^ > 0, this leads by (3.10) and (3.11) to 

B{—x) TT   .6o(jx)        ^       TT   cosh(x) + cos(£) 
D(-x) 4y/x   62(jx) Ay/X C0Sh(5) — COS(^) 

r1/4 

with x = ^-/j-Ko, and we get 

From (2.34), we have 

i=lim^(z4=_e 
a     x^oo D{—x) 

which by (3.1) and (3.2) leads to (3.26).    □ 

Remark 3.3.4. The formula (3.26) can be established directly using twice the inte- 
gral formula [15, 7.512(12)] which expresses p+iF9+i as an integral oivFq. This relates 
the 4F3 to a special 2^1 which is known 

2^1 
1,1 
3/2 

;rr 
Arcsin y/x 

y/x(l- x) 
0<x<l. 

An interchange of the order of integration followed by an integration by parts leads 
to relation (3.26). 

We do not know any formula which expresses £ in terms of classical constants. 
However, using the trigonometric series for cnu (cf. [15, 8.146(2)]) and integrating 
termwise, one gets 

where 

^=S(n-l/2)icosh(7r(n-l/2))'    J = 1^ 

Here f3i = 7r/4, cf. [23], but we do not know a similar simple evaluation of ^3. 
By (2.24), we have 

£Pk(z) = B'(z)D(z) - B(z)D'(z),    z € C 
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which can be reduced to 

00 KZ / sin u     sinh u       sinu sinh u > 

fc=0 

E^2/ x      -Kn/sin^     sinh^     rtsin^x sinhu\ 1/4^ 
p2(^) = _o.( + + 2 ),        u = z1/4Ko.      (3.27) 

This gives, in particular, the function l/p(x) for a; G M, cf. (2.14). 
The identity (2.13) reduces to 

6o(z)Ao(z)+62(z)A2(z) = ^ (3.28) 

a rather remarkable relation for which we now give a direct proof. To this end, we 
integrate f(z) en z along the boundary of the rectangle with vertices ±Ko, ±Ko+2iKQ, 
where / is an arbitrary entire function. There is a simple pole at z = iKo, and the 
residue theorem gives 

/      [f(x) + f(x + 2iKo) + f{Ko+ i{Ko + x)) + /(-K0 + 2(^0 4- x))] en a; dx 
J-Ko 

= 2V27rf(iKo). 

The choice of f(z) = exp^p^z-iKo))^ G C, j = exp(z7r/4) and use of the relation 
(3.10) gives 

^0 (p(^ + ziiTo)) enx dx = —p. 
-Ko v2 

By the addition formula (3.12) for £0 and omitting zero contributions from odd func- 
tions, we find 

-= /     («o(VKQWo(px) + *2(pKo)62(px)) cnxdx = -, 

which is (3.28) with p = z1'4/^. 

3.4. The Nevanlinna parametrization.    By Theorem 3.3.2, we have 

A(z) = -^A2(5) - ^W,    B^) = -6o(z) - tD(z) 
Vz 

so using the transformation 

^i = -!({ +I), (3.29) 

we see that the Nevanlinna parametrization (2.3) takes the simple form 

/' 

dvyju) _ -^&2(z)+ipt(z)Ao(z) 

Z-U    ~  -6o(z)+(pti(z)y/z62(z)' 

and the density d(x) from Proposition 2.1.1 can be written 

/ 
(3.30) 

M N_ 1 Imipt(x+) 
d(X) ' 4 \S0(x) - ^(s+JVSWI2' {      j 

where y/x = iy/\x\, x = Jlx^^Ko/y/^ if x < 0. Note that (3.29) defines a homeomor- 
phism of V U {00} for which the interval [-7,0] corresponds to [0,00]. 
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The N-extremal solutions vt corresponding to (p = t G Eu{oo} are discrete measures 
concentrated at the zeros of the denominator in (3.30), i.e., the solution z G C to the 
equation 

V   8o{z) - *l 

which by (3.10) and (3.11) are given by 

m = ^tan^f) tanh(zV4^) = ^L = _ J_^. (3.32) 

It is known from the general theory that (3.32) has only real solutions. There are two 
cases for which the equation can be solved explicitly, namely for t = 0, (tf = 00) and 
t = -l/£ (t» = 0). 

In the first case, the solutions are given by 

/2mr\4 ^ ., 
Zn= {^-)  »    n = 0,l,... 

and the corresponding masses are 

TT 47r ^TfK 

where p is given by (3.27). 
In the second case, t = —1/£, we find 

_ fpn + lfrV _ 47r      (2n + l)7r 

"n~V     ^0      J  '^^"^sinh^n + l)^)' 
n = 0,l,.... 

Summarizing, we have proved: 

Proposition 3.4.1.  The N-extremal measures VQ and V-i/^ are given by 

_   TT 47r Y^      2n7r /2n7r\4 

1/0 " ^0 + i^^sinh(2n7r)£*"'    Xn = VK^J ' 

_ 47r ^      (2n + l)7r _ /(2n + l)7r\4 

V~m " ^0 ^ sinh((2n + 1)*)£-'    ^ " I      Jf0      J  ' 

Remark 3.4.2. The two measures above are in agreement with the measures derived 
in [28], but their N-extremal character is now established. We note that it was proved 
by another method in [7] that Z/Q is N-extremal. 

From Remark 2.2.2, we know that supp(j/t) C [0,oo[ for t G [-l/£,0], and for 
t $. [-l/£, 0] the measure vt has one negative point in the support. This is in agreement 
with (3.32) because the function f(z) is strictly increasing from —00 to 00 in each of 
the intervals ]-oo, (TT/J^O)

4
!, ]((2n - iV/tfo)4, ((2n + l)7r/iifo)4[, n = 1,2,.... For 

z = —x,  x > 0, one can express f(z) as 

cos(:r) - cosh(x)      ^     rr1/4 „ 
JK '     v    cos(x) + cosh(5)' ^ 
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Remark 3.4.3. The mass of UQ at xn = (2mr/Ko)4 is also equal to the residue of 
(3.30) at xn which leads to 

A   {2n7r\      TT   (-I)71 

Ao   "^    =7   \/   \>    n^0- \ V2 J      4 cosh(n7r) 

Similarly, we find 

/(2n + lM      TT       (-1)" 
A2l-^—J = 4sinh(n + l)x'    B " 0- 

3.5. Examples of non-N-extremal measures. The simplest way to obtain ex- 
amples of measures in V which are not N-extremal is to use the convexity of V. 
Starting from VQ and v-i/z, we may take the convex combination with s = (1 — a)/2, 
a G [—1,1]. This gives the one-parameter family 

VM = ^V1/€ + ii^,,    -1 < a < 1, 

and using the explicit form of these measures, we find 

'•' - ^"-+% £ icfe(1+"(-ir)'-    (3-33) 

with a:n = (nTr/Ko)4, n = 0,1, — 
The corresponding function <p0 G 'P follows from the relation (2.18) and is given by 

1 Trl + a    £o(S) 
^a(^) 4  1 -a y/z62(z)' 

For a / ±1, this gives a simple example of a non-N-extremal measure, which was first 
derived in [28] using a different approach. 

Prom (2.17), we get an example of an absolutely continuous measure 

7 dx 

* (tB(x) - D(x))2 +^B(x)2' 

with support equal to the whole real axis.  Here t G E and 7 > 0 are parameters. 
When t and 7 are related by the equation 

72 = -|-*2,   <e ]-i/£,o[ 

the parameter 

4      7 
p= - -*,FI TT £2 + 72 TT   V *f 

can attain any value in ]0, oof, and the above density can be expressed 

v dx x ' 
v^ = lsi{x)+p^l{xY  * = ^Ko- (3-34) 

The corresponding tpp G V is given by <Pp(z) = t -f 27, Im(^) > 0. 
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Using (3.10) and (3.11), the denominator in (3.34) can be reduced to the following 
expression 

cos2 u cosh2 u + p2 (— )   sin2 u sinh2 u, for x > 0, 
KKoJ (3.35) 

/cos7z + cosh^\2      o/2^\4/cosn - cosh^x2 

U 2 )   +P fe)  ( 2 ) '     fOra;<0' 
where n = \x\1/4Ko/2. 

When cp^z) = —1/y/z, then z/^ has a discrete component with masses at the zeros 
of 6o(z) + fo^), and an absolutely continuous component concentrated on ]—oo,0[. 
The zeros are the numbers zn = (2un/Ko)4) where un are the solutions of 

tan 1^ tanhi^n = — 1,    un € ](n — l/2)7r,n7r[,    n > 1. 

The density d(x) is easily calculated using (3.31), and we find 

«*(*) = ¥  2.     2   1     ,2  o    ^(-x)1/4^,    a!<0. (3.36) 4  i;^(cosJ'y + cosh ?;) y/2 

To conclude let us present an example where both the absolutely continuous and 
discrete component can be given explicitly. We take 

^2 

^) = -^2cot(-|))    7>0 

for which 

dityix) _ A2(g)/Vi- iKfaAojz) cot(z/V2) I z-x       -cos(z/y/2){cosh(z/y/2)+'y{z/y/2)2smh(z/V2)y 

The denominator has zeros at z^' = ((2n■+ l)7r/Ko) , n > 0. The residue of (3.37) 

at Zn   can be calculated using Remark 3.4.3, and putting un = (n + |)7r, we find 

an = Res(z = ^d)) = il ^ . 
n Ko sinh ^(cosh un + 7W2 sinh un) 

The numerator has poles at Zn   — (2nir/Ko)4, n > 0, and, as above, the residue of 
(3.37) at Zn   can be calculated, and putting vn = TITT, we find 

/?n = Res(* = 42)) = -2 
47r 7^2 

X^ cosh vn(cosh vn 4-1^2 sinh vn)' 

Note that /3o = 0 so that there is in fact no pole at 25   = 0. 
To calculate the absolutely continuous part on the negative half-axis, we put 

v = (^)1/4^    fora;<0 

and find the density 

h(x) = M  7 sinh t;  
4 (cosh v - cos v) {(cos v + cosh v - \^v2 sin v)2 + (\^v2 sinh v)2 } * 
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To summarize, the measure v^ from (3.37) is given by 

oo oo 

vv = X! an£z(
n
1) + iL, P^Z™ + 1]-oo,o](^)^(^) dx. (3.38) 

n=0 n=0 

3.6. Asymptotic behaviour of the moments.    Using the measure u^ in (3.33) 
for a = 0, we get the following formula for the moments 

TT   c        27r2 ^       k       /k7r\4n _ ,„ n^ 

'" = ^0 + ^gihih(M^   '   B = 0'1-- (3-39) 

and the fact that all the measures v^ have the same moments leads to the equations 

^ V  . ;
uu ,    = -T-Sno,    n = 0,l,..., (3.40) 

^    sinh(A;7r) Air 

which have a long history, cf. [28]. Using (3.39), it was proved in [28, formula (49)] 
that we have the following generating function for the moments 

The function </? has double poles at the zeros of dn(y/2x), i.e., at the points 

x= -lL(2n + l) + i-!L(2m + l),    n,raEZ. 
y/2 y2 

The radius of convergence of (3.41) is, therefore, KQ and the Hadamard formula for 
the radius of convergence gives 

4n/s— 4 
limsup-^ = —-. (3.42) 

n-^oo n KQC 

By the Darboux method, we can obtain more precise information. 

Proposition 3.6.1.  The moments satisfy 

4(4n + l)! 
K4n+2 1 + 0 

\25n/y 

Proof. Putting j = exp(i J), we have 

and using 
cnx        1       3 2 

= -T7 - T^a;  + v2     40 
in a neighbourhood of zero, the principal part of (p corresponding to the pole x = JKQ 

is i(x—jKo)~2. The principal part corresponding to the remaining poles —JKQ, ±jKo 
can be found in a similar way, and the sum s(x) of the four principal parts has the 
following power series expansion for |a:| < KQ 

£(-i) 
„ 4(4.1 + 1)   ,„ 

*o4"+2 
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The function (p(x) — s(x) is holomorphic for |a;| < y/EKo with 8 double poles on the 
circle |a:| = VEKQ, and therefore we get 

(_l)n_£^ = (_1)n4(4n + l)        / n \ 

which proves the assertion.   D 

4. Al-Salam-Carlitz ^-polynomials 

These polynomials, Vn = Vn (x;q), were introduced in [2]. They are connected to 
the birth and death process with rates 

An = a<rn;    Mn = q-n - 1,    n > 0, (4.1) 

by the formula 

n(n+l)/2 
Fn(x) = anVn{l + a?);    an = (-l)ni-n > (4-2) 

cf. [7], where Fn = Fia\x;q) are defined by (2.28), (2.29). We always restrict the 
parameters a, q to the domain 

ft = {(a,g) |a>0,0<g< 1} (4.3) 

for which A^ > 0, ^n+i > 0 when n > 0 and fio = 0. Since we only consider one fixed 
value of g, we use the simplified notation [z]n instead of (z]q)n, i.e., 

n 

[z}n = (z;q)n = Y[(l-zqj-1),    zeC, n = Q,l,...,oo (4.4) 
3=1 

(with [«]o = 1). By (2.30), we get 

7r„ = 4a)(<?) = TT-;    ^-1^-1 = -^— (4.5) Win [Q\n-1 

and, concerning determinacy, we have, cf. [11], [7]: 

indet(iJ) <£► q < a < q~l, 

indet(5) <& 1 <a<(?"1, (4.6) 

indet(#),det(S) <^ q < a < 1. 

Al-Salam and Carlitz found the following discrete solution of the corresponding 
moment problem 

_00_     /.ri^n2 

^ Mnfejn   ^ '^ 

which is a positive measure for ag < 1. The constant K was evaluated later by Ismail 
[16] who found K = [ag]oo. Below, we shall deduce this once more as well as finding 
orthogonality measures for the remaining parameter values. 
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(1,0) 

FIGURE 1. Domains of determinacy/indeterminacy 

4.1. Invariance properties under the transformation a »—> 1/a. Dividing the 

equation (2.28) by an+1 and using the fact that Fn(x;q) is uniquely determined by 
(2.28) together with the initial conditions (2.29), we find 

F}l
1/a\x;q)=a-nFM{(l+x)a-l;q),    (a,q) € fi; x £ C. (4.7) 

The same equation holds for Fn. 
Using (2.32), we get the following invariance for the corresponding orthonormal 

polynomials Pn(x;q) and the polynomials Qn (x;q) of the second kind, 

p}l
1/a)(x;q) = Pla)((l+x)a-l;q) 

Q£/a)(x; q) = aQ{
n
a) ((1 + x)a -l;q) 

(a,q) € fi, xeC 

The domain 

r= Ua,q) € Q, | q< a< -\ 

(4.8) 

(4.9) 

of indeterminacy in the sense of Hamburger is invariant under a !-»• 1/a. We shall next 
show that the assumptions of Proposition 2.4.1 are verified for F and shall examine 
the invariance of the entire functions A(a\z,w;q),... from (2.10). In the following, 
we omit q in the notation. 

Proposition 4.1.1. The functions A, B, V from (2.10) are continuous on C2 x T 
and have the invariance properties 

A{l/a){z, w) = aA{a) ((1 + z)a - 1, (1 + w)a - l), 

B{l/a){z, w) = S(a) ((1 + z)a - 1, (1 + w)a - l), 

V^/^iz, w) = -V^ ((1 + z)a - 1, (1 + w)a - l), 
a 

for{z,w) EC2, (a,g) G T. 

Proof. Since the rates \n,iin depend     ntinuously on (a, q), vre only have to verify 
the uniform convergence of the series in (2.36) on a fixed compact subset To C F, cf. 
Remark 2.4.2, and for this it suffices to find convergent majorant series. 

We have 

(pM(0;q))2 = ^HQ) = 
(aq)n      r^_ 

[q]n   " [q]n 
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where r = maxr0(ag) < 1, which settles the question for the first series.   Putting 
maxr0(<z) = (Zo> niaxr0((z/a) = 5, we have qo < 1, s < 1, and 

wi-w-^d;1^ ^(max(r,s))n 

< n         — 
2 

2 

where we use 

n   r -, f n,        if a > 1, 

*=!    a I—,     ifa<l. 

The invariance formulas for ^4, S, and V are easy consequences of (4.8) and (2.10).   □ 

For the explicit determination of the functions A, B, Z>, it will suffice to carry- 
through the calculations for a < 1 and then use the above properties. 

4.2. The generating functions.    The starting point of the asymptotic analysis in 
the indeterminate case is the two generating functions 

71=0 

oo 

^ "o    W 

(1 - qw)(l — aqw) 
302 

{\ + z)qw,q,Q 
q2w,aq2w 

(4.11) 

valid for z G C, |ty| < 1 when the moment problem is indet(i7), cf. [7]. Here 3^2 is 
the basic hypergeometric series as defined in [14] and evaluated at q. The basic q is 
omitted in the notation. 

The right-hand sides of (4.10) and (4.11) are meromorphic functions of w for each 
z G C with poles 

wM = —,    wW = —,    n = l,2,.... (4.12) 
n        qn'       n        aqn 

Reasoning backwards, one can verify that the power series expansions (4.10), (4.11) in 
w of these functions are given by polynomial coefficients Fn(z), (l/fjii)Fn(z) satisfying 
(2.28), (2.29). We therefore conclude that (4.10) and (4.11) hold for (a,g) G ft, z G C 
and \w\ < JR, where R is the distance from the origin to the closest pole. 

We remark in passing that the generating functions F, F both have the following 
invariance property 

/(1/fl)(z, aw) = /(a) ((1 + z)a - 1, ti;), (4.13) 

where we have omitted q in the notation. 
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4.3. Asymptotic analysis.    We restrict the calculation to the case 0 < q < a < 1. 
We note that the poles (4.12) are simple in this case and verify 

1111 
q     aq     q2     aq2 

The principal parts of F(z,w) corresponding to the poles w = 1/q and w = l/(aq) 
are 

[1 + z]oo [(l + s)/a]oo 
Moo Moo (1 - qw)'     [l/a]oofa]oo(l - aqw)' 

respectively, and it follows that F(z1w) minus these expressions is holomorphic for 
H < l/q2. By (4.10), this gives 

l^Joo      Moo l^Joo [l/ajoo 

The principal parts of {1/IJLI)F(Z,W) corresponding to the poles w = l/q and w = 
l/(aq) are 

0i 2^1 
aq 

;q (1 - a)(l - qw) 

respectively, from which we deduce 

'1 + 2,0 

'     (1 - l/a)(l - aqw) 
201 

(l + *)/a,0 
q/a \<1 

1   ~ an 

— Fn-i(z)=-i— 201 
lii I — a aq ',q 

(aq)n 

1-a 291 
(l + 2:)/a,0 

q/a 
+ 0(q2n). 

(4.15) 

Plugging (4.5), (4.14), and (4.15) in (2.35), we get after some calculation the fol- 
lowing formulas: 

Proposition 4.3.1.  The entire functions A, B, V from (2.10) are given by 

1 — a 
1 + ^,0 

',q 

-201 

aq 

(l + z)/a,0 
q/a 

201 
(l + w)/a,0 

q/a ;q 

201 
l + w,0 

aq 

I-ay       te/ajoo 
[1 + ,] 

[qo\c 
■201 

l + it;,0 
aq 

(l + ii;)/a,0 
q/a ',q 

•,q 

}■ 

}■ 

(l-aJlgJooMoofeHoo '• 

-[(l+«)/o]oo[H-w]oo}, 

/or (2,w) € C2 and (a,g) € F, a ^ 1. 
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Remark 4.3.2. In the first place, we get the formulas only for a < 1, but noting that 
the right-hand sides in the formulas have the same invariance properties as A, B, V 
in Proposition 4.1.1, we conclude that the above formulas hold for (a,g) G F, a / 1. 
Since we know that v4, #, V are continuous functions of the parameters, we find A^, 
fit1), V^ by taking the limit of the above expressions for a —► 1. This leads to quite 
complicated expressions, so we shall not give the formulas. 

The identities (2.8) or (2.13) reduce to 

Moo 
■2^1 

(l + z)/a,0 
q/a 

,    [(l+*)/fl]oo 
H rnn s^1 

[l/o]oo 
1 + ^,0 

aq = 1, 

which is a particular case of (2.10.13) in [14]. 

4.4. The Nevanlinna matrix. 

Theorem 4.4.1. For (a,q) € F, a ^ 1, JAe Nevanlinna matrix consists of the follow- 
ing entire functions 

a-1 {       [        q/a 

Bt '}<'>-M [1 + , 
■201 

[qa]< 

- 201 

'l/a,0 

"1 + ^,0 
aq 

l/a,0 
q/a \Q 4* 2(Pl 

a[(l + ^)/a] 
[g/a], }• 

W 

MOONJOO 

T/iei/ are a// o/ orrfer 0. The functions A^^z),..., D^(z) are obtained for a —► 1. 

Proof. This follows immediately from Proposition 4.3.1 and (2.12). Since they all have 
the same order, it suffices to determine the order of D^a\ which is clearly 0, since the 
zeros zn = q~n — 1 have exponent of convergence equal to zero.    □ 

Defining the constant 

aa) = [«]c 
a-1 2<Al 

we see that 

A^(z) = [Qh <h ■291 

l/o,0 
q/a 

(l + z)/a,0 
q/a 

for q < a < -, a ^ 1, 
2 

(4.16) 

;? ■£(a)C^), 

flw(^)=-^[(\V!/fl]"-«^(fl)(^ a-1      [g/ajoo 

(4.17) 

which is similar in structure to the Nevanlinna matrix in the quartic case. The ex- 
pression for £(a) can be simplified to 

oo n 

^(0) = [g]~E(Q_qn)[g]n    foroe]«,l/ff[N{l}. (4.18) 



200 BERG AND VALENT 

Lemma 4.4.2.  The function £ is strictly decreasing in each of the intervals ]g, 1[, 
]1, l/g[ with 

£fa+) = oo,    «l-) = -oo,    €(!+) = oo,    $(l/g-) = l-b]oo. 

For 1 < a < 1/q, in which case the problem is indet(S'), the constant a = a(a) from 
(2.25) ^5 given by 

Q(a) = -^)- 

Proof. Formula (4.18) shows that £ is strictly decreasing with the above limits at 
a = q, 1 and 

00    g»+1 

*(!/«-) = Moo £v. 1 - Me 

by the 9-binomial Theorem. 
For 1 < o < 1/q, we have by (2.34), 

-a = *->*+i = Z2+l[ 0  '1/aJ' n=0 

and using Heine's transformation for 2<t>i (s^e [14, (1.4.1)]), we get -l/a = £(a).    D 

Another quantity of interest is the function p = /)(a)( •; q) given by 
oo 

I/P(Z) = 53 IPnWI2,   ^ec, 
71=0 

cf. (2.14).  Differentiating £>(a)(2,w) with respect to z and setting z — w = a; gives 
l/p(x) for x G M, cf. (2.10). Using 

ftoo(^) := Woo = -MOO2</>1 ',Q (4.19) 

we find for a ^ 1, x G M. 

1    _ ab(l+a?)]oo[g(l+a?)/a] 
p(a;) (a-1) Moo Moo fa/' 

>/a]oo //-      l + a;\        [ l+x,q 
aUr{(1-—)2(plUl+X)>\ 

a        l q(l + x)/a }• 
(4.20) 

A formula valid for x £ C can be obtained using the generating function (1.17) 
in [2] 

C"    _     Moo Mc a,b,C ;zwC 
to M«    [ClooKlooKloo '^ L^CtoC 

Here $n   is related to Vn    by the formula 

(which is (4.7) in [2], corrected), and replacing a by z/a, b by w/b, z by a, w by 6, we 
get 

C"    _       [*<]ooK]e 
^ [Qln ICJooKJooloCJoo 

z/a,w/b,( 
z(,wC 

;a>K 
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Finally, for a = b, ( = q/a, we get by (4.2), (4.5), and (2.32) 

71=0 

For w = z, we get for (a, q) eT, z eC: 

201 

[q/Q]oo[q]\ 

' (1 4- ^)/a, (1 + w)/a, q/a 
q(l + z)/a,q(l + w)/a 

;aq 

(4.21) 

1 |b(l + z)/a]0 
3^2 

(1 + z)/a,(l + z)/a,q/a 

q(l + z)/a,q(l + z)/a 
;qa 

The function p(z) = p^a'(z;q) has the invariance property 

-l + z 
P(1/a)(i7£-1)=p(fl)w' 

(4.22) 

(4.23) 

which follows immediately from (4.8), and this permits the transformation of (4.22) 
to the following 

1   |[q(l+ *)]<* 

which will be useful later on. 

302 
1 + 2,1 + z,qa 

q(l + z),q(l + z) 
;q/a (4.24) 

4.5.  The Nevanlinna parametrization.    If we introduce the transformation ana- 
logous to (3.29) 

** = -(««> + £) 
and use (4.17), we see that the Nevanlinna parametrization takes the form 

(4.25) 

/ 

» 
Mc 

du^ ;(ix) _ a — 1 2^1 
(l + z)/a,0 

q/a ',0. + W*(z) 201 
1 + ^,0 

aq ',4 

z — u a^ [(l + ^)/a]oo _   #(j?)Jl+^Jc 
(4.26) 

a-1 [q/ah [q\oo[aq]c 

The N-extremal measures vf', t € E U {oo} have mass-points at the zeros of the 
denominator. As in the quartic case, only for two particular values of t is it possible 
to find the zeros explicitly. 

For t = 0, it is the zeros of [1 + z)^ which are zn = q~n — l,n > 0. The masses 

ran are given by the residues at 2n, and for the derivative ftoo(^) of [z]^, it is easy 
to calculate 

Using 

M<rn) = {-l)n+\-n(n-l)l2[q]°o{q]n,    n > 0. 

<Al 291 ■,Q = (-ir 
Wn 

(4.27) 

(4.28) 
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which follows from (1.5.3) in [14] by taking the limit b —► 0, we find 

m»0)==M~i^r' (4*29) 

in agreement with [7], [2]. 
For t  =  — l/£(a), the zeros of the denominator in (4.26) are determined by 

[(1 + ^)/a]00 = 0 so they are zn = aq~n — 1, n > 0, and the corresponding masses an 
can be calculated as residues using (4.27) and (4.28), and we find 

*, = h/ol~TO- <4-30) 

Proposition 4.5.1. For (a,q) 6 r,a / 1, we have the following N-extremal measures 

oo 

n=0 
oo 

For 1 < a < 1/q, in case of which the problem is indet(5), both ijieasures are 
concentrated on [0, oo[. 

For q < a < 1, in which case the problem is det(5), the measure VQ is the unique 

solution to the moment problem supported by [0, oo[, and the measure v_l/c(a\ has one 
negative point a — 1 in the support. 

In the case a = 1, which is det(S), the unique measure supported by [0,oo[ is 

Remark 4.5.2. For the last part of the proposition, we use Proposition 2.4.1 to 
conclude that 

lim ^o) = lim v^l/^ = ^    weakly. 

The fact that I/Q    and v"l/tta\ are probability measures leads to the equation 

00      /,rc„n2 i 

ErVrr = rJr-' (4-31) ^ m\n[q\n        Moo 

in the first place for q < a < 1/q, but by holomorphic continuation (4.31) is valid for 
\a\ < 1/q. 

Remark 4.5.3. The jumps of the N-extremal measure I/Q    can also be found depart- 
ing from (4.24). Using the definition of 3^2, we get 

rnrtar^lP^W+'^'l-r. p(aHz)    MooML ^ KaJ   [Qh 

so for zn = q~n — 1, n > 0, all terms in the series vanish except for k ^ n, and we get 

1 _     MnNln 
P^izn)       a^q^{aq]c 

-,    n > 0, 
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in agreement with (4.29). Similarly, the jumps of v_{,efa\ can be found using (4.22). 

4.6. Examples of non-N-extremal measures. The simplest explicit examples of 
this type are obtained for a ^ 1 by taking convex combinations of I/Q and v_l/c(ay 
The corresponding Pick functions are given by (2.18). In particular, we get 

[(1 + 2)/a]oo   r<r>t       1/       z1 [1 + *]oo        m      S /       ^ i r,  ,   \        £V   for 1 < a < -,        L        J        € V   for q < a < 1, 

so we have found the following examples of Pick functions [^A]oo/[^]oo, [^]oo/[^/A]oo 
for q < A < 1. 

The Pick function <p^7 given by (2.16) leads to the absolutely continuous measure 
(2.17). As in the quartic case, we get a simpler expression if we assume that 7 > 0 and 
£(a) are related by 72 = — £(l/f(a) + £), where t belongs to the interval with endpoints 
0 and — l/£(a). The parameter p = ^/(t2 +72) can attain any value in ]0, oo[ and the 
corresponding Pick function ipp leads to the measure 

*p      7r{\a-l      [q/dloo      J \ [g]00Moo /   J 

This leads to the following 

Proposition 4.6.1. For q < a < 1/q, a ^ 1, we have the following one-parameter 
family of analytic densities for the corresponding moment problem 

where 

^a,P) = c(a)[{l + x)/a^ + p2[l + x]V    0<p<oo, 

c(a) = [q]co[aq]oo[q/a]t ira 

Remark 4.6.2. For a —> 1 and p > 0 fixed, the measures u(x;a1p)dx converge 
weakly to VQ ' from Proposition 4.5.1. In fact, since |£(a)| —^ 00 by Lemma 4.4.2, the 
parameters t and 7 tend to zero, so the Pick function corresponding to z/(:r; a, p) dx 
tends to 0 in P, and we can apply Proposition 2.4.1. 

4.7. The case a = 1. We shall give explicit formulas for the functions in the Nevan- 
linna matrix when a = 1. The formulas are obtained from Theorem 4.4.1 by letting 
a —► 1. The calculations of A^ and B^ are obtained by differentiation with the 
respect to a, and therefore it is convenient to introduce the functions 

hn{z) = [z]n = -gn{z)[z]n,      Tt = 0, 1, . . . , 00 (4.32) 

with 

Note that 

n—1 ,,• 

»(*> = Errw- (4-33) 
J=0 * 

J=0 y 

z,q 
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Theorem 4.7.1.  When a = 1, the Nevanlinna matrix is given by 

oo n 

A^(Z) = -feu O1 + z^hn^ + 2)+ ^t1 + ^"ff"^)) rV - a?MocC(1)(2), 
n=l MSI 

[Q\oo 

where 

C(1)(Z) = 2^1 

09 = S 

1 + 2,0 ,   D<.)(2, = -ll±it 
M2 

n=S[9]oo(i-«n)    (i-g): 302 
9,9,0 

-9)2 

^o = [q]oo{a>q + 2qgoo{q) - l). 

2    2  '9 

For t = — l/£o, the corresponding N-extremal measure z/| ^ is concentrated in the 
zeros of (1 + z)/ioo(l + 2), which are rc-i = —1 and (ajn — l)n>o, where xn is the 
unique zero in jtf-71,*/-71-1 [ of the function #00. It does not seem possible to find xn 

explicitly. 
In analogy with Proposition 4.6.1, we get: 

Proposition 4.7.2. For a = 1, we have the following one-parameter family of ana- 
lytic densities for the corresponding moment problem 

M3 

*    ((1 + aOMl+z))   +P2[l + z]So 
0 < p < 00. 

4.8. The determinate case.    The parameter range in the determinate case consists 
of two disjoint regions 

(1) a < q, 
(2) 1/q < a, 

and we shall find the orthogonality measure i/a) in the two cases. 
Let us first consider the case a < q. The generating functions (4.10), (4.11) have a 

simple pole at w = 1/q, and this is the singularity closest to zero; the second closest 
is 1/q2 which is a simple pole if a < q and a double pole if a = q. By considering the 
principal part of the generating functions, we find as in Section 4.3 

Fn(z)==^ll±^ + 0(n«2w), 
Moo     [a] 00 

—Fn-i(*) = z 201 ;q fii 1 — a        l     aq 

(4.34) 

+ 0(nO, 

where 0(nq2n) can be replaced by 0(q2n) if a < q. By Markov's Theorem (cf. [31], 
[3]), we know that 

/ 
 —t- =  hm   _. ; ' = - hm _ . \ '    for z € C \ E, 

z _ u n->oo Pn(z) n-+oo fa     Fn(z) 
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and by (4.34) we find 

du^iu) _     [q]oo[aq]c rd^(u)=   Moot 
J     z-u [1 + ^]c 

01 2^1 
14-^,0 

aq ;q (4.35) 

which is precisely the same expression as (4.26) with <p = 0, but with a, g in another 
parameter range. The computation of u^ is therefore exactly as the computation of 
u^ in Section 4.5 and leads to the same formula. 

In case (2), a similar computation leads to the desired measure, but we can also use 
the invariance properties (4.7) of Fn and Fn under the transformation a >-» 1/a. 
This gives for 1/a < q, z e C \ M: 

1  J^M 

Fr(^) 

^   1  a^F^^q + ^/a-l) 
n-oo Ml     anjrU/a) ((! + z)/a _ jj 

1   Moo[g/a]. 
■2^1 

(l + z)/a,0 
q/a \q a [(1 + z)la]c 

which is precisely the same expression as (4.26) with <p = —l/£(a), so v^ is formally 

the same as v_^icfa), but for a in another parameter range. 
Summing up, we have 

Theorem 4.8.1. In the determinate case the unique orthogonality measure is given 
by 

anq 
m^ = Hoo Y, !nn]  fn]  

£(Q-n-i)    f°ra<q, 
n=0 N]nMn 

and by 

—    a-nqn 

°{a) = b/a]oo g feT^j^a,---i)    /- V. < a. 

4.9. The moments.    For 0 < g < 1, let Gn(a) = Gn(a; g) be the polynomial in a of 
degree n determined by the recursion 

Gn+i(o) = (1 + a)Gn(a) - a(l - g-n)Gn-.i(a),    n > 0, 

and the initial conditions 

G_i=0,    Go = l. 

As shown in [2], we have 

where 

= 
k=Q 

n 
k 

qk(k-n)ak 

n 
k "b q\n-k ' 

(4.36) 

(4.37) 

(4.38) 
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Al-Salam and Carlitz noticed in [2] that 

^-STSEHT- "-0' <4•39, 

satisfies (4.36). In fact, M*(a) is well-defined for a ^ q n,n > 1, and for these a we 
find 

<+i(«) - (1 + a)<(a) + a(l - <rnK-i(a) 

Furthermore, it can be proved by induction that 

n    ^(fe,!) __ (1 + a)qk2        ^      qn{n+l)an+1 ^^^ 

~ MfcMfc " HnMn 

which for n -* oo yields ^^(a) = (1 + a)^ (a) since the right-hand side tends to zero. 
It follows that 

<(a) =ul{a)Gn{a),    n > 0. 

From Proposition 4.5.1 and Theorem 4.8.1, we know that UQ(a) = l/[ag]oo when 
0 < a < l/g, thereby showing that the measure 

oo k   k2 

m{a) * ei = [ag]oo ^ /^r , gq-
fc>    0 < a < 1/« (4-40) 

has the moment sequence (Gn(a))ri>0. The measure (4.40) is the translation of (1.6) 
by 1. 

As noticed in [2], the translation of (1.7) 

OO __fc     £2 

<r(o) * ei = fe/ajco g |^|^^9-.    9 < a (4.41) 

also has the moment sequence (Gn(a))n>0. In fact, the n-th moment of cr^ * ei is 

oo      —nfc   fc2   — k r 

f^   b/o]ib[fflfc y fc=0 

anGn(l/a) = Gn(o). 

Let sn(a) = 5Tl(a;g) denote the n-th moment corresponding to the birth and death 
rates (4.1) for 0 < q < 1, 0 < a. By (4.40) and (4.41), the moments sn(a) and Gn{a) 
are connected via the formulas 

G«(a) = E(fcW)>    s» = E(")(-l)n-fcC;fc(a). (4-42) 
fc=o ^ ' fc=0 ^ ' 

Lemma 4.9.1. For a > 0 and 0 < q < 1, we have 

(i)   ^/sn(a) < VGn(a) < Vsn{a) + 1, 

(ii) e?1/4^-"'4 < V^to) < (1 +a)<rn/4- 



NEVANLINNA PARAMETRIZATION 207 

Proof. From Holder's inequality we get 

Sk{o) < sn(a)k/n for 0 < k < n, 

so, by the first equation in (4.42), we obtain 

*n(a) < GB(a) < f^ (t)sn(a)h/n < (l + V^W)", 

which shows (i). 
To see the first inequality in (ii), we use (4.38). For n = 2p, we have 

G2P(a) > 

and for n = 2p+ 1, 

G2p+i(a) > 

2p 

P 
q~p2ap > q-n2lAanl2, 

2p+l 

2 

-P(P+1)/,P ap + 2p+l 
p+1 

^-p(p+i)aP+i 

,1 + a 

For the second inequality in (ii), we use 

g*(*-n) < g-n2/4 and 

and find from (4.38) 

Corollary 4.9.2. The Carleman series 

< I " ) for 0 < A; < n, 

(H-o)n«- «/,-» /4 D 

y    1 
< oo 

for all a > 0 and 0 < # < 1. 

Remark 4.9.3. The above Corollary shows that Carleman's criterion is too rough to 
distinguish between determinacy and indeterminacy in the parameter domain fi. 

The Darboux method can be used to obtain precise information about the asymp- 
totic behaviour of Gn(a) because of the following generating function for G^(a) 

VV_1 \nnn(n+l)/2r2 /   x «>"   _  [HoofcHSo^Hoo ,A .ox 

n=0 [q]n [qa?w2]c 

This formula is a special case of (1.10) in [2]. The function (p{w) on the right-hand side 
is meromorphic, and the singularities with smallest absolute value are w = ±(ay/q)~1 

with 
[±Vq/a]oo[±T/q]lo[±(iy/q]oo 

±2ay/q[q]00 

The point w = -(a^/g)-1 is a simple pole, but if a = ^n+1/2 for some n G Z, then 
w = {ay/q)~l is a removable singularity. 

Res 
V    ay/q) 
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By the Darboux method, we get 

Gn(a) = ""^""/'Ml + 0(^/2)), (4.44) 

where pn > 0 is given by 

2pl = a 
[-V^]2oo[-«^]oo + (-l)" 

References 

a [v^]~[a>/5]oo- 

1. N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965. 
2. W. A. Al-Salam and L. Carlitz, Some orthogonal q-polynomials, Math. Nachr. 30 (1965), 47-61. 
3. C. Berg, Markov's Theorem revisited, J. Approx. Theory, to appear. 
4. C. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. 

Inst. Fourier (3) 31 (1981), 99-114. 
5. C. Berg and H. L. Pedersen, On the order and type of the entire functions associated with an 

indeterminate Hamburger moment problem, Ark. Mat., to appear. 
6. C. Berg and M. Thill, A density index for the Stieltjes moment problem, IMACS Annals on 

Computing and Applied Math. 9 (1991), 185-188; Orthogonal Polynomials and Their Applica- 
tions, (eds. Claude Brezinski, Laura Gori and Andre Ronveaux), Proceedings from the Third 
International Symposium on Orthogonal Polynomials, Erice 1990. 

7. C. Berg and G. Valent, Nevanlinna extremal measures for some orthogonal polynomials related 
to birth and death processes, J. Comput. Appl. Math., Proceedings of the Evian Conference, 
October 1992, to appear. 

8. H. Buchwalter and G. Gassier, Mesures canoniques dans le probleme classique des moments, 
Ann. Inst. Fourier (2) 34 (1984), 45-52. 

9.  , La parametrisation de Nevanlinna dans le probleme des moments de Hamburger, Expo- 
sition. Math. 2 (1984), 155-178. 

10. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. 
11.  , Indeterminate symmetric moment problems, J. Math. Anal. Appl. 85 (1982), 331-346. 
12. T. S. Chihara and M. E. H. Ismail, Extremal measures for a system of orthogonal polynomials, 

J. Constructive Appr. 9 (1993), 111-119. 
13. A. Erdelyi et al, Higher Transcendental Functions, 3, McGraw Hill, New York, 1953. 
14. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cam- 

bridge, 1990. 
15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 

Orlando, 1980. 
16. M. E. H. Ismail, A queueing model and a set of orthogonal polynomials, J. Math. Anal. Appl. 

108 (1985), 575-594. 
17. M. E. H. Ismail, J. Letessier, D. Masson, and G. Valent, Birth and death processes and orthogonal 

polynomials. In: Orthogonal Polynomials: Theory and Practice, 229-255, NATO ASI series C 
294, Kluwer Academic Publishers, The Netherlands, 1990. 

18. M. E. H. Ismail and D. Masson, Q-Hermite polynomials, biorthogonal rational functions and 
Q-beta integrals, Memoirs Amer. Math. Soc. (1994), to appear. 

19. J. Letessier and G. Valent, Some exact solutions of the Kolmogorov boundary value problem, 
J. Approx. Theor. Appl. 4 (1988), 97-117. 

20. D. Moak, The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81 (1981), 20-47. 
21. R. Nevanlinna, Asymptotische Entwicklungen beschrdnkter Funktionen und das Stieltjessche Mo- 

mentenproblem, Ann. Acad. Sci. Fenn. Ser. A (5) 18 (1922), 52. 
22. M. Riesz, Sur le probleme des moments et le theoreme de Parseval correspondant, Acta Sci. 

Math. (Szeged) 1 (1923), 209-225. 
23. H. F. Sandham, Some infinite series, Proc. Amer. Math. Soc. 5 (1954), 430-436. 
24. J. Shohat and J. Tamarkin, The Problem of Moments, Amer. Math. Soc, Providence, R.I., 1943. 
25. T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. 8 (1894), 

1-122; 9 (1895), 5-47. 



NEVANLINNA PARAMETRIZATION 209 

26. M. Stone, Linear Transformations in Hilbert Space and Their Applications to Analysis, Amer. 
Math. Soc, New York, 1932. 

27. G. Szego, Orthogonal Polynomials, Amer. Math. Soc, Providence, R.I., 1985. 
28. G. Valent, Exact solutions of a quartic birth and death process and related orthogonal polynomials, 

submitted. 
29.  , Orthogonal polynomials for a quartic birth and death process, J. Comput. Appl. Math. 

49 (1993), 281-288. 
30. G. Valent, Asymptotic analysis of some associated orthogonal polynomials connected with elliptic 

functions, SIAM J. Math. Anal., to appear. 
31. W. Van Assche, Orthogonal polynomials,  associated polynomials and functions of the second 

kind, J. Comput. Appl. Math. 37 (1991), 237-249. 
32. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 

Cambridge, 1965. 
33. S. Wigert, Sur les polynomes orthogonaux et Vapproximation des fonctions continues, Ark. Mat. 

(18) 17 (1923). 

MATEMATISK INSTITUT, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN O, DENMARK 

LABORATOIRE DE PHYSIQUE THEORIQUE ET HAUTES ENERGIES, UNITE ASSOCIEE AU CNRS UA 280, 
UNIVERSITE PARIS 7, 2 PLACE JUSSIEU, F-75251 PARIS, FRANCE 


