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UNIFORM ASYMPTOTIC APPROXIMATION 

OF MATHIEU FUNCTIONS 

T. M. Dunster 

ABSTRACT. Uniform asymptotic approximations are derived for solutions of Math- 
ieu's equation 

—Y = {2qcos(2z) - ajw, 

for a and q real, and z complex. These are uniformly valid for q large and a 
lying in the interval —2q < a < (2 — d)q, (d > 0), for all real or complex 
values of z. The approximations involve both elementary functions (Liouville- 
Green) and Whittaker functions. These results are derived by an application 
of a recent asymptotic theory of a coalescing turning point and simple pole in 
the complex plane. The new asymptotic approximations are then analytically 
continued around infinity, to derive a uniform asymptotic approximation between 
the characteristic exponent v and the parameters a and q. Error bounds are either 
included or available for all approximations. 

1.  Introduction 

In this paper we shall derive uniform asymptotic approximations for solutions of Math- 
ieu's equation 

d VJ 
— = {2qcos(2z)-a}w, (1.1) 

for z complex, and q and a real with q —» oo. The approximations will be uniformly 
valid for 

-2q < a < (2 - d)q, (1.2) 

(d an arbitrary small positive constant), with z lying in the semi-infinite strip 0 < 
m(z) ^ ^ ^>(z) ^ 0- Moreover, explicit error bounds for the difference between the 
approximations and exact solutions will be available. Extensions of our results to all 
other values of z can be achieved using various connection formulae that we give in 
Sections 2 and 5 below. 

We note here that the semi-infinite strip we are considering includes the real in- 
terval [0,7r], and the semi-infinite lines $l(z) = 0 and $l(z) = 7r/2. Thus, asymptotic 
approximations can be recovered from our results for solutions of the following real 
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forms of Mathieu's equation: 

d w 
Ordinary:    -—-=■ = {2qcos(2x) - a}w, (0 < x < TT), 

dxz 

d^w 
Modified (oscillatory case):    —^ = {—2qcosh.(2y) + a}w,        (0 < y < oo), 

ay 

d w 
Modified (exponential case):    —— = {2qcosh.(2y) + a}^, (0 < y < oo). 

dy 

The most comprehensive study so far on the asymptotic behaviour of Mathieu func- 
tions has been undertaken by Barrett [2], In this paper Barrett introduced numerically 
satisfactory solutions of Mathieu's equation ("base functions"), and subsequently de- 
rived asymptotic approximations for these functions (with either a or q large) in terms 
of elementary, Airy, and Bessel functions. Although Barrett's results cover a large 
parameter regime and order-of-magnitude error estimates are derived, explicit error 
bounds are not obtained. In some cases the results are obtained in a heuristic manner; 
for example, approximations are given in a region in the complex plane containing two 
coalescing turning points, when a rigorous general asymptotic theory currently only 
exists in the real variable case [11]. 

There have been a number of other investigations into the asymptotic (q large) 
behavior of Mathieu functions (see for example [8], [9], and [12]), but it seems such 
treatments also have been essentially heuristic. Generally, the results in the literature 
are restricted in the range of the variables z and a, and error bounds have not been 
derived in a satisfactory manner. Most of these results have been derived from a study 
of Mathieu's equation in its trigonometric form, (1.1). 

In its trigonometric form Mathieu's equation has an irregular singularity at infinity, 
with no finite singularities. In asymptotic investigations, other points of importance 
are the so-called turning points, where locally solutions change in character from 
oscillatory to exponential. The turning points of (1.1) in the case q —► oo are located 
at, or near, the zeroes of the coefficient of the non-derivative term, that is, where 

2<7cos(220-a = 0. (1.3) 

Denoting these turning points by zt we have 

^ = iarccos(^), (1.4) 

which shows that they are infinite in number, and in the real parameter case are 
located on the real z-axis when — 2q < a <2q. Furthermore, if a is fixed and q —> oo, 
the turning points are then located close to the points z = ±7r/4, ±37r/4, ±57r/4,  
In the strip 0 < $t(z) < TT, 9(Z) > 0, there are two turning points for our parameter 
range. Note that they are bounded away from one another if a remains bounded as 
q —» oo; however, for the range (1.2) we are considering, the turning points do not 
remain bounded away from each other, as we shall see below. 

It is appropriate at this point to record some well-known basic properties of Math- 
ieu's equation (1.1) and its solutions, which are relevant to this paper. For further 
details the reader is referred to an excellent introduction by F. M. Arscott [1, Chapters 
2-6], and the monograph by J. Meixner and F. W. Schafke [7]. 
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Equation (1.1) is a periodic equation, since it remains unchanged if z is replaced 
by z + TT. Also, the equation is invariant under z —►. —z, and consequently if w^z) is 
any solution, so are the functions win-K ± z) for any integer n. 

There always exists one or more pseudo-periodic (or Floquet) solutions w(z) having 
the property that w{z + TT) = M±lw(z), for some number M that depends on the 
parameters, but not on the independent variable z. We shall use the standard notation 
of 

M = ev'K\ (1.5) 

where v is the so called characteristic exponent 
Of particular interest in many physical and mathematical problems is the case M = 

1 or —1, so that there exists at least one basically-periodic solution, that is, a solution 
having period1 TT or 27r. For each prescribed value of q there exist a countably infinite 
number of values for a for which M = ±1. Although there are various expressions 
for these characteristic values of a, no one expression is suitable for all ranges (large 
or small) of q. Moreover, these expressions are somewhat complicated (except in the 
case q = 0), involving for example a combination of continued fractions and recursion 
relations. 

When q —> oo the characteristic values of a can be approximated by 

a = -2q + 2(2m + Ijg1/2 - (2w + 1)2 + 1 + Q^-I^    (m = Q, 1,2,...), 
8 

(1.6) 

and for each of these values the basically-periodic solution is either even or odd (often 
denoted by cem(q,z) or sem+i(^, z)). Thus, in the important case when a basically- 
periodic solution exists, we see from (1.6) that each characteristic value of a becomes 
unbounded as q —> oo. 

Consequently, the turning points are not necessarily bounded away from one an- 
other and can coalesce. In fact, from (1.4) and (1.6) we notice that the two turning 
points in the strip 0 < 5ft(z) < TT, ^S{Z) > 0 satisfy 

zt=ic/2±o(l), (1.7) 

when q —► oo and a takes a characteristic value corresponding to (1.6) for each m 
satisfying 

0 < m < o(q1/2). (1.8) 

Comparing (1.2) and (1.6), we see that our approximations will certainly include, 
but not be restricted to, the important characteristic values of a which satisfy (1.6) 
and (1.8). We achieve this by transforming Mathieu's equation (1.1) into an algebraic 
form which, instead of having two coalescing turning points, has a coalescing turning 
point and a simple pole (see equation (3.3) below). We then apply a recent asymptotic 
theory which has been developed for this class of problem [3], which yields uniform 
asymptotic solutions in terms of Whittaker's confluent hypergeometric functions. 

Although a real-variable asymptotic theory is available for the problem of two co- 
alescing turning points [10], and hence in principle could be applicable to the present 

1 There is at most one independent basically-periodic solution, except in the trivial case q = 0. 
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problem, we use instead the complex-variable theory of [3]. There are several signifi- 
cant advantages of working in the complex domain in the present case. Although the 
most obvious one is that the subsequent results will be more general, perhaps more 
importantly one can achieve an identification of standard solutions of (1.1) with the 
asymptotic solutions, which would be difficult or impossible in the real-variable case. 

Specifically, we shall at first focus our attention on four particular solutions of 
Mathieu's equation in its algebraic form (3.3), one of which is recessive at the simple 
pole at the origin, the other three being recessive in certain sectors at infinity in the 
complex plane. Since recessiveness at a singularity defines a solution uniquely, we 
will be able to match the asymptotic approximations derived from [3] with these four 
solutions. These approximations will hold uniformly in certain subdomains of the 
complex plane, and will be valid for q —► oo with (1.2) holding. Moreover, the four 
solutions will comprise a numerically satisfactory set in the complex domain we are 
considering. 

Although only two of the four recessive solutions can be regarded as standard 
Mathieu functions, we will be able to construct uniform asymptotic approximations 
for all standard Mathieu functions, such as the Floquet solutions on the real interval 
0 < z < TT, via certain connection formulae. Also, as a by-product of the derivation of 
one of these connection formulae, we shall obtain an asymptotic relationship between 
the parameters g, a, and the characteristic exponent v, again uniformly valid for 
q —► oo with (1.2) holding. This relationship will then give, as a special case, estimates 
for the characteristic values of a, as in (1.6) above, but considerably more powerful 
since the new estimates will be uniformly valid for the large range (1.2), and explicit 
bounds will be available for all error terms. This new relationship is more general 
than previous asymptotic results for the eigenvalues of Mathieu's equation (see, for 
example [5] and [6]). 

2.  Mathieu functions: Definitions, fundamental 
properties, connection formulae 

In the notation of Meixner and Schafke [7] a Floquet solution can be defined by 

oo 

mev{z,q)=eivz   £  cvfire2ri\ (2.1) 
r=—oo 

where the coefficients cv^r satisfy 

qCv,2r-2 + {(2r + V)2 - a}cv,2r + qCv,2r+2 = 0, (2.2a) 

lim   cv 2r = 0, (2.2b) 
r—>-±oo 

subject to the normalizing condition 

oo 

^   (C*,2r)2 = I- (2-3) 
r=—oo 

We remark that (2.2b) does not automatically hold for arbitrary values of the param- 
eters q, a, and v, but rather only for a specific value or values of one parameter when 
the other two are prescribed. 

The importance of mev(z,q) derives from its pseudo-periodicity property 

mev(z + TT, q) = eV7rlmev(z, q), (2.4) 
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which holds for any real or complex value of z. An accompanying solution is given by 

me-v{z, q) = mev{-z, q), (2.5) 

and since 

me-v{z + TT, q) = e~V7rime-v(z, q), (2.6) 

it too is pseudo-periodic. From (2.1) and (2.5) we note in passing a relation that we 
shall use later 

me _v(0,q)=mev(0,q)=   ^  c^r- (2.7) 

Some authors use the pseudo-periodic functions (2.1) and (2.5) as a fundamental 
pair of solutions of Mathieu's equation (in the real-variable case), whilst some others 
choose 

cev(z,q) = -[mev(z,q) + me-v{z,q)],    sev(z,q) = —[mev(z,q)-me-v(z,q)], 

(2.8) 

which are, respectively, even and odd pseudo-periodic solutions. However, it is impor- 
tant to note that neither the former nor latter pairs remain linearly independent for all 
parameter ranges of q and v. In particular, when v is an integer (and these solutions 
are basically-periodic), mev(z, q) and me-v(z,q) are multiples of one another, and one 
of the odd/even pair vanishes identically. 

As mentioned in §1, we shall construct uniform asymptotic approximations for four 
Mathieu functions which form a numerically satisfactory set in the complex plane. 
The first of these we denote by ml0^,g), and define by 

oo 

m^\z,q) =iel"ri/2[me;(7r/2,g)]-1   £ (-l)rc„,2Psm{(2r + «)(z-7r/2)}l (2.9) 
r=.—oo 

where the coefficients cv^r are the same as those given above. The fundamental 
property of this function is that it is odd about the point z — 7r/2: 

mW(7r/2 + z,q) = -m^^fr - z,q). (2.10) 

The existence of a Mathieu function having the property (2.10) is well-known (e.g., 
see [1, p. 27]), but it does not seem to appear in the literature as a standard solution. 
As noted in §1, its importance for our application is its recessiveness at a certain point 
in the complex plane. In particular 

mi0\z, q) = (z- 7r/2) + 0{(z - 7r/2)3}    (z -► 7r/2), (2.11) 

which follows from (2.9) and the identity 

oo 

mW(ir/2,q) = iemri'i[me'vW2,q)]-1   £ (2r + ^(-lyc^r = 1.      (2.12) 
r= — oo 

The choice of normalizing constant in (2.9) ensures that mi0\z,q) exists and is not 
identically zero for all values of the parameters, as can be seen from (2.12). Since z = 
7r/2 is an ordinary point of equation (1.1), it is evident that all solutions independent 
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of mi (z,q) are non-vanishing as z —> 7r/2. Therefore, the property (2.11) is a unique 

characteristic of the solution m\j '(z, q). 
A relationship between m[ '(z, q) and the Floquet solutions is given by the following 

proportionality equation 

m^\z,q) = kW^e-^me^q) - ev^2me-v(z,q)}, (2.13) 

which follows as a consequence of (2.4), (2.6), and (2.10). An expression for the 
constant of proportionality can be obtained by setting z = 0 in the equation, yielding 

(o,      = »mS0)(0,g) =       e^ 
v   yq)      2sm{vTr/2}mev(0,q)      2me,

v(7r/2,q)' V *    ; 

Our other three fundamental solutions are characterized by their behaviour at in- 
finity in the complex plane. To investigate these, it is convenient now to convert (1.1) 
into an algebraic form via the change of independent variable 

C=-cos(*). (2.15) 

The minus sign is introduced merely for convenience, so that the strip 0 < $l(z) < TT, 

^s(z) > 0 is mapped to the upper half-plane $s(C) > 0. With this new independent 
variable, Mathieu's equation takes the form 

cPw C       dw      f4:q(2-2q (M_jp)„ = 0. (2,6) 
K*   (e -1) <!< ■ v   c 

The particular choice of the range of arg(C) is not critical, as long as it is used consis- 
tently; here and throughout we specify that 

0 < arg(C) < TT. (2.17) 

Expansions for solutions of (2.16) have been obtained in terms of Bessel functions, 
viz. 

oo 

J2   (--L)rCv,2rCv+2r(2y/qO, (2.18) 
r= —oo 

where CV(Q denotes a Bessel function of order v and complex argument £, and again 
the coefficients cv^r are those given by (2.2a,b); (see [1, pp. 89-91]). The series (2.18) 
converge absolutely and uniformly for |C| > 1, except in the special case when C = J 
and v is an integer, when the series converges for all £. Thus, the Bessel function series 
(2.18) have usually been of interest only in the study of modified Mathieu functions, 
since in general they do not converge on the real 2-axis. However, we shall derive 
asymptotic approximations for these solutions which are valid in domains containing 
part of the real z-axis, thus in effect giving their analytic continuation. 

Two solutions which we are particularly interested in involve Hankel functions, 
which we denote by 

oo 

mf'i\z,q) = [mev(0,q)}-1   £ (-l)rctI,2rH^|.(2>/«C)- (2-19) 
r=—oo 

This notation is in accord with Meixner and Schafke [7], who denote solutions of 
the (real) modified Mathieu equation having similar Hankel function expansions by 

Ml3'4\y,q). 
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The characterizing behaviour of the functions defined by (2.19) is 

m!3'4)^)-^1-2^^), (2.20) 

as ( —► oo, that is, as Q(z) —► oo. Thus, from well-known properties of Hankel 
functions of large argument [10, p. 238], the following behaviour as £ —> oo should be 
noted 

/    -,     \ 1/2 
mW (*, q) „    -J—        JiyfiK-vKifr-iiH        ^ + 6 < ^^ < 27r - tf), 

(2.21) 

and 

1/2 
mW{z,q) ~ (-^]     e-2^C+^/2+^/4        /_27r + s < arg(c) < ^ _ j). 

(2.22) 

Therefore in particular mi (z,g) is recessive (i.e., exponentially small) as C —» ooe71"2/2 

(z -> 7r/2 + too), and mi (^,g) is recessive as £ —> ooe-^2/2 (2; —> 37r/2 + zoo). 
Also, both functions can be characterized by their purely oscillatory behaviour as 
z —> TT+ZOO, and as such represent incoming and outgoing waves in scattering problems 
which involve the oscillatory modified Mathieu equation. 

It should be emphasized that the series (2.19) converge for values of C which cor- 
respond to z lying in the upper half-plane $s{z) > 0 (with a certain neighbourhood of 
the real axis excluded), and as such no information about mi (z,q) or mv(z,q) in 
the lower half-plane ^s(z) < 0 can be inferred from these representations. 

The fourth of our fundamental set of Mathieu functions is taken to be the function 
mv(z + 7r,<7), whose representation is the same as (2.19) for m^ (z,g), except with 
C replaced by Ce-7™- This solution then has the asymptotic behaviour 

mi3\z + 7r,q) ~ F^^Ce"™), (2.23) 

as C -* 00, and hence is recessive as £ —> ooe37™/2 (z —> -7r/2 + zoo). 

The large parameter asymptotic approximations we shall derive for mi4^ (z,g) and 
mfr'(z + 7r,g), as well as that for mi0)(z,g), will hold in certain subdomains of the 
half-plane 0 < arg(£) < TT and the union of these subdomains of asymptotic validity 
will cover this half-plane. Although only m^\z,q) is recessive at infinity in the half- 
plane, in any given region, one of mi4)(z,g), mi3)(z + 7r,g) or mi0)(^,^) will serve as 
a numerically satisfactory companion to m^  (z,*?). 

Further properties of m)?\z,q) and mi4)(2,g) that we require can be obtained 
directly from (2.19) and well-known properties of Hankel functions (see [10, p. 239]). 
Specifically, for all 2, 

ml^\z,q) - e^mMfrq), (2.24) 

m^(z + n,q) = 2 cos(v7r)m^ (z, q) + e-v1Timi4)(z,q), (2.25) 

mi4\z + n,q) = -evvim^(z,q). (2.26) 
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Note that (2.25) and (2.26) allow the extension of the asymptotic results of this paper 
to all z in $(2) > 0. 

Next we consider the problem of determining the connection of rrvv (z,q) and 
™>v (Z,Q) with the Floquet solutions. To achieve this we first observe that there 
exists a constant kv(q) such that 

00 

me-v(z,q) = 2kv(q)  J^ (-^)rcv,2rJv+2r(2y/qO, (2.27) 
r=—oo 

a result which follows from the shared property (2.6) of both sides of the equation. 
The constant kv(q) cannot easily be determined exactly, since the Bessel function 
series does not generally converge on the real z-axis and me-v(z,q) does not have 
a known behaviour as Q(z) —» oo. We shall, however, derive a uniform asymptotic 
approximation for this constant (for the case q large, which we are considering). We 
note in passing that when v = n is an integer, the Bessel function series converges on 
the real axis, and in this case we can set z = ir/2 (( = 0) in (2.27) to obtain 

^ = me.OrAri (2>28) 

The relationship between ime-v(z,q) and mi \z,q) and raj/ (z,q) can be obtained 
from (2.19), (2.27), and the relation 2Jv{z) = H^iz) + ij£2)(z). Thus 

me-v(z, q) = mev(0, q)kv(q)[mi
v
3\z) q) + m^\z, q)]. (2.29) 

Hence, from replacing v by -v in (2.29), and using (2.7) and (2.24), we have 

raev(^,^) = raev(0,g)^(g)[e^ra^(^,g) + e-^ra^(^,g)]. (2.30) 

On setting z = 0 in (2.29), and using (2.25) with z = 0, it is straightforward to show 
that 

kv(q)=e-™i[m£Hn,q)-e™imi3\0,q)]-\ (2.31) 

which we shall use to obtain a uniform asymptotic approximation for kv(q) (see equa- 
tion (5.23) below). 

Next, from (2.4)-(2.6) we observe that 

me±v(ir/2 + z,q) = e±V7riraeTt;(7r/2 - z,q). (2.32) 

Hence, with the aid of (2.29) and (2.30), we derive the connection formulae 

ml3) (7r/2 + z,q)= ^(J) ffll' («/2 " z> Q) 

sm{(2v-uv(q))n}    U) 

ml4)(.72 + *,<,) = e^^fflmW^ - *,,) 

_ Bm{{v-»v(q))n}    (i) _ 
sin(W) "  (7T/      Z'qh 

(2.33) 

(2.34) 
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where, for convenience, we have introduced a parameter ujv(q) by the relation 

«™/«, fnwx     k-v^ ^i3)(Q^)+ml4)(0,g) explz^igjTr} = = T^ TTT . (2.35) 
fct, (g)       ewmv' (0, g) + e-V7rimi J (0, g) 

Tlie fractions (here and elsewhere) may be replaced by their limiting values in the 
event of both numerator and denominator vanishing for certain parameter values. 

Since an (asymptotic) expression can be derived for ujv(q) (via the approxima- 
tion (5.23) for kv(q)), equations (2.33) and (2.34) supply the analytic continuation of 
m[ (z,q) and rriv (z,q) into the lower half-plane. Hence, the connection formulae 
(2.25), (2.26), (2.33), and (2.34) enable the subsequent large parameter asymptotic 
results, which will be valid in the semi-infinite strip 0 < 5R(z) < TT, ^S(Z) > 0, to be 
extended to all values of z if desired. 

The final connection formula that we require is the one of the form 

mW{ztq) = AmW(z,q) + Bm^(z,q), (2.36) 

and asymptotic expressions for the constants A and B will be found via a matching 
of the corresponding uniform asymptotic approximations (see equation (5.18) below). 
We note that the following expressions can be obtained from (2.13) and (2.30) 

A = e^^ki0)(q){k^v(q)-kv(q)}^ 
mev(0,q) 

B = e^ki0\q){e-^k-v(q)--kv(q)}^ 
mev(0,q) 

although we shall not employ these. 

3.  Uniform asymptotic solutions involving Whittaker functions 

To apply the theory of [3], let us make the following preliminary Liouville transforma- 
tion on Mathieu's equation (2.16) 

t = C2 = cos2(z), (3.1) 

w(t) = {cos{z) sin^)}1/2™^). (3.2) 

This yields the following algebraic form of Mathieu's equation, which will be the focus 
of our attention from now on, 

^ = {u2f(a,t)+g(t)}w, (3.3) 

where 

/(M) = itrrv git) = -iw(i-tr (3-4) 

and, for convenience, we have introduced the new parameters 

1 /a 
^iG4"2)'    tt = ^ (3-5) 
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We shall examine the asymptotic behaviour of solutions of (3.3) as u —» oo, for t 
lying in the plane having a cut along the positive real axis, such that 

0 < axg(t) < 27r, (3.6) 

(see Figures 1 and 2). We denote this region in the cut £-plane by D. Equation (3.3) 
is characterized by /(a, t) having simple poles at t = 0,1 and a turning point at t = a. 

I OE        A6 

B' 

(0) 
* 6 ► 

\{nll) (n) 

FIGURE 1. z-plane 

(3+i0) 

(Q)   c/ Ba+iO) 
D  ^S    ^(1-/0) 

(3-/0) 

(1-/0)       A' 

FIGURE 2. i-plane 

The parameter range (1.2) is equivalent to 

0 < a < 1 - d   (d > 0), (3.7) 

and hence the turning point is located on the cut along the positive real axis between 
the two poles, and coalesces with the pole at the origin in the critical case a = 0. 

The point2 t = a — iO corresponds to a turning point in the 2-plane at z = 
arccos(v/^), which lies in the interval (0,7r/2], and the point t = a + iQ corresponds to 
a turning point in the 2:-plane at z = arccos(—Vti), which lies in the interval [7r/2, TT). 

These two turning points in the 2-plane coalesce at z = 7r/2 in the critical case a = 0. 

2Here and throughout, we denote points above or below a cut by :H0. 
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Note that f(a,i) is positive in (—oo,0) U (a, 1), and negative in (0,a) U (l,oo); in 
the former interval, solutions are exponential in behaviour as u —► oo, and in the latter 
they are oscillatory in behaviour (regardless of the branch of arg(£)). 

Following [3, equation (4.6)], we introduce the non-negative parameter 

* Jo   {s(1-as)) 

which has the property that a —» 0 as a —> 0. Note that a can be expressed in terms 
of the elliptic integral of the second kind: 

a = ^^(sir^Va) | 1/2), (3.9) 

where 

E{Su-\X) | m) = jf   {-j^f-}     dt. (3.10) 

Our next step is to make a Liouville transformation on (3.3) with new independent 
and dependent variables £ and W(£); the transformed equation for W(€) will keep 
the essential features of (3.3), with the "large" factor u2 multiplying the function 
(£ ~~ a)/€i which has a simple pole at £ = 0 and a zero at £ = a. To this end, from [3, 
equation (4.4)], we define £ by 

y.{—} *-y.{^rnj} *■     (3ii) 

where the branches on both sides are chosen so that £(£) is 

(i) an analytic function of t at t = 0 and t = a, 
(ii) negative when t is negative, 

(iii) a continuous function for t lying in the plane having a branch cut along the 
positive real axis from t = 1 to t — oo. 

Figure 3 depicts the £ region D corresponding to the t region D. We specify that 
for £ e D 

0 < arg(0 < 27r. (3.12) 

The points t = 0, a are mapped to £ = 0, a, respectively, and we denote the point 
corresponding to t = 1 by £ = £i. The bounding curve AB emanating at an angle 7r/2 
from £i + iO is the map of the upper part of the cut from t = 1 to t = oo (arg(£) = 0); 
for all points £ on this curve 

& [      \1^-}1/2dT = 0. (3.13) 

The curve A'B' is the conjugate of-AB. 
The curve GH emanating at an angle 7r/2 from a + l/(2u) + iO is defined by 

ft                cr — no1/2 

to I { -}     dT = 0    (3(0 >0), (3.14) 

and G'fZ7 is the conjugate curve. These two curves separate D into three regions, 
which we denote by Do, D+, and D~, as depicted in Figure 3.  The three regions, 
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FIGURE 3. £-plane 

which are defined to include all their boundary points, will be used below to describe 
the regions of asymptotic validity of certain solutions. 

With the above new independent variable £ and a new dependent variable W(£) 
defined by 

"•Hija^of-w. 
we arrive at the transformed equation 

d2W 
d? H^-w^h 

(3.15) 

(3.16) 

The branches of the factor multiplying w{t) in (3.15) are to be taken so that this term 
is an analytic function of £ in D (except at £ = £i), and is positive on the interval 
—oo < £ < £i. In the notation of [3], we have m = 1/4, and, from [3, equation (4.3)], 
we find that 

^(o,0- 
3£ + 2a       (£- a)(t2 + 4at -3t- 26) 

16(£-a) -rvV 16(o -1)3 (3.17) 

which is analytic at all points in D, in particular at £ = 0, a, and £1. 
Explicit integration of the left-hand side of (3.11) yields the relation 

«"2« «)">-!.n( 
a.   /2£-a + 2£1/2(£-a)1/2 

a Hter- 
(3.18) 

Hence we can show that £ -+ oo as t —> oo such that 

£ - ialn(40 - Ja + ^ln(a) + O^-1) = 2it1/2 + a*- cm/2 + ©(r1/2), 

(3.19) 
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where 

"-jfi^r*-       (3•2o, 
This relationship will be of use later. In terms of the elliptic integral of the second 
kind (3.10), we have 

a* = 2{1 - a}1/2£(sn-1({l - a}1'2) \ 1/{1 - a}). (3.21) 

We shall also require information on the behaviour of £ as t —► 0, and this is readily- 
found from (3.8) and (3.18) to be given by 

l=i*+
aa-f,+ gaV + 0(«»). (3.22) 

a da6 

In the case when a = a = 0 the limiting form of (3.22) is applicable. 
We now apply Theorem II of [3] to obtain three asymptotic solutions of (3.16) of 

the form 

Wtf>(ti>a,fl =^/2fl/4(2i*f) + ^>(ii,a,0    (j =0,1,4), (3.23) 

where U^,2 1,4(2u^) denote the following Whittaker confluent hypergeometric func- 
tions (see [10, p. 260]) 

^W/4(
2<)=^wmM-/2'i/4{2u0'        (3-24) 

^ul/2,i/i(2uO = e-,ri/47(W2)^-„a/2,i/4(2<e-'ri)) (3.25) 
J2ua-3)*i/4 

^/2>1/4(2<) =    7(W2)   W^^2u^ (3-26) 

with 

7(fc) = kke-k. (3.27) 

Explicit bounds for the error terms iW(u,a,£) and their derivatives are supplied 
by (4.80) of [3]. The paths of variation in these bounds, for the present case, are taken 
to connect £ with a reference point ^ prescribed as follows: for j = 0 the reference 
point is taken to be ^0^ = 0, for j = 1 we take ^ = ooe7™, and for j = 4 we take 
£(4) to be the point at infinity lying on the curve AB (corresponding to t = oo + z0, 
z = TT -hioo). 

Although the analysis of [3, §4] is described for the principal range —TT < arg(£) < TT, 

extension of the results to the present range of 0 < arg(£) < 27r is straightforward. 
We meet the essential requirement that the t — £ transformation be regular at the 
critical points £ = 0, a ± iO. The error bounds (4.80) are valid in domains A^/2 1,4 

(j = 0,1,4) which meet the conditions [3, (i)-(iv) preceding equation (4.66)], with Sa 

of that reference replaced by the larger region Do, and 5^ ; replaced by the subdomain 
D+. 

With this extension to 0 < arg(£) < 27r, we see that the bound for eWfaa^) 
holds uniformly for all £ € D, and the bound for £^(u,a^) holds uniformly for 
£ € D*1". Note that in the latter case the region of validity D+ includes all points on 
the boundary GH. 
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The bound for £^(u,a^) holds uniformly for all £ G D, provided ^ua — f ^ N. 
If ^ua - | G N, then the bound is uniformly valid for £ G DQ. The extension of 
the bound for i(0\u,a,€) into D+ U D~ when ^ua - | G N is still feasible since the 
monotonicity condition on the path of variation is not violated. However, the bounds 
would not be meaningful since they would imply that the error term £^0\u,a^) is 

asymptotically larger than the Whittaker function approximant W^J/2j 1,4(2u€) (which 

becomes recessive in D+ U D~ when ^ua — | G N). 
It is worth dwelling on this point a moment longer, since this an interesting compli- 

cation in the asymptotic investigation of Mathieu's equation, or more generally in the 
theory of a coalescing turning point and simple pole, and two coalescing turning points. 
The essential complication is that for certain parameter values a solution which is re- 
cessive at one singularity can become recessive at a second singularity. The Whittaker 
function approximantsU^,2 1u(2u^) and 14*^/2 iM^f) exhibit a similar dual reces- 
siveness, but not for exactly the same parameter values as the solution they approx- 
imate. Thus for example, when ^ua - f G N the Whittaker function W^0j/2>1y4(2^) 

is recessive in D+, whereas W(0\u,a,€) is recessive in D+ when ^ua — f is close to 
a nonnegative integer (as u —> oo). For this reason it is best to avoid (for all values of 
^ua — |) use of the solution W^(u,a^) in D+ if possible, and rely on connection 
formulae for the exact solution instead. 

In a similar vein, we could extend the region of asymptotic validity for 
"ua/2 1/4(2^) i11^0 certain subdomains of Do (depending on the values of ^ua — f). 
Again, this would be an unnecessary complication, and we can content ourselves with 
employing W^/2 1t4(2u^) and U^],2 1,4(2u£) as a numerically satisfactory fundamen- 

tal pair of solutions in Do, and W^ ,2 1i4(2u^) and WjJ/2 1,4(2u^) as a numerically 

satisfactory fundamental pair of solutions in D+. 
The domain Sa of [3] is not included in our range 0 < arg(£) < 27r. However, we 

have an additional region D~ in 37r/2 < arg(£) < 27r, in which a recessive asymptotic 
solution is required. This is given simply by the solution 

p(2ua-3)iri/4 

^{ua/2) '    ' 

(3.28) 

where s^\u, a,£e_27r2) can be bounded for £ G D~ by the corresponding bound [3, 
equation (4.80)] for e^{u, a, £) (f G D+). 

The characteristic behaviour of each asymptotic solution is as follows: 

^^-^mm^'"       «-»• (3.29) 

W^ (tt, a, 0 ~ -riuaMe^-W1 (2uO-ua/2eui (£ ^oo), (3.30) 

p(2ua-3)iri/4 

WW(u,a,0~      ,     /9,    {2uOual2e-^ {(■ 6 6+,^ - oo),   (3.31) 
j{ua/2) 

p-(2ua+3)iri/4 
W^(„, a, Se-2™) ~ (2uOua/2e-<     « € D"^ - oo).   (3.32) 

7(^a/2) 
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We shall also require knowledge of the behaviour of i/JJ /2 1 u(2u£) as £ —> oo^n D. 
As £ -> oo with 0 < arg(£) < 37r/2 

sAo)        ,* ^ r(W2 + 3/4)       /rt „_ ua/2eu( 

p-(2ua+l)iri/4 

- —< TTT—(2ttOtto/2c",4€. (3.33) 7(m/2)     v    s/ v       / 

and as £ -^ oo with 7r/2 < arg(£) < 27r 

"W2.I/4^^~        7(«a/2)r(3/4-«a/2)   (    ^ 

- ^—7 ^^(2^)W2e-^. (3.34) 

4. Asymptotic solutions involving elementary functions 

Although the asymptotic solutions involving Whittaker functions given in the preced- 
ing section are uniformly valid in domains which contain the coalescing turning point 
and simple pole, we shall also employ the Liouville-Green (L-G) solutions of complex 
argument. The advantage of these is that they are simpler since they only involve el- 
ementary functions; the disadvantage is that they are not valid in the neighbourhood 
of the turning point. 

We shall apply Theorem 3.1 of [10, Chapter 10], taking n = 1, and not consider 
deriving asymptotic expansions, since expansions cannot similarly be derived for the 
Whittaker function approximations. The appropriate Liouville transformation is given 
by 

rt ( _~     \ 1/2 

/ / _ ~  \1/4 

^Ur^J *<*>• (4-2) 

which transforms (3.3) into the form 

g± = {u2 + (A((7)}L) (4.3) 

where 

t2 - 3i + 4at - 2a 
16(t - a) **> =        ^ 3 (4-4) 

The branches for the integrand of the right-hand side of (4.1) are taken so that c(t) 
is real and negative when t is real and negative, and is continuous elsewhere in D. The 
cr-domain corresponding to D, which we denote by S, is depicted in Figure 4. The 
points t = 0, a it iO, 1 it iO are mapped to a = 0, ±a7ri/2, a* ± a7ri/2, respectively, 
(where a* is defined by equation (3.20) above). Note that ^(a) is analytic at a = 0 
and a = a* ± am/2, but not at a = ±a7ri/2. 

Figure 4 shows subdomains E!+, S_, and So, which are defined as follows.   So is the 
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FIGURE 4. o--plane 

half-plane 5ft(cr) < 0, !E+ consists of all points in S satisfying 5ft(o-) > 0, $s{cr) > a7r/2, 
and E~ is the conjugate domain of !E+. These definitions will be of use below. 

To determine the regions of asymptotic validity for the solutions given by equa- 
tions (3.02) and (3.03) of Theorem 3.1 of [10, Chapter 10], one must choose appro- 
priate reference points. For the first of these solutions we choose the reference point 
to be at cr = ooe7™ (and denote the solution by L\{u,a)). For solutions of the form 
[10, Chapter 10, equation (3.03)] we choose two different reference points to yield two 
more asymptotic solutions; the first reference point is taken to be at a = a* + zoo 
(denoting the solution by Lj^cr)), and the other we take to be at a = a* — zoo 
(denoting the solution by L^(ii,cr)). 

We therefore have the following L-G solutions of equation (4.3) 

Li(u,a) = ev 

Lf(u,a) = e~ 

^1+^(^(7)}, (4.5) 

(4.6) 

with error bounds of the form 

drj(u,a) 
M^0-)|, 2uda 

< - r|0(r)dr|exp{i r|^(r)dr|}. (4.7) 
U Joo L U Joo J 

The lower limits of integration in (4.7) are taken at the reference points at infinity 
described above; the paths of integration consist of a finite chain of R2 arcs such that, 
as T passes from the reference point at infinity to cr, 5ft(r) is nondecreasing for 771 (ix, cr), 
and 3?(r),is nonincreasing for r]f(u,a). The paths also must avoid neighbourhoods of 
the singularities a = ±am/2. 
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The bounds (4.7) are uniformly valid in subdomains of S in which these "progressive 
path" requirements are met. Thus, rji(u,a) is bounded by (4.7) for a in S with 
neighbourhoods of the points a = ±a7ri/2 excluded, r]^(u,a) is bounded by (4.7) for 
a in SQ US+ with a neighbourhood of all points on the imaginary axis below a = am/2 
excluded, and ^(u.a) is bounded by (4.7) for cr in HQ US~ with a neighbourhood of 
all points on the imaginary axis above a = —anife excluded. 

Prom the bound (4.7), we infer that the error terms r)i(u, cr), ^(u, cr), and ^{u, cr) 
are O^-1) as u —> oo, and 0(cr~1) as a —► oo, in their respective regions of asymptotic 
validity. The importance of the three L-G solutions Z/I(^,<J), L^^cr), and L^iu^a) 
is that they are recessive in Ho, H+, and H-, respectively. 

We observe that although L^u.a) and L^iu^a) have a similar (exponentially 
large) asymptotic form in So, they are in general independent of one another. Note 
that the region of asymptotic validity of L^iu, a) does not include any points in S_ 

(which contains the negative imaginary axis), and for points a close to the negative 
imaginary axis the bound is poor. A similar observation can be made regarding the 
region of asymptotic validity of L^iu, a). 

An important problem is to establish the linear relationship between the three 
functions, i.e., to determine constants C and D such that 

L$(u>a) = CL^{u,a) + DLI{U,<T). (4.8) 

The determination of C can be achieved directly from the definitions of the functions 
and the error bounds by letting a —> oo in So (so that Li(u,cr) vanishes). The 
determination of D by a similar method would require letting a —► oo so that either 
£,2(11,(7) or L^(it,cr) vanishes (a —► 00 in S+ or S_), or at least so that all three 
functions are of the same order of magnitude when cr or u is large (i.e., on the positive 
or negative imaginary axis). This cannot be done as the common region of validity of 
the three functions does not include any points of S+ or S_. 

We solve connection problems of this kind by determining the relationship of the 
L-G solutions with the Whittaker function solutions. To do this we first note that 

which comes from (3.11), (4.1), and the relation 

(which follows from the definition (3.8) of a). Thus, from (4.9), we find that as £ —> oo 
in D 

1 11 1 
a =i - -aln(4£) - -a + -aln(a) + -ani + O^"1). (4.11) 

The following three identifications come from the fact that the functions are solu- 
tions of the differential equation (3.16), each pair having the same recessive behaviour 
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at infinity: 

W^u9a^ = e''i,4(j^)1,AL1(u9a)% (4.12) 

W(4)(tt,a,0 = e^-3/4^(^)1/4L2+Kc7), (4.13) 

W^(u,a^e-27ri) = -e^f-^-Y^Lo^a) (4.14) 
V^ — a/ 

The constants of proportionality were found by comparing both sides at infinity and 
utilizing (4.11). 

We finally turn our attention to a very important connection problem, the deter- 
mination of constants Af, Aj", and A2 such that 

WW (*,<*,£) = (^)1/4[A+L1(^or) + \2Lt(u,<T)], (4.15) 

Wl0\u,a,Q = [j^y,\x^L1(u,a) + X2L-(u,a)}. (4.16) 

Clearly once these constants are determined, the coefficients of (4.8) immediately 
follow. 

By letting £ -» ooe™ in (4.15) and (4.16), then with the aid of (3.23), (3.33), (4.5), 
(4.6), and (4.11) we find that 

A2 = -e-^/4{l + <$o}, (4.17) 

where 

(   g(0)(»,a,Q   1 
,l^/2.1/4(2«f)J' 

60=       lim/    i  4 Sy    }■ (4-18) 

The existence of this limit is guaranteed by the existence of A2. We next use [3, 
equation (4.80)] to obtain a bound for 60. First, from [3, equation (4.58)] with j — 0, 
I = 1, k = ua/2, m — 1/4, and z = 2u£, we have 

C)/2,1/4(2<)-1M^|1/4(2<) _ __aoA) 

(o) ^7^ = cosec{CAi/4(2<)}- (4-19) 

Now, from the definitions [3, equations (4.54), (4.55)], we note the following properties 
of the weight functions as £ —> ooe7™ 

C/2,l/4(2<)l^/2,l/4(2^)l ~ ^/2,1/4      U = 0,1). (4.20) 

Thus, on employing (4.19), (4.20), and [3, equation (4.61)], we obtain 

lim f C)/2,l/4(2^)-1M^,1/4(2<) | [{e)/2,l/4}2 + {gg/2,l/4>a] 1/2 

«-~^*riH 1^/2,1/4(2^)1 / ei02/2)1/4 

(4-21) 

which, in conjunction with [3, equation (4.80)], yields the desired bound 

N < eo [exp{t;«(tt, a){ua + l)1/3u-1+s} - l]. (4.22) 
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Here eo is a computable (finite) constant defined by 

eo = JLpJ1 + {l(ir-}]   ' (4-23) 

and ^(w, a) is defined by 

V6(u,a) = ~^~^l/4Vo,ooexp(7r2)(^(^^0)5 (4-24) 

0<fc<ooL ^^i/4 

1  .-*, 

where £, /ci/4, and F are given by [3, equations (4.71)-(4.73)]; note that for each fixed 
positive S the parameter vsiu^a) is 0(1) as u —> 00. We remark that in [3] and here 
we have made a number of simplifications in arriving at (4.22), contenting ourselves 
with a simpler but not the sharpest possible bound. 

Later on we will require that A2 7^ 0. Hence from now on we assume that u (i.e., 
q) is sufficiently large so that \6Q\ < 1. 

Having found A2, we shall determine Af by letting £ —> 00 along the curve GH, 
since this curve is contained in the common region of asymptotic validity of the three 
asymptotic solutions in (4.15), and Li(u,a) does not vanish as £ —> 00 along this 
curve. The curve GH corresponds to the vertical line $t(cr) = x, (^(tf") ^ Q!7r/2), 
where 

X = L      i-r-}  dr 

(  1        ax1/2     a.   (a      1       /I        ax1/2^      a.ran = U^+2J      -2lnl2+^+te + ^)      }+2lnl2/ 
(4.25) 

Note that x — 0(u~3/2) as u —► 00 (except when a = 0 in which case x = 1/(2^)). 
Allowing cr -^ x + *00 in (4-15), and using (3.23), (3.33), (4.5), (4.6), (4.11), and 

(4.17), we arrive then at the expression 

Al " KM) rm-ua/2) + 6o ' (4-26) 

where 

6+=    lira    {e-^iW^^O + toe-^e-2™}. (4.27) 

The existence of this limit is guaranteed by the known existence of Af. To bound SQ 

we note from (4.11) that 

as ^ -^ oo on GH (a -> x + «oo). Therefore using (3.27), (3.33), (4.20), and (4.28), 
and noting that the weight functions E^2^4(2u^) are equal to unity on GH, one 
can show from [3, equation (4.60)] and the triangle inequality that 

lim rjM^1/4(2ua} < e»XMo + e"** + e^, (4.29) 
^—►oo on (jrii '   '  » 
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where 

The existence of MQ is readily established by use of Stirling's formula. Therefore, from 
(4.22), (4.27), (4.29), and [3, equation (4.80)], we have the desired bound 

|^o+l < (Mo + e"2^ + l)(exp{t;+(ti,a)(ua + I)1'3**-1*6} - l] 
/ v (4.31) 

+ eoe'2ux (exp{v6(u,a){ua + l)1'3^1*6} - l), 

where v'gfa a) is defined by (4.24) but with the path of variation taken instead along 
GH. Again, note that vffaa) is 0(1) as u —> oo for each fixed positive 6. 

Finally, to determine AJ" we let £ —► oo on G'H' (a —> x — ioo) to similarly obtain 
from the relation (4.16) 

j2eV<*eu«^r(ua/2 + 3/4)  , e_ 
Al - "* W T(3/4-ua/2)       + ^ ' [4'32) 

where 6$ is the constant given by 

SQ =     lim    {e-we(0)(w,a>0 + 5oe-,ri/4e-2u<7}) (4.33) 

and it too is bounded by (4.31). 

5.  Identification of asymptotic solutions with Mathieu functions 

We are now in a position to obtain uniform asymptotic approximations of Mathieu 
functions for q -» oo with (1.2) holding, by identifying them with the asymptotic 
solutions of the previous two sections. All the results presented in this section are 
uniformly valid for this parameter range. 

It is convenient to introduce the following function which we shall frequently employ 

*<a-r"'(£fr. CM, 
where the first factor on the right-hand side is defined such that arg(^~1/4)   = 
— i arg(£), and the second is defined to be positive on the real interval — oo < £ < £i, 
and analytic in D (except at £ = £i). Recall that 0 < arg(£) < 27r in D. 

Our first identification is 

m<0>(*,g) = 4O)(9)*(OW(OW,0, (5-2) 

where mi^z^q) is the Mathieu function defined by (2.9), andW^^a,^) is the 
asymptotic solution defined by (3.23) and (3.24). Here ci \q) is a constant, and the 
relationship (5.2) follows from the fact that both functions are solutions of Mathieu's 
equation (1.1) which are recessive at z = 7r/2 (£ = 0). To determine Cy (q) we compare 
both sides of the equation at z = 7r/2. Prom (3.1) and (3.22) we perceive that 

^ = (ala)ll\z - 7r/2) + 0{(z - 7r/2)2}    (z - 7r/2), (5.3) 
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and hence, from (2.11), (3.26), (5.1), and (5.2), we obtain the desired expression 

v  W     \&au3J     r(Wa/2 + 3/4)- l     ' 

On gathering the above results together, we arrive at the following asymptotic ap- 
proximation which holds uniformly for £ € Do 

(5.5) 

The next identification is that of the solutions which are recessive at z = ir/2 + ioo 
(£ = ooe7™), namely 

mi3Hz,q) =ci1Hq)mWW(u,a,0, (5.6) 

where ci \q) is a constant of proportionality which can be determined by comparing 
both sides at infinity; from (2.21), (3.1), (3.19), (3.27), and (5.6), we obtain 

p—ua* „—vrri/2 

W=     uW    • (5-7) 

Hence, on substituting (3.23) and (3.25) into the above results, we arrive at the fol- 
lowing asymptotic approximation which is uniformly valid for £ G D 

p — UOt* p — V7r2/2 
mv3)M =     Mi/27ri/2    #(0{e-"/47(W2)^-W2,i/4(2<e-") + £(1)(M,a,0}- 

(5.8) 

An L-G approximation for rrvy  (z,q) follows immediately from (4.5), (4.12), (5.1), 
(5.6), and (5.7); the following approximation 

p—ua* p-(2v+l)7r2/4 
m"3)M = ^72^172 (t-a)-^e^{l + Vl(u,a)}1 (5.9) 

is uniformly valid for all a E 5 except for neighbourhoods of the points a = ±a'Ki/2. 
Similar identifications can be made for the solutions that are recessive in the £ 

domains D+ and D-. By proceeding in a similar manner to the derivation of (5.6) 
and (5.7), we obtain 

mP(z,q) = cW(q)mW(4)(u,a,0, (5.10) 

where 

and 

where 

pUa * p V7ri/2 p—ucmi 

^=- ;1/27rl/2 , (5.11) 

m(,3)(z + 7r,g) = 44,")(?)*(a^(4)(w,«^e-2-)) (5.12) 

44'-)(g) = -   ttl/a7rl/a   • (5.13) 
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Therefore, we deduce that the following approximation holds uniformly for £ € D+ 

pua*pviri/2p—uotiri ( p(ua/2—3/4)7ri ^ 

i4)(^) = ulf2xi,2       *®{    7(W2)    WWa,1/4(2«tfl + gffl(tt,a,fl}, 

(5.14) 

and the following holds uniformly for all a in So U !B+ except for a neighbourhood of 
all points on the imaginary axis below (and including) a = am/l 

ua* p(2v+l)Tri/4 
mi4)(z,q) =      ul/H1/2      {t-arV'e-^il + rgM. (5.15) 

Likewise, for £ € D~ we have arrived at the uniform approximation 

pUa* p—V7ri/2 

mW(z + 7r,q) = -   ul/2^/2   4(C) 

{p(ua/2-3/4)Tri } 

7(«a/2)    W-M*<Me-M) + i^(u,a,^nj, 

(5.16) 

and for all a in So U S~ except for a neighbourhood of all points on the imaginary 
axis above (and including) a = —a'Ki/2, we obtain 

pua* p—(2v—1)^1/4 
mW(z + n,q)=e    ^1/2 (* - a)"1/^— {1 + ife^)}.        (5.17) 

The completes the construction of uniform asymptotic approximations for the four 
recessive Mathieu functions. These allow us now to solve the connection problem 
(2.36), which we then use in conjunction with the other connection formulae to de- 
rive asymptotic approximations for the Floquet Mathieu function defined by (2.1). 
The second Floquet solution (2.5) can be similarly treated, as can other solutions of 
Mathieu's equation, but we do not pursue this. 

The coefficients A and B of (2.36) are found immediately by comparing (4.12), 
(4.13), and (4.15) with (5.2), (5.6), and (5.10). As a result we deduce that 

pTri/4 \ + i(0)(n\ p(3/4-ua)iri \nz(0)(n\ 

m(o)M) = e    £*{q)m£\z,q) + 4J?V (g)mS4W   (5-18) 

and similarly, by comparing (4.12), (4.14), and (4.16) with (5.2), (5.6), and (5.12), we 
obtain 

mW(z,q) =    *       WmW(z>g) A(4   ,    ^
Jm^(z + 7r,g).    (5.19) 

We also can find the connection coefficient kv(q) of (2.29) by using (2.31) and 
setting z = 0 and z = TT in the L-G approximation (5.9). Thus, on recalling that z = 0 
corresponds to cr = a* - cm/^ and £ = 1 - iO, and -2 = TT corresponds to £ = 1 + i0 
and a* + airi/2, we arrive at the approximations 

p-(2v+l)7r2/4 

"tfW) =    ui/affi/2   (* " a)-1/4e»a7ri/2{l + ih(tt,a* + a7ri/2)})    (5.20) 
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and 

^(2v+l)7ri/4 
e^m^M =   MW/2  (1 -a)-^4e-^^2{l+Vl(u,a* -am/2)}. (5.21) 

Therefore, if we write 

1 + 771 (u, a* + airi/2) = (1 + ^ )ei7r^1, (5.22) 

with ^i and </>i real and 0i G (—7r,7r], we obtain the desired expression 

kv(q) = ^e-V7rV/27r1/2(l - a)1/4(l + ^i)"1 cosec{(2v - 2^a - 40i + l)7r/4}, 

(5.23) 

where ^i and (/>i are 0('U-1) as w —> oo, and can be explicitly bounded by using (4.7) 
and (5.22). 

We now are in a position to derive asymptotic approximations for the Floquet 
solution. We first note that the corresponding expression for k-v(q) is given by (5.23) 
with v replaced by —v. Consequently, from (2.30), (5.6), and (5.10), we arrive at the 
approximation 

mev(z,q) = ~mev(0,q)(l + tfi)-1 cosec{(2'y +.2ua + 4<l>i - l)7r/4}(l - a)1/4<I>(£) 

x [eua\-^ua-v^i^W^\u,a,0 - e-ua* e3v^2W^(u,a^)], 

(5.24) 

which is uniformly valid for £ E D+, and so in particular can be used for real values 
of z lying in the interval 7r/2 + z* < z < TT, where z = 7r/2 + z* corresponds to 
f = a +l/(2t0. 

Next we use (2.25) and (2.30) to obtain 

mev(z,q) = k-v(q)mev(0,q)[m^(z + 7r,g) - e-wVn<,3)(s,g)], (5.25) 

which, with (5.6), (5.12), and (5.23) (with v replaced by —v), yields the following 
asymptotic representation which is uniformly valid for £ G D~ 

mev(z,q) = ?-mev(0,q)(l + tfi)-1 cosec{(2t; + 2ua + 40i - l)7r/4}(l - a)1/4#(0 

x [eua*ev^2W^(u,a^e-27ri) + e-uame-v*i'2Wl1\u,a,t)]. 

(5.26) 

This expression can be used for real values of z lying in the interval 0 < z < 7r/2 - z*. 
Finally, from (2.30) and (5.18), we find that 

mev(z,q)= mev(Q,q)k-v(q) 
e-(v-ua+3/4)*id(*)(q)^o) 

rnW(z,q) 
X^){q) (5 27) 

/ \ + p-(v-u>a+l/2)Triz(4)(n\. 1 ' 
^-Aie .^^ Cv  {q)  m(%,g) . 

v A2Ciy(g) / J 
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This can then be used with (5.2), (5.6), and (5.23) (with v replaced by —v) to yield 

mev(z,q) = - mev(0, q) cosec{(2i; + 2ua 4- 40i - l)7r/4}(l - a)1/4*(0 
Z(l + c)ijA2 

+ ct.a*c(2«+l)«/4 ^(0)^^ a> ^] ?     (528) 

which holds uniformly for ^ € Do, and can be used for real values of z lying in the 
interval 7r/2-z*<z< 7r/2 + z*. 

6. The characteristic exponent v 

Our final task is to determine the relationship among the parameters a, g, and the 
characteristic exponent v. In [4], this problem was tackled by considering only two 
solutions of Mathieu's equation, viz. 

"0W=(^)1/4^(0)(^a^) 

= (S - *r1/4 [Af Lifa, a) + AaL^K a)], (6.1) 

Wl(*) = (5-*)"1/4Li(ti,a). (6.2) 

The desired (asymptotic) relationship then was obtained by solving for M^1 = e:tv7rz 

as the eigenvalues of the matrix 

A = (ai1    ai2) (6.3) 
V«21      0,22/ 

whose coefficients are given by the relations 

wo(z + TT) = aiiK;o(^) + «i2'^i(^), (6.4) 

wi(z + TT) = 0^21^0(2) + a22/^i(^), (6.5) 

see [1, p. 30]. 
In this paper, we take a more direct approach by utilizing the connection formulae 

(5.18) and (5.19) that we have obtained. First, we eliminate mi (z,q) from these two 
relations to arrive at 

^3)(*+*.«)=   :i/rXi}m^Hz,q)+e   * {q)m^{Z,q). 
A2CV   (q) cv   (q) 

(6.6) 

Prom (4.17), (4.26), (4.32), (5.7), (5.13), and the reflection formula for Gamma func- 
tions [10, Chapter 2, equation (1.07)], we obtain the following expression for the 

coefficient of mi  (z^q) in (6.6) 

£ Cv     1*1 ^ll = e2- {1 + (5o}-1[G(W2) cos(TKwr) + e3^4((!)0- - «+)], 
A2Cj;;(^) 

(6.7) 
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where G(k) is defined by 

1 /e\2k 

G(*) = -(-)    r(fc + 3/4)r(fc + l/4). (6.8) 

This function is non-vanishing and bounded for 0 < k < oo, as is evident from Stirling's 
formula. 

Next, from (5.11) and (5.13), we see that the coefficient of mv(z^q) in (6.6) is 
equivalent to 

A(4,-) 

^ = e-V7r\ (6.9) 
cl%) 

On comparing the coefficients (6.7) and (6.9) of (6.6) with the corresponding ones of 
(2.25) we arrive at the following result: 

Theorem 6.1. Define a = \(a/q + 2), u = y/q, parameters a and a* by the elliptic 
integrals (3.9) and (3.21), respectively, and a bounded function G(k) by (6.8). Then, 
for each q > 0, the parameters a, q, and v satisfy the relationship 

cos(v7r) = ^^{l + Soy^lGiuafflcQaiua^ + e3**'4^ -#}],     (6.10) 

uniformly for —2q < a < (2 - d)q (d > 0), where So, 6^ are bounded by (4.22) and 
(4.31), respectively; it is assumed that q is sufficiently large so that \6o\ < 1. 

Since a = 0(a) as a —> 0, the bounds for (SQ, 6^ show that these numbers are 
0((ud + l)1/3^-1"^) uniformly for 0 < a < 1 — d as u —> oo, for arbitrary fixed 
positive d and 6. 

In the special case when there exists a basically-periodic solution, that is, when 
cos(v7r) = d=l, we deduce from (6.10) 

cos(uaw) = Q^jz) [e3™/4^ - «o~} ± ^~2ua'{1 + M] • (6.11) 

In the present circumstances, a* is positive and bounded away from zero. Therefore, 
the right-hand side of (6.11) is 0((ua + l)1/3^-14"^) as u —> oo, and consequently 

a=(2^+1)+Q((tta + l)1/3tt-w)    (m = 0,1,2,...), (6.12) 
AU 

or equivalently 

uniformly for0<d<l-dasg-+oo. Equation (6.13) can be solved for a from which 
the characteristic values of a can be obtained by the relation a = 4ag — 2q. Explicit 
bounds are readily available for the order term in (6.13), and the approximation is 
valid for integer values m satisfying 

0<m<O-^'{_lZi_},Vl    ,0 0).        (6. 
1/2 

14) 
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Note that for the first few characteristic values (m = 0(1)), the error term in (6.13) is 
0(q~1+6) as q —► oo, whereas when m = 0(q1^2) the error term in (6.13) is 0(q~5/6+6) 
as q -^ oo. 
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