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We investigate the existence of homotopy comoment maps (como-
ments) for high-dimensional spheres seen as multisymplectic man-
ifolds. Especially, we solve the existence problem for compact ef-
fective group actions on spheres and provide explicit constructions
for such comoments in interesting particular cases.
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Introduction

Multisymplectic structures (also called “n-plectic”) are a rather straightfor-
ward generalization of symplectic ones where closed non-degenerate (n+ 1)-
forms replace 2-forms.

Historically, the interest in multisymplectic manifolds, i.e. smooth man-
ifolds equipped with an n-plectic structure, has been motivated by the need
of understanding the geometrical foundations of first-order classical field the-
ories. The key point is that, just as one can associate a symplectic manifold
to an ordinary classical mechanical system (e.g. a single point-like particle
constrained to some manifold), it is possible to associate a multisymplectic
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manifold to any classical field system (e.g. a continuous medium like a fila-
ment or a fluid). It is important to stress that mechanical systems are not
the only source of inspiration for instances of this class of structures. For
example, any oriented n-dimensional manifold can be considered (n− 1)-
plectic when equipped with a volume form and semisimple Lie groups have
a natural interpretation as 2-plectic manifolds.

As proposed by Rogers in [20] (see also [26]), this generalization can be
expanded by introducing a higher analogue of the Poisson algebra of smooth
functions (also known as “observable algebra”) to the multisymplectic case.
Namely, Rogers proved that the algebraic structure encoding the observables
on a multisymplectic manifold is the one of an L∞-algebra, that is, a graded
vector space endowed with skew-symmetric multilinear brackets satisfying
the Jacobi identity up to coherent homotopies.

The latter concept allowed for a natural extension of the notion of mo-
ment map, called (homotopy) comoment map, originally defined in [9], asso-
ciated to an infinitesimal action of a Lie group on a manifold preserving the
multisymplectic form. As this concept is particularly subtle and technical,
at the moment there are only few meaningful examples worked out in full
detail. We can cite, for instance, [9] for a broad account and [18] regarding
the comoment pertaining to volume-preserving diffeomorphisms acting on
oriented Riemannian manifolds.

In this work, we try to address this problem by giving new insights
on multisymplectic actions of compact groups and thus deriving existence
results and explicit constructions for comoment maps related to actions on
spheres.

Main Theorem. (Proposition 2.4 and Theorem 3.1) Let G be a compact
Lie group acting multisymplectically and effectively on the n-dimensional
sphere Sn equipped with the standard volume form, then the action admits
a comoment map if and only if n is even or the action is not transitive.

Interesting particular cases of the Main Theorem:

• The action of SO(n) on Sn is not transitive, hence it admits a co-
moment for all n. We shall give an explicit construction for such a
comoment in Subsection 2.2 that extends the construction given in [9]
only up to the 5-dimensional sphere.

• The action of SO(n+ 1) on Sn only admits a comoment for even n. For
the cases where such a comoment exist, giving explicit formulas seems
to be a non-trivial task. We give explicit formulas for the first two
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components f1 and f2 in terms of the standard basis of so(n) in Sub-
section 3.1, leaving an explicit description of the higher components
as an open question. The core idea will be to focus on the particular
cohomology of the acting group rather than working on the analytical
problem of finding the primitives required for the construction of the
components of a comoment.

• For SO(4) acting on S3 no comoment exists. However, this problem
can be fixed by centrally extending the Lie algebra so(n) to a suitable
L∞-algebra (cf. [9, 17]).

Outline of the paper. In the first section we survey the theory of como-
ments in multisymplectic geometry, as introduced in [9]. We include proofs
for some known results in order to achieve a complete and self-contained
exposition. The main novelty in this section is an intrinsic proof of Theo-
rem 1.30, which does not depend on the choice of a model for equivariant
cohomology.

We then prove the Main Theorem for the non-transitive case in Section 2
and the transitive case in Section 3. In addition to proving the abstract
theorem, we give explicit constructions for important classes of group actions
and highlight interesting phenomena.

Conventions. Given any cochain complex C = (C•, d) we denote by
Zk(C) = ker(d(k)) the subgroup of cocycles and by Bk(C) = d Ck−1 the
subgroup of coboundaries. In the case of chain complexes we employ the
same notation with lowered indices.

We denote with ∂ : Λ•g→Λ•−1g the boundary operator of the Chevalley-
Eilenberg complex of a Lie algebra g, which is given explicitly on homoge-
neous elements by the following equation:

(1) ∂(ξ1 ∧ ξ2 ∧ · · · ∧ ξk)

:=
∑

1≤i<j≤n

(−1)i+j [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξn,

whereˆdenotes deletion as usual and with ∂0 = 0, for all ξi ∈ g.
Dually, we define the Chevalley-Eilenberg differential as δCE : Λ

ng∗ →
Λn+1g∗ whose action on an element ϕ ∈ Λ•g∗ is given by δCEϕ := ϕ ◦ ∂.

We consider the contraction operator ι to be defined on multi-vector
fields. Specifically, the contraction with the wedge product of k vector fields
ξi is given as follows

ι(ξ1 ∧ · · · ∧ ξk) = ιξk · · · ιξ1 .
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1. Comoments on multisymplectic manifolds

In this section, we give a short introduction to the theory of comoments
in multisymplectic geometry focusing on the geometric description of their
cohomological obstructions. Most results can be found in the literature [9, 10,
20, 22] but we present some of the proofs for a more clear and self-contained
exposition. Our main contribution is an intrinsic proof of Theorem 1.30
which does not depend on a choice of model for the equivariant cohomology.

Definition 1.1. A pre-multisymplectic manifold of degree k is a pair (M,ω),
where M is a smooth manifold and ω ∈ Ωk(M) is a closed differential form.
The manifold is called multisymplectic if TM → Λk−1T ∗M, v 7→ ιvω is an
injective bundle map. For fixed degree k of the form such manifolds are also
called “(k−1)-plectic”.

Example 1.2 (Symplectic manifolds). A symplectic manifold is, by
definition, a 1-plectic manifold.

Example 1.3 (Oriented manifolds). Any n-dimensional manifold
equipped with a volume form is an (n−1)-plectic manifold.

Example 1.4 (Multicontangent bundles). Consider a smooth manifold
N , the corresponding Multicotangent bundle Λ = ΛnT ∗N is naturally n-
plectic. Indeed Λ can be endowed with a canonical multisymplectic (n+ 1)-
form ω := dθ obtained from a tautological potential n-form θ ∈ Ωn(Λ) given
by:

[ιu1∧···∧un
θ]η = ι(Tπ)∗u1∧···∧(Tπ)∗un

η

= ιu1∧···∧un
π∗η ∀η ∈ Λ , ∀ui ∈ TηΛ
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where π : Λ → N is the bundle projection and Tπ : TΛ → TN is the cor-
responding tangent map. This construction is the “higher analogue” of the
canonical symplectic structure naturally defined on any cotangent bundle.
Note, however, that this is not yet the “higher analogue” of a phase space,
see [11] for further details or [23] for a more recent review.

Exactly as it happens in symplectic geometry, fixing a (pre-)n-plectic
structure ω on M provides a criterion for identifying special classes of vector
fields and differential forms. We will make use of the following nomenclature:

Definition 1.5. A vector field X ∈ X(M) is called multisymplectic if it
preserves the pre-multisymplectic form ω, i.e. LXω = dιXω = 0. If ιXω is
also exact, the vector field is called Hamiltonian. Accordingly, we define the
subspace of Hamiltonian forms as follows

Ωn−1
Ham(M,ω) = {α | ∃ vα ∈ X(M) : dα = −ιvα

ω} ⊂ Ωn−1(M).

When ω is non-degenerate, the Hamiltonian vector field vα associated to a
fixed Hamiltonian form α is unique.

Generalizing the construction of a Lie bracket on the observables (i.e.
smooth functions, i.e. differential forms of degree zero) on a symplectic ma-
nifold, we can construct a family of (multi)-brackets on Hamiltonian forms
simply contracting ω with their corresponding Hamiltonian vector fields.
These brackets satisfy the Jacobi identity (and its higher analogues) up to
total divergences, hence giving rise to a Lie algebra structure up to homo-
topy, i.e. an L∞-algebra.

Definition 1.6 ([20], cf. also [2]). The L∞-algebra of observables
L∞(M,ω) of the (pre)-n-plectic manifold (M,ω) consists of a chain com-
plex L•

0 Ln−1 · · · Lk−2 · · · L1 L0 0

Ω0 · · · Ωn+1−k · · · Ωn−2 Ωn−1
Ham

:= := := :=

d d d d d

,

which is a truncation of the de-Rham complex with inverted grading, en-
dowed with n (skew-symmetric) multibrackets (2 ≤ k ≤ n+ 1)

(2)
[·, . . . , ·]k : Λk

(

Ωn−1
Ham

)

Ωn+1−k

σ1 ∧ · · · ∧ σk ς(k)ιvσk
· · · ιvσ1

ω
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where vσk
is any Hamiltonian vector field associated to σk ∈ Ωn−1

Ham and

ς(k) := −(−1)
k(k+1)

2 is the Koszul sign.

Lemma 1.7 (Theorem 5.2 in [20]). The L∞-algebra of observables
L∞(M,ω) is an L∞-algebra.

Proof. We refer to [20] for the original construction and the proof and to [21]
for a more elementary exposition including an introduction to L∞-algebras.

□

When one fixes a form ω on a manifold M it is natural to highlight the
group actions preserving this extra structure, also known as “symmetries”.

Definition 1.8. A right action ϑ of a Lie group G on M is called multisym-
plectic if it preserves the multisymplectic form, i.e. ϑ∗

gω = ω for all g ∈ G,
where ϑg = ϑ(·, g).

We call (infinitesimal) multisymplectic Lie algebra action of g on M a
Lie algebra homomorphism g → X(M), x 7→ vx such that Lvx

ω = 0 for all
x ∈ g.

Remark 1.9. In what follows, all the group actions considered are on the
right. However, we decide to denote the action map as ϑ : G×M → M , in
place of the more natural choice ϑ : G×M → M , in order to agree with the
sign conventions usually found in the literature.

Remark 1.10. For a connected Lie group G, a right action ϑ is multi-
symplectic if and only if the corresponding infinitesimal right action v : g →
X(M) given by

vξ(m) =
d

dt

∣

∣

∣

∣

0

ϑ(m, exp(tξ)) ∀m ∈ M, ξ ∈ g

is multisymplectic. Note that, when considering left actions, the correspond-
ing infinitesimal action is a Lie algebra anti-homomorphism.

Let us now focus on the non degenerate, i.e. multisymplectic, case. In
this context it is possible to define a higher analogue of the comoment map
well-known in symplectic geometry:

Definition 1.11 ([9]). Let v : g → X(M) be a multisymplectic Lie algebra
action. A homotopy comoment map (or comoment for short) pertaing to v
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is an L∞-morphism (f) = {fi}i=1,...,n from g to L∞(M,ω) satisfying

df1(ξ) = −ιvξ
ω ∀ξ ∈ g.

A comoment for a Lie group action ϕ : M ×G → M is defined as a como-
ment of its corresponding infinitesimal action.

More conceptually, a comoment is an L∞-morphism (f) : g → L∞(M,ω)
lifting the action v : g → X(M), i.e. making the following diagram commute
in the L∞-algebras category:

L∞(M,ω)

g X(M)

π(f)

v

where π is the trivial L∞-extension1 of the function mapping any Hamilto-
nian form to the unique corresponding Hamiltonian vector field.

In the following we will make use of an explicit version of this definition
which is expressed by the following lemma:

Lemma 1.12 ([9]). A comoment (f) for the infinitesimal multisymplectic
action of g on M is given explicitly by a sequence of linear maps

(f) =
{

fi : Λig → Ωn−i(M) | 0 ≤ i ≤ n+ 1
}

fulfilling a set of equations:

(3) − fk−1(∂p) = dfk(p) + ς(k)ι(vp)ω

together with the condition

f0 = fn+1 = 0

for all p ∈ Λkg and k = 1, . . . , n+ 1. Here ∂ is the Chevalley-Eilenberg bound-
ary operator defined in equation (1).

1Note that any Lie algebra can be seen as an L∞-algebra concentrated in degree
0, therefore any L∞-morphism L → g is simply given by a linear map L0 → g

preserving the binary brackets.
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Definition 1.13. A comoment (f) is called G-equivariant, if

Lvξ
fk(b) = fk([ξ,b]) ∀ξ ∈ g ,b ∈ Λkg,

where [ξ,b] is the adjoint action of g on Λkg which, on decomposable ele-
ments, is given by the formula

(4) [ξ, x1 ∧ · · · ∧ xk] =

k
∑

l=0

(−1)k−l[v, xl] ∧ xk ∧ · · · ∧ x̂l ∧ · · · ∧ x1.

1.1. Cohomological obstructions to comoment maps

Consider an infinitesimal action of g on the pre-n-plectic manifold (M,ω)
preserving the form ω. As shown in [10, 22] a comoment for this action can
be interpreted as a primitive of a certain cocycle in a cochain complex.

Definition 1.14. The bi-complex naturally associated to the action of g
on M is defined by

(C•,•
g

= Λ≥1g∗ ⊗ Ω•(M), δCE, d),

where d denotes the de Rham differential and δCE : Λkg∗ → Λk+1g∗ the Lie
algebra cohomology differential, defined on generators by

δCE(f)(ξ1, . . . , ξk) =
∑

i<j

(−1)i+jf([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk).

The corresponding total complex is given by

(C•
g
, dtot = δCE ⊗ id + id⊗ d),

where, according to the Koszul sign convention, dtot acts on an element of
Λkg∗ ⊗ Ω•(M) as δCE + (−1)kd.

Theorem 1.15 (Proposition 2.5 in [10], Lemma 3.3 in [22]). Let
(M,ω) be a pre-n-plectic manifold and v : g → X(M) be an infinitesimal
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multisymplectic action. The primitives of the natural cocycle

(5) ω̃ =

n+1
∑

k=1

(−1)k−1ιk
g
ω ∈ Cn+1

g
,

where

ιk
g
: Ω•(M) → Λkg∗ ⊗ Ω•−k(M)

ω 7→ ωk =
(

p 7→ ιvp
ω
)

,

are in one-to-one correspondence with comoments of v. In particular, a co-
moment exists if and only if [ω̃] = 0 ∈ Hn+1(C•

g
, dtot).

Proof. Being linear maps, the components fk can be regarded as elements
of a vector space

fk ∈ Λkg∗ ⊗ Ωn−k(M) ∼= HomVect(Λ
kg,Ωn−k(M))

satisfying equation (3) or, equivalently, as vectors f̃k = ς(k)fk satisfying

(6) f̃k−1(∂p) + (−1)kdf̃k(p) = (−1)k−1ι(vp)ω.

The last equation is obtained multiplying Equation (3) by the sign factor
ς(k − 1) and noting that ς(k − 1)ς(k) = (−1)k.

Upon considering the direct sum of these vectors

f̃ =

(

n
∑

k=1

f̃k

)

∈

n
⊕

k=1

(

Λkg∗ ⊗ Ωn−k(M)
)

equation (6) can be recast as:

(7) [δCE ⊗ id + id⊗ d] f̃ =

n+1
∑

k=1

(−1)k−1ιk
g
ω

where ιk
g
is the operator defined above. Note that we are implicitly using the

Koszul convention, therefore the action of id⊗ d on a homogeneous element
fk ∈ Λkg∗ ⊗ Ω•(M) yields (−1)k(id⊗ d)fk.
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If we set

ω̃ =

n+1
∑

k=1

(−1)k−1ιk
g
ω ∈ Cn+1

g
,

equation (7) corresponds to

(8) dtotf̃ = ω̃

which is exactly the condition of f̃ being a primitive of ω̃.
It follows from Lemma A.1 that dtotω̃ = 0 for all actions preserving ω,

therefore the vanishing of the cohomology class [ω̃] ∈ Hn+1(C•
g
) is a nec-

essary and sufficient condition for the existence of a comoment for the in-
finitesimal action of g on M . □

Remark 1.16. By the Künneth theorem, the cohomology H•(C•
g
) is iso-

morphic to H≥1(g)⊗H•(M), we will give a geometric interpretation to this
fact in the next section.

Remark 1.17. It is customary in part of the literature (see for example
[9], [18], [17]) to consider, as a cohomological obstruction to the existence
of a comoment for v : g → X(M,ω), the following cocycle in the Chevalley-
Eilenberg complex of g

cgp = (ιn+1
g

ω)
∣

∣

p
: Λn+1g R

x1 ∧ · · · ∧ xn+1 (ι(v1 ∧ · · · ∧ vn+1)ω)
∣

∣

p

where p ∈ M is a fixed point in M , Lemma A.1 guarantees that δCEc
g

p = 0.
Note that, when M is connected, the cohomology class [cgp] ∈ Hn+1(g) is
independent of the point p.

The vanishing of [ω̃] implies in particular that (ιn+1
g

ω) ∈ Cn+1
g

must
be a boundary, hence the vanishing of [cgp] is a necessary condition for the
existence of a comoment.

Moreover, it follows from Remark 1.16 that when H i
dR(M) = 0 for 1 ≤

i ≤ n− 1 the vanishing of [cgp] is also a sufficient condition for the existence
of a comoment.

1.2. A geometric interpretation of the obstruction class

In symplectic geometry the existence of a comoment implies that ω can be
extended to a cocycle in equivariant de Rham cohomology ([1]). Following



✐

✐

“6-Miti” — 2021/1/27 — 11:30 — page 1761 — #11
✐

✐

✐

✐

✐

✐

Multisymplectic actions of compact Lie groups on spheres 1761

[9], we illustrate this fact by giving a geometric interpretation to the obstruc-
tion class [ω̃] defined above and explain its analogue in the multisymplectic
setting.

When the Lie algebra action v comes from a Lie group action, we can
interpret the complex C•

g
and the cocycle ω̃ in terms of the de Rham coho-

mology of invariant forms.

Definition 1.18. Let ϑ : G×M → M be a Lie group action. We denote by
Ω•(M,ϑ) the subcomplex of ϑ-invariant differential forms. The cohomology
of this complex is called invariant de Rham cohomology and denoted by
H•(M,ϑ).

Remark 1.19. It is more common in the literature to denote these in-
variant spaces by Ω•(M)G and H•(M)G. We use the above notation to
emphasize the specific Lie group action involved.

Remark 1.20. The invariant cohomology is not the same as the equiv-
ariant cohomology, which we will define later. For example, whenever G is
compact, the natural map H•(M,ϑ) → H•(M) induced by the inclusion of
the subcomplex is an isomorphism, as in this case any form can be made
invariant by averaging. Pullbacks along equivariant maps lead to homomor-
phisms of the invariant cohomology groups. For details we refer to [12].

Lemma 1.21 (Lemma 6.3 in [9]). Let ϑ : G×M → M be a right Lie
group action. We denote by (r × id) : G×(G×M) → (G×M), (h, (g,m)) 7→
(gh,m) the right multiplication action on the second factor. The complex
Ω•(G×M, r × id) is naturally isomorphic to C•

g
⊕ (Λ0g∗ ⊗ Ω•(M)).

Proof. We have a natural map

(9) Λ•g∗ ⊗ Ω•(M) → Ω•(G, r)⊗ Ω•(M) → Ω•(G×M, r × id).

The first arrow comes from the isomorphism Λkg∗ → Ωk(G, r), which asso-
ciates to any element of Λkg∗ = ΛkT ∗

eG its right-invariant extension. The
second arrow comes from the exterior wedge product i.e. from the map

Ωq(G, r)⊗ Ωp(M) Ωq+p(G×M, r × id)

α⊗ β π∗
1α ∧ π∗

2β

where πi are the projections on the i-th factor of G×M . Regarding the com-
plexes involved as graded vector spaces, the previous map can be extended
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to a degree 0, bilinear map

(10)
Ω•(G, r)⊗ Ω•(M) Ω•(G×M, r × id)

α⊗ β (−1)|α|π∗
1α ∧ π∗

2β

where the extra signs comes from the Koszul convention we employed in
definition 1.14 when defining the differential in the total complex. The
map (9) admits an inverse which takes α ∈ Ω•(G×M, r × id) to α|{e}×M ∈
Γ(Λ•g∗ ⊗ T ∗M) = Λ•g∗ ⊗ Ω•(M).

The statement follows from the observation that C•
g
⊕ (Λ0g∗ ⊗ Ω•(M))

is the total complex of Λ•g∗ ⊗ Ω•(M) and that the second arrow defined
above is precisely the function inducing the Künneth isomorphism [6]. □

Proposition 1.22 (Proposition 6.4 in [9]). Assume that G preserves
a pre-multisymplectic form ω. Let v be the infinitesimal action induced by
G. Then the cocycle ω̃ ∈ Cn+1

g
= Ω•(G×M, r × id) with respect to the in-

finitesimal action v of g induced by ϑ, is given by ω̃ = ϑ∗ω − π∗ω, where
π : G×M → M is the projection onto the second factor.

Proof. Being an action, the map ϑ : G×M → M is equivariant (with re-
spect to r × id in the domain and ϑ in the target). Hence, the cochain-map
ϑ∗ : Ω•(M) → Ω•(G×M) restricts to a well-defined map on the invariant
subcomplexes ϑ∗ : Ω•(M,ϑ) → Ω•(G×M, r × id), and in particular we have
a well-defined map in cohomology.

Let X1, . . . , Xn+1−i ∈ TpM and ξ1, . . . , ξi ∈ TeG = g. For all 1 < i ≤ n+
1 we get

ϑ∗ω(ξ1, . . . , ξi, X1, . . . , Xn+1−i) = ω(ϑ∗ξ1, . . . , ϑ∗ξi, ϑ∗X1, . . . , ϑ∗Xn+1−i)

= ω(v(ξ1), . . . , v(ξi), X1, . . . , Xn+1−i)

= (ιi
g
ω)(ξ1, . . . , ξi)(X1, . . . , Xn+1−i)

and for i = 0 we get

ϑ∗ω(X1, . . . , Xn+1) = ω(X1, . . . , Xn+1).

This means ϑ∗ω = −ω̃ + 1⊗ ω, where the first summand is the image
of ω̃ under the map defined in equation (10) and the last summand comes
from the case i = 0. The observation that 1⊗ ω = π∗ω, for π : G×M → M
the natural projection, finishes the proof. One should note, that this is true
although π is not an equivariant map with respect to (r × id, ϑ). □
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Remark 1.23. We think that the above proposition is central to the un-
derstanding of multisymplectic comoments, as it enables an elementary and
unified treatment of many phenomena in multisymplectic geometry.

• For symplectic manifolds, this result gives a nice interpretation for the
result of [1] that moment maps are in correspondence to equivariant
extensions of ω and also explains why this correspondence fails in the
general multisymplectic setting (cf. Example 1.32).

• Let Gi act on the multisymplectic manifolds (Mi, ωi) for i ∈ {1, 2}. If
there exist comoments for G1 and G2, then there exists a comoment
for G1 ×G2 on the multisymplectic manifold (M1 ×M2, π

∗
1ω1 ∧ π∗

2ω2).
This theorem from [25] can be derived from Proposition 1.22.

• A comoment exists, whenever the multisymplectic form ω can be lifted
to a class in the equivariant cohomologyHn+1

G (M). (See Theorem 1.30).

Remark 1.24. Especially, Proposition 1.22 immediately implies that a ϑ-
invariant potential of ω induces a comoment, as an invariant potential α
of ω would be mapped to a potential (ϑ∗α− π∗α) ∈ Ω•(G×M, r × id) of
ω̃ = ϑ∗ω − π∗ω. Note that ω being exact is not a sufficient condition, because
a primitive ϑ∗α− π∗α need not to be an element in the invariant cochain
complex Ω•(G×M, r × id) in general.

When such an invariant potential exists, it is fairly easy to give an ex-
plicit expression for the components of a comoment, as illustrated by the
following Lemma:

Lemma 1.25 (Section 8.1 in [9]). Let M be a manifold with a G-action,
let α ∈ Ωn(M,G) be a G-invariant n-form and consider the pre-n-plectic
form ω = dα on M .

The action G⟲ (M,dα) admits a G-equivariant comoment map (f) :
g → L∞(M,ω), given by (k = 1, . . . , n):

fk : Λ
kg → Ωn−k(M)

q 7→ (−1)k−1ς(k)ι(vq)(α).

Proof. A direct proof of this statement can be given by showing that equa-
tion (3) is satisfied. Upon employing Lemma A.1, we have:
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dfm(p) = (−1)m−1ς(m)dιvp
α = −ς(m)(−1)mdι(v1 ∧ · · · ∧ vm)α

= −ς(m)

(

ιvp
dα+ ι∂vp

α+

m
∑

k=1

(−1)kι(x1 ∧ x̂k ∧ · · · ∧ xm)
✟
✟
✟Lxk
α

)

= −ς(m)ιvp
ω + (−1)m−1ς(m− 1)ι∂vp

α = −ς(m)ιvp
ω − fm−1(∂vp),

thus G-equivariance follows from Equation A.3. □

Corollary 1.26 (SO(n)-action on R
n, Example 8.4 in [9]). The canon-

ical action

SO(n)⟲
(

R
n, dx1···n

)

,

where x = (xi) are the standard coordinates on R
n and dx1···n = dx1 ∧ · · · ∧

dxn is the standard volume form of Rn, admits a comoment given by (k =
1, . . . , n):

fk : Λ
kg → Ωn−1−k(M)

q 7→ (−1)k−1 ς(k)

n
ι(E ∧ vq)

(

dx1...n
)

where E =
∑

i x
i∂i is the Euler vector field.

Proof. The proof follows from Lemma 1.25 noting that the standard volume
form admits the G = SO(n) invariant form

α =
ιE
(

dx1...n
)

n

as a primitive. □

We will be primarily interested in the case of compact Lie groups. In
this case, we do not have to care about the invariance of forms:

Corollary 1.27. Let ϑ : G×M → M be a compact Lie group acting on a
pre-multisymplectic manifold, preserving the pre-multisymplectic form ω. A
comoment exists if and only if [ϑ∗ω − π∗ω] = 0 ∈ Hn+1(G×M).

Proof. From Proposition 1.22 we get the following sequence of maps between
complexes together with the induced maps in cohomology:
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Ω•(M,ϑ) HdR(M) [ω]

Ω•(G×M, r × id) HdR(G×M) [ϑ∗ω − π∗ω]

Ω•(G, r)⊗ Ω•(M) HdR(G)⊗HdR(M)

Λ•g∗ ⊗ Ω•(M) HCE(g)⊗HdR(M)

C•
g
⊕ (R⊗ Ω•(M)) H(C•

g
)⊕HdR(M) [ω̃]

ϑ∗−π∗ ϑ∗−π∗

∼= ∼=(Künneth)

∼= ∼=

∼= ∼=

The statement follows by resorting to Remark 1.20, i.e. noting thatHdR(G)∼=
H(G, r) and HdR(G×M) ∼= H(G×M, r × id) via the averaging trick on
compact Lie groups. □

We will now investigate the connection between comoments and equivariant
cohomology.

Definition 1.28. Let a compact Lie group G act on a manifold M . Let
EG be a contractible space on which G acts freely by ϑEG. Then we define
the equivariant cohomology of M as H•

G(M) := H•((M × EG)/G), where
G acts on M × EG diagonally.

Remark 1.29. As EG might not be a manifold, we have to interpret H•(·)
as a suituable cohomology theory (e.g. singular cohomology with real coef-
ficients) in the above definition.

As G is compact, when ϑ : G×M→M is a free action, we haveH•
G(M)=

H•
dR(M/G). For a not necessarily free action ϑ, we still have the following

diagram

G× (M × EG) M × EG (M × EG)/G,
ϑ×ϑEG

π
q

where q is the projection to the orbits, which induces a sequence in co-
homology (where we use the contractibility of EG in the left and middle
term):

H•(G×M) H•(M) H•
G(M)

ϑ∗−π∗ q∗
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Then q ◦ ϑ = q ◦ π implies (ϑ∗ − π∗) ◦ q∗ = 0. Using Remark 1.20 and Propo-
sition 1.22 we get the following statement:

Theorem 1.30 ([9]). Let G×M → M be a compact Lie group preserv-
ing a pre-multisymplectic form ω. If [ω] ∈ H•(M) lies in the image of q∗ :
H•

G(M) → H•(M), then ϑ admits a comoment.

Remark 1.31. The advantage of our approach to the theorem is that it
is much simpler and more intrinsic: We do not need to choose a model for
equivariant de Rham cohomology. In Section 6 of [9] can be found similar
results framed in the Bott-Shulman-Stasheff and in the Cartan model. Fur-
thermore, in Section 7.5 of [9], is discussed a generalization of this statement
to non-compact groups.

Unfortunately, unlike the symplectic case (cf. [1]), the converse statement
does not hold in general. Even if a (pre-)multisymplectic action of G on
(M,ω) admits a comoment, [ω] does not need to come from an equivariant
cocycle. We will illustrate this fact by an example.

Example 1.32. Consider the action given by the Hopf fibration ϑ : S1 ×
S3 → S3. Let ω be the standard volume on S3. By Remark 1.16 the ob-
structions to a comoment lie in H1(u(1))⊗H2(S3), H2(u(1))⊗H1(S3) and
H3(u(1))⊗H0(S3), which are trivial. Hence, a comoment exists.

As the action is free (and the quotient is S2), we have H3
S1(S3) =

H3(S2) = 0. But [ω] ̸= 0 in H3(S3), so the class [ω] cannot come from an
equivariant cocycle.

Remark 1.33. We note that this example has a different character than
the ones provided in Section 7.5 of [9]. They exhibit cases, where individual
comoments do not come from equivariant cocycles, whereas in our case no
equivariant cocycle can be found for any of the possible comoments.

2. Non-transitive multisymplectic group actions on spheres

The goal of this section is to prove the existence of comoments for non-
transitive actions and construct an explicit comoment for the SO(n)-action
on Sn.

Lemma 2.1. Let ϑ : G× Sn → Sn be a compact Lie group acting multisym-
plectically on Sn equipped with the standard volume form ω ∈ Ωn(Sn). Let
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p ∈ Sn be any point. Then a comoment exists if and only if ϑ∗
p[ω] ∈ Hn(G)

is zero, where ϑp : G → Sn is the map g 7→ gp.

Proof. By Corollary 1.27, we only have to check that

[ϑ∗ω − π∗ω] = 0 ∈ Hn(G× Sn) ⇔ ϑ∗
p[ω] = 0 ∈ Hn(G) .

The direct implication follows by considering the map i : G → G× Sn,
g 7→ (g, p) and its induced linear map in cohomology i∗ : H•(G× Sn) →
H•(G) which acts on [ϑ∗ω − π∗ω] ∈ Hn(G× Sn) as

i∗[ϑ∗ω − π∗ω] = [(ϑ ◦ i)∗ω −✘✘✘✘✘(π ◦ i)∗ω ] = ϑ∗
p[ω],

because ϑ ◦ i = ϑp and π ◦ i is the constant map valued in p ∈ Sn.
For the converse implication, note at first that the cohomology of the

sphere implies

Hn(G× Sn) = (Hn(G)⊗H0(Sn))⊕ (H0(G)⊗Hn(Sn)).

Therefore, recalling Proposition 1.22, the obstruction [ϑ∗ω − π∗ω] lies en-
tirely in Hn(G)⊗H0(Sn) as [ω̃] has null component in H0(G)⊗Hn(Sn).
Since the restriction of i∗ to Hn(G)⊗H0(Sn) is an isomorphism (the 0-th
cohomology group of a connected manifold is isomorphic to R), one can
conclude that [ϑ∗ω − π∗ω] vanishes if and only if

i∗[ϑ∗ω − π∗ω] = ϑ∗
p[ω] = 0 ∈ Hn(G). □

Remark 2.2. Note that the direct implication in the proof of Lemma 2.1
does not depends from being the base manifold a sphere. In other words, a
necessary condition for the existence of a comoment is that the pullback of
ω with respect to any orbit map vanishes.

Remark 2.3. Observe that a result similar to Lemma 2.1 can be stated
for any compact multisymplectic action G⟲(M,ω), with ω in degree n+ 1,
such that the following cohomological condition holds

n
⊕

k=1

Hk(G)⊗Hn−k(M) = 0.

In particular, the same result is true for the action of any compact, connected
and semisimple Lie group G (i.e. such that H1(g) = H2(g) = 0) acting on a
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2-plectic manifold. See [9, Proposition 7.1] for an existence result for como-
ments related to this kind of actions in presence of a fixed point.

Proposition 2.4. Let G be a compact Lie group acting non-transitively on
Sn and preserving the standard volume form. Then G admits a comoment.

Proof. If G acts non-transitively then there exists an orbit O ⊂ Sn of di-
mension strictly less than n. Let p ∈ O. Then we have ϑ∗

p[ω] = ϑ∗
p[ω|O], but

ω|O ∈ Ωn(O) is zero due to dimension reasons. Hence, the action admits a
comoment, due to Lemma 2.1. □

Remark 2.5. It is worth to mention that for non-transitive, free and proper
actions it is possible to state the multisymplectic equivalent of the “sym-
plectic reduction” procedure, see Example 2.2 in [8].

2.1. Induced comoments and isotropy subgroups

In this subsection we will show that comoments behave well under restriction
to subgroups and invariant submanifolds. This will be useful for constructing
an SO(n)-comoment for Sn in the next subsection. Let G be a Lie group
with Lie algebra g, acting on a pre-n-plectic manifold (M,ω) with comoment
map (f) : g → L∞(M,ω). One can obtain new actions either restricting to
a Lie subgroup of G or restricting to an invariant submanifold of (M,ω).

Proposition 2.6 (Lemma 3.1 in [25]). Let H ⊂ G be a Lie subgroup, and
denote by j : h →֒ g the corresponding Lie algebra inclusion. The restricted
action of H on (M,ω) has comoment (f ◦ j) : h → L∞(M,ω), given by fi ◦
j : Λih → Ωn−i(M) for i = 1, . . . , n.

H M h

G M g L∞(M,ω)

⟲

j

⟲
(f)

Proposition 2.7 (Lemma 3.2 in [25]). Let N
i
→֒ M be a G-invariant

submanifold of M .
Then the action G⟲ (N, i∗ω) has comoment (i∗ ◦ f) : g → L∞ (N, i∗ω) ,

given by i∗ ◦ fi : Λ
ih → Ωn−i(N) for i = 1, . . . , n.
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G N L∞(N, i∗ω)

G M g L∞(M,ω)

⟲

i

⟲
(f)

i∗

Also, we can produce a new comoment by considering a different multi-
symplectic form obtained contracting ω with cycles in Lie algebra homology

(11) Zk(g) = {p ∈ Λkg | : ∂p = 0} .

Proposition 2.8 (Proposition 3.8 in [24]). Let p ∈ Zk(g), for some
k ≥ 1, denote by Gp the corresponding isotropy group for the adjoint action
of G on Λkg, and by gp = {x ∈ g : [x, p] = 0} its Lie algebra.

If G0
p is the connected component of the identity in Gp, then the ac-

tion G0
p⟲ (M, ι(vp)ω) admits a comoment (fp) : gp → L∞(M, ι(vp)ω) with

components (i = 1, . . . , n− k):

fp
i : Λ

igp → Ωn−k−i(M),

q 7→ −ς(k)fi+k(q ∧ p).

Remark 2.9. In the context of multisymplectic geometry and “weak co-
moments” (cf. [14]) and “multimoments” (cf. [16]), the subspace Zk(g) is
often referred to as “the Lie kernel”.

Proposition 2.10 (Remark 3.9 in [24]). If the comoment (f) : g →
L∞(M,ω) is also G-equivariant, then the map (fp) defined in Proposi-
tion 2.8 is G0

p-equivariant.
Another equivariant comoment for the action of G0

p on (M, ι(vp)ω) is
given by (i = 1, . . . , n− k):

fp
i : Λigp → Ωn−k−i(M),

q 7→ (−1)kι(vq)(fk(p)).

which, in general, may differ from the one given in Proposition 2.8.

Provided certain conditions are met, it is possible to induce a comoment
on an invariant submanifold of M even if the obvious pullback vanishes
(e.g. when ω is a top dimensional form). In what follows we will make use of
the following corollary subsuming the contents of the previous propositions:
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Corollary 2.11. Let G⟲(M,ω) be a multisymplectic group action. If there
exists:

• another multisymplectic manifold (N, η) containing M as a G-invariant
embedding j : M →֒ N ;

• a Lie group H ⊃ G containing G as a Lie subgroup;
• a multisymplectic action H ⟲(N, η) with equivariant comoment s : h →
L∞(N, η);

• an element p ∈ Zk(h) in the Lie kernel of h such that G ⊂ Hp and
ω = j∗ιpη;

then the action G⟲(M,ω) admits an equivariant comoment, given by (i =
1, . . . , n− k):

fi : Λ
ig → Ωn−k−i(M),

q 7→ (−1)kj∗ι(vq)(sk(p)).

Proof. Starting from the given comoment (s) it is possible to construct
another comoment (sp) resorting to Proposition 2.10. The sought como-
ment descends from (sp) via the consecutive application of Propositions 2.6
and 2.7

H (N, η) h L∞(N, η)

Hp (N, ιvp
η) hp L∞(N, ιvp

η)

G (N, ιvp
η) h L∞(N, ιvp

η)

G (M,ω = j∗ιvp
η) g L∞(M,ω)

⟲
(s)

⟲
(sp)

Prop.2.10

⟲
Prop.2.6

j∗

⟲
Prop.2.7

together with the observation that if the starting comoment (s) is equivariant
then the induced maps are such. □

2.2. The action of SO(n) on Sn

The goal of this section is to give an explicit construction for the comoment
of the action SO(n)⟲Sn by resorting to Corollary 2.11.

In what follows, we will consider the standard SO(n+ 1)-invariant em-
bedding j : Sn → R

n+1 of Sn as the sphere with unit radius and consider
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the linear action of the group SO(n) on R
n+1 as the subgroup of special

orthogonal linear transformations fixing the axis x0.
In R

n+1 we consider the standard coordinates x = (x0, . . . , xn) and the
corresponding volume form dx0...n = dx0 ∧ · · · ∧ dxn. Furthermore, we will
make use of the following notation

r =
√

(x1)2 + · · ·+ (xn)2 R =
√

(x0)2 + r2.

Recall that the volume form on the unit sphere embedded in R
n+1 is

given by

ω = j∗ιE dx0...n

where E is the Euler vector field. E can be seen as the fundamental vector
field of the action

ϑ : R× R
n+1 → R

n+1

(λ, x) 7→ eλx

of R on the Euclidean space via dilations, that is the linear action generated
by the identity matrix ✶n+1 ∈ gl(n,Rn+1), i.e. E = v✶n+1

=
∑

i x
i ∂i.

Let us call H = SO(n)× R the subgroup of GL(n,Rn+1) generated by

h =

{[

1 0
0 a

]

| a ∈ so(n)

}

⊕ ⟨✶n+1⟩ ≃ so(n)⊕ R .

The group H acts linearly on R
n+1 through the standard infinitesimal action

v : h X(Rn+1)

A
∑

i,j

[A]ij xj∂i

where [A]ij denotes the ij entry of the matrix A.

Lemma 2.12. The differential form

η = Θ dx0...n ∈ Ωn+1(Rn+1 \ {0}) with Θ =
1

Rn+1

is multisymplectic on N = (Rn+1 \ {0}), invariant under the action H ⟲N
and restricts to the standard volume form on the unit sphere.



✐

✐

“6-Miti” — 2021/1/27 — 11:30 — page 1772 — #22
✐

✐

✐

✐

✐

✐

1772 A. M. Miti and L. Ryvkin

Proof. Multisymplecticity follows from the closure and non degeneracy of
dx0...n together with the property that Θ never vanishes.

The form is clearly SO(n)-invariant because Θ depends only on R. The
H-invariance follows from the invariance along the Euler vector field:

LE(Θ dx0...n) = (LE Θ+(n+ 1)Θ)dx0...n

and

LE Θ =
∑

i

xi
∂

∂xi
R−(n+1) = −

n+ 1

2

∑

i

2(xi)2R−(n+1)−1 = −(n+ 1)Θ

Finally, η restricts to the volume form on Sn because j∗Θ = 1. □

The function Θ ∈ C∞(Rn+1 \ {0}) is precisely the scaling factor that
makes the Euclidean volume invariant with respect to the extended group
SO(n+ 1)× R. The problem to find explicitly a comoment:

s : h → L∞
(

R
n+1 \ {0}, η = Θ dx0...n

)

can be solved by exhibiting an H-invariant primitive of the rescaled volume
η and then resorting to Lemma 1.25.

Lemma 2.13. The differential (n+1)-form η admits an H-invariant po-
tential n-form:

β = (φ̂ x0) dx1 ∧ · · · ∧ dxn

where φ̂ ∈ C∞(Rn+1 \ 0) depends only on the cylindrical coordinates (x0, r)
and it is given by
(12)

φ̂(x0, r) =



















1

((x0)2+r2)
n+1
2

(

x0(n+ 1)− r arctan

(

x0

r

))

r ̸= 0

(n+ 1) 1
|x0|n r = 0, x0 > 0

−(n+ 1) 1
|x0|n r = 0, x0 < 0

Proof. Let us start from the following ansatz

β = ι(x0∂0)φ(x
0, r)η

for a potential n-form of the scaled volume η as defined in Lemma 2.12.
At this point, φ is an arbitrary smooth function depending only on the
cylindrical parameters (x0, r).



✐

✐

“6-Miti” — 2021/1/27 — 11:30 — page 1773 — #23
✐

✐

✐

✐

✐

✐

Multisymplectic actions of compact Lie groups on spheres 1773

Being x0∂0 the fundamental vector field of

ζ =

[

1 0
0 0n

]

∈ gl(n+ 1,R),

one gets

Lvξ
β =

(

ι(
✟
✟✟v[ξ,ζ] ) + ι(vζ)Lvξ

)

φη = 0 ∀ξ ∈ so(n),

because the (n+ 1)-form φη depends only on (x0, r), i.e. β is SO(n) invari-
ant. On the other hand, one has:

LEβ =
(

✟
✟✟ι[✶,ζ] + ιx0∂0

LE

)

φ Θ dx0...n =

= ιx0∂0

[

(LEφ) Θ dx0...n + φ✭✭✭✭✭✭

LE Θ dx0...n
]

and

dβ =

(

∂φ

∂x0
Θ x0 + φx0

∂Θ

∂x0
+ φΘ

)

dx0...n

=

(

∂0φx0 − (n+ 1)
(x0)2

(r2 + (x0)2)
+ φ

)

Θ dx0...n .

Therefore, in order for β to be G−invariant primitive of ω, the following
conditions on φ have to be met:







LEφ = r ∂r φ+ x0 ∂0 φ = 0

x0 ∂0φ− (n+ 1)
(x0)2

(r2 + (x0)2)
+ φ = 1

The general solution of this system reads:

φ(x0, r) = −
r

x0
arctan

(

x0

r

)

(n+ 1) + n+ 2

which is a smooth function defined on
{

x ∈ R
n+1 |x0 ̸= 0, r ̸= 0

}

. Recalling
that

lim
y→0

arctan(y)

y
= 1 lim

y→∞

arctan(y)

y
= 0 ,

one can see that the limits to all the critical points of φ, except (x0, r) =
(0, 0), are finite. Hence, considering the unique smooth extension φ̂ ∈
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C∞(Rn+1 \ {0}) of φ, given explicitly by equation (12), we conclude that

β = (x0 φ̂) dx1 ∧ · · · ∧ dxn

is the sought H-invariant primitive. □

Proposition 2.14. A comoment for the action SO(n)⟲ (Sn, ω), for n ≥ 2,
is given by

fi : Λ
iso(n) → Ωn−1−i(Sn),

q 7→ −j∗ι(vq)(ιEβ).

where β is the primitive given in Lemma 2.13.

Proof. The statement follows directly from Corollary 2.11 upon considering

(N, η) = (Rn+1,Θ dx0...n) (M,ω) = (Sn, j∗ιEdx
0...n)

p = ✶(n+1) ∈ Z1(h) H = SO(n)× R = HE ⊃ SO(n)

and noting that an explicit comoment for the H-action is given by Lemma
1.25 via employment of the primitive constructed in Lemma 2.13. □

Remark 2.15. Proposition 2.14 extends to spheres of arbitrary dimension
a similar result given in [9, Paragraph 8.3.2] up to dimension 5.

3. Transitive multisymplectic group actions on spheres

The goal of this section is to prove the following theorem:

Theorem 3.1. Let G be a compact Lie group acting multisymplectically,
transitively and effectively on Sn equipped with the standard volume form,
then the action admits a comoment if and only if n is even.

Proof. The effective transitive compact connected group actions on spheres
have been classified [4, 5, 19], for an overview of the results cf. [3]. Essentially,
one has the following list, where G/H = Sn means that G acts transitively
on Sn with isotropy H.

• SO(n)/SO(n− 1) = Sn−1

• SU(n)/SU(n− 1) = U(n)/U(n− 1) = S2n−1
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• Sp(n)Sp(1)/Sp(n− 1)Sp(1) = Sp(n)U(1)/Sp(n− 1)U(1) =
Sp(n)/Sp(n− 1) = S4n−1

• G2/SU(3) = S6

• Spin(7)/G2 = S7

• Spin(9)/Spin(7) = S15.

From Propostion 2.6 we know that if G admits a comoment and G̃ ⊂ G is
a subgroup, then G̃ admits a comoment. Thus it will suffice to prove the
following statements:

1) The action of SU(n) on S2n−1 does not admit a comoment. As SU(n)⊂
U(n) ⊂ SO(2n), from this we will automatically get the statements,
that U(n) and SO(2n) do not admit a comoment when acting on
S2n−1. Moreover, as SU(4) ⊂ Spin(7), this implies that Spin(7) does
not admit a comoment, when acting on S7.

2) The action of Sp(n) on S4n−1 does not admit a comoment. Hence,
neither Sp(n)U(1) nor Sp(n)Sp(1) do.

3) Spin(9) does not admit a comoment, when acting on S15.

4) SO(2n+ 1) has a comoment when acting on S2n. As G2 ⊂ SO(7), this
implies that G2 admits a comoment when acting on S6.

Hence, we can prove the theorem by using Lemma 2.1, after proving the
following Proposition 3.2 and Proposition 3.3. □

Proposition 3.2. Let ωn be the volume of Sn and N the north pole.

• Let ϑN : SU(n) → S2n−1. Then ϑ∗
N [ω2n−1] ̸= 0.

• Let ϑN : Sp(n) → S4n−1. Then ϑ∗
N [ω4n−1] ̸= 0.

• Let ϑN : Spin(9) → S15. Then ϑ∗
N [ω15] ̸= 0.

Proof. For the first two cases we refer to the calculations in the proof of [13,
Corollary 4D.3], where it is shown that the generator of the sphere is turned
into a generator of SU(n) (resp. Sp(n)) via pullback (in our case via ϑN ).
For the third case we can proceed analogously: The fiber bundle Spin(7) →
Spin(9) → S15 has a 14-connected base, so the pair (Spin(9), Spin(7)) is
14-connected and the maps H i(Spin(9)) → H i(Spin(7)) are isomorphisms
for i ≤ 13. As H•(Spin(7)) is generated by (wedges of) elements in these
degrees, this implies that the Leray-Hirsch-theorem [13, Theorem 4D.1] can
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be applied. This means that ϑ∗
N [ω15] is a generator and thus nonzero in

H15(Spin(9)). □

In the case of SO(2n+ 1) the Leray-Hirsch theorem can not be applied,
as SO(2n) has a class in degree 2n− 1 which does not come from any class
in SO(2n+ 1), (cf. e.g. [13, Theorem 3D.4] or Appendix A.2). In fact we
have the following:

Proposition 3.3. Let ω2n be the volume of S2n and N the north pole. Let
ϑN : SO(2n+ 1) → S2n. Then ϑ∗

N [ω2n] = 0.

Proof. Let i : SO(2n) → SO(2n+ 1) be the inclusion. The cohomologies of
SO(2n+ 1) and SO(2n) are isomorphic up to degree 2n and

i∗ : H2n(SO(2n+ 1)) → H2n(SO(2n))

is an isomorphism. The class [i∗ϑ∗
Nω2n] is the obstruction against a como-

ment for the SO(2n)-action on S2n. We know from Proposition 2.1, that
this action admits a comoment, i.e. [i∗ϑ∗

Nω2n] = 0 ∈ H2n(SO(2n)). But as
i∗ is an isomorphism, this implies that [ϑ∗

Nω2n] = 0 ∈ H2n(SO(2n+ 1)). □

3.1. Explicit comoments for SO(n + 1) on Sn

Giving an explicit expression for a comoment of SO(n+ 1)⟲Sn requires to
find iteratively, for k ∈ (1, . . . , n− 1) and for all p ∈ Λkso(n), a primitive,
denoted as fk(p), of the closed differential (n− k)-form

(13) µk(p) = −fk−1(∂p)− ς(k)ι(vp)ω

with f0 = 0 and satisfying the following constraint

(14) fn(∂p) = −ς(k + 1)ιvp
ω .

As H0(Sn) and Hn(Sn) are the only non trivial cohomology groups, it
is always possible to find primitives of µk(p). The only thing that could fail,
and actually fails when n is odd, is the fulfilment of condition (14). In the
latter case, it is however possible to consider an extension of g to a suitable
Lie-n algebra and consider Lie-n homotopy comoment map instead of our
notion of comoments (See [9] or [17] for the explicit case of n = 4).

Instead of dealing with the analytical problem of finding explicit poten-
tials for the form µk(p), let us translate the problem in a more algebraic
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fashion focusing on the particular structure of the Chevalley-Eilenberg com-
plex of so(n).

In general, it is fairly easy to express the action of a comoment on bound-
aries:

Lemma 3.4 (Comoments on boundaries). Let v : g → (M,ω) be a mul-
tisymplectic infinitesimal action.

Let F k : Bk(g) → Λk+1g such that ∂ ◦ F k = idBk ,i.e. F k gives a choice
of representative of a primitive for every k-boundary of g.

Then, the function fk : Bk(g) → Ωn−k(M) defined as

fk(p) = −ς(k + 1)ι(vF k(p))ω

satisfies equation (3) defining the k-th component for a comoment of the
infinitesimal action, for every boundary p.

Proof. It is a straightforward application of Lemma A.1 together with the
multisymplecticity of the infinitesimal action:

dfk(p) = −ς(k + 1)dι(vF k(p))ω = −(−1)k+1ς(k + 1)ι(v∂F k(p))ω =

=
✘✘✘✘✘✘

−fk−1(∂p) − ς(k)ιvp
ω.

□

Remark 3.5. Note that the costraint given by equation (14) is precisely
the requirement that action on boundaries of the highest component fn of
the comoment (f) is independent from the choice of Fn.

In other words, finding the action of the component fk of comoment (f) on
boundaries is tantamount to finding a function F k : Bk(g) → Λk+1g map-
ping a boundary p to a specific primitive q.

Note that this is nothing more than replacing the problem of finding a
potential of an exact differential form to the one of finding a primitive of a
boundary in the CE-complex.

It follows from the previous lemma that the k-th component of the como-
ment is completely determined by its action on boundaries when Hk(g) = 0:

Corollary 3.6. Consider a Lie algebra with Hk(g) = 0 and fix a choice
of representatives F k and F k−1 as before. Then, the function fk : Λkg →
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Ωn−k(M) defined as

fk(q) = ς(k + 1)ι(vF k(F k−1(∂q)−q))ω

satisfies equation (3) for every chain q ∈ Λkg.

Proof. Consider a function fk−1 defined through F k−1 according to the pre-
vious lemma. For every cycle q ∈ Λkg we get

−fk−1(∂q)− ς(k)ιvq
ω = ς(k)[ι(vF k−1(∂q))− ι(vq)]ω = ς(k)ι(vr)ω

where r = (F k−1(∂q)− q) is closed, hence exact. Again from Lemma A.1
follows that the right hand side it is equal to

ς(k)ι(v∂F k(r)ω) = ς(k)(−1)k+1dι(vF k(r))ω = dfk(q). □

An explicit construction of a comoment is generally more delicate in
presence of cycles that are not boundaries. Nevertheless, we know from the-
orem A.7 that the first two homology group of so(n) are trivial, therefore it is
easy to give the first two components of the comoment. From the linearity of
fk, it is clear that we only need to give its action on the standard basis of the
finite-dimensional vector space so(n) defined in appendix, equation (A.4).

f1 for any SO(n). Since all 1-chains in the CE complex are automatically
cycles, H1(so(n)) = 0 implies that all elements of so(n) are boundaries.

Formula (A.5) suggests a natural choice for the function F 1 when acting
on elements of the standard basis:

F 1(Aab) = −

n
∑

k=1

1

n− 2
Aka ∧Akb

Therefore the first component of the comoment is given by

f1(Aab) = −ι(vF 1(Aab))ω =
1

n− 2

n
∑

k=1

ι(vAkb
)ι(vAka

)ω.

Example 3.7. In the three-dimensional case, denoting the three generators
of so(3) as lx, ly, lz (see appendix), one gets

F 1(li) = −
1

2

3
∑

j,k=1

ϵijklj ∧ lk,
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where ϵijk is the Levi-Civita symbol, and

f1(lz) = ι(vly∧lz)ω = j∗ι(E ∧ vly ∧ vlz)dx
123.

f2 for any SO(n). In this case there are two subsets of generators of
Λ2so(n) to consider:

{

p = Aab ∧Acd
∂
7−→ 0 for a, b, c, d different

q = Aja ∧Ajb
∂
7−→ −Aab for j, a, b different

The first ones are boundaries and a primitive can be given as follows

F 2(Aab ∧Acd) =
n− 2

4

(

F 1(Aab) ∧Acd −Aab ∧ F 1(Acd)
)

In the second case, we need to find a primitive of

F 1(∂q)− q = −F 1(Aab)−Aja ∧Ajb

=
1

n− 2

n
∑

k=1

(Aka ∧Akb −Aja ∧Ajb)

=
1

n− 2

n
∑

k=1

∂(Aka ∧Ajb ∧Akj)

= ∂

(

1

n− 2

n
∑

k=1

(Aka ∧Ajb ∧Akj)

)

The last equality suggests the following choice

F 2(F 1(∂q)− q) =

(

1

n− 2

n
∑

k=1

(Aka ∧Ajb ∧Akj)

)

.

Finally, one gets

f2(Aab ∧Acd) =
n− 2

4

(

ι(vF 1(Aab)∧Acd
)− ι(vAab∧F 1(Acd))

)

ω

f2(Aja ∧Ajb) =
−1

n− 2

n
∑

k=1

(

ι(vAka∧Ajb∧Akj
)
)

ω.

3.2. Explicit comoment for G2 on (S6, φ)

We finish by providing a nice example of comoments for non-volume forms
on spheres.
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Recall that G2 is a subgroup of SO(7) acting transitively and multi-
symplectically on S6 with the standard volume. Therefore, according to
Theorem 3.1, the action G2⟲(S6, ω) admits a comoment.

This group can be explicitly defined as the subgroup of GL(7,R) pre-
serving the multisymplectic 3-form

(15) ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx356 − dx347,

where x = (xi) are the standard coordinates on R
7 and dxijk = dxi ∧ dxj ∧

dxk. (See [15] for further remarks on G2-homogeneous multisymplectic forms
and [7] for details on the G2-manifold S6).

Considering the multisymplectic structure j∗ϕ on S6, where j is the
inclusion of the sphere in R

7, instead of the standard volume, it is possible
to give an explicit comoment for the action of G2:

Lemma 3.8. The action G2 ⟳ (S6, j∗ϕ) admits an equivariant comoment
given by (k = 1, 2):

fk : Λ
kg2 → Ω2−k(M),

q 7→ (−1)k−1j∗ιvq
ιE

ϕ

3

Proof. It follows from Lemma 1.25, noting that (13 ιEϕ) is a G2 invariant
primitive of ϕ in R

3. □

Appendix A. Appendix

A.1. Useful formulas in Cartan calculus

We make use of the following formula:

Lemma A.1 (Multi-Cartan magic formula).

(−1)mdι(x1 ∧ · · · ∧ xm) = ι(x1 ∧ · · · ∧ xm)d

+ ι(∂ x1 ∧ · · · ∧ xm)

+

m
∑

k=1

(−1)kι(x1 ∧ · · · ∧ x̂k ∧ · · · ∧ xm)Lxk
.(A.1)

Proof. See lemma 3.4 in [16]. □
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Definition A.2. Given a differential form Ω ∈ Ω•(M) and a multi-vector
field Y ∈ Γ(ΛmTM), the Lie derivative of Ω along Y is defined as the graded
commutator

(A.2) LY Ω := dιY Ω− (−1)mιY dΩ.

Remark A.3. This definition allows to combine the first and last term in
the above formula into a Lie derivative. Hence the formula of Lemma A.1
can be also written as

Lv1∧···∧vm
Ω = (−1)m

[

ι(∂(v1 ∧ · · · ∧ vm))Ω

+

m
∑

1=1

(−1)iι(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm)Lvi
Ω

]

.

Lemma A.4.

(A.3) Lvι(x1 ∧ · · · ∧ xk) = ι([v, x1 ∧ · · · ∧ xk]) + ι(x1 ∧ · · · ∧ xk)Lv.

Proof. It is simply an iterated application of the Cartan’s commutation re-
lation:

Lxιy = ιyLx + ι[x,y].

together with expression (4). □

A.2. Some technical details about so(n)

Recall that so(n) is the Lie sub-algebra of gl(n,R) consisting of all skew-
symmetric square matrices. A basis can be constructed as follows:

(A.4) B :=
{

Aab = (−1)1+a+b (Eab − Eba) | 1 ≤ a < b ≤ n
}

where Eab is the matrix with all entries equal to zero and entry (a, b) equal
to one.

The fundamental vector field of Aab associated to the linear action of
SO(n) on R

n reads as follows:

vAab
=
∑

i,j

[Aab]ijx
j∂i = (−1)1+a+b

(

xa∂b − xb∂a

)
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Example A.5. In R
3 we have three matrices

lx = A1 2 =





0 1 0
−1 0 0
0 0 0



 ly = A1 3 =





0 0 −1
0 0 0
1 0 0





lz = A2 3 =





0 0 0
0 0 1
0 −1 0



 .

Using such a basis, the structure constants read as follows:

Lemma A.6.

[Aab, Acd] = (−1)(b+c+1)δbcAad + (−1)(a+d+1)δadAbc

+ (−1)(d+b+1)δdbAac + (−1)(a+c+1)δcaAdb

in particular:

(A.5) [Aka, Akb] = Aab

for all k ̸= a, b.

Theorem A.7. The cohomology groups of SO(n) can be described as fol-
lows:

H•(SO(n);R) ≃

{

〈

{a4 i−1|1 ≤ i ≤ k} ∪ a′2 k+1

〉

n = 2k + 2
〈

{a4 i−1|1 ≤ i ≤ k}
〉

n = 2k + 1

where ⟨· · · ⟩ denotes the exterior algebra generated by the elements in the set
and subscripts denote degrees, so ai ∈ H i and a′2k+1 ∈ H2k+1.

Proof. See section 3D in [13]. □
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