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We construct a product on the Floer complex associated to a pair
of Lagrangian cobordisms. More precisely, given three exact pair-
wise transverse Lagrangian cobordisms in the symplectization of a
contact manifold, we define a map m2 by a count of rigid pseudo-
holomorphic disks with boundary on the cobordisms and having
punctures asymptotic to intersection points and Reeb chords of the
negative Legendrian ends of the cobordisms. More generally, to a
(d+ 1)-tuple of exact transverse Lagrangian cobordisms we asso-
ciate a map md such that the family (md)d≥1 are maps satisfying
the A∞ equations. Finally, we extend the Ekholm-Seidel isomor-
phism to an A∞-morphism, giving in particular that it is a ring
isomorphism.
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1. Introduction

1.1. Background

A contact manifold (Y, ξ) is a smooth manifold Y equipped with a com-
pletely non-integrable plane field ξ called a contact structure. We consider ξ
cooriented, which means that there is a 1-form α such that ξ = ker(α) and
α ∧ dα ̸= 0. The form α is called a contact form for (Y, ξ). In particular, Y is
an odd dimensional manifold. The Reeb vector field Rα associated to (Y, α)
is the unique vector field on Y satisfying dα(Rα, ·) = 0 and α(Rα) = 1. In
this article, we consider a particular type of contact manifold which is the
contactization of a Liouville manifold.

A Liouville domain (P̂ , ω̂,X) is a compact symplectic manifold with
boundary equipped with a vector field X satisfying:

1) LX ω̂ = ω̂

2) X is outwards pointing along ∂P̂ .

where LX is the Lie derivative. Condition (1) can be rewritten dιX ω̂ = ω̂
because ω̂ is closed, and thus this implies that it is an exact form ω̂ = dβ,
with β = ιX ω̂. The 1-form β restricted to ∂P̂ is a contact form, and the
completion of (P̂ , ω̂) is the non compact exact symplectic manifold (P, ω =
dθ) defined by

P = P̂ ∪
∂P̂

(
[0,∞)× ∂P̂

)

and θ is equal to β on P̂ , and to eτβ|∂P̂ on [0,∞)× ∂P̂ , with τ the co-

ordinate on [0,∞). The Liouville vector field X on P̂ can be extended to
the whole (P, dθ). The manifold (P, θ) is called a Liouville manifold. The
well-known symplectic manifolds (R2n,

∑
i dxi ∧ dyi) and (T ∗M,−dλ), the

cotangent fiber bundle of a smooth manifold M equipped with the standard
Liouville form, are examples of Liouville manifolds.

The contactization of a Liouville manifold (P, dθ) is the contact manifold
(P × R, dz + θ) where z is the coordinate on the R-factor. For example, the
contactization of (T ∗M,−dλ) is the 1-jet space J1(M). From now, we fix
a (2n+ 1)-dimensional contact manifold (Y, α) which is the contactization
of a 2n-dimensional Liouville manifold (P, dθ). Remark that for this special
type of contact manifold, the Reeb vector field is ∂z, in particular there are
no closed Reeb orbits.

A Legendrian submanifold Λ ⊂ Y is a submanifold of dimension n such
that α|TΛ = 0, which means that for all x ∈ Λ, TxΛ ⊂ ξx. The Reeb chords
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of a Legendrian submanifold Λ are Reeb-flow trajectories that start and end
on Λ. Compact Legendrian submanifolds in the contactization of a Liouville
manifold generically have a finite number of Reeb chords. These chords
correspond to vertical lines which start and end on Λ. Let γ be a Reeb chord
of length ℓ which starts at a point x− ∈ Λ and ends at x+ ∈ Λ, and let us
denote φR

t the Reeb flow. If dx−φR
ℓ (Tx−Λ) and Tx+Λ intersect transversely,

we say that the Reeb chord γ is non-degenerate, and then Λ is called chord
generic if all its Reeb chords are non-degenerate. From now, we will only
consider compact chord generic Legendrian submanifolds, and we denote
by R(Λ) the set of Reeb chords of Λ. If Λ1,Λ2, . . . ,Λd are d Legendrian
submanifolds of Y , we can consider the union Λ = Λ1 ∪ · · · ∪ Λd. Reeb chords
of Λ from Λi to itself are called pure Reeb chords while those from Λi to Λj

with i ̸= j are called mixed Reeb chords. We denote by R(Λi,Λj) the set of
Reeb chords from Λi to Λj .

The Lagrangian projection of a Legendrian submanifold Λ ⊂ Y = P × R

is the image of Λ under the projection ΠP : P × R → P . Reeb chords of Λ
are then in bijection with intersection points of ΠP (Λ). In the particular
case where the contact manifold is the 1-jet space of a manifold M (i.e.
Y = J1(M) = T ∗M × R), the front projection of Λ is the image of Λ under
ΠF : J1(M) → M × R. In this case, Reeb chords are in bijection with vertical
segments in M × R beginning and ending respectively on points c−, c+ ∈
ΠF (Λ), and such that the tangent spaces Tc−ΠF (Λ) and Tc+ΠF (Λ) are equal.

One natural question when studying Legendrian submanifolds is to un-
derstand whether two Legendrian submanifolds Λ0,Λ1 ⊂ Y are Legendrian
isotopic or not (i.e. is there a smooth function F : [0, 1]× Λ → Y such that Λ
is a n-dimensional manifold and F (t,Λ) is a Legendrian submanifold of Y for
all t ∈ [0, 1], with F (0,Λ) = Λ0 and F (1,Λ) = Λ1?). A lot of work has been
achieved in order to answer this question of classification under Legendrian
isotopy of Legendrian submanifolds. There exists a lot of Legendrian isotopy
invariants, among which the first were the classical ones, namely the smooth
isotopy type, the Thurston-Bennequin invariant and the rotation class (see
for example [16, 24]). The development then of non-classical invariants gave
new directions in order to better understand the Legendrians. One of the
first non-classical invariants is a relative version of contact homology [22]
called the Legendrian contact homology. It was defined by Eliashberg in
[21] using pseudo-holomorphic curves techniques. Independently, it was de-
fined combinatorially by Chekanov for Legendrian links in (R3, dz − ydx) in
[8], and this combinatorial description was generalized in higher dimension
by Ekholm, Etnyre and Sullivan [15, 17]. These two definitions were then
shown to compute the same invariant, by Etnyre, Ng and Sabloff [25] in
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dimension 3, and by Dimitroglou-Rizell [12] in all dimension. This is a very
powerful Legendrian isotopy invariant which gave rise to numerous other
invariants, as for example the linearized and “multi-linearized” versions of
Legendrian contact homology, using augmentations of the differential graded
algebra introduced by Chekanov. Then there are higher algebraic structures
on linearized Legendrian contact cohomology that are Legendrian isotopy
invariants, as a product structure and an A∞-algebra structure (see [9]), and
more generally, there are A∞-categories Aug−(Λ) and Aug+(Λ), called the
augmentation categories of a Legendrian submanifold (see [3], [34], and Sub-
section 3.2 for Aug−(Λ)). In parallel to these invariants defined by pseudo-
holomorphic curves counts, other types of Legendrian isotopy invariants have
been defined, by generating functions techniques. We will not go through
these invariants in this article, nevertheless, even if the definition of this two
types (pseudo-holomorphic curves vs generating functions) of invariants are
constructed using completely different techniques, they are closely related.
Indeed, the existence of a (linear at infinity) generating family for a Leg-
endrian knot Λ in R3 implies the existence of an augmentation such that
the linearized contact homology of Λ is isomorphic to the generating family
homology of Λ (see [26]). In higher dimension, the relation is not so clear.
However, there are parallel results in the Legendrian contact homology side
and the generating family homology side, as for example a duality exact
sequence ([18] [36]), and also results relying the Legendrian invariants and
the topology of a Lagrangian filling of the Legendrian ([5] [28] [14] [12] [36]).
To continue along this path, we could imagine to define the algebraic struc-
tures appearing in this paper in the generating family setting, that is to
say a generating family Floer complex, and a generating family product on
Floer complexes, that could be related through the cobordism maps to the
product structure on generating family homology defined by Myer ([33]).

In this article, we will be interested in the relation of exact Lagrangian
cobordisms between Legendrian submanifolds, introduced by Chantraine in
[5]. These objects live in the symplectization of the contact manifold (Y, α),
which is the symplectic manifold (R× Y, d(etα)) where t is the coordinate
on R.

Definition 1. An exact Lagrangian cobordism from Λ− to Λ+, denoted
Λ− ≺Σ Λ+, is a properly embedded submanifold Σ ⊂ R× Y satisfying the
following:

1) there exists a constant T > 0 such that:
− Σ ∩ (−∞,−T )× Y = (−∞,−T )× Λ−,
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− Σ ∩ (T,∞)× Y = (T,∞)× Λ+,
− Σ ∩ [−T, T ]× Y is compact.

2) there exists a smooth function f : Σ → R such that:
a) etα|TΣ = df ,
b) f|(−∞,−T )×Λ− is constant,
c) f|(T,∞)×Λ+ is constant.

Remark 1. Condition (a) above says by definition that Σ is an exact La-
grangian submanifold of (R× Y, d(etα)). Moreover, using the fact that Σ is
a cylinder over Λ− in the negative end and a cylinder over Λ+ in the positive
end, condition (a) implies that f is constant on each connected component
of the negative and the positive ends of Σ. Conditions (b) and (c) imply
that f is in fact globally constant on each end (the constant on the positive
end is not necessarily the same as the constant on the negative end). Thus,
if Λ± are connected, conditions (b) and (c) are automatically satisfied.

We denote by Σ := [−T, T ]× Σ the compact part of the cobordism and
the boundary components ∂−Σ = {−T} × Λ− and ∂+Σ := {T} × Λ+. In the
case where Σ is diffeomorphic to a cylinder, we call it a Lagrangian concor-
dance from Λ− to Λ+ and denote it simply Λ− ≺ Λ+, and when Λ− = ∅, Σ
is called an exact Lagrangian filling of Λ+. A Legendrian isotopy between
two Legendrian submanifolds Λ1 and Λ2 induces Lagrangian concordances
Λ1 ≺ Λ2 and Λ2 ≺ Λ1 [5, 23], however, if such concordances exist it is not
known if it implies that Λ1 and Λ2 are Legendrian isotopic. In general,
as evoked above, some Legendrian isotopy invariants give obstructions to
the existence of Lagrangian cobordisms (see for example [5, 10, 14, 35, 36],
which is absolutely not an exhaustive list). In the same vein, Chantraine,
Dimitroglou-Rizell, Ghiggini and Golovko ([6]) have defined a Floer-type
complex associated to a pair of Lagrangian cobordisms, the Cthulhu com-
plex, in order to understand better the topology of a Lagrangian cobordism
between two given Legendrians. The goal of this article is to provide a richer
algebraic structure associated to Lagrangian cobordisms.

1.2. Results

Let (Y, α) be the contactization of a Liouville manifold (P 2n, dθ) and
consider four Legendrian submanifolds Λ−

1 ,Λ
+
1 ,Λ

−
2 ,Λ

+
2 ⊂ Y such that the

Chekanov-Eliashberg algebras (Legendrian contact homology algebras)
A(Λ−

1 ) and A(Λ−
2 ) admit augmentations ε−1 and ε−2 respectively. Through-

out the paper, the coefficient field is Z2, i.e. the algebras and vector spaces
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we consider are all over Z2. Assume there exist two exact transverse La-
grangian cobordisms Λ−

1 ≺Σ1
Λ+
1 and Λ−

2 ≺Σ2
Λ+
2 . The Cthulhu complex

(Cth(Σ1,Σ2), dε−1 ,ε−2
) associated to the pair (Σ1,Σ2) is generated by Reeb

chords from Λ+
2 to Λ+

1 , intersection points in Σ1 ∩ Σ2, and by Reeb chords
from Λ−

2 to Λ−
1 . Given ε+1 and ε+2 augmentations ofA(Λ+

1 ) andA(Λ+
2 ) respec-

tively induced by ε−1 and ε−2 (see Section 3.3), the differential of the Cthulhu
complex is a linear map defined by a count of rigid pseudo-holomorphic
curves with boundary on Σ1 and Σ2 (see Section 4.1). This complex admits
a quotient complex CF−∞(Σ1,Σ2), generated only by intersection points and
Reeb chords from Λ−

2 to Λ−
1 , called the Floer complex of the pair (Σ1,Σ2).

The main result of this article is the following:

Theorem 1. Let Σ1,Σ2 and Σ3 be three pairwise transverse exact La-
grangian cobordisms from Λ−

i to Λ+
i , for i = 1, 2, 3, where Λ±

i are Legendrian
submanifolds of P × R such that the Chekanov-Eliashberg algebras A(Λ−

i )
admit augmentations. Then,

1) for any choice of augmentation ε−i of A(Λ−
i ), for i = 1, 2, 3, there exists

a map:

m2 : CF−∞(Σ2,Σ3)⊗ CF−∞(Σ1,Σ2) → CF−∞(Σ1,Σ3)

which satisfies the Leibniz rule ∂−∞ ◦m2(−,−) +m2(∂−∞,−) +
m2(−, ∂−∞) = 0.

2) in the case where Λ−
1 = ∅, and Σ2 and Σ3 are small Hamiltonian per-

turbations of Σ1 such that the pairs (Σ1,Σ2), (Σ2,Σ3) and (Σ1,Σ3) are
directed (see Section 4.2), the product m2 is equal to the cup product
on H∗(Σ1,Λ

+
1 ) after appropriate identifications.

Now, the Cthulhu homology is invariant by a certain type of Hamiltonian
isotopy which permits to displace the Lagrangian cobordisms. This implies
the acyclicity of the complex. But the Cthulhu complex is in fact the cone
of a map

F1
21 : CF−∞(Σ1,Σ2) → C(Λ+

1 ,Λ
+
2 )

from the Floer complex to a complex generated by Reeb chords from Λ+
2 to

Λ+
1 (the bilinearized Legendrian contact cohomology complex of Λ+

1 ∪ Λ+
2

restricted to chords from Λ+
2 to Λ+

1 ). The acyclicity implies that this map
is a quasi-isomorphism. When Σ1 is a Lagrangian filling of Λ+

1 and ε+1 is
the augmentation induced by this filling, take Σ2 a small perturbation of
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Σ1 such that the pair (Σ1,Σ2) is directed, then the quasi-isomorphism F1

recovers Ekholm-Seidel isomorphism ([12, 14]). We will show that the map
induced by F1 in homology preserves the product structures, that is to say,
the product m2 on Floer complexes is mapped to the product µ2

ε+3,2,1
of the

augmentation category Aug−(Λ
+
1 ∪ Λ+

2 ∪ Λ+
3 ), where ε+3,2,1 is the diagonal

augmentation on the algebra A(Λ+
1 ∪ Λ+

2 ∪ Λ+
3 ) induced by ε+1 , ε

+
2 and ε+3

(see Section 3.2). More precisely, we have:

Theorem 2. Let Σ1,Σ2 and Σ3 be three transverse exact Lagrangian cobor-
disms from Λ−

i to Λ+
i , such that the Chekanov-Eliashberg algebras A(Λ−

i )
admit augmentations. Then, for any choice of augmentation ε−i of A(Λ−

i )
we have:

[
µ2
ε+3,2,1

(F1
32,F

1
21)] = [F1

31 ◦m2

]

In the same setting as part (2) of Theorem 1, Theorem 2 implies that
the Ekholm-Seidel isomorphism is a ring morphism:

Corollary 1. Let Σ be an exact Lagrangian filling of a Legendrian subman-
ifold Λ ⊂ Y , and denote εΣ the augmentation of A(Λ) induced by Σ. Then
the Ekholm-Seidel isomorphism

LCH∗
εΣ(Λ) ≃ H∗+1(Σ,Λ)

is an isomorphism of non-unital rings.

A related result appears in a paper of Ekholm and Lekili (see [20, Theo-
rem 53] and Remark 17). The product m2 is in fact part of an A∞-structure
defined in Section 7. There, we define maps {mk}1≤k≤d for any (d+ 1)-tuple
of pairwise transverse Lagrangian cobordisms such that the m1 map is the
differential ∂−∞. We refer the reader to Section 7 for the precise domains
and codomains of the maps mi. These maps are defined on tensor products
of Floer complexes between transverse Lagrangians, and so in particular we
do not have an A∞-algebra structure. Then we prove the following:

Theorem 3. The maps {mk}1≤k≤d satisfy the A∞ equations, i.e. for all
1 ≤ k ≤ d:

∑

1≤j≤k
0≤n≤k−j

mk−j+1(id
⊗k−j−n⊗mj ⊗ id⊗n) = 0
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A direct corollary of Theorem 3 is that the product m2 is associative in
homology. Similarly, the map F1 extends in a family of maps F = {Fk}0≤k≤d

defined for any (d+ 1)-tuple of pairwise transverse Lagrangian cobordisms
and we have:

Theorem 4. The maps F = {Fk}0≤k≤d satisfy the A∞-functor equations.

Of course we would like to be able to define the maps md and Fd for
families of not necessarily transverse cobordisms. We conjecture that given a
pair of Legendrian submanifolds Λ−,Λ+ ⊂ Y , there are unital A∞-categories
of cobordisms from Λ− to Λ+ denoted Fuk−(Λ

+,Λ−) and Fuk+(Λ
+,Λ−)

which can be defined by localisation (as used in [27] to define the wrapped
Fukaya category of a Liouville sector). Moreover, we would obtain cohomo-
logically full and faithful unital A∞-functors

F± : Fuk±(Λ
+,Λ−) → Aug±(Λ

+)

adding a unit to Aug−(Λ
+) to make it unital, as explained in [20, Remark

26]. The definition of these categories and functors will be done in a forth-
coming paper. Let us remark that the categories of fillings Fuk±(Λ

+, ∅)
could probably also be defined with another algebraic approach in the same
spirit as Ekholm-Lekili [20, Section 3], using coefficients in chains in the
based loop space of Λ+, but we will not develop this in this article. Also,
in [35, Theorem 1.6] it is proven that the functor Aug+(Λ

−) → Aug+(Λ
+)

induced by a cobordism on augmentation categories is cohomologically faith-
ful. The faithfulness of F+ would in particular recover this, but then to get
fullness it is needed to take into account intersection point generators.

The paper is organized as follows. In Section 2 we set up the definition
and notations of all types of moduli spaces that are involved in the defini-
tion of all maps in the rest of the paper. In Sections 3 and 4, we review the
definitions of Legendrian contact homology and Cthulhu homology. In Sec-
tion 5, we construct the product structure on the Floer complexes and prove
Theorem 1 and Theorem 2. We give a very basic example of computation of
the product in Section 6, and finally in Section 7 we define the A∞-structure
on Floer complexes and prove Theorem 3 and Theorem 4.
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2. Moduli spaces

In this section we describe the different types of moduli spaces of pseudo-
holomorphic curves which will be necessary to define the Legendrian contact
homology complex, the Cthulhu complex and the product structure. The
first three subsections contain useful material from [37] and [6], in order to
define the moduli spaces.

2.1. Deligne-Mumford space

Let us denote

Rd+1 = {(y0, . . . , yd) | yi ∈ S1, yi ∈ (yi−1, yi+1)}/Aut(D
2)

the space of (d+ 1)-tuples of points cyclically ordered on the boundary of the
disk D2, where y−1 := yd and yd+1 := y0, and denote by Sd+1 the universal
curve:

Sd+1 = {(z, y0, . . . , yd) / z ∈ D2, yi ∈ S1 and yi ∈ (yi−1, yi+1)}/Aut(D
2)

The projection π : Sd+1 → Rd+1 given by π(z, y0, . . . , yd) = (y0, . . . , yd) is
a fibration with fiber a disk. For all r ∈ Rd+1 we denote Ŝr = π−1(r) and
Sr = Ŝr\{y0, . . . , yd}.

Given r ∈ Rd+1, to each marked point yi of Ŝr, i ≥ 1, one can associate a
neighborhood Vi ⊂ Ŝr and a biholomorphism εi : (−∞, 0)× [0, 1] → Vi\{yi}.
For the puncture y0, we choose a neighborhood V0 and a biholomorphism
ε0 : (0,+∞)× [0, 1] → V0\{y0}. These biholomorphisms are called strip-like
ends. A universal choice of strip-like ends for Rd+1 corresponds to maps

εd+1
0 : Rd+1 × (0,+∞)× [0, 1] → Sd+1

and

εd+1
i : Rd+1 × (−∞, 0)× [0, 1] → Sd+1
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for 1 ≤ i ≤ d, such that for all r ∈ Rd+1, εd+1
i (r, ·, ·) is a choice of strip-like

ends for yi ∈ Ŝr.
The space Rd+1, for d ≥ 2, admits a compactification which can be de-

scribed in terms of trees. In fact, we have R
d+1

= ⊔TR
T which is a dis-

joint union over all stable planar rooted trees T with d leaves, and with
RT = ⊔R|vi| where the union is over all interior vertices (vertices which are
neither leaves nor the root) vi of T . Here, |vi| denotes the degree of the
vertex vi, and recall that a tree is called stable if each interior vertex has
degree at least 3. The space Rd+1 corresponds to RTd+1 where Td+1 is the
planar rooted tree with d leaves and one interior vertex. An interior edge of
a planar rooted tree T is an edge between two interior vertices. We denote
by Edint(T ) the set of interior edges of T . Given T and T ′ two stable planar
rooted trees with d leaves, if T ′ can be obtained from T by removing one or
several interior edges (i.e. contracting an edge until the two corresponding
vertices are identified), it gives rise to a gluing map:

γT,T
′

: RT × (−1, 0]Edint(T ) → RT ′

If e is an interior edge from the vertices v− to v+ to remove of T to obtain T ′,
this gluing map consists in gluing the two disks Srv−

and Srv+ along e with
a certain gluing parameter. Let us denote ε− and ε+ the strip-like ends of
rv− and rv+ for the marked points connected by e. Given a real le ∈ (0,∞),
the gluing operation is given by the connected sum

Srv−
\ε−((−∞, le)× [0, 1])

⋃
Srv+\ε+((le,∞)× [0, 1])/ ∼

where we identify ε−(le − s, t) ∼ ε+(s, t). The map γT,T
′

glues each interior
edge of T using the parameter ρe = −e−πle ∈ (−1, 0] instead of le. If ρ = 0,
the edge is not modified (see [37]).

Now suppose that S ∈ Sd+1 is obtained from Sr1 , Sr2 , . . . , Srk by gluing,
then S admits a thin-thick decomposition. The thin part Sthin corresponds to
strip-like ends of S and to strips of length le coming from the identification
of strip-like ends in the gluing of two disks Srvi

and Srvj
along an edge e.

The thick part is then S\Sthin. If r ∈ Rd+1 is in the image of γT,Td+1 , then
it admits two sets of strip-like ends: one coming from the universal choice
on Rd+1 and the other one coming from the universal choice on R|vi| for
all vertices vi of T and the gluing operation. A universal choice of strip-like

ends on Rd+1 is said consistent if there exists a neighborhood U ⊂ R
d+1

of

∂R
d+1

such that the two choices of strip-like ends coincide on U ∩Rd+1.
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Theorem 5. [37, Lemma 9.3] Consistent universal choices of strip-like
ends exist.

Remark 2. In the cases d = 0, 1, a punctured disk in S1 is biholomorphic
to a half-plane and a punctured disk in S2 is biholomorphic to the strip
Z = R× [0, 1] with standard coordinates (s, t).

2.2. Lagrangian labels

The holomorphic disks we will consider are holomorphic maps from a disk
with some marked points removed to the manifold R× Y , with boundary
on Lagrangian submanifolds of R× Y . The corresponding Lagrangian sub-
manifolds are called a Lagrangian label for the disk and is defined as follows.

The boundary of Sr, for r ∈ Rd+1 is subdivided into d+ 1 components.
We denote by ∂iSr for 1 ≤ i ≤ d+ 1 the part of the boundary between the
marked points yi−1 and yi. A Lagrangian label for Sr is a choice of La-
grangian submanifolds Li ⊂ R× Y for each component ∂iSr of the boundary
of Sr. If Li is the Lagrangian submanifold associated to ∂iSr, we will denote
by L = (L1, . . . , Ld+1) the Lagrangian label for Sr. A natural compatibility
condition for Lagrangian labels is clearly necessary in order to apply the
gluing maps γT,T

′

.

2.3. Almost complex structure

In this subsection we recall the different types of almost complex structures
that will be useful in order to achieve transversality for moduli spaces. Recall
that on a symplectic manifold (X,ω), an almost complex structure is a map
J : TX → TX such that J2 = − id. We say that J is compatible with ω (or
ω-compatible) if:

1) ω(v, Jv) > 0 for all v ∈ TX such that v ̸= 0,

2) ω(Ju, Jv) = ω(u, v) for all x ∈ X and u, v ∈ TxX.

2.3.1. Cylindrical almost complex structure. Let us go back to the
case where the symplectic manifold is the symplectization of a contact man-
ifold (Y, α). An almost complex structure J on (R× Y, d(etα)) is cylindrical
if:

• J is d(etα)-compatible,

• J is invariant under R-action by translation on R× Y ,
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• J(∂t) = Rα,

• J preserves the contact structure, i.e. J(ξ) = ξ.

Following notations of [6], we denote by J cyl(R× Y ) the set of cylindrical
almost complex structures on R× Y .

In our setting, the contact manifold is the contactization of a Liouville
manifold, Y = P × R, and recall that a Liouville manifold P can be viewed
as the completion of a Liouville domain (P̂ , dβ). An almost complex struc-
ture JP on P is admissible if it is cylindrical on P\P̂ outside of a compact
subset K ⊂ P\P̂ . We denote by J adm(P ) the set of admissible almost com-
plex structures on P . Now, if JP ∈ J adm(P ) and πP : R× (P × R) → P is
the projection on P , then there exists a unique cylindrical almost complex
structure J̃P on R× (P × R) such that πP is holomorphic, that is to say
dπP ◦ J̃P = JP ◦ dπP . Such an almost complex structure is called the cylin-
drical lift of JP and we denote by J cyl

π (R× Y ) the set of cylindrical almost
complex structures on R× Y which are cylindrical lifts of admissible almost
complex structures on P .

Let J−, J+ ∈ J cyl(R× Y ) such that J− and J+ coincide outside of a
cylinder R×K where K ⊂ Y is compact. For all T > 0 we consider an al-
most complex structure J on R× Y equals to J− on (−∞,−T )× Y , J+

on (T,∞)× Y and equals to the cylindrical lift of an admissible complex
structure on P in [−T, T ]× (Y \K). The reason for considering such almost
complex structures is that transversality holds generically for moduli spaces
of Legendrian contact homology with a cylindrical almost complex struc-
ture (see Section 3), and that cylindrical lifts of admissible almost complex
structures on P are useful to prevent pseudo-holomorphic curves to escape
at infinity (the projection on P × R must be compact).

We denote by J adm
J−,J+,T (R× Y ) the set of almost complex structures on

R× Y described above, and J adm(R× Y ) =
⋃

J−,J+,T

J adm
J−,J+,T (R× Y ).

2.3.2. Domain dependent almost complex structure. Considering
domain dependent almost complex structures is a way to achieve transver-
sality for moduli spaces of pseudo-holomorphic curves. A domain depen-
dent almost complex structure on R× Y is the data, for each r ∈ Rd+1, of
an almost complex structure parametrized by Sr, that is to say a map in
C∞(Sr,J

adm(R× Y )). Then, we need some special behavior of the almost
complex structure in strip-like ends in order to get some compatibility with
the gluing map.

Fix a r ∈ Rd+1, and let L1, . . . , Ld+1 be transverse exact Lagrangian
cobordisms in R× Y such that L = (L1, . . . , Ld+1) is a choice of Lagrangian
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label for Sr. Let T > 0 such that all the Li’s are cylindrical out of Li ∩
[−T, T ]× Y , and take J± ∈ J cyl(R× Y ).

For each pair (Li, Li+1), we consider a path J
Li,Li+1

t for t ∈ [0, 1] of al-
most complex structures in J adm

J−,J+,T (R× Y ), such that it is constant near
t = 0 and t = 1. The type of domain dependent almost complex structures
we consider are maps

Jr,L : Sr → J adm
J−,J+,T (R× Y )

such that Jr,L(εi(s, t)) = J
Li,Li+1

t , where εi is a choice of strip-like ends for
Sr.

Now, consider a universal choice of strip-like ends. A universal choice of
domain dependent almost complex structures is the data, for all r ∈ Rd+1

and Lagrangian label L = (L1, . . . , Ld+1), of maps Jr,L as above that fit into
a smooth map

Jd,L : Sd+1 → J adm
J−,J+,T (R× Y )

defined by Jd,L(z) = Jr,L(z) if z ∈ Sr. Moreover, Jd,L must satisfy

Jd,L(ε
d+1
i (r, s, t)) = J

Li,Li+1

t

where εd+1
i is part of the universal choice of strip-like ends.

Again, if S ∈ Sd+1 is obtained from Sr1 , Sr2 , . . . , Srk by gluing, we need
compatibility conditions between the almost complex structure induced by
the universal choice and the one induced by the gluing map. The two choices
of almost complex structures are said consistent if there exists a neighbor-

hood U ⊂ Rd+1 of ∂R
d+1

such that the choice of strip-like ends is consis-
tent, the choices of almost complex structures coincide on the thin parts for
each r ∈ U , and for every sequence {rn}n∈N in Rd+1 converging to a point

r ∈ ∂R
d+1

, the almost complex structures on the thick parts must converge
to the almost complex structure on the thick part of Sr.

The latter condition on thick part is analogous to the condition on thin
parts, the difference is that we ask for convergence of almost complex struc-
tures instead of equality because the almost complex structure on thick
parts is not fixed, whereas it is on thin parts. Indeed, a universal choice of
almost complex structures depends on fixed paths J

Li,Li+1

t for each pair of
Lagrangian submanifolds.

Theorem 6. [37, Lemma 9.5] Consistent choices of almost complex struc-
tures exist.
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2.4. Moduli spaces of holomorphic curves

We are now ready to define the moduli spaces we will use in the next sections.

2.4.1. General definition. Let Σ = (Σ1, . . . ,Σd+1) be a choice of La-
grangian label such that for all 1 ≤ i ≤ d+ 1, Σi is an exact Lagrangian
cobordism from Λ−

i to Λ+
i . We assume that the cobordisms are pairwise

transverse. We consider then a set A(Σ) of asymptotics consisting of in-
tersection points in Σi ∩ Σj for all 1 ≤ i ̸= j ≤ d+ 1, Reeb chords from Λ+

i

to Λ+
j , and Reeb chords from Λ−

i to Λ−
j for all 1 ≤ i, j ≤ d+ 1. Let J be

an almost complex structure on R× Y (we will explain later the properties
needed to achieve transversality in each case), and j the standard almost
complex structure on the disk D2 ⊂ C, which induces an almost complex
structure on each Sr, r ∈ Rd+1. For r ∈ Rd+1 and x0, . . . , xd in A(Σ), we
define the moduli space Mr

Σ,J(x0;x1, . . . , xd) as the set of smooth maps:

u : (Sr, j) → (R× Y, J)

satisfying:

1) du(z) ◦ j = J(z) ◦ du(z), for all z ∈ Sr\∂Sr,

2) u(∂iSr) ⊂ Σi,

3) if x0 is an intersection point then lim
z→y0

u(z) = x0 and x0 is required to

be a jump from Σd+1 to Σ1 when traversing the boundary counter-
clockwise,

4) if xi, 1 ≤ i ≤ d, is an intersection point then lim
z→yi

u(z) = xi,

5) if x0 is a Reeb chord with a parametrization γ0 : [0, 1] → x0, then every
z ∈ Sr sufficiently close to y0 is in ε0((0,+∞)× [0, 1]) and we have
either
• lim

s→+∞
u(ε0(s, t)) = (+∞, γ0(t)), and in this case we say that u has

a positive asymptotic to x0 at y0, or
• lim

s→+∞
u(ε0(s, t)) = (−∞, γ0(1− t)) and we say that u has a negative

asymptotic to x0 at y0.

6) if xi for i > 0 is a Reeb chord with parametrization γi : [0, 1] → xi,
then either
• lim

s→−∞
u(εi(s, t)) = (−∞, γi(t)) and u has a negative asymptotic to

xi at yi, or
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• lim
s→−∞

u(εi(s, t)) = (+∞, γi(1− t)) and u has a positive asymptotic

to xi at yi.

Then we denote

MΣ,J(x0;x1, . . . , xd) =
⊔

r

(
Mr

Σ,J(x0;x1, . . . , xd)/Aut(Sr)
)

The moduli space MΣ,J(x0;x1, . . . , xd) can be viewed as the kernel of a
section of a Banach bundle. The linearization of this section at a point
u ∈ MΣ,J(x0;x1, . . . , xd) is a Fredholm operator. Then, the almost com-
plex structure J is called regular if this operator is surjective. In this case,
MΣ,J(x0;x1, . . . , xd) is a smooth manifold whose dimension is the Fredholm
index of the linearized operator. We will denote by Mi

Σ,J(x0;x1, . . . , xd)
the moduli space of pseudo-holomorphic curves of index i satisfying the
conditions (1)-(6) above. Moreover, for u ∈ Mi

Σ,J(x0;x1, . . . , xd), we denote
ind(u) := i.

In the following subsections, in order to simplify notations we will not
indicate the almost complex structure we use to define the moduli spaces.

2.4.2. Pseudo-holomorphic curves with boundary on cylindrical
cobordisms. Let us consider d+ 1 Legendrian submanifolds Λ1, . . . ,Λd+1.
The choice of Lagrangian label for disks takes values in the set of Lagrangian
cylinders {R× Λ1,R× Λ2, . . . ,R× Λd+1} and the set of asymptotics con-
sists of Reeb chords from Λi to Λj for 1 ≤ i, j ≤ d+ 1. To simplify notations
for Lagrangian labels we will denote R× Λ1,...,d+1 = (R× Λ1, . . . ,R× Λd+1).
Moreover this label will indicate only the Lagrangians associated to mixed
Reeb chords. Let γd+1,1 ∈ R(Λd+1,Λ1), γi ∈ R(Λi,Λi+1) ∪R(Λi+1,Λi) and
δi be words of pure Reeb chords of Λi, for 1 ≤ i ≤ d+ 1. Considering a
cylindrical almost complex structure on R× Y , we define

MR×Λ1,...,d+1
(γd+1,1; δ1, γ1, δ2, γ2, . . . , δd, γd, δd+1)

to be the moduli space of pseudo-holomorphic disks with boundary on R×
Λ1,...,d+1 that have a positive asymptotic to γd+1,1, positive asymptotic to the
chord γi if γi respects the ordering of Legendrians (i.e. if γi ∈ R(Λi,Λi+1)),
negative asymptotic to the chord γi if γi does not respect the ordering of
Legendrians, (i.e. γi ∈ R(Λi+1,Λi)), and negative asymptotics to the pure
chords forming the words δi. There is an action of R by translation on this



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1662 — #16
✐

✐

✐

✐

✐

✐

1662 Noémie Legout

moduli space and we denote the quotient by:

M̃R×Λ1,...,d+1
(γd+1,1; δ1, γ1, . . . , δd, γd, δd+1)

:= MR×Λ1,...,d+1
(γd+1,1; δ1, γ1, . . . , δd, γd, δd+1)/R

Remark 3. We have the following particular cases:

• when d = 0: the asymptotics are all pure chords of Λ1. In the case
where only the first asymptotic is positive, such moduli spaces are
used to define the differential of the Legendrian contact homology of
Λ1 (Section 3.1).

• when d = 1: by denoting ξi,j a chord from Λi to Λj , the disks in

the moduli spaces M̃R×Λ1,2
(γ2,1; δ1, ξ2,1, δ2) (i.e. when only the first

asymptotic is positive) are involved in the definition of the Legen-
drian contact homology of Λ1 ∪ Λ2, and the disks in the moduli spaces
M̃R×Λ1,2

(γ2,1; δ1, ξ1,2, δ2) (i.e. when the two mixed chords are positive
asymptotics) are called bananas and are involved in the definition of
the Cthulhu complex (Section 4.1).

We will also consider the same type of moduli spaces but with the condi-
tion that the first asymptotic is this time a negative Reeb chord asymptotic.
Namely, the moduli spaces

MR×Λ1,...,d+1
(γ1,d+1; δ1, γ1, δ2, γ2, . . . , δd, γd, δd+1)

where γ1,d+1 ∈ R(Λ1,Λd+1) is a negative asymptotic, γi ∈ R(Λi,Λi+1) ∪
R(Λi+1,Λi) are positive or negative asymptotics depending if the chord re-
spects or not the ordering of Legendrians, and the pure Reeb chords form-
ing the words δi are negative asymptotics. As we will see in Section 2.5,
for energy reasons such moduli spaces are empty if all the γi are negative
asymptotics.

2.4.3. Pseudo-holomorphic curves with boundary on non cylindri-
cal cobordisms. We consider now moduli spaces of pseudo-holomorphic
curves with boundary on the Lagrangians Σ1, . . . ,Σd+1, where Λ−

i ≺Σi
Λ+
i .

The choice of Lagrangian label Σ takes values in {Σ1, . . . ,Σd+1} and the
set of asymptotics consists of Reeb chords from Λ±

i to Λ±
j for 1 ≤ i, j ≤

d+ 1, and intersection points in Σi ∩ Σj for 1 ≤ i ̸= j ≤ d+ 1. Again to
simplify notations, for Lagrangian labels we will now denote Σ1,...,d+1 =
(Σ1, . . . ,Σd+1) and this indicates only the Lagrangians associated to mixed
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asymptotics, i.e. intersection points and chords from a Legendrian to another
one.

Given γd+1,1 ∈ R(Λ+
d+1,Λ

+
1 ), ai ∈ {Σi ∩ Σi+1} ∪ R(Λ−

i+1,Λ
−
i ) and δi

words of pure Reeb chords of Λ−
i , we consider the moduli spaces

MΣ1,...,d+1
(γd+1,1; δ1, a1, δ2, a2, . . . , δd, ad, δd+1)(1)

of pseudo-holomorphic disks with boundary on Σ1,...,d+1 that have a positive
asymptotic to γd+1,1, and asymptotic to intersection points or Reeb chords
ai (negative asymptotics), and negative asymptotics to chords forming the
words δi.

Remark 4. When d = 0, the Lagrangian label consists of one cobordism
Σ1 and so the set of asymptotics consists only on Reeb chords of Λ±

1 . In this
case, the moduli spaces above are involved in the definition of the differential
graded algebra map induced by an exact Lagrangian cobordism from the
Chekanov-Eliashberg algebra of Λ+

1 to the Chekanov-Eliashberg algebra of
Λ−
1 (see Section 3.3).

We consider also for x ∈ Σ1 ∩ Σd+1 the moduli spaces of pseudo-
holomorphic disks

MΣ1,...,d+1
(x; δ1, a1, δ2, a2, . . . , δd, ad, δd+1)(2)

with the same asymptotic conditions as before for the ai’s and δi’s (inter-
section point or negative Reeb chord asymptotic at ai and negative Reeb
chords asymptotics at chords forming the words δi).

Finally, given γ1,d+1 ∈ R(Λ−
1 ,Λ

−
d+1), we consider the moduli spaces

MΣ1,...,d+1
(γ1,d+1; δ1, a1, δ2, a2, . . . , δd, ad, δd+1)(3)

of pseudo-holomorphic disks with a negative asymptotic to γ1,d+1, and again
the same asymptotic conditions as before for the ai’s and δi’s. Again in this
last case, if the ai’s are all negative Reeb chords asymptotics, this moduli
space will be empty for energy reasons.

Remark 5. When d = 1, these three types of moduli spaces (1), (2), (3)
are involved in the definition of the Cthulhu complex. In particular, the map
F1 of Theorem 2 is defined by a mod-2 count of curves in moduli spaces of
type (1) (See Section 4.1). For d = 2, the curves in moduli spaces of type (2)
and (3) are useful to define the product structure of Theorem 1 (Section 5.1)
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and the curves in moduli spaces of type (1) appear in the definition of an
order-2 map F2 in the proof of Theorem 2 (Section 5.3).

2.5. Action and energy

Consider d+ 1 transverse exact Lagrangian cobordisms (Σ1, . . . ,Σd+1). Re-
call that by definition, associated to each cobordism there is a function
fi : Σi → R, primitive of the form etα|Σi

, and this function is constant on
the cylindrical ends of Σi. Without loss of generality, we can consider that the
constants in the negative ends of the cobordisms are zero, and we denote ci

the constant for the positive end of Σi. We also denote T > 0 and ϵ > 0 such
that the cobordisms Σi are all cylindrical out of Σi ∩ ([−T + ϵ, T − ϵ]× Y ).
To each asymptotic, we can associate a quantity called action as follows.
For an intersection point x ∈ Σi ∩ Σj with i > j, the action of x is given by:

a(x) = fi(x)− fj(x)

For a Reeb chord γ, the length of γ is given by ℓ(γ) :=
∫
γ
α and then the

action of γ+i,j ∈ R(Λ+
i ,Λ

+
j ) is defined by:

a(γ+i,j) = eT ℓ(γ+i,j) + ci − cj

and for a Reeb chord γ−i,j ∈ R(Λ−
i ,Λ

−
j ) we set:

a(γ−i,j) = e−T ℓ(γ−i,j)

Remark that Reeb chords have always a positive action whereas intersection
points can be of negative action. Then, to a pseudo-holomorphic curve u in
MΣ(x0;x1, . . . , xd) is associated an energy, which is the analogue of the area
for the case of pseudo-holomorphic curves in compact symplectic manifolds.
To define it, let χ : R → R be a function such that:





χ(t) = et if t ∈ [−T + ϵ, T − ϵ]

lim
t→+∞

χ(t) = eT

lim
t→−∞

χ(t) = e−T

χ′(t) > 0
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We define then the d(χα)-energy of a pseudo-holomorphic curve u : Sr →
R× Y by:

Ed(χα)(u) =

∫

Sr

u∗d(χα)

We have the following very standard result:

Lemma 1. Ed(χα)(u) ≥ 0

Proof. The d(etα)-compatibility of the almost complex structure J implies
the dα|ξ-compatibility of the restriction of J to the contact structure

(ξ, (dα)|ξ). This permits to show that Ed(χα)(u) =
1
2

∫
Sr

|du|2, where |v|2 =
d(χα)(v, Jv) is strictly positive if v ̸= 0. □

Now, the energy of a pseudo-holomorphic curve can be expressed in
terms of the actions of its asymptotics.

Proposition 1. We have the following:

1) if u∈MR×Λ1,...,d+1
(γd+1,1; δ1, γ1, δ2, γ2, . . . , δd, γd, δd+1), let us consider

the following partition of {1, . . . , d} into two subsets:

I+ = {i | γi positive Reeb chord asymptotic of u}

I− = {i | γi negative Reeb chord asymptotic of u}

then we have

Ed(χα)(u) = a(γd+1,1) +
∑

i∈I+

a(γi)−
∑

i∈I−

a(γi)−
d+1∑

i=1

a(δi),

2) if u ∈ MR×Λ1,...,d+1
(γ1,d+1; δ1, γ1, δ2, γ2, . . . , δd, γd, δd+1),

Ed(χα)(u) = −a(γ1,d+1) +
∑

i∈I+

a(γi)−
∑

i∈I−

a(γi)−
d+1∑

i=1

a(δi),

3) if u ∈ MΣ1,...,d+1
(γd+1,1; δ1, a1, δ2, a2, . . . , δd, ad, δd+1),

Ed(χα)(u) = a(γd+1,1)−
d∑

i=1

a(ai)−
d+1∑

i=1

a(δi),
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4) if u ∈ MΣ1,...,d+1
(x; δ1, a1, δ2, a2, . . . , δd, ad, δd+1),

Ed(χα)(u) = a(x)−
d∑

i=1

a(ai)−
d+1∑

i=1

a(δi),

5) if u ∈ MΣ1,...,d+1
(γ1,d+1; δ1, a1, δ2, a2, . . . , δd, ad, δd+1),

Ed(χα)(u) = −a(γ1,d+1)−
d∑

i=1

a(ai)−
d+1∑

i=1

a(δi)

Lemma 1 and Proposition 1 give thus some constraints on the action of
asymptotics of pseudo-holomorphic curves. These will be useful in order to
cancel some pseudo-holomorphic configurations in Section 5.

2.6. Compactness

When transversality holds, i.e. when the almost complex structure is regular
for moduli spaces, these are smooth manifolds which are not necessarily com-
pact. However, they admit a compactification in the sense of Gromov ([29]),
by adding broken curves called pseudo-holomorphic buildings. Compactness
results together with transversality results imply that the compactification of
a moduli space is a compact manifold whose boundary components are in bi-
jection with pseudo-holomorphic buildings arising as degeneration of pseudo-
holomorphic curves in the moduli space. We recall below the definition of
pseudo-holomorphic buildings whose components are pseudo-holomorphic
disks with boundary on Lagrangian cobordisms with cylindrical ends (see
[4] and [1]).

Given again d+ 1 transverse exact Lagrangian cobordisms Λ−
i ≺Σi

Λ+
i ,

we consider the following Lagrangian labels Σ = (Σ1, . . . ,Σd+1) and
R× Λ± = (R× Λ±

1 , . . . ,R× Λ±
d+1). Given a planar rooted tree T with d− 1

leaves, d ≥ 2, we can associate to each interior vertex v a triple (Srv , Iv, Lv),
where:

• Srv is the Riemann disk associated to the vertex v (Section 2.1),

• Iv is the set of boundary marked points of Srv called nodes correspond-
ing to interior edges of T ,

• Lv is the set of boundary marked points of Srv corresponding to edges
connecting v to the leaves and the root of T .
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Example 1. For T = Td+1, T is a rooted tree with one interior vertex v
and d leaves. In this case Iv = ∅ and Lv consists of d+ 1 elements, one
corresponding to the root, the other to the leaves. For a tree having an
interior vertex v adjacent only to interior vertices, we have Lv = ∅ and Iv
contains |v| elements.

Moreover, the set of all nodes
⋃
v

Iv contains an even number of elements

organized in pair. Indeed, each interior edge ei of T is by definition con-
necting two interior vertices v and v̄ of T . Denote by pi the node on the
boundary of Srv corresponding to ei, and by p̄i the node on the boundary
of Srv̄ corresponding to ei. So we get that

⋃
v

Iv admits a partition

⋃

v

Iv = {p1, p̄1} ∪ {p2, p̄2} ∪ · · · ∪ {pk, p̄k}

where k is the number of interior edges of T .

Definition 2. Given integers k−, k+ ≥ 0, a pseudo-holomorphic building of
height k−|1|k+ in R× Y with boundary on Σ is the data of:

1) a planar rooted tree T and the corresponding union of triples⋃
v

(Srv , Iv, Lv),

2) a choice of asymptotic in A(Σ) for each node in
⋃

Iv. We require that
for each pair {pj , p̄j}, the same asymptotic is assigned to pj and p̄j .

3) a choice of asymptotic for each marked point in
⋃

Lv,
4) a pair (uv, ρv) for each interior vertex v of T , where uv : Srv → R×

Y is a pseudo-holomorphic disk asymptotic to the given asymptotics
assigned to elements in Iv ∪ Lv, and ρv is an integer called the floor of
v, satisfying −k− ≤ ρv ≤ k+, such that
a) each floor −k− ≤ ρ ≤ k+ except ρ = 0 admits at least one non triv-

ial disk,
b) if ρv > 0: uv has boundary on R× Λ+, and thus the asymptotics

assigned to elements of Iv ∪ Lv are only Reeb chords. The disk uv
is said to live in the top level.

c) if ρv = 0: uv has boundary on the compact parts of Σ (i.e. on Σ1 ∪
Σ2 ∪ · · · ∪ Σd+1) and can have asymptotics to intersection points
and Reeb chords in the negative and positive ends. The disk uv is
said to live in the middle level.

d) if ρv < 0: uv has boundary on R× Λ−, and has asymptotics only
to Reeb chords. The disk uv is said to live in the bottom level.
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Moreover, we require the following conditions on nodes:
e) if Srv has a boundary puncture at a node pi such that uv has a

positive (resp negative) asymptotic to a Reeb chord γ ∈ A(Σ) at
pi, then the corresponding pair (uv̄, ρv̄) in the building (where v̄ is
the interior vertex of T such that the interior edge ei connects v
and v̄) satisfies ρv̄ = ρv + 1 (resp ρv̄ = ρv − 1) and uv̄ has a negative
(resp positive) asymptotic to γ at p̄i,

f) if Srv has a boundary puncture at pi such that uv is asymptotic
at pi to an intersection point x ∈ A(Σ), which is a jump from Σl

to Σm when traversing the boundary of uv counterclockwise, then
the corresponding pair (uv̄, ρv̄) in the building satisfies ρv̄ = 0 and
uv̄ has an asymptotic to x at p̄i, where x is a jump from Σm to Σl

when traversing the boundary of uv̄ counterclockwise,
and the following conditions on marked points which are not nodes:
g) if the middle level (ρ = 0) of the building is not empty, then for

each element in Lv asymptotic to yv,
(i) if yv is a Reeb chord in A(R× Λ+), then yv is a positive Reeb

chord asymptotic of uv and ρv ≥ 0,
(ii) if yv is an intersection point, then ρv = 0,
(iii) if yv is a Reeb chord in A(R× Λ−), then yv is a negative Reeb

chord asymptotic of uv and ρv ≤ 0.

Remark 6. If the middle level is empty, then we have a building with
boundary on the cylindrical ends of the Lagrangians. It is a building of
height 0|0|k+ if all components have boundary on R× Λ+, and a building
of height k−|0|0 if all components have boundary on R× Λ−.

Definition 3 (Equivalence of pseudo-holomorphic buildings). Two
pseudo-holomorphic buildings are equivalent if they become the same after
the removal of an appropriate number of trivial cylinders together with the
obvious deformation of the underlying planar rooted tree, to each of them in
the bottom and top levels. In other words, two pseudo-holomorphic buildings
are equivalent if they become the same after:

• removing all possible trivial cylinders in the bottom and top levels
attached to asymptotics assigned to ∪Lv,

• removing simultaneously trivial cylinders attached to all the positive
ends and/or all the negative ends corresponding to nodes in ∪Iv of a
component in the bottom or top level.
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In particular, two equivalent pseudo-holomorphic buildings have the
same components in the middle level, and the same non trivial components
in the bottom and top levels but connected to each other by a certain number
of trivial cylinders which can vary from one building to the other.

Figure 1: Example of a pseudo-holomorphic building of height 1|1|2.

Performing the gluing operation on each interior edge of T corresponds to
do the connected sums of the disks Srv at each node, as described in Section
2.1 (i.e. identifying standard neighbourhoods of pi and p̄i, for 1 ≤ i ≤ k). The
boundary marked points of the disk resulting from the connected sum are
asymptotic to the asymptotics assigned to the marked points in

⋃
Lv. Given

a set of asymptotics (x0, x1, . . . , xd), we denote by M
k−|1|k+

Σ (x0;x1, . . . , xd)

the set of pseudo-holomorphic buildings of height k−|1|k+ with boundary
on Σ such that the disk obtained after boundary connected sum of the
domains at nodes is asymptotic to (x0, x1, . . . , xd). Moduli spaces of pseudo-
holomorphic disks with boundary on non-cylindrical Lagrangian cobordisms
as described in Section 2.4 can be viewed as pseudo-holomorphic buildings
of height 0|1|0 with boundary on Σ, in other words we have

MΣ(x0;x1, . . . , xd) ⊂ M
0|1|0
Σ (x0;x1, . . . , xd)
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By Gromov’s compactness, a sequence of pseudo-holomorphic disks us
in MΣ(x0;x1, . . . , xd) admits a subsequence which converges to a pseudo-
holomorphic building with boundary on Σ. The pseudo-holomorphic build-
ings obtained this way are of two types:

1) Stable breaking : pseudo-holomorphic building such that each compo-
nent is a curve having at least three mixed asymptotics. For example,
a pseudo-holomorphic building in a product

M(x0;x1, . . . , xi−1, x
′
i, xi+j , . . . , xd)×M(x′i;xi, . . . , xi+j−1)

with 1 ≤ i ≤ d− 1 and j ≥ 2.

2) Unstable breaking : pseudo-holomorphic building having at least a curve
with at most two mixed asymptotics. Such a curve is either a pseudo-
holomorphic half-plane (so without mixed asymptotic), or a pseudo-
holomorphic strip.

The important result is that the set of buildings asymptotic to x0, x1, . . . , xd
gives a compactification of the moduli space MΣ(x0;x1, . . . , xd), i.e. the
disjoint union

⊔

k−,k+≥0

M
k−|1|k+

Σ (x0;x1, . . . , xd)

is compact.
Assume that we have an admissible regular almost complex structure.

Consider a pseudo-holomorphic building in M
k−|1|k+

Σ (x0;x1, . . . , xd) given
by a tree T and pseudo-holomorphic disks {ui} with choices of asymptotics
for nodes. Gluing results ([15]) imply that there exists sufficiently small glu-
ing parameters associated to each interior edge of T (see Section 2.1) and
a unique pseudo-holomorphic curve u in MΣ(x0;x1, . . . , xd) depending on
these parameters such that u converges to the pseudo-holomorphic building
{ui} when the gluing parameters converge to 0 (see [1] and [4] for the topol-
ogy on the space of pseudo-holomorphic buildings). In the rest of the paper,
when we are given a pseudo-holomorphic building consisting of components
{ui}, by abuse of language we will say that we glue its components meaning
that we consider a corresponding pseudo-holomorphic disk u as above.
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3. Legendrian contact homology

Legendrian contact homology is a Legendrian isotopy invariant which has
been defined by Chekanov [8] and Eliashberg [21] independently. Eliash-
berg gave a definition of Legendrian contact homology in the setting of
Symplectic Field Theory (SFT, see [22]). Chekanov defined it combinato-
rially for Legendrian links in R3, by a count of certain types of convex
polygons with boundary on the Lagrangian projection of the Legendrian.
Then, Ekholm, Etnyre and Sullivan in [15, 17] generalized the definition of
Chekanov for Legendrian submanifolds in R2n+1 and P × R, by counting
pseudo-holomorphic disks with boundary on the Lagrangian projection. In
fact, it has been proven by Etnyre, Ng and Sabloff [25] in dimension 3 and
then by Dimitrolgou-Rizell [12] in every dimension that the SFT-version
of Legendrian contact homology computes the same invariant as the com-
binatorial version of Chekanov and its generalization in higher dimension.
With this in mind, we recall below the SFT-definition of Legendrian contact
homology, which is more in the spirit of this article.

3.1. The differential graded algebra

Given a Legendrian submanifold Λ ⊂ P × R, we denote by C(Λ) the Z2-
vector space generated by Reeb chords of Λ, and A(Λ) =

⊕
iC(Λ)⊗i the

tensor algebra of C(Λ), called the Chekanov-Eliashberg algebra of Λ. There
is a grading associated to Reeb chords and defined from the Conley-Zehnder
index by the following: if Λ is connected and c ∈ R(Λ) then we set |c| :=
νγc

(c)− 1, where γc is a capping path for c. This is a well-defined grading
in Z modulo the Maslov number of Λ (because of the choice of the capping
path) and twice the first Chern class of TP (because of the choice of a
symplectic trivialization of TP along ΠP (γc) to compute νγc

(c)), see [17] for
more details. This induces a grading for each word of Reeb chords in A(Λ)
by |b1b2 · · · bm| =

∑
i |bi| for Reeb chords bi. If Λ is not connected and c is

a mixed chord with ends c+ ∈ Λ+ and c− ∈ Λ−, where Λ± are connected
components of Λ, in order to define the grading we choose some points
p± ∈ Λ± and some paths γ+c ⊂ Λ+ and γ−c ⊂ Λ− from c+ to p+ from p− to
c− respectively. Then we choose a path γ+− from p+ to p− and so if we
denote Γc = γ+c ∪ γ+− ∪ γ−c the concatenation of the three paths, the degree
of c is defined to be |c| = νΓc

(c)− 1. The grading of mixed chords depend on
the paths γ+− but for two mixed chords c1, c2 from Λ− to Λ+, the difference
|c1| − |c2| does not depend on γ+−.



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1672 — #26
✐

✐

✐

✐

✐

✐

1672 Noémie Legout

Let J be a cylindrical almost complex structure on R× Y . The differ-
ential on A(Λ) is a map ∂ : A(Λ) → A(Λ) which is defined by a count of
pseudo-holomorphic disks in R× Y with boundary on R× Λ and asymp-
totic to Reeb chords. More precisely, if a ∈ R(Λ):

∂(a) =
∑

m≥0

∑

b=b1···bm
|b|=|a|−1

#M̃R×Λ(a; b) · b(4)

where a is a positive asymptotic and the chords bi are negative Reeb chord
asymptotics. When m = 0 we set b = 1. We then extend this to the whole
algebra by the Leibniz rule.

About transversality results, Dimitroglou-Rizell proved in [11] that
generically, a cylindrical almost complex structure on R× Y is regular for
the moduli spaces MR×Λ(a; b1, . . . , bm) which are thus manifolds of dimen-
sion

dimMR×Λ(a; b1, . . . , bm) = |a| −
∑

|bi|

and so

dimM̃R×Λ(a; b1, . . . , bm) = |a| −
∑

|bi| − 1

This is done by generalizing a result of Dragnev ([13]) to the case of pseudo-
holomorphic disks, using the fact that as pseudo-holomorphic curves in the
moduli spaces above have only one positive Reeb chord asymptotic, it is
always possible to find an injective point. These dimension formula imply
that in the definition of the differential (4), this is a mod-2 count of pseudo-
holomorphic disks in 0-dimensional moduli spaces. Then, by Gromov’s com-
pactness these 0-dimensional moduli spaces are compact and thus the dif-
ferential ∂ is a well-defined map of degree −1. Transversality also holds for
almost complex structures that are cylindrical lifts of regular compatible
almost complex structures on P (satisfying a technical condition near the
intersection points of ΠP (Λ), see [11, 17]).

Theorem 7. [8, 12, 15, 17]

• ∂2 = 0,

• The Legendrian contact homology LCH∗(Λ, J) does not depend on a
generic choice of cylindrical almost complex structure J and is a Leg-
endrian isotopy invariant.
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Legendrian contact homology being generally of infinite dimension, we
recall in the next section the linearization process introduced by Chekanov,
in order to extract finite dimensional (and so more computable) invariants
from Legendrian contact homology.

3.2. Linearization and the augmentation category

We begin this section by recalling the fundamental tool for the linearization:
augmentations.

Definition 4. An augmentation for (A(Λ), ∂) is a unital DGA-map ε :
A(Λ) → Z2 where Z2 is viewed as a DGA with vanishing differential. In
other words, ε is a map satisfying:

• ε(1) = 1,

• ε(a) = 0 if |a| ≠ 0,

• ε(ab) = ε(a)ε(b),

• ε ◦ ∂ = 0.

A Legendrian submanifold does not necessarily admit an augmentation.
Typically, once there is an element of the algebra a ∈ A(Λ) such that ∂a = 1,
the third condition in the definition above cannot be satisfied and hence
there is no augmentation. For example, loose Legendrians (see [32]) do not
admit augmentation. In this paper, we will only focus on Legendrians whose
Chekanov-Eliashberg algebra can be augmented. So let us consider a Legen-
drian submanifold Λ ⊂ R× Y such that A(Λ) admits an augmentation, then
it is possible to associate to Λ a new complex (C(Λ), ∂ε

1), with ∂ε
1 defined on

Reeb chords by:

∂ε
1(a) =

∑

m≥0

∑

b=b1···bm
|b|=|a|−1

m∑

i=1

#M̃R×Λ(a; b) · ε(b1) · · · ε(bi−1)ε(bi+1) · · · ε(bm) · bi

In fact, conjugating the differential ∂ by the DGA-morphism gε defined on
chords by gε(c) = c+ ε(c) gives a new differential ∂ε on A(Λ), the differen-
tial ∂ twisted by ε, such that the restriction on C(Λ) can be decomposed
as ∂ε

|C(Λ) =
∑

i≥0 ∂
ε
i , with ∂ε

i : C(Λ) → C(Λ)⊗i. But the differential ∂ε
|C(Λ)

does not admit any constant term (i.e. ∂ε
0 = 0) due to the properties of ε,

and so (∂ε
|C(Λ))

2 = 0 implies that (∂ε
1)

2 = 0. The homology of the complex
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(C(Λ), ∂ε
1) is by definition the Legendrian contact homology of Λ linearized

by ε.

Theorem 8. [8] The set {LCHε
∗(Λ), ε} of linearized Legendrian contact

homologies is a Legendrian isotopy invariant.

This linearization process can be done using two augmentations instead
of one (see [3]), leading to the bilinearized Legendrian contact homology
LCHε1,ε2

∗ (Λ), which is the homology of the complex (C(Λ), ∂ε1,ε2
1 ) with

∂ε1,ε2
1 (a) =

∑

m≥0

∑

b=b1···bm
|b|=|a|−1

m∑

i=1

#M̃R×Λ(a; b) · ε1(b1) · · ·

· · · ε1(bi−1)ε2(bi+1) · · · ε2(bm) · bi

The advantage of the bilinearized version in comparison to the linearized
one is that it retains some information about the non-commutativity of
the Chekanov-Eliashberg DGA. More generally, given d+ 1 augmentations
ε1, . . . , εd+1 of A(Λ), there is a map

∂
ε1,...,εd+1

d : C(Λ) → C(Λ)⊗d

such that ∂
ε1,...,εd+1

d (a) is a sum of words of length d coming from words in
∂a to which we keep d letters and augment the others by ε1, . . . , εd+1 in this
order (changing the augmentation each time we jump a chord we keep). In
all the rest of the article, we will adopt a cohomology point of view, so let
us describe the dual maps of the maps ∂

ε1,...,εd+1

d . As the vector space C(Λ)
and its dual are canonically isomorphic, by an abuse of notation we will
still denote C(Λ) the dual vector space. So the dual of ∂

ε1,...,εd+1

d , denoted
µd
εd+1,...,ε1 , is defined by:

µd
εd+1,...,ε1(bd, . . . , b1)

=
∑

a∈R(Λ)

∑

δ1,...,δd+1∑
|bi|+

∑
|δi|=|a|−1

#M̃R×Λ(a; δ1, b1, δ2, . . . , δd, bd, δd+1)ε1(δ1) · · ·

· · · εd+1(δd+1) · a

where δi are words of Reeb chords of Λ. In fact, as already explained above
for the dual map, the coefficient ⟨µd

εd+1,...,ε1(bd, . . . , b1), a⟩ is computed by con-
sidering all words of length at least d in ∂(a) containing the letters b1, . . . , bd
in this order, and augmenting the (possibly) remaining chords between bi
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and bi+1 by εi+1, for all 1 ≤ i ≤ d. These maps {µd
εd+1,...,ε1}d≥1 satisfy the

A∞-relations, i.e. for all d ≥ 1 and Reeb chords bd, . . . , b1 we have

∑

1≤j≤d
0≤n≤d−j

µd−j+1
εd+1,...,εn+j+1,εn+1,...,ε1(5)

× (bd, . . . , µ
j
εn+j+1,...,εn+1

(bn+j , . . . , bn+1), bn, . . . , b1) = 0

and thus the maps {µd
εd+1,...,ε1}d≥1 are A∞-composition maps of an A∞-

category called the augmentation category of Λ, denoted Aug−(Λ). This
category has been defined by Bourgeois and Chantraine in [3] as follows:

• Ob(Aug−(Λ)) : ε augmentation of A(Λ),

• hom(ε1, ε2) = (C(Λ), µ1
ε2,ε1) the bilinearized Legendrian contact coho-

mology complex,

• the A∞-composition maps are the maps µd
εd+1,...,ε1 defined above.

If we look at the full subcategory generated by one object ε, then we get the
A∞-algebra (C(Λ), {µd

ε}d≥1) that appeared first in a work of Civan, Etnyre,
Koprowski, Sivek and Walker [9].

In fact, the A∞-maps of the augmentation category can be viewed as dual
maps of components of the differential of the (d+ 1)-copy of Λ twisted by
a particular augmentation. This is a way to show that the A∞-relations are
satisfied, using a bijection between moduli spaces with boundary on Λ and
moduli spaces with boundary on the k-copy of Λ (see [18, Theorem 3.6]). For
k ≥ 1, the k-copy of Λ denoted Λ(k) is defined as follows. Set Λ1 := Λ, and for

a small ϵ > 0 we define Λ̃j := φR
(j−1)ϵ(Λ) for 2 ≤ j ≤ k, where φR

t is the Reeb

flow (recall Rα = ∂z here). The Legendrian submanifold Λ1 ∪ Λ̃2 ∪ · · · ∪ Λ̃k

has an infinite number of Reeb chords, so we have to perturb it to turn
it into a chord generic Legendrian. Take Morse functions fj : Λ → R, for
2 ≤ j ≤ k, such that the functions fj − fi are Morse. Then, identify a small

tubular neighborhood of Λ̃j to a neighborhood of the 0-section in J1(Λ),

and replace Λ̃j by the 1-jet of fj which is by definition the submanifold
j1(fj) = {(q, dqfj , fj(q)) | q ∈ Λ} ⊂ J1(Λ). We denote this new Legendrian
Λj ⊂ P × R. The k-copy of Λ is defined to be the union Λ1 ∪ Λ2 ∪ · · · ∪ Λk.
It is a chord generic Legendrian which has four different types of Reeb
chords:

1) pure chords: chords of Λj , for all 1 ≤ j ≤ k, and there is a bijection
between R(Λ) and R(Λj),
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2) Morse chords : mixed chords corresponding to critical points of the
functions fj for j ≥ 2 (these are chords from Λ1 to Λj) and fj − fi
(these are chords from Λi to Λj for i < j),

3) small chords: mixed chords from Λj to Λi for i < j, in bijection with
chords of Λ,

4) long chords: mixed chords (which are not Morse) from Λi to Λj for
i < j also in bijection with chords of Λ.

For a chord a ∈ R(Λ), denote by ai,j the corresponding Reeb chord in
R(Λi,Λj). Let (ε1, . . . , εk) be augmentations of A(Λ) and consider the DGA-
morphism ε(k) : A(Λ(k)) → Z2 defined on Reeb chords by:

ε(k)(ai,i) = εi(a)

ε(k)(ai,j) = 0 for i ̸= j

ε(k)(cM ) = 0 for cM Morse chord

It is shown in [3] that ε(k) is an augmentation of (A(Λ(k)), ∂(k)), that we call
diagonal augmentation induced by ε1, . . . , εk. Also, by denoting IM the two-
sided ideal of A(Λ(k)) generated by Morse chords, we have ∂(k)(IM ) ⊂ IM
[3, Proposition 3.1]. This implies that ∂(k) descends to a differential on the
quotient A(Λ(k))/IM which by abuse of notation we still denote ∂(k), and
ε(k) descends to an augmentation of A(Λ(k))/IM , which we still denote ε(k).
Now, denoting C(Λi,Λj) the Z2-vector space generated by Reeb chords from
Λj to Λi in A(Λ(k))/IM , given a diagonal augmentation as above we have
that the twisted differential ∂ε(k) restricted to C(Λ1,Λk) is a map:

∂
ε(k)

|C(Λ1,Λk)
: C(Λ1,Λk)

→
⊕

d≥1
1≤i2,...,id≤k

C(Λid ,Λk)⊗ C(Λid−1
,Λid)⊗ · · · ⊗ C(Λ1,Λi2)

The dual of the appropriate component of this map is then µd
εk,εid ,...,εi2 ,ε1

(see [3, Theorem 3.2] and [18, Theorem 3.6] for the correspondence of moduli
spaces in the case of the 2-copy). Then, dualizing the relation

(
∂
ε(k)

|C(Λ1,Λk)

)2
= 0
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gives all the A∞-relations for d ≤ k − 1, i.e. the A∞-relations for each se-
quence of objects (ε1, εi2 , . . . , εid , εk). For example, the two first are:

(
µ1
εk,ε1

)2
= 0

µ1
εk,ε1 ◦ µ

2
εk,εi,ε1 + µ2

εk,εi,ε1

(
µ1
εk,εi ⊗ id

)

+ µ2
εk,εi,ε1

(
id⊗µ1

εi,ε1

)
= 0, for all 1 ≤ i ≤ k.

3.3. Morphism induced by a cobordism

Given an exact Lagrangian cobordism Λ− ≺Σ Λ+, there exists a DGA-map
ϕΣ : A(Λ+) → A(Λ−) defined on Reeb chords by

ϕΣ(γ
+) =

∑

γ−

1 ,...,γ−
m

#M0
Σ(γ

+; γ−1 , . . . , γ
−
m) · γ−1 · · · γ−m

where γ+ ∈ R(Λ+) and γ−1 , . . . , γ
−
m ∈ R(Λ−) (see [19]). When Σ is an exact

Lagrangian filling of Λ+ (Λ− = ∅), then the DGA-map ϕΣ : A(Λ+) → Z2

is an augmentation of A(Λ+). In this case, the corresponding linearized
Legendrian contact cohomology of Λ is determined by the topology of the
filling by the Ekholm-Seidel isomorphism:

Theorem 9 ([12, 14]). If Λ ⊂ Y is a n-dimensional closed Legendrian sub-
manifold which admits a Lagrangian filling Σ, then H∗(Σ) ≃ LCHn−∗

ε (Λ),
where ε is the augmentation of A(Λ) induced by Σ.

This theorem gives a very powerful obstruction to the existence of Maslov
0 Lagrangian fillings. For example, once the linearized Legendrian contact
cohomology of a Legendrian Λ has a generator of degree strictly less than 0
or strictly higher than n for all possible augmentations, it means that Λ is
not fillable by an exact Lagrangian. More generally, given an augmentation
ε− of A(Λ−), its pullback by ϕΣ is an augmentation of A(Λ+) that we
denote ε+ := ε− ◦ ϕΣ. This is the order-0 map of a family of maps defining
an A∞-functor ΦΣ : Aug(Λ−) → Aug(Λ+) as follows (see [3]):

• on the objects of the category, ΦΣ(ε
−) = ε− ◦ ϕΣ,

• for each (d+ 1)-tuple (ε−1 , . . . , ε
−
d+1) of augmentations of A(Λ−), there

is a map

Φ
ε−d+1,...,ε

−

1

Σ : hom(ε−d , ε
−
d+1)⊗ · · · ⊗ hom(ε−1 , ε

−
2 ) → hom(ε+1 , ε

+
d+1)
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defined by

Φ
ε−d+1,...,ε

−

1

Σ (γ−d , . . . , γ
−
1 ) =

∑

γ+∈R(Λ+)
δ−

1 ,...,δ−

d+1

#M0
Σ(γ

+; δ−1 , γ
−
1 , δ

−
2 , . . . , γ

−
d , δ

−
d+1)

× ε−1 (δ
−
1 ) · · · ε

−
d+1(δ

−
d+1) · γ

+

The induced functor on cohomology level gives a map on bilinearized Leg-
endrian contact cohomology:

Φ
ε−2 ,ε−1
Σ : LCH∗

ε−1 ,ε−2
(Λ−) → LCH∗

ε+1 ,ε+2
(Λ+)

which was shown to be an isomorphism if Σ is a concordance, in [7].
In the case of the augmentation category Aug+(Λ) (defined in [34]),

an exact Lagrangian cobordism from Λ− to Λ+ also induces a functor
F : Aug+(Λ

−) → Aug+(Λ
+). In particular, this functor was shown to be

injective on equivalence classes of augmentations and cohomologically faith-
ful by Yu Pan [35].

4. Floer theory for Lagrangian cobordisms

4.1. The Cthulhu complex

In this section we recall the definition of the Cthulhu complex, a Floer-type
complex for Lagrangian cobordisms, defined by Chantraine, Dimitroglou-
Rizell, Ghiggini and Golovko in [6]. Let Λ−

1 ≺Σ1
Λ+
1 and Λ−

2 ≺Σ2
Λ+
2 be two

transverse exact Lagrangian cobordisms in R× Y with Λ−
1 ,Λ

+
1 ,Λ

−
2 ,Λ

+
2 Leg-

endrian submanifolds in Y . We assume that the Chekanov-Eliashberg alge-
bras A(Λ−

1 ) and A(Λ−
2 ) admit augmentations ε−1 and ε−2 respectively, which

induce augmentations ε+1 and ε+2 of A(Λ+
1 ) and A(Λ+

2 ) as we saw previ-
ously. Cthulhu homology is the homology of a graded complex associated to
the pair (Σ1,Σ2), denoted (Cth(Σ1,Σ2), dε−1 ,ε−2

), generated by intersection

points in Σ1 ∩ Σ2, Reeb chords from Λ+
2 to Λ+

1 and Reeb chords from Λ−
2 to

Λ−
1 , with shifts in grading:

Cth(Σ1,Σ2) = C(Λ+
1 ,Λ

+
2 )[2]⊕ CF (Σ1,Σ2)⊕ C(Λ−

1 ,Λ
−
2 )[1]

where CF (Σ1,Σ2) denotes the Z2-vector space generated by intersection
points in Σ1 ∩ Σ2. This is a graded complex. For the grading to be in Z,
we assume that 2c1(P ) as well as the Maslov classes of Σ1 and Σ2 vanish
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(which implies that the Maslov classes of Λ±
1 and Λ±

2 also vanish). The grad-
ing for Reeb chords is the same as the Legendrian contact homology grading
(Section 3.1). For an intersection point p ∈ Σ1 ∩ Σ2 the grading is defined
to be the Maslov index of a path of graded Lagrangians from (TpΣ1)

# to
(TpΣ2)

# in Gr#(Tp(R× Y ), d(etα)p), the universal cover of the Grassmani-
ann of Lagrangian subspaces of (Tp(R× Y ), d(etα)p), see [37, Section 11.j]
and [6]. The differential on Cth(Σ1,Σ2) is a matrix

dε−1 ,ε−2
=



d++ d+0 d+−

0 d00 d0−
0 d−0 d−−




where each component is defined by a count of rigid pseudo-holomorphic
disks with boundary on Σ1 and Σ2 and asymptotic to intersection points
and Reeb chords from Λ±

2 to Λ±
1 as follows:

1) for ξ+2,1 ∈ R(Λ+
2 ,Λ

+
1 ):

d++(ξ
+
2,1) =

∑

γ+
2,1

∑

β1,β2

#M̃1
R×Λ+

1,2
(γ+2,1;β1, ξ

+
2,1,β2)ε

+
1 (β1)ε

+
2 (β2) · γ

+
2,1

where the sum is for γ+2,1 ∈ R(Λ+
2 ,Λ

+
1 ) and βi words of Reeb chords of

Λ+
i , for i = 1, 2. The map d++ is the restriction to C(Λ+

1 ,Λ
+
2 ) of the

bilinearized differential µ1
ε+2 ,ε+1

of the Legendrian contact cohomology

of Λ+
1 ∪ Λ+

2 .

2) for ξ−2,1 ∈ R(Λ−
2 ,Λ

−
1 ):

d+−(ξ
−
2,1) =

∑

γ+
2,1

∑

δ1,δ2

#M0
Σ1,2

(γ+2,1; δ1, ξ
−
2,1, δ2)ε

−
1 (δ1)ε

−
2 (δ2) · γ

+
2,1

d0−(ξ
−
2,1) =

∑

x+∈Σ1∩Σ2

∑

δ1,δ2

#M0
Σ1,2

(x+; δ1, ξ
−
2,1, δ2)ε

−
1 (δ1)ε

−
2 (δ2) · x

+

d−−(ξ
−
2,1) =

∑

γ−

2,1

∑

δ1,δ2

#M̃1
R×Λ−

1,2
(γ−2,1; δ1, ξ

−
2,1, δ2)ε

−
1 (δ1)ε

−
2 (δ2) · γ

−
2,1

and as for d++, the map d−− is the restriction of µ1
ε−2 ,ε−1

to C(Λ−
1 ,Λ

−
2 ).
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3) for q ∈ Σ1 ∩ Σ2 which is a jump from Σ1 to Σ2:

d+0(q) =
∑

γ+
2,1

∑

δ1,δ2

#M0
Σ1,2

(γ+2,1; δ1, q, δ2)ε
−
1 (δ1)ε

−
2 (δ2) · γ

+
2,1

d00(q) =
∑

x+

∑

δ1,δ2

#M0
Σ1,2

(x+; δ1, q, δ2)ε
−
1 (δ1)ε

−
2 (δ2) · x

+

d−0(q) = b ◦ δ
Σ2,1

−0 (q)

=
∑

γ−

1,2,γ
−

2,1

∑

δ1,δ2

#
(
M̃1

R×Λ−

1,2
(γ−2,1; δ

′
1, γ

−
1,2, δ

′′
2)×M0

Σ1,2
(γ−1,2; δ

′′
1, q, δ

′
2)
)

× ε−1 (δ
′
1δ

′′
1)ε

−
2 (δ

′
2δ

′′
2) · γ

−
2,1

where
• the last sum is for δi, δ

′
i, δ

′′
i words of Reeb chords of Λi such that

δi = δ′iδ
′′
i ,

• δ
Σ2,1

−0 is the dual of d
Σ2,1

0− : C(Λ−
2 ,Λ

−
1 ) → CF (Σ2,Σ1) with Lagrangian

label (Σ2,Σ1),
• b : C(Λ−

2 ,Λ
−
1 ) → C(Λ−

1 ,Λ
−
2 ) is the map defined by the count of ba-

nanas:

b(γ−1,2) =
∑

γ−

2,1

∑

δ1,δ2

#M̃1
R×Λ−

1,2
(γ−2,1; δ1, γ

−
1,2, δ2) · ε

−
1 (δ1)ε

−
2 (δ2) · γ

−
2,1

See Figure 2 for examples of pseudo-holomorphic disks which contribute to
the components of dε−1 ,ε−2

, except for d++ whose contributing disks are of the

same type of those contributing to d−−, but with boundary on R× (Λ+
1 ∪

Λ+
2 ).

Figure 2: From left to right: schematic picture of pseudo-holomorphic disks
contributing to d+−(ξ

−
2,1), d0−(ξ

−
2,1), d−−(ξ

−
2,1), d+0(q), d00(q) and d−0(q).
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Remark 7. The other components of the differential vanish for energy
reasons.

When transversality holds, it is again possible to express the dimension
of the moduli spaces above by the degree of the asymptotics. In particular,
from [6, Proposition 3.2] we have:

dimM̃
R×Λ+

1,2
(γ+2,1;β1, ξ

+
2,1,β2) = |γ+2,1|+ |ξ+2,1| − |β1| − |β2| − 1

dimM̃
R×Λ−

1,2
(γ−2,1; δ1, ζ

−
2,1, δ2) = |γ−2,1| − |ζ−2,1| − |δ1| − |δ2| − 1

dimM̃
R×Λ−

1,2
(γ−2,1; δ1, γ

−
1,2, δ2) = |γ−2,1|+ |γ−1,2| − |δ1| − |δ2|+ 1− n

dimMΣ1,2
(γ+2,1; δ1, q, δ2) = |γ+2,1| − |q| − |δ1| − |δ2|+ 1

dimMΣ1,2
(γ+2,1; δ1, ζ

−
2,1, δ2) = |γ+2,1| − |ζ−2,1| − |δ1| − |δ2|

dimMΣ1,2
(x+; δ1, q, δ2) = |x+| − |q| − |δ1| − |δ2| − 1

dimMΣ1,2
(x+; δ1, ζ

−
2,1, δ2) = |x+| − |ζ−2,1| − |δ1| − |δ2| − 2

dimMΣ1,2
(γ−1,2; δ1, q, δ2) = n+ 1− |q| − |γ−2,1| − |δ1| − |δ2| − 1

This gives that the map dε−1 ,ε−2
is of degree 1. Without the shifts in grading,

we obtain that d+0 is of degree −1, d+− and d−0 are of degree 0, d++, d00
and d−− are degree 1 maps and d0− is of degree 2.

The necessary transversality results in order to make the above moduli
spaces transversely cut out are given in [6]. Briefly, as we already saw in
the previous section, for Legendrian contact homology-type moduli spaces,
cylindrical almost complex structures on R× Y are generically regular. This
is also the case for moduli spaces of bananas, since that even if the curves in
those spaces have two positive Reeb chords asymptotics, these Reeb chords
are distinct, and so the curve is always somewhere injective.

Now, if J± are regular for Legendrian contact homology type moduli
spaces and banana moduli spaces, then moduli spaces MΣ(γ

+; γ−1 , . . . , γ
−
d )

are transversely cut out for a generic almost complex structure in
J adm
J−,J+,T (R× Y ), using results of [31, Chapter 3]. The regularity assumption

on J± permits in particular to achieve transversality for pseudo-holomorphic
curves coming from the gluing of a curve in MΣ(γ

+; γ−1 , . . . , γ
−
d ) and a curve

in MR×Λ±(γ; γ1, . . . , γd).
Finally, moduli spaces of the types

MΣ1,2
(x+; δ1, q, δ2) and MΣ1,2

(γ+2,1; δ1, γ
−
2,1, δ2)
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are transversely cut out for a generic domain dependent almost complex
structure

J : [0, 1] → J adm
J−,J+,T (R× Y )

generalizing results of [2]. The domain dependence here is just a time-
dependence because the domain of a curve is biholomorphic to a strip
R× [0, 1] with marked points on the boundary (asymptotic to pure Reeb
chords), and we want invariance of the almost complex structure by trans-
lation of the R-coordinate.

Theorem 10. [6] Given Σ1,Σ2 ⊂ R× Y exact Lagrangian cobordisms as
above,

1) d
2
ε−1 ,ε−2

= 0, and

2) The complex (Cth(Σ1,Σ2), dε−1 ,ε−2
) is acyclic.

The first point of this theorem is proven by studying breakings of pseudo-
holomorphic curves of index 1 with boundary on Σ1 ∪ Σ2, or of index 2 with
boundary on R× Λ−

1 ∪ R× Λ−
2 , and two mixed asymptotics. In Section 5.2,

we will use the same ideas to prove Theorem 1. The second point of the the-
orem comes from the fact that it is possible to displace the cobordisms in
R× Y such that Σ1 and Σ2 no longer have intersection points and such that
there are no more Reeb chords from Λ±

2 to Λ±
1 . Briefly, this is done by first

wrapping the ends of one of the two cobordisms by a Hamiltonian isotopy in
such a way that the complex we get has only intersection points generators
(no more Reeb chords) and is canonically isomorphic to the original Cthulhu
complex. Then, the invariance of the Cthulhu complex by a compactly sup-
ported Hamiltonian isotopy permits to separate the two cobordisms so that
there are no more generators, which implies that the complex vanishes, as
well as its homology.

Let us denote ∂−∞ =

(
d00 d0−
d−0 d−−

)
the submatrix of dε−1 ,ε−2

, then

0 = (dε−1 ,ε−2
)2 =




d2++ ∗+0 ∗+−

0
0

∂2
−∞


(6)

where ∗+0 = d++d+0 + d+0d00 + d+−d−0 and ∗+− = d++d+− + d+0d0− +
d+−d−−. So in particular, (C(Λ+

1 ,Λ
+
2 ), d++) is a subcomplex of the Cthulhu
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complex and

(
CF−∞(Σ1,Σ2) := CF (Σ1,Σ2)⊕ C(Λ−

1 ,Λ
−
2 )[1], ∂−∞

)

is a quotient complex. Relation (6) implies also that

d+0 + d+− : CF−∞(Σ1,Σ2) → C(Λ+
1 ,Λ

+
2 )

is a chain map, i.e. the Cthulhu complex is the cone of d+0 + d+−. This map,
that we denote now F1

21 and sometimes just F1 when the pair of cobordisms
in clear from the context, is in fact a quasi-isomorphism due to the acyclicity
of the Cthulhu complex.

4.2. Hamiltonian perturbations

Given a cobordism Λ− ≺Σ Λ+ in (R× P × R, d(etα)), we consider a special
type of Hamiltonian isotopies by which we deform Σ, in order to extract
some properties of the Cthulhu complex. More precisely, we use a Hamil-
tonian H : R× P × R → R that depends only on the real coordinate in the
symplectization, which means that H(t, p, z) = h(t), where h : R → R is a
smooth function. The associated Hamiltonian flow is by definition the flow
of the Hamiltonian vector field XH defined by ιXH

d(etα) = −dH. We can
compute that XH(t, p, z) = e−th′(t)∂z and so the flow ΦH is given by:

Φs
H : R× P × R → R× P × R

Φs
H(t, p, z) = (t, p, z + se−th′(t))

Now, since Σ is an exact Lagrangian cobordism, Φs
H(Σ) is also an exact La-

grangian cobordism. Indeed, if fΣ : Σ → R is the primitive of etα restricted
to Σ, then we have:

etα|Φs
H(Σ) = (Φs

H)∗(et(dz + β))

= et(d(z + se−th′(t)) + β)|Σ

= et(dz + se−t(h′′ − h′)dt+ β)|Σ

= etα|Σ + s(h′′ − h′)dt|Σ

So, a primitive of etα|Φs
H(Σ) is given by

fΦs
H(Σ)(t, p, z) = fΣ(t, p, z) + s(h′ − h)(t)(7)
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In particular, when the function h is for example the function hD below,
the primitive fΦs

H(Σ) given by (7) vanishes on the negative end of Φs
H(Σ).

This type of Hamiltonian isotopy is useful to wrap the cylindrical ends of
the cobordisms, and the way to wrap depends on the choice of the function
h : R → R to define the Hamiltonian. Let us describe here one type of per-
turbation (see [6] for other perturbations). Given T > 0, we define a function
hD : R → R by:

hD(t) = et for t ≤ −T − 1

hD(t) = A for t ∈ [−T, T ]

hD(t) = et −B for t ≥ T + 1

h′D(t) ≥ 0 for t ∈ [−T − 1,−T ] ∪ [T, T + 1]

where A and B are positive constants. Then we denoteHD the corresponding
Hamiltonian on R× P × R. Now we look how this Hamiltonian wraps the
cylindrical ends of a cobordism. Let Σ1 be an exact Lagrangian cobordism
and consider its image by the flow at time ϵ, Φϵ

HD
(Σ1), for a small ϵ > 0,

and denote it Σ̃2. The cobordisms Σ1, Σ̃2 are not transverse, indeed:

1) on [−T, T ]× Y they coincide,

2) Σ̃2 has cylindrical ends (−∞,−T − 1]× Λ̃−
2 and [T + 1,∞)× Λ̃+

2 ,

where Λ̃±
2 = Λ±

1 + ϵ ∂
∂z
, so the Legendrian links Λ−

1 ∪ Λ̃−
2 and Λ+

1 ∪ Λ̃+
2

are degenerate, i.e. they have an infinite number of Reeb chords.

In order to get a pair of transverse cobordisms, we perturb Σ̃2 as follows. We
explain briefly the perturbation we need and refer to [12, Section 6] for some
more detailed construction. By the Weinstein Lagrangian neighborhood the-
orem, there is a neighborhood of Σ1 symplectomorphic to a neighborhood
U0 of the 0-section of T ∗Σ1, such that Σ1 is identified with the 0-section. If
ϵ is sufficiently small, then Σ̃2 = Φϵ

HD
(Σ1) is identified with a Lagrangian in

U0 which can be seen as the graph of d(ϵHD) for the function ϵHD restricted
to Σ1. In particular, on Σ1 ∩

(
[−T, T ]× Y

)
, the graph of d(ϵHD) coincides

with the 0-section. Take Σ2 ⊂ R× Y to be the exact Lagrangian cobordism
identified with the graph of df , for f : Σ1 → R a Morse function such that:

1) f is a small perturbation of ϵHD on Σ1,

2) the critical points of f are all contained in Σ1 ∩
(
[−T, T ]× Y

)
,

3) the cylindrical ends Λ±
2 of Σ2 are small Morse perturbations of Λ̃±

2 :

there are Morse functions f± on Λ̃±
2 such that on a neighborhood of
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Λ̃±
2 contactomorphic to a neighborhood of the 0-section of J1(Λ̃±

2 ), Λ
±
2

is identified with j1(f±).

The pair (Σ1,Σ2) is now a pair of transverse exact Lagrangian cobordisms.
For a small enough Morse perturbation as above, Formula (7) gives that
every intersection point in CF (Σ1,Σ2) has negative action, we say then
that the pair (Σ1,Σ2) is directed. Such a pair of cobordisms satisfy some
properties listed in the following proposition:

Proposition 2. [6] Let (Σ1,Σ2) be a directed pair of Lagrangian cobordisms
such that Σ2 is a small perturbation of Φϵ

HD
(Σ1) as above by a Morse function

f on Σ1. Let T > 0 be such that Σi\([−T, T ]× Y ∩ Σi) are cylindrical, and
consider a domain dependent almost complex structure Jt in J adm

J−,J+,T (R×

Y ) such that J± are in J cyl
π (R× Y ). Assume moreover that A(Λ−

1 ) admits
augmentations ε−1 , ε

−
2 which induce augmentations ε+1 and ε+2 of A(Λ+

1 ),
then:

1) there are canonical isomorphisms of the Chekanov-Eliashberg algebras
(A(Λ−

1 ), ∂
−
1 ) ≃ (A(Λ−

2 ), ∂
−
2 ) and (A(Λ+

1 ), ∂
+
1 ) ≃ (A(Λ+

2 ), ∂
+
2 ), and so

in particular ε±1 and ε±2 can also be considered as augmentations of
A(Λ±

2 ) under this identification,

2) H∗
(
C(Λ−

1 ,Λ
−
2 ), d−−

)
≃ LCH∗

ε−1 ,ε−2
(Λ−

1 ), where H∗
(
C(Λ−

1 ,Λ
−
2 ), d−−

)

denotes the homology of the complex (C(Λ−
1 ,Λ

−
2 ), d−−

)
using augmen-

tations ε−1 , ε
−
2 to compute d−−,

3) H∗
(
C(Λ+

1 ,Λ
+
2 ), d++

)
≃ LCH∗

ε+1 ,ε+2
(Λ+

1 ),

4) if Jt is regular and induced by a Riemanniann metric g such that (f, g)
is a Morse-Smale pair in a neighborhood of Σ1, then HF∗(Σ1,Σ2) ≃
HMorse

n+1−∗(f) ≃ Hn+1−∗(Σ1, ∂−Σ1;Z2) ≃ H∗(Σ1, ∂+Σ1;Z2).

5. Product structure

5.1. Definition of the product

Let Λ−
i ≺Σi

Λ+
i , i = 1, 2, 3, be three transverse exact Lagrangian cobordisms,

and T > 0 such that Σi\([−T, T ]× Y ∩ Σi) are cylindrical. Recall that the
moduli spaces which are useful to define the product are of different types.
First, we need moduli spaces of pseudo-holomorphic curves with boundary
on the negative cylindrical ends of the cobordisms and with two or three
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mixed asymptotics:

M
R×Λ−

i,j
(γj,i; δi, γi,j , δi), i, j ∈ {1, 2, 3}

M
R×Λ−

1,2,3
(γ3,1; δ1, γ1,2, δ2, γ2,3, δ3)

M
R×Λ−

1,2,3
(γ3,1; δ1, γ2,1, δ2, γ2,3, δ3)

M
R×Λ−

1,2,3
(γ3,1; δ1, γ1,2, δ2, γ3,2, δ3)

M
R×Λ−

1,2,3
(γ3,1; δ1, γ2,1, δ2, γ3,2, δ3)

with γi,j ∈ R(Λ−
i ,Λ

−
j ) for 1 ≤ i, j ≤ 3. Remark that the first one is a moduli

space of bananas which already appeared in the definition of the Cthulhu
differential. The four others are moduli spaces of pseudo-holomorphic curves
having γ3,1 as a positive Reeb chord asymptotic and the other mixed chords
are positive or negative asymptotics depending on their direction.

Then we also need moduli spaces of pseudo-holomorphic curves with
boundary in the non-cylindrical parts of the cobordisms, and again with
two or three mixed asymptotics:

MΣ1,2
(x+; δ1, γ2,1, δ2)

for x+ ∈ Σ1 ∩ Σ2, and

MΣ1,2,3
(x+; δ1, x1, δ2, x2, δ3)

MΣ1,2,3
(x+; δ1, x1, δ2, γ3,2, δ3)

MΣ1,2,3
(x+; δ1, γ2,1, δ2, x2, δ3)

MΣ1,2,3
(x+; δ1, γ2,1, δ2, γ3,2, δ3)

for x+ ∈ Σ1 ∩ Σ3, and also

MΣ1,2,3
(γ1,3; δ1, x1, δ2, x2, δ3)

MΣ1,2,3
(γ1,3; δ1, γ2,1, δ2, x2, δ3)

MΣ1,2,3
(γ1,3; δ1, x1, δ2, γ3,2, δ3)

where γ1,3 is a negative Reeb chord asymptotic.
We achieve transversality for these moduli spaces using domain depen-

dent almost complex structures. First, remark that moduli spaces of curves
with boundary on the negative cylindrical ends above are transversely cut
out for a generic almost complex structure in J cyl(R× Y ). Indeed, even if
some curves have several positive asymptotics, these are all distinct so it is
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always possible to find an injective point (same argument as for Legendrian
contact homology type moduli spaces).

Now, consider J± ∈ J cyl(R× Y ) regular almost complex structures for
the moduli spaces of curves with boundary on the positive and negative
cylindrical ends respectively, with two or three mixed Reeb chords asymp-
totics and negative pure Reeb chords asymptotics (in fact, we do not need
here regularity of J+ but in any case it will be useful in Section 5.3). We
know that Cthulhu moduli spaces of curves with boundary on non-cylindrical
parts of the cobordisms are transversely cut out for a generic time-dependent
almost complex structure Jt : [0, 1] → J adm

J−,J+,T (R× Y ). So, let us denote by

J
Σi,Σj

t , for i, j ∈ {1, 2, 3}, a regular time-dependent almost complex struc-
ture for Cthulhu moduli spaces associated to the pair of cobordisms (Σi,Σj),

with the convention that JΣi,Σi

t is a constant path. Then, given a consis-
tent universal choice of strip-like ends, we use Seidel’s result [37, Section
(9k)] to deduce that a universal domain dependent almost complex struc-
ture J2,Σ : S3 → J adm

J−,J+,T (R× Y ) can be perturb to a regular one for the
moduli spaces above with boundary on non cylindrical parts and three mixed
asymptotics.

This means that we can find a regular domain dependent almost complex
structure with values in J adm

J−,J+,T (R× Y ) such that all the moduli spaces we
have encountered until now are simultaneously smooth manifolds.

Remark 8. In all the section, as before, we define maps by a count of rigid
pseudo-holomorphic curves. This count will always be modulo 2.

Let us assume that the Chekanov-Eliashberg algebras A(Λ−
i ), i = 1, 2, 3,

admit augmentations ε−i . We want to define a map:

m2 : CF ∗
−∞(Σ2,Σ3)⊗ CF ∗

−∞(Σ1,Σ2) → CF ∗
−∞(Σ1,Σ3)

linear in each variable. This map decomposes as m2 = m0 +m−, where m0

takes values in CF ∗(Σ1,Σ3) and m− takes values in C∗(Λ−
1 ,Λ

−
3 ). In order

to do this, we define these maps on pairs of generators, which means that
we must define the eight following components:

m0
00 : CF ∗(Σ2,Σ3)⊗ CF ∗(Σ1,Σ2) → CF ∗(Σ1,Σ3)

m−
00 : CF ∗(Σ2,Σ3)⊗ CF ∗(Σ1,Σ2) → C∗(Λ−

1 ,Λ
−
3 )

m0
0− : CF ∗(Σ2,Σ3)⊗ C∗(Λ−

1 ,Λ
−
2 ) → CF ∗(Σ1,Σ3)

m−
0− : CF ∗(Σ2,Σ3)⊗ C∗(Λ−

1 ,Λ
−
2 ) → C∗(Λ−

1 ,Λ
−
3 )

m0
−0 : C

∗(Λ−
2 ,Λ

−
3 )⊗ CF ∗(Σ1,Σ2) → CF ∗(Σ1,Σ3)
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m−
−0 : C∗(Λ−

2 ,Λ
−
3 )⊗ CF ∗(Σ1,Σ2) → C∗(Λ−

1 ,Λ
−
3 )

m0
−− : C∗(Λ−

2 ,Λ
−
3 )⊗ C∗(Λ−

1 ,Λ
−
2 ) → CF ∗(Σ1,Σ3)

m−
−− : C∗(Λ−

2 ,Λ
−
3 )⊗ C∗(Λ−

1 ,Λ
−
2 ) → C∗(Λ−

1 ,Λ
−
3 )

Let us begin by m0. We set:

m0
00(x2, x1) =

∑

x+,δi

#M0
Σ123

(x+; δ1, x1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · x

+

m0
0−(x2, γ1) =

∑

x+,δi

#M0
Σ123

(x+; δ1, γ1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · x

+

m0
−0(γ2, x1) =

∑

x+,δi

#M0
Σ123

(x+; δ1, x1, δ2, γ2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · x

+

m0
−−(γ2, γ1) =

∑

x+,δi

#M0
Σ123

(x+; δ1, γ1, δ2, γ2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · x

+

where the sums are for x+ ∈ Σ1 ∩ Σ3 and for each i ∈ {1, 2, 3}, δi is a
word of Reeb chords of Λ−

i . Then, to define m− we first introduce inter-
mediate maps. We recall that there is a canonical identification of com-
plexes CFn+1−∗(Σb,Σa) = CF ∗(Σa,Σb) and we denote C∗(Λ

−
a ,Λ

−
b ) the dual

of C∗(Λ−
a ,Λ

−
b ). We consider a map:

f (2) : CF−∞(Σ2,Σ3)⊗ CF−∞(Σ1,Σ2) → Cn−1−∗(Λ
−
3 ,Λ

−
1 )

defined on each pair of generators by:

f (2)(x2, x1) =
∑

γ1,3,δi

#M0
Σ1,2,3

(γ1,3; δ1, x1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

f (2)(x2, γ1) =
∑

γ1,3,δi

#M0
Σ1,2,3

(γ1,3; δ1, γ1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

f (2)(γ2, x1) =
∑

γ1,3,δi

#M0
Σ1,2,3

(γ1,3; δ1, x1, δ2, γ2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

f (2)(γ2, γ1) = 0

where x2 ∈ CF (Σ2,Σ3), x1 ∈ CF (Σ1,Σ2), γ2 ∈ R(Λ−
3 ,Λ

−
2 ) and γ1 ∈

R(Λ−
2 ,Λ

−
1 ) (see Figure 3). This map is the analogue of the map

δΣ21

−0 : CFn+1−∗(Σ2,Σ1) = CF ∗(Σ1,Σ2) → Cn−1−∗(Λ
−
2 ,Λ

−
1 )

with three mixed asymptotics instead of two, where δΣ21

−0 is the dual of dΣ21

0− :
C∗−2(Λ−

2 ,Λ
−
1 ) → CF ∗(Σ2,Σ1) (see Section 4.1). The Lagrangian label being
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given by the asymptotics, we will now denote by f (1) the maps δΣ21

−0 and δΣ32

−0 ,

which we extend to the whole complex CF−∞(Σi,Σj) by setting f (1)(γj,i) =
γj,i for a mixed Reeb chord. Then we generalize the banana map b with a

Figure 3: Curves contributing to f (2)(x2, x1) and f (2)(x2, γ1).

map b(2) defined by a count of pseudo-holomorphic disks with three mixed
asymptotics. Let us denote C(Λ−

i ,Λ
−
j ) = C∗(Λi,Λj)⊕ Cn−1−∗(Λ

−
j ,Λ

−
i ), we

define:

b(2) : C(Λ−
2 ,Λ

−
3 )⊗ C(Λ−

1 ,Λ
−
2 ) → C∗(Λ−

1 ,Λ
−
3 )

by

b(2)(γ2,3, γ1,2) =
∑

γ3,1,δi

#M̃1
R×Λ−

123
(γ3,1; δ1, γ1,2, δ2, γ2,3, δ3)

× ε−1 (δ1)ε
−
2 (δ2)ε

−
3 (δ3) · γ3,1

b(2)(γ2,3, γ2,1) =
∑

γ3,1,δi

#M̃1
R×Λ−

123
(γ3,1; δ1, γ2,1, δ2, γ2,3, δ3)

× ε−1 (δ1)ε
−
2 (δ2)ε

−
3 (δ3) · γ3,1

b(2)(γ3,2, γ1,2) =
∑

γ3,1,δi

#M̃1
R×Λ−

123
(γ3,1; δ1, γ1,2, δ2, γ3,2, δ3)

× ε−1 (δ1)ε
−
2 (δ2)ε

−
3 (δ3) · γ3,1

b(2)(γ3,2, γ2,1) =
∑

γ3,1,δi

#M̃1
R×Λ−

123
(γ3,1; δ1, γ2,1, δ2, γ3,2, δ3)

× ε−1 (δ1)ε
−
2 (δ2)ε

−
3 (δ3) · γ3,1

with γi,j ∈ R(Λ−
i ,Λ

−
j ) and words of Reeb chords δi of Λ

−
i . Figure 4 shows

examples of curves counted by b(2).

Remark 9. The map b(2) restricted to C∗(Λ−
2 ,Λ

−
3 )⊗ C∗(Λ−

1 ,Λ
−
2 ) is in fact

equal to the product µ2
ε−3,2,1

in the augmentation category Aug−(Λ
−
1 ∪ Λ−

2 ∪

Λ−
3 ) restricted to this sub-complex, where ε−3,2,1 is the diagonal augmentation

of A(Λ−
1 ∪ Λ−

2 ∪ Λ−
3 ) built from ε−1 , ε

−
2 and ε−3 (Section 3.2).
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Figure 4: Curves contributing to b(γ1,2), b
(2)(γ2,3, γ1,2), b

(2)(γ3,2, γ1,2) and
b(2)(γ3,2, γ2,1).

Now we define the mapm− by the following formula. For a pair (a2, a1) ∈
CF∞(Σ2,Σ3)⊗ CF−∞(Σ1,Σ2), we set:

m−(a2, a1) = b ◦ f (2)(a2, a1) + b(2)(f (1)(a2), f
(1)(a1))

More precisely, for each pair of asymptotics, we have:

m−
00(x2, x1) = b ◦ f (2)(x2, x1) + b(2)(f (1)(x2), f

(1)(x1))

m−
0−(x2, γ1) = b ◦ f (2)(x2, γ1) + b(2)(f (1)(x2), γ1)

m−
−0(γ2, x1) = b ◦ f (2)(γ2, x1) + b(2)(γ2, f

(1)(x1))

m−
−−(γ2, γ1) = b(2)(γ2, γ1)

Contrary to the definition of m0, when at least one input is an intersection
point we need to count broken curves instead of just one type of pseudo-
holomorphic disk, in order to associate a positive Reeb chord in C∗(Λ−

1 ,Λ
−
3 )

to the two inputs. These broken curves have two levels, one level contains
curves with boundary on the non cylindrical parts of the cobordisms, and
the other level contains a curve with boundary on the negative cylindrical
ends of the cobordisms. These configurations look like pseudo-holomorphic
buildings but they are not because their components cannot be glued, so
in particular, they are rigid. These configurations are part of what we will
call unfinished pseudo-holomorphic buildings, for which we now give a def-
inition in a general setting. This definition is very close to the definition
of pseudo-holomorphic building given in Section 2.6. The main difference is
that after boundary connected sum of the components at nodes, the remain-
ing asymptotics contain a positive Reeb chord in the bottom level and so
the gluing results do not apply. As in Section 2.6, consider d+ 1 transverse
exact Lagrangian cobordisms Λ−

i ≺Σi
Λ+
i , and the following Lagrangian la-

bels Σ = (Σ1, . . . ,Σd+1) and R× Λ± = (R× Λ±
1 , . . . ,R× Λ±

d+1). Recall that
given a planar rooted tree T with d− 1 leaves, d ≥ 2, we associate to each
interior vertex v a triple (Srv , Iv, Lv). Let us distinguish this time one vertex
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that we denote v0 which is the unique interior vertex connected to the root
of T . Again, the set of all nodes

⋃
v

Iv contains an even number of elements

organized in pair and we denote

⋃

v

Iv = {p1, p̄1} ∪ {p2, p̄2} ∪ · · · ∪ {pk, p̄k}

the partition of
⋃

Iv in such pairs, where k is the number of interior edges
of T .

Definition 5. Given integers k−, k+ ≥ 0, an unfinished pseudo-holomorphic
building of height k−|1|k+ in R× Y with boundary on Σ is the data of:

1) a planar rooted tree T and the corresponding union of triples⋃
v

(Srv , Iv, Lv) and the distinguished vertex v0,

2) a choice of asymptotic in A(Σ) for each node in
⋃

Iv. We require that
for each pair {pj , p̄j}, the same asymptotic is assigned to pj and p̄j ,

3) a choice of asymptotic for each marked point in
⋃

Lv,
4) a pair (uv, ρv) for each interior vertex v ̸= v0 of T , where uv : Srv →

R× Y is a pseudo-holomorphic disk asymptotic to the given asymp-
totics assigned to elements in Iv ∪ Lv, and ρv is the floor of v, satisfying
−k− ≤ ρv ≤ k+,

5) a pair (uv0
, ρv0

) where uv0
: Srv0

→ R× Y is a pseudo-holomorphic disk
asymptotic to the given asymptotics assigned to elements in Iv0

∪ Lv0
,

in the bottom level (i.e. ρv0
< 0), so in particular uv0

is only asymptotic
to Reeb chords (no intersection points).

These data are required to satisfy some conditions. First, let us
denote v1, . . . , vj the interior vertices of T connected to v0 respectively
by edges that we denote e1, . . . , ej . Add a vertex lei on each edge ei, in

particular we have |lei | = 2. Denote T̂ the planar rooted tree obtained
from T by adding these vertices. Consider now the subtrees T1, . . . , Tj

of T̂ rooted at lei and containing all the descendants of lei (under the
canonical orientation from the root to the leaves given by a rooted
tree). Remark that then T0 = T̂\

⋃
j Tj is a planar rooted tree with

one interior vertex, v0, leaves le1 , . . . , lej , a root l0 (the original root of
T ) and potentially other leaves of the original tree T that we denote
l1, . . . , ls. The numbering is not significant here. Remark that each lei
corresponds to a pair of nodes of T that we denote without loss of
generality {pi, p̄i}, and we assume pi ∈ Ivi

and p̄i ∈ Iv0
. The following

conditions are required:
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a) each floor −k− ≤ ρ ≤ k+ admits at least one non trivial disk,
b) each tree Ti associated with the given asymptotic data and pseudo-

holomorphic disks chosen above gives a pseudo-holomorphic build-
ing,

c) Srv0
has boundary punctures at p̄i, 1 ≤ i ≤ j, and boundary punc-

tures corresponding to l0 and l1, . . . , ls that we still denote l0, . . . ,
ls ∈ Lv0

by abuse of notation, such that
(i) uv0

has a positive Reeb chord asymptotic at l0 and negative
Reeb chord asymptotics at li for 1 ≤ i ≤ s,

(ii) if uvi
has a positive (resp. negative) asymptotic to a Reeb chord

γ ∈ A(Σ) at the node pi, then uv0
must have a negative (resp.

positive) asymptotic to γ at p̄i, and we have ρvi
= ρv0

− 1 (resp.
ρvi

= ρv0
+ 1).

Remark 10. Although the previous definition is quite long and compli-
cated, remark that an unfinished pseudo-holomorphic building is an object
which satisfies the conditions of Definition 2 except the condition (g), and
has the following additional properties:

• the middle level is non-empty,

• the component uv0
lives in the bottom level and has exactly one posi-

tive Reeb chord asymptotic which is not a node,

• the other pseudo-holomorphic disks defining the building (but not uv0
)

satisfy the condition (g) of Definition 2.

Next, we define the notion of equivalence of unfinished pseudo-
holomorphic buildings. The definition is actually the same as Definition 3
for pseudo-holomorphic buildings.

Definition 6 (Equivalence of unfinished pseudo-holomorphic build-
ings). Two unfinished pseudo-holomorphic buildings are equivalent if they
become the same after the removal of an appropriate number of trivial cylin-
ders together with the obvious deformation of the underlying planar rooted
tree, to each of them in the bottom and top levels. In other words, two
unfinished pseudo-holomorphic buildings are equivalent if they become the
same after:

• removing all possible trivial cylinders in the bottom and top levels
attached to asymptotics assigned to ∪Lv,
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• removing simultaneously trivial cylinders attached to all the positive
ends and/or all the negative ends corresponding to nodes in ∪Iv of a
component in the bottom or top level.

See Figure 5 for an example of 4 equivalent unfinished pseudo-
holomorphic buildings.

Remark 11. The trees associated to equivalent unfinished pseudo-
holomorphic buildings are the same up to the addition/removal of vertices
of valency 2.

Remark 12. Observe that condition (5)(a) in Definition 5 implies that we
do not consider any unfinished building with boundary only on the nega-
tive ends R× Λ−, because such an unfinished building would actually be
equivalent to a pseudo-holomorphic building as defined in Section 2.6.

0 0 0 0

0 0 0 0

Figure 5: Four equivalent unfinished pseudo-holomorphic buildings, where
the ”0” indicates a trivial strip.

Roughly speaking, one can imagine unfinished buildings as being build-
ings where we have removed some component in the middle level in such a
way that it is not a building anymore. Thus the map m− counts unfinished
pseudo-holomorphic buildings. On Figures 6, 7, 8 and 9 are schematized the
different types of curves and unfinished buildings that contribute to m2.

Remark 13. By [6, Proposition 3.2] for curves with boundary on three
transverse exact Lagrangian cobordisms instead of two, we can express the
dimension of the moduli spaces involved in the definition of m2 by the degree
of the asymptotics. Then it is not hard to check that m2 is a degree 0 map,
with the shift in grading for Reeb chords (see Section 4).
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Figure 6: Left: curve contributing to m0
00(x2, x1); right: curves contributing

to m−
00(x2, x1).

Figure 7: Left: curve contributing to m0
0−(x2, γ1); right: curves contributing

to m−
0−(x2, γ1)

Figure 8: Left: curve contributing to m0
−0(γ2, x1); right: curves contributing

to m−
−0(γ2, x1)

5.2. Proof of Theorem 1

In this section, we prove that m2 satisfies the Leibniz rule:

m2(−, ∂−∞) +m2(∂−∞,−) + ∂−∞ ◦m2(−,−) = 0



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1695 — #49
✐

✐

✐

✐

✐

✐

Product structures in Floer theory 1695

Figure 9: Left: curve contributing to m0
−−(γ2, γ1); right: curve contributing

to m−
−−(γ2, γ1).

In order to do this, we show that the above relation is satisfied for each pair
of generators in CF−∞(Σ2,Σ3)⊗ CF−∞(Σ1,Σ2). For example, for (x2, x1) ∈
CF (Σ2,Σ3)⊗ CF (Σ1,Σ2), this gives:

m2

(
x2, ∂−∞(x1)

)
+m2

(
∂−∞(x2), x1

)
+ ∂−∞ ◦m2(x2, x1) = 0

⇔ m2

(
x2, (d00 + d−0)(x1)

)
+m2

(
(d00 + d−0)(x2), x1

)

+ (d00 + d−0) ◦m
0(x2, x1) + (d0− + d−−) ◦m

−(x2, x1) = 0

⇔
(
m0
(
x2, (d00 + d−0)(x1)

)
+m0

(
(d00 + d−0)(x2), x1

)

+ d00 ◦m
0(x2, x1) + d0− ◦m−(x2, x1)

)

+
(
m−
(
x2, (d00 + d−0)(x1)

)
+m−

(
(d00 + d−0)(x2), x1

)

+ d−0 ◦m
0(x2, x1) + d−− ◦m−(x2, x1)

)
= 0

and in the last equality the two terms into big brackets must vanish because
the first one is an element in CF (Σ1,Σ3) and the second one is an element
in C(Λ−

1 ,Λ
−
3 ). Thus, considering each pair of generators we obtain in total

eight relations to prove which are the following.

1. For a pair (x2, x1) ∈ CF (Σ2,Σ3)⊗ CF (Σ1,Σ2):

• m0
00(x2, d00(x1)) +m0

00(d00(x2), x1) + d00 ◦m
0
00(x2, x1)(8)

+m0
0−(x2, d−0(x1)) +m0

−0(d−0(x2), x1) + d0− ◦m−
00(x2, x1) = 0

• m−
00(x2, d00(x1)) +m−

00(d00(x2), x1) +m−
0−(x2, d−0(x1))(9)

+m−
−0(d−0(x2), x1) + d−0 ◦m

0
00(x2, x1) + d−− ◦m−

00(x2, x1) = 0



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1696 — #50
✐

✐

✐

✐

✐

✐

1696 Noémie Legout

2. For a pair (x2, γ1) ∈ CF (Σ2,Σ3)⊗ C(Λ−
1 Λ

−
2 ):

• m0
00(x2, d0−(γ1)) +m0

0−(d00(x2), γ1) + d00 ◦m
0
0−(x2, γ1)(10)

+m0
0−(x2, d−−(γ1)) +m0

−−(d−0(x2), γ1) + d0− ◦m−
0−(x2, γ1) = 0

• m−
00(x2, d0−(γ1)) +m−

0−(d00(x2), γ1) +m−
0−(x2, d−−(γ1))(11)

+m−
−−(d−0(x2), γ1) + d−0 ◦m

0
0−(x2, γ1) + d−− ◦m−

0−(x2, γ1) = 0

3. For a pair (γ2, x1) ∈ C(Λ−
2 ,Λ

−
3 )⊗ CF (Σ1,Σ2):

• m0
−0(γ2, d00(x1)) +m0

00(d0−(γ2), x1) + d00 ◦m
0
−0(γ2, x1)(12)

+m0
−−(γ2, d−0(x1)) +m0

−0(d−−(γ2), x1) + d0− ◦m−
−0(γ2, x1) = 0

• m−
−0(γ2, d00(x1)) +m−

00(d0−(γ2), x1) +m−
−−(γ2, d−0(x1))(13)

+m−
−0(d−−(γ2), x1) + d−0 ◦m

0
−0(γ2, x1) + d−− ◦m−

−0(γ2, x1) = 0

4. For a pair (γ2, γ1) ∈ C(Λ−
2 ,Λ

−
3 )⊗ C(Λ−

1 ,Λ
−
2 ):

• m0
−0(γ2, d0−(γ1)) +m0

0−(d0−(γ2), γ1) + d00 ◦m
0
−−(γ2, γ1)(14)

+m0
−−(γ2, d−−(γ1)) +m0

−−(d−−(γ2), γ1) + d0− ◦m−
−−(γ2, γ1) = 0

• m−
−−(γ2, d−−(γ1)) +m−

−−(d−−(γ2), γ1) + d−− ◦m−
−−(γ2, γ1) = 0(15)

To obtain these relations, we study the different types of pseudo-
holomorphic buildings involved in the definition of each term appearing in
the relations. Each curve in these buildings are rigid because the Cthulhu
differential and the map m2 are defined by a count of rigid configurations.
This means that the curves are of index 0 if their boundary is on non-
cylindrical Lagrangians, and of index 1 if their boundary is on the negative
cylindrical ends of the cobordisms. Compactness and gluing results imply
that these broken curves are in bijection with elements in the boundary of
the compactification of some moduli spaces. We recall below some properties
that must be satisfied by the pseudo-holomorphic buildings we will consider
here:

1) each curve in a pseudo-holomorphic building must have positive en-
ergy, so for example each component with only Reeb chords asymp-
totics must have at least one positive Reeb chord asymptotic. For
curves with also intersection points asymptotics, as the action is inde-
pendent of the label, it is possible to have curves with only negative
action asymptotics, but in any case the energy must be positive (see
Section 2.5 and Subsection 5.2.4 below),
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2) each curve has a non negative Fredholm index because of the regularity
of the almost complex structure,

3) the following relation on indices must be satisfied: if u1, . . . , uk are
curves forming a pseudo-holomorphic building, the glued solution u
has index given by ind(u) = ν +

∑
i ind(ui), where ν is the number of

pair of nodes asymptotic to intersection points (Section 2.6).

0

0

Figure 10: Pseudo-holomorphic building contributing to m0
00(x2, d00(x1)).

5.2.1. Relation (8). The first term appearing in this relation is
m0

00(x2, d00(x1)). For every intersection point x+ ∈ Σ1 ∩ Σ3, the coefficient
⟨m0

00(x2, d00(x1)), x
+⟩ is defined by a count of pseudo-holomorphic build-

ings whose components are two index-0 curves with boundary on Σ1 ∪
Σ2 ∪ Σ3, which have a common asymptotic at an intersection point q ∈
CF (Σ1,Σ2). One curve contributes to ⟨d00(x1), q⟩ and the other contributes
to ⟨m0

00(x2, q), x
+⟩ (see Figure 10, where the numbers in the curves indicate

the Fredholm index).
The two curves can be glued together along q and the resulting curve

is an index-1 curve in the moduli space M1
Σ123

(x+; δ1, x1, δ2, x2, δ3). This
implies that the holomorphic buildings contributing to m0

00(x2, d00(x1)) are
in the boundary of the compactification of this moduli space. In fact, each
term of the Relation (8) is defined by a count of holomorphic buildings whose
components can be glued to give a curve in M1

Σ123
(x+; δ1, x1, δ2, x2, δ3).

Thus now we look at all the possible breakings that can occur for a one
parameter family of curves in this dimension 1 moduli space. The curve can
break on:

1) an intersection point in Σ1 ∩ Σ2, Σ2 ∩ Σ3, or Σ3 ∩ Σ1, giving a pseudo-
holomorphic building with one level containing two curves with a com-
mon asymptotic at this intersection point,

2) a Reeb chord, giving a building of height 1|1|0, the middle level contain-
ing index 0 curves with boundary on Σ1 ∪ Σ2 ∪ Σ3, the bottom level
containing an index-1 curve with boundary on R× (Λ−

1 ∪ Λ−
2 ∪ Λ−

3 ).
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0

1
0 0

1

Figure 11: ∂-breaking of a curve in M1(x+; δ1, x1, δ2, x2).

Remark 14. In the second case, if the curve breaks on a pure Reeb chord
γ ∈ R(Λ−

i ) for i ∈ {1, 2, 3}, this is called a ∂-breaking (see Figure 11). One
component of such a broken curve contributes to ∂i(γ), where ∂i is the
differential of the Legendrian contact homology of Λ−

i . We denote by

M
∂
(x+; δ1, x1, δ2, x2, δ3) the union of all the ∂-breakings obtained as de-

generation of curves in M1
Σ123

(x+; δ1, x1, δ2, x2, δ3). Now, the Cthulhu dif-
ferential and the maps involved in the definition of the product m2 are
defined by a count of elements in some moduli spaces of curves with two
or three mixed asymptotics and every possible words of pure Reeb chords
asymptotics δi. Thus, the ∂-breakings on a chord γ for every possible words
of pure chords δi will contain all the curves contributing to ∂i(γ). Then, in
the definition of the Cthulhu differential and the product, pure chords are
augmented by ε−i and by definition ε−i ◦ ∂i = 0, so this means that the total
contribution of ∂-breakings vanishes.

The boundary of the compactification of M1
Σ123

(x+; δ1, x1, δ2, x2, δ3) can be
decomposed as follows:

∂M1
Σ123

(x+; δ1, x1, δ2, x2, δ3) = M
∂
(x+, δ1, x1, δ2, x2, δ3)⋃

p∈Σ1∩Σ2

δ′
1δ

′′
1=δ1,δ

′
2δ

′′
2=δ2

M(x+; δ′1, p, δ
′′
2, x2, δ3)×MΣ12

(p; δ′′1, x1, δ
′
2)

⋃

q∈Σ2∩Σ3

δ′
2δ

′′
2=δ2,δ

′
3δ

′′
3=δ3

M(x+; δ1, x1, δ
′
2, q, δ

′′
3)×MΣ23

(q; δ′′2, x2, δ
′
3)

⋃

r∈Σ1∩Σ3

δ′
1δ

′′
1=δ1,δ

′
3δ

′′
3=δ3

MΣ13
(x+; δ′1, r, δ

′′
3)×M(r; δ′′1, x1, δ2, x2, δ

′
3)
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⋃
M(x+; δ′1, ξ2,1, δ

′′′
2 , x2, δ3)× M̃(ξ2,1; δ

′′
1, ξ1,2, δ

′′
2)×MΣ12

(ξ1,2; δ
′′′
1 , x1, δ

′
2)⋃

M(x+; δ1, x1, δ
′
2, ξ3,2, δ

′′′
3 )× M̃(ξ3,2; δ

′′
2, ξ2,3, δ

′′
3)×MΣ23

(ξ2,3; δ
′′′
2 , x2, δ

′
3)⋃

MΣ13
(x+; δ′1, ξ3,1, δ

′′′
3 )× M̃(ξ3,1; δ

′′
1, ξ1,3, δ

′′
3)×M(ξ1,3; δ

′′′
1 , x1, δ2, x2, δ

′
3)⋃

MΣ13
(x+; δ′1, ξ3,1, δ

′′′
3 )× M̃(ξ3,1; δ

′′
1, ξ1,2, δ

′′
2, ξ2,3, δ

′′
3)

×MΣ12
(ξ1,2; δ

′′′
1 , x1, δ

′
2)×MΣ23

(ξ2,3; δ
′′′
2 , x2, δ

′
3)

where the δ′i, δ
′′
i , δ

′′′
i are words of Reeb chords of Λ−

i such that δ′iδ
′′
i = δi for

the three first unions, and δ′iδ
′′
i δ

′′′
i = δi in the four last unions where we sum

also respectively for:

• ξ1,2 ∈ R(Λ−
1 ,Λ

−
2 ), ξ2,1 ∈ R(Λ−

2 ,Λ
−
1 ),

• ξ3,1 ∈ R(Λ−
3 ,Λ

−
1 ), ξ1,3 ∈ R(Λ−

1 ,Λ
−
3 ),

• ξ3,2 ∈ R(Λ−
3 ,Λ

−
2 ), ξ2,3 ∈ R(Λ−

2 ,Λ
−
3 ),

• ξ3,1 ∈ R(Λ−
3 ,Λ

−
1 ), ξ2,3 ∈ R(Λ−

2 ,Λ
−
3 ), ξ1,2 ∈ R(Λ−

1 ,Λ
−
2 ).

See Figure 12 for a schematic picture of the above pseudo-holomorphic build-
ings (except the ∂-breakings because we do not draw the pure Reeb chords).
From this, we can deduce Relation (8). Indeed, there is a one-to-one corre-

0

0 0

0

1 1

0

0

0

0
0

0

1

0 0 0

1

0

0

Figure 12: Pseudo-holomorphic buildings in the boundary of the compacti-
fication of M1(x+; δ−1 , x1, δ

−
2 , x2, δ

−
3 ).

spondence between buildings involved in the definition of each term in Rela-
tion (8) (from left to right) and buildings in ∂M1

Σ123
(x+; δ1, x1, δ2, x2, δ3)

(from left to right on Figure 12), except that the last term of Relation (8)
is defined by a count of the two last types of buildings at the right of the
figure. Moreover, M1

Σ123
(x+; δ1, x1, δ2, x2, δ3) is a compact 1-dimensional

manifold so its boundary consists of an even number of points, hence the
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count of such points vanishes over Z2 and we get:

m0
00(x2, d00(x1)) +m0

00(d00(x2), x1) + d00 ◦m
0
00(x2, x1)

+m0
0−(x2, d−0(x1)) +m0

−0(d−0(x2), x1)

+ d0− ◦m−
00(x2, x1) = 0

5.2.2. Relation (9). The first term of Relation (9) is m−
00(x2, d00(x1)).

For each Reeb chord γ3,1 ∈ R(Λ−
3 ,Λ

−
1 ), the coefficient ⟨m−

00(d00(x2), x1), γ3,1⟩
is defined by a count of unfinished buildings of two types, as we saw in Sec-
tion 5.1 for the definition of m−. These unfinished buildings are of height
1|1|0 and the components in the middle level form a pseudo-holomorphic
building so its components can be glued (see Figure 13). Indeed, the curves
in the middle level glue together at an intersection point to produce unfin-
ished pseudo-holomorphic buildings of height 1|1|0 of two types. These live
in the following products of moduli spaces:

M̃1
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M1

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)

M̃1
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M1
Σ12

(γ1,2;β1, x1,β2)×M0
Σ23

(γ2,3; δ2, x2, δ3)

Similarly to the previous relation, we will study degeneration of curves

0

0

0

0

0

1 1

Figure 13: Unfinished buildings contributing to ⟨m−
00(x2, d00(x1)), γ3,1⟩.

in these products of moduli spaces. However, these are not the only one we
have to consider. Indeed, the second term of Relation (9) is m−

00(d00(x2), x1),
and analogously to the first term, unfinished pseudo-holomorphic buildings
contributing to ⟨m−

00(x2, d00(x1)), γ3,1⟩ for a Reeb chord γ3,1 ∈ R(Λ−
3 ,Λ

−
1 )

have a pseudo-holomorphic building middle level whose components can be
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glued. After gluing, we get unfinished buildings in the following products:

M̃1
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M1

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)

M̃1
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M0
Σ12

(γ1,2;β1, x1,β2)×M1
Σ23

(γ2,3; δ2, x2, δ3)

Observe that the first product type is the same as one we already obtained
above, but the second is different. Let us consider now the third term of
Relation (9), which is by definition a sum

m−
−0(x2, d−0(x1)) = b ◦ f (2)(x2, d−0(x1)) + b(2)(f (1)(x2), d−0(x1))

The first term of this sum counts unfinished buildings of height 2|1|0 such
that the components in the middle level and on floor −1 are curves contribut-
ing to f (2)(x2, d−0(x1)) and form a pseudo-holomorphic building of height
1|1|0. On floor −2 there is one curve contributing to the map b. The second
term, b(2)(f (1)(x2), d−0(x1)), also counts unfinished holomorphic buildings of
height 2|1|0 but this time the components in the bottom level on floors −2
and −1 give a holomorphic building of height 2|0|0. Gluing the components
of these buildings, we get unfinished buildings in the following products (see
Figure 14):

M̃1
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M1

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)

M̃2
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M0
Σ12

(γ1,2;β1, x1,β2)×M0
Σ23

(γ2,3; δ2, x2, δ3)

Again, we already got the first type of product but the second product
is a new one we will have to study. Then, the fourth term of Relation (9),
m−

0−(d−0(x2), x1)), is symmetric to the third and so counts unfinished build-
ings such that some levels can be glued to give unfinished buildings in the
same products of moduli spaces as above (for study of the third term). The
fifth term is d−0 ◦m

0
00(x2, x1). The middle level of unfinished buildings con-

tributing to this term is a pseudo-holomorphic building with two curves
which glue together at an intersection point in Σ1 ∩ Σ3. After gluing, we get
unfinished holomorphic buildings in the product:

M̃1
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M1

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)
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0

0

1

1

1

1

0

2

0

0

0

1

0

01

Figure 14: Unfinished pseudo-holomorphic buildings contributing to the co-
efficient ⟨m−

−0(x2, d−0(x1)), γ3,1⟩ and gluing of some levels.

Finally, the last term of the relation, d−− ◦m−
00(x2, x1), counts unfinished

buildings of height 2|1|0 of two types, such that the components in the
bottom level on floors −2 and −1 form a holomorphic buildings of height
2|0|0. Gluing these components, we get unfinished buildings in the products:

M̃2
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M0

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)

M̃2
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M0
Σ12

(γ1,2;β1, x1,β2)×M0
Σ23

(γ2,3; δ2, x2, δ3)

Now, in order to obtain Relation (9), we need to study the boundary of the
compactification of each product of moduli spaces appearing above, where
all the broken curves that are involved in the definition of each term of the
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relation live. So, to sum up, we must study the boundary of the compacti-
fication of the following products:

M̃1
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M1

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)(16)

M̃2
R×Λ−

13
(γ3,1; ξ1, γ1,3, ξ3)×M0

Σ123
(γ1,3; δ1, x1, δ2, x2, δ3)(17)

M̃1
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)(18)

×M0
Σ12

(γ1,2;β1, x1,β2)×M1
Σ23

(γ2,3; δ2, x2, δ3)

M̃1
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)(19)

×M1
Σ12

(γ1,2;β1, x1,β2)×M0
Σ23

(γ2,3; δ2, x2, δ3)

M̃2
R×Λ−

123
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)(20)

×M0
Σ12

(γ1,2;β1, x1,β2)×M0
Σ23

(γ2,3; δ2, x2, δ3)

In these products, moduli spaces of index-0 curves with boundary on non-
cylindrical Lagrangians are compact 0-dimensional manifolds, as well as the
quotient of moduli spaces of index-1 curves with boundary on the negative
cylindrical ends of the Lagrangian cobordisms. On the other hand, mod-
uli spaces of index-1 curves with boundary on non-cylindrical Lagrangians
are non compact 1-dimensional manifolds, as well as the quotient of mod-
uli spaces of index-2 curves with boundary on cylindrical Lagrangians. By
compactness results, these 1-dimensional moduli spaces can be compactified
and the boundary of the compactification consists of pseudo-holomorphic
buildings with rigid components. Thus, we need to describe the followings
spaces:

1. ∂M1(γ1,3; δ1, x1, δ2, x2, δ3),

2. ∂M2(γ3,1; ξ1, γ1,3, ξ3),

3. ∂M1(γ2,3; δ2, x2, δ3),

4. ∂M1(γ1,2;β1, x1,β2),

5. ∂M2(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

where we write M2 instead of M̃2 = (M2/R) to simplify notation for the
compactification of the quotient of a moduli space of index-2 curves with
boundary on cylindrical Lagrangians. Once we understand the boundaries of
the compactified moduli spaces above, we understand all the broken curves
appearing as degeneration of unfinished buildings in the products (16), (17),
(18), (19) and (20).
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1. ∂M1(γ1,3; δ1, x1, δ2, x2, δ3): the different pseudo-holomorphic buildings
in this space are listed below, where the unions are, depending on cases,
over intersection points p ∈ Σ1 ∩ Σ2, q ∈ Σ2 ∩ Σ3, r ∈ Σ1 ∩ Σ3, Reeb chords
ξi,j ∈ R(Λ−

i ,Λ
−
j ) for 1 ≤ i ̸= j ≤ 3, and words of pure chords δ′i, δ

′′
i , δ

′′′
i of

Λ−
i for i = 1, 2, 3 satisfying δ′iδ

′′
i = δi or δ

′
iδ

′′
i δ

′′′
i = δi.

∂M1(γ1,3; δ1, x1, δ2, x2, δ3) = M
∂
(γ1,3; δ1, x1, δ2, x2, δ3)⋃

p,δ′
i,δ

′′
i

M(γ1,3; δ
′
1, p, δ

′′
2, x2, δ3)×M(p; δ′′1, x1, δ

′
2)

⋃

q,δ′
iδ

′′
i

M(γ1,3; δ1, x1, δ
′
2, q, δ

′′
3)×M(q; δ′′2, x2, δ

′
3)

⋃

r,δ′
i,δ

′′
i

M(γ1,3; δ
′
1, r, δ

′′
3)×M(r; δ′′1, x1, δ2, x2, δ

′
3)

⋃

ξ2,1,ξ1,2
δ′
i,δ

′′
i ,δ

′′′
i

M(γ1,3; δ
′
1, ξ2,1, δ

′′′
2 , x2, δ3)

× M̃(ξ2,1; δ
′′
1, ξ1,2, δ

′′
2)×M(ξ1,2; δ

′′′
1 , x1, δ

′
2)⋃

ξ2,3,ξ3,2
δ′
i,δ

′′
i ,δ

′′′
i

M(γ1,3; δ1, x1, δ
′
2, ξ3,2, δ

′′′
3 )

× M̃(ξ3,2; δ
′′
2, ξ2,3, δ

′′
3)×M(ξ2,3; δ

′′′
2 , x2, δ

′
3)⋃

ξ1,3
δ′
i,δ

′′
i

M̃(γ1,3; δ
′
1, ξ1,3, δ

′′
3)×M(ξ1,3; δ

′′
1, x1, δ2, x2, δ

′
3)

⋃

ξ2,3,ξ1,2
δ′
i,δ

′′
i ,δ

′′′
i

M̃(γ1,3; δ
′
1, ξ1,2, δ

′′
2, ξ2,3, δ

′′
3)

×M(ξ2,3; δ
′′′
2 , x2, δ

′
3)×M(ξ1,2; δ

′′
1, x1, δ

′
2)

See Figure 15 for a schematic picture of the different types of pseudo-
holomorphic buildings in ∂M1(x2; δ3, γ1,3, δ1, x1, δ2).

0

0

0

0 0

0

0 0

1 1 1

0

0

0

1

0

0

0 0

Figure 15: Pseudo-holomorphic buildings in the boundary of
M1(γ1,3; δ1, x1, δ2, x2, δ3).



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1705 — #59
✐

✐

✐

✐

✐

✐

Product structures in Floer theory 1705

2. ∂M2(γ3,1; ξ1, γ1,3, ξ3): pseudo-holomorphic buildings appearing as degen-
eration of index-2 bananas are of two types. We have:

∂M2(γ3,1; ξ1, γ1,3, ξ3) = M
∂
(γ3,1; ξ1, γ1,3, ξ3)⋃

ξ3,1,ξ
′
i,ξ

′′
i

M̃(γ3,1; ξ
′
1, ξ3,1, ξ

′′
3)× M̃(ξ3,1; ξ

′′
1, γ1,3, ξ

′
3)

⋃

ξ1,3,ξ
′
i,ξ

′′
i

M̃(γ3,1; ξ
′
1, ξ1,3, ξ

′′
3)× M̃(ξ1,3; ξ

′′
1, γ1,3, ξ

′
3)

with again ξi,j ∈ R(Λ−
i ,Λ

−
j ), and ξ′i, ξ

′′
i words of Reeb chords of Λ−

i , with

ξ′iξ
′′
i = ξi (see Figure 16).

0

1

01 1

1

Figure 16: Pseudo-holomorphic buildings in the boundary of
M2(γ3,1; δ1, γ1,3, δ3).
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Figure 17: Unfinished pseudo-holomorphic buildings in (21) and (22).
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With 1. and 2. above, we can describe all the types of broken curves in the
boundary of the compactification of the products (16) and (17). Instead of
writing again huge unions of moduli spaces, in Figure 17 we drew schematic
pictures of the corresponding unfinished holomorphic buildings. The first
seven (from left to right and top to bottom) are in:

M̃1(γ3,1; ξ1, γ1,3, ξ3)× ∂M1(γ1,3; δ1, x1, δ2, x2, δ3)(21)

and the last two are in:

∂M2(γ3,1; ξ1, γ1,3, ξ3)×M0(γ1,3; δ1, x1, δ2, x2, δ3)(22)

Remark 15. In the bottom of Figure 17, two of the unfinished holomor-
phic buildings are equivalent (Definition 6): the leftmost compensate with
the rightmost. The leftmost is in (21): the component in the middle level
together with the component in the bottom level in floor −1 form a pseudo-
holomorphic building which lives in ∂M1(γ1,3; δ1, x1, δ2, x2, δ3). The right-
most unfinished building in the bottom of the figure is in (22): the com-
ponents of the bottom level form a pseudo-holomorphic building living in
∂M2(γ3,1; ξ1, γ1,3, ξ3). These two unfinished buildings correspond thus to
different geometric configurations because they live in the boundary of the
compactification of two different products of moduli spaces (one is in (21),
the other in (22)). However, these buildings differ only by a trivial strip
R× γ3,1 so they contribute algebraically to the same map which is in this
case b ◦ δ−− ◦ f (2)(x2, x1), where δ−− is the dual of d−−.

In order deduce the algebraic relation that these boundary elements give,
we introduce a new map:

∆(2) : Cn−1−∗(Λ
−
3 ,Λ

−
2 )× Cn−1−∗(Λ

−
2 ,Λ

−
1 ) → Cn−1−∗(Λ

−
3 ,Λ

−
1 )

defined on pairs of generators by:

∆(2)(γ2,3, γ1,2) =
∑

γ1,3

#M0(γ1,3; δ1, γ1,2, δ2, γ2,3, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

∆(2)(γ2,3, γ2,1) =
∑

γ1,3

#M0(γ1,3; δ1, γ2,1, δ2, γ2,3, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

∆(2)(γ3,2, γ1,2) =
∑

γ1,3

#M0(γ1,3; δ1, γ1,2, δ2, γ3,2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ1,3

∆(2)(γ3,2, γ2,1) = 0
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Now, as for Relation (8), the mod-2 count of unfinished pseudo-holomorphic
buildings in the products (21) and (22) equals 0. On the other hand, these
broken curves contribute to some composition of maps we have defined ear-
lier. This implies that the following relation is satisfied:

b ◦ f (2)(x2, d00(x1)) + b ◦ f (2)(d00(x2), x1) + d−0 ◦m
0
00(x2, x1)(23)

+ b ◦ f (2)(x2, d−0(x1)) + b ◦ f (2)(d−0(x2), x1)

+ b ◦∆(2)(f (1)(x2), f
(1)(x1)) + d−− ◦ b ◦ f (2)(x2, x1) = 0

where we did not write the term b ◦ δ−− ◦ f (2)(x2, x1) as it would appear
twice so this vanishes over Z2 (see Remark 15).

3. ∂M1(γ2,3; δ2, x2, δ3): pseudo-holomorphic buildings in this space are of
the following type (see Figure 18).

∂M1(γ2,3; δ2, x2, δ3) = M1
∂
(γ2,3; δ2, x2, δ3)⋃

q∈Σ2∩Σ3

δi
′,δ′′

i

M(γ2,3; δ
′
2, q, δ

′′
3, )×M(q; δ′′2, x2, δ

′
3)

⋃

ξ2,3,δi
′,δ′′

i

M̃(γ2,3; δ
′
2, ξ2,3, δ

′′
3)×M(ξ2,3; δ

′′
2, x2, δ

′
3)

0

0

1

0

Figure 18: Pseudo-holomorphic buildings in ∂M1(γ2,3; δ2, x2, δ3).

4. ∂M1(γ1,2;β1, x1,β2): same types of degenerations as above (case 3.).

5. ∂M2(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3): we describe here degenerations of index-2
bananas with three positive Reeb chords asymptotics (see Figure 19 for a
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schematic picture of the corresponding broken curves).

∂M2(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3) = M
∂
(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)⋃

ξ1,2,ζ
′
iζ

′′
i

M̃(γ3,1; ζ
′
1, ξ1,2, ζ

′′
2, γ2,3, ζ3)× M̃(ξ1,2; ζ

′′
1, γ1,2, ζ

′
2)

⋃

ξ2,3,ζ
′
iζ

′′
i

M̃(γ3,1; ζ1, γ1,2, ζ
′
2, ξ2,3, ζ

′′
3)× M̃(ξ2,3; ζ

′′
2, γ2,3; ζ

′
3)

⋃

ξ3,1,ζ
′
iζ

′′
i

M̃(γ3,1; ζ
′
1, ξ3,1, ζ

′′
3)× M̃(ξ3,1; ζ

′′
1, γ1,2, ζ2, γ2,3, ζ

′
3)

⋃

ξ2,1,ζ
′
iζ

′′
i

M̃(γ3,1; ζ
′
1, ξ2,1, ζ

′′
2, γ2,3, ζ3)× M̃(ξ2,1; ζ

′′
1, γ1,2, ζ

′
2)

⋃

ξ3,2,ζ
′
iζ

′′
i

M̃(γ3,1; ζ1, γ2,1, ζ
′
2, ξ3,2, ζ

′′
3)× M̃(ξ3,2; ζ

′′
2, γ2,3, ζ

′
3)

⋃

ξ1,3,ζ
′
iζ

′′
i

M̃(γ3,1; ζ
′
1, ξ1,3, ζ

′′
3)× M̃(ξ1,3; ζ

′′
1, γ1,2, ζ2, γ2,3, ζ

′
3)

where ζ′i, ζ
′′
i are words of pure chords of Λ−

i such that ζ′iζ
′′
i = ζi.

01

11

0 1

1 1

0 01 0 0 1 1 1

11

0 00

Figure 19: Pseudo-holomorphic buildings in the boundary of the compacti-

fication of M̃2(γ3,1; δ1, γ1,2, δ2, γ2,3, δ3).

By 3., 4. and 5., we can describe all the types of unfinished pseudo-
holomorphic buildings in the boundary of the compactification of the prod-
ucts (18), (19) and (20), that is to say, unfinished buildings in the spaces:

M̃1(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)× ∂M1(γ2,3; δ2, x2, δ3)×M0(γ1,2;β1, x1,β2)⋃
M̃1(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M0(γ2,3; δ2, x2, δ3)× ∂M1(γ1,2;β1, x1,β2)⋃
∂M2(γ3,1; ζ1, γ1,2, ζ2, γ2,3, ζ3)

×M0(γ2,3; δ2, x2, δ3)×M0(γ1,2;β1, x1,β2)
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0
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0
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1 0 1

1

0

00

1

01

00
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1

00

0 0

01

1

0 0

00 1

11

0 01 1 1

11

0 0

00 00 00

Figure 20: Unfinished buildings in the boundary of the compactification of
the products (18), (19) and (20).

The corresponding buildings are schematized on Figure 20: the first two
(from left to right and top to bottom) are in the boundary of the com-
pactification of (18), the following two are in the boundary of the com-
pactification of (19), and finally the six others are in the boundary of the
compactification of (20). As in the previous case (see Remark 15), several
unfinished holomorphic buildings are equivalent (so their algebraic contri-
butions are the same). Indeed, the second and the sixth one, differing by
a trivial strip R× γ3,1 contribute to b(2)(δ−− ◦ f (1)(x2), f

(1)(x1)), and the
fourth and the fifth, differing also by the same type of trivial strip con-
tribute to b(2)(f (1)(x2), δ−− ◦ f (1)(x1)). We obtain this time the relation:

b(2)(f (1) ◦ d00(x2), f
(1)(x1)) + b(2)(f (1)(x2), f

(1) ◦ d00(x1))(24)

+ d−− ◦ b(2)(f (1)(x2), f
(1)(x1)) + b(2)(f (1)(x2), d−0(x1))

+ b(2)(d−0(x2), f
(1)(x1)) + b ◦∆(2)(f (1)(x2), f

(1)(x1)) = 0

Combining Relations (23) and (24), we get Relation (9):

m−
00(d00(x2), x1) +m−

00(x2, d00(x1)) +m−
−0(d−0(x2), x1)

+m−
0−(x2, d−0(x1)) + d−0 ◦m

0
00(x2, x1) + d−− ◦m−

00(x2, x1) = 0
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where the term b ◦∆(2)(f (1)(x2), f
(1)(x1)) disappeared because it is at the

same time in (23) and (24) so vanishes over Z2.

5.2.3. Relation (10). This relation is really analogous to Relation (8)
except that one of the three mixed asymptotics is a Reeb chord. Each term
in (10) counts pseudo-holomorphic buildings of height 0|1|0 or 1|1|0 whose
components can be glued on index-1 disks in the moduli space

M1
Σ123

(x+; δ1, γ1, δ2, x2, δ3).

To determine Relation (10), we have thus to study the broken curves in the
boundary of the compactification of this moduli space. This gives:

∂M1
Σ123

(x+; δ1, γ1, δ2, x2, δ3) = M
∂
(x+, δ1, γ1, δ2, x2, δ3)⋃

p,δ′
i,δ

′′
i

M(x+; δ′1, p, δ
′′
2, x2, δ3)×MΣ12

(p; δ′′1, γ1, δ
′
2)

⋃

q,δ′
i,δ

′′
i

M(x+; δ1, γ1, δ
′
2, q, δ

′′
3)×MΣ23

(q; δ′′2, x2, δ
′
3)

⋃

r,δ′
i,δ

′′
i

MΣ13
(x+; δ′1, r, δ

′′
3)×M(r; δ′′1, γ1, δ2, x2, δ

′
3)

⋃

ξ2,1,δ
′
i,δ

′′
i

M(x+; δ′1, ξ2,1, δ
′′
2, x2, δ3)× M̃(ξ2,1; δ

′′
1, γ1, δ

′
2)

⋃

ξ3,2,ξ2,3
δ′
i,δ

′′
i ,δ

′′′
i

M(x+; δ1, γ1, δ
′
2, ξ3,2, δ

′′′
3 )

× M̃(ξ3,2; δ
′′
2, ξ2,3, δ

′′
3)×MΣ23

(ξ2,3; δ
′′′
2 , x2, δ

′
3)⋃

ξ3,1,ξ1,3
δ′
i,δ

′′
i ,δ

′′′
i

M(x+; δ′1, ξ3,1, δ
′′′
3 )

× M̃(ξ3,1; δ
′′
1, ξ1,3, δ

′′
3)×M(ξ1,3; δ

′′′
1 , γ1, δ2, x2, δ

′
3)⋃

ξ3,1,ξ2,3
δ′
i,δ

′′
i ,δ

′′′
i

M(x+; δ′1, ξ3,1, δ
′′′
3 )

× M̃(ξ3,1; δ
′′
1, γ1, δ

′
2, ξ2,3, δ

′′
3)×MΣ23

(ξ2,3; δ
′′
2, x2, δ

′
3)

where the three first unions are respectively for p ∈ Σ1 ∩ Σ2, q ∈ Σ2 ∩ Σ3

and r ∈ Σ1 ∩ Σ3. On Figure 21, each broken configuration contributes from
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Figure 21: Pseudo-holomorphic buildings in the boundary of the compacti-
fication of M1

Σ123
(x+; δ1, γ1, δ2, x2, δ3).

left to right to the terms of Relation (10), and so we get:

m0
00(x2, d0−(γ1)) +m0

0−(d00(x2), γ1) + d00 ◦m
0
0−(x2, γ1)

+m0
0−(x2, d−−(γ1)) +m0

−−(d−0(x2), γ1) + d0− ◦m−
0−(x2, γ1) = 0

5.2.4. Relation (11). Again, to find this relation we argue the same way
as for Relation (9). First, let us remark that one term in this relation already
vanishes for energy reasons. More precisely, by definition we have:

m−
00(x2, d0−(γ1)) = b ◦ f (2)(x2, d0−(γ1)) + b(2)(f (1)(x2), f

(1) ◦ d0−(γ1))

but b(2)(f (1)(x2), f
(1) ◦ d0−(γ1)) = 0 because such a term would count nega-

tive energy curves which is not possible, see Figure 22. Indeed, if there exist
pseudo-holomorphic curves u ∈ M0(q; δ1, γ1, δ2) and v ∈ M0(γ1,2; ζ1, q, ζ2),
then the energies of these curves are given by (see Section 2.5):

Ed(χα)(u) = a(q)− a(γ1)− a(δ1)− a(δ2)

Ed(χα)(v) = −a(q)− a(γ1,2)− a(ζ1)− a(ζ2)

The energy of a non-constant pseudo-holomorphic curve is always strictly
positive and the action of Reeb chords is also always positive, so the existence
of v implies that q is an intersection point with a strictly negative action,
which then contradicts the existence of u. The other terms of Relation (11)
are defined by a count of unfinished buildings of height 0|1|0, 1|1|0 or 2|1|0.
In each case, either the curves in the middle level form a pseudo-holomorphic
building, or the curves in the middle level and on floor −1, or the curves on
floors −1 and −2 form a building. In any case, after gluing, we get unfinished
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0

000

1

Figure 22: Impossible breaking.

buildings in the following products of moduli spaces

M̃1(γ3,1; ξ1, γ1,3, ξ3)×M1(γ1,3; δ1, γ1, δ2, x2, δ3)

M̃2(γ3,1; ξ1, γ1,3, ξ3)×M0(γ1,3; δ1, γ1, δ2, x2, δ3)

M̃1(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3)×M1(γ2,3; δ2, x2, δ3)

M̃2(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3)×M0(γ2,3; δ2, x2, δ3)

Now, in order to get the relation, we have to find the broken curves in the
boundary of the compactification of these products, i.e. broken curves in:

M̃1(γ3,1; ξ1, γ1,3, ξ3)× ∂M1(γ1,3; δ1, γ1, δ2, x2, δ3)(25)

∂M2(γ3,1; ξ1, γ1,3, ξ3)×M0(γ1,3; δ1, γ1, δ2, x2, δ3)(26)

M̃1(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3)× ∂M1(γ2,3; δ2, x2, δ3)(27)

∂M2(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3)×M0(γ2,3; δ2, x2, δ3)(28)

We already described ∂M2(γ3,1; ξ1, γ1,3, ξ3) and ∂M1(γ2,3; δ2, x2, δ3) in

Section 5.2.2, so it remains to study ∂M1(γ1,3; δ1, γ1, δ2, x2, δ3) and
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∂M2(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3). First, we have the following decomposition:

∂M1(γ1,3; δ1, γ1, δ2, x2, δ3) = M
∂
(γ1,3; δ1, γ1, δ2, x2, δ3)⋃

p∈Σ1∩Σ2

δ′
i,δ

′′
i

M(γ1,3; δ
′
1, p, δ

′′
2, x2, δ3)×M(p; δ′′1, γ1, δ

′
2)

⋃

q∈Σ2∩Σ3

δ′
i,δ

′′
i

M(γ1,3; δ1, γ1, δ
′
2, q, δ

′′
3)×M(q; δ′′2, x2, δ

′
3)

⋃

r∈Σ1∩Σ3

δ′
i,δ

′′
i

M(γ1,3; δ
′
1, r, δ

′′
3)×M(r; δ′′1, γ1, δ2, x2, δ

′
3)

⋃

ξ2,1,δ
′
i,δ

′′
i

M(γ1,3; δ
′
1, ξ2,1, δ

′′
2, x2, δ3)× M̃(ξ2,1; δ

′′
1, γ1, δ

′
2)

⋃

ξ2,3,δ
′
i,δ

′′
i

M̃(γ1,3; δ1, γ1, δ
′
2, ξ2,3, δ

′′
3)×M(ξ2,3; δ

′′
2, x2, δ

′
3)

⋃

ξ1,3,δ
′
i,δ

′′
i

M̃(γ1,3; δ
′
1, ξ1,3, δ

′′
3)×M(ξ1,3; δ

′′
1, γ1, δ2, x2, δ

′
3)

Finally, the buildings occurring as degeneration of index-2 bananas with two
positive Reeb chord asymptotics and one negative one are of the following
type:

∂M2(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3) = M
∂
(γ3,1; ζ1, γ1, ζ2, γ2,3, ζ3)⋃

ξ2,1,ζ
′
i,ζ

′′
i

M̃(γ3,1; ζ
′
1, ξ2,1, ζ

′′
2, γ2,3, ζ3)× M̃(ξ2,1; ζ

′′
1, γ1, ζ

′
2)

⋃

ξ2,3,ζ
′
i,ζ

′′
i

M̃(γ3,1; ζ1, γ1, ζ
′
2, ξ2,3, ζ

′′
3)× M̃(ξ2,3; ζ

′′
2, γ2,3, ζ

′
3)

⋃

ξ3,2,ζ
′
i,ζ

′′
i

M̃(γ3,1; ζ1, γ1, ζ
′
2, ξ3,2, ζ

′′
3)× M̃(ξ3,2; ζ

′′
2, γ2,3, ζ

′
3)

⋃

ξ3,1,ζ
′
i,ζ

′′
i

M̃(γ3,1; ζ
′
1, ξ3,1, ζ

′′
3)× M̃(ξ3,1; ζ

′′
1, γ1, ζ2, γ2,3, ζ

′
3)

⋃

ξ1,3,ζ
′
i,ζ

′′
i

M̃(γ3,1; ζ
′
1, ξ1,3, ζ

′′
3)× M̃(ξ1,3; ζ

′′
1, γ1, ζ2, γ2,3, ζ

′
3)

The different types of unfinished buildings corresponding to elements in
the products (25), (26), (27) and (28) are schematized on Figures 23, 24
and 25. Observe that again some unfinished buildings are equivalent (see
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Figure 23: Broken curves in (25).
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Figure 24: Broken curves in (26) and (27).
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Figure 25: Broken curves in (28).

Remark 15). Indeed, the fifth configuration (from left to right) on Figure 23
and the last configuration on Figure 25 contribute both algebraically to
b ◦∆(2)(f (1)(x2), γ1). Then the last configuration on Figure 23 and the first
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Figure 26: Pseudo-holomorphic buildings in ∂M1(x+; δ1, γ1, δ2, γ2, δ3).

on Figure 24 contribute both algebraically to b ◦ δ−− ◦ f(x2, γ1). Finally,
the last unfinished building on Figure 24 and the second one on Figure
25 contribute to b(2)(δ−− ◦ f (1)(x2), γ1). Summing the contributions of the
remaining unfinished buildings gives the Relation (11):

m−
00(x2, d0−(γ1)) +m−

0−(d00(x2), γ1) +m−
0−(x2, d−−(γ1))

+m−
−−(d−0(x2), γ1) + d−0 ◦m

0
0−(x2, γ1) + d−− ◦m−

0−(x2, γ1) = 0

5.2.5. Relations (12) and (13). By symmetry, Relations (12) and (13)
for a pair (γ2, x1) are obtained by studying same types of holomorphic curves
as for Relations (10) and (11) corresponding to a pair of asymptotics (x2, γ1).

5.2.6. Relation (14). Each term of this relation corresponds to a count
of broken curves in the boundary of the compactification of

M1(x+; δ1, γ1, δ2, γ2, δ3),

and we have (see Figure 26):

∂M1(x+; δ1, γ1, δ2, γ2, δ3) = M
∂
(x+; δ1, γ1, δ2, γ2, δ3)⋃

q∈Σ1∩Σ3

δ′
i,δ

′′
i

M0(x+; δ′1, q, δ
′′
3)×M0(q; δ′′1, γ1, δ2, γ2, δ

′
3)

⋃

q∈Σ1∩Σ2

δ′
i,δ

′′
i

M0(x+; δ′1, q, δ
′′
2, γ2, δ3)×M0(q; δ′′1, γ1, δ

′
2)
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⋃

q∈Σ2∩Σ3

δ′
i,δ

′′
i

M0(x+; δ1, γ1, δ
′
2, q, δ

′′
3)×M0(q; δ′′2, γ2, δ

′
3)

⋃

ξ3,1,δ
′
i,δ

′′
i

M0(x+; δ′1, ξ3,1, δ
′′
3)× M̃1(ξ3,1; δ

′′
1, γ1, δ2, γ2, δ

′
3)

⋃

ξ2,1,δ
′
i,δ

′′
i

M0(x+; δ′1, ξ2,1, δ
′′
2, γ2, δ3)× M̃1(ξ2,1; δ

′′
1, γ1, δ

′
2)

⋃

ξ3,2,δ
′
i,δ

′′
i

M0(x+; δ1, γ1, δ
′
2, ξ3,2, δ

′′
3)× M̃1(ξ3,2; δ

′′
2, γ2, δ

′
3)

5.2.7. Relation (15). The product of two Reeb chords being given by the
product µ2

ε+3,2,1
in the augmentation category Aug−(Λ

−
1 ∪ Λ−

2 ∪ Λ−
2 ), Relation

(15) is satisfied because it is the A∞-relation for d = 2 satisfied by the maps
{µd}d≥1 (see (5) in Section 3.2). We recall the different kinds of degeneration

of a curve in M̃2(γ3,1; δ1, γ1, δ2, γ2, δ3) (see Figure 27):

∂M2(γ3,1; δ1, γ1, δ2, γ2, δ3) = M
∂
(γ3,1; δ1, γ1, δ2, γ2, δ3)⋃

M̃(γ3,1; δ
′
1, ξ3,1, δ

′′
3)× M̃(ξ3,1; δ

′′
1, γ1, δ2, γ2, δ

′
3)⋃

M̃(γ3,1; δ
′
1, ξ2,1, δ

′′
2, γ2, δ3)× M̃(ξ2,1; δ

′′
1, γ1, δ

′
2)⋃

M̃(γ3,1; δ1, γ1, δ
′
2, ξ3,2, δ

′′
3)× M̃(ξ3,2; δ

′′
2, γ2, δ

′
3)

1

 

1

 

1

 

1

 

1

 

1

 
0 0

Figure 27: Pseudo-holomorphic buildings in the boundary of
M2(γ3,1; δ1, γ1, δ2, γ2, δ3).

5.3. Proof of Theorem 2 and Corollary 1

Recall that F1 := d+0 + d+− and that the acyclicity of the Cthulhu complex
implies that F1 is a quasi-isomorphism (Section 4.1). We consider as before
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three transverse exact Lagrangian cobordisms Σ1,Σ2 and Σ3 such that the
algebras A(Λ−

i ) admit augmentations. As introduced in Section 2.4.3, we
need to consider the following moduli spaces of curves with boundary on
Σ1 ∪ Σ2 ∪ Σ3 (see Figure 28):

MΣ123
(γ+3,1; δ1, x1, δ2, x2, δ3)(29)

MΣ123
(γ+3,1; δ1, γ1, δ2, x2, δ3)(30)

MΣ123
(γ+3,1; δ1, x1, δ2, γ2, δ3)(31)

MΣ123
(γ+3,1; δ1, γ1, δ2, γ2, δ3)(32)

with

• γ+3,1 ∈ R(Λ+
3 ,Λ

+
1 ), γ1 ∈ R(Λ−

2 ,Λ
−
1 ) and γ2 ∈ R(Λ−

3 ,Λ
−
2 ),

• x1 ∈ Σ1 ∩ Σ2, x2 ∈ Σ2 ∩ Σ3,

• δi are words of Reeb chords of Λ−
i , for i = 1, 2, 3.

Figure 28: Examples of curves in the moduli spaces (29), (30), (31), and
(32) respectively.

By a count of rigid pseudo-holomorphic disks in these moduli spaces, we
introduce a map:

F2 : CF−∞(Σ2,Σ3)⊗ CF−∞(Σ1,Σ2) → C∗(Λ+
1 ,Λ

+
3 )

defined on pairs of generators by:

F2(x2, x1) =
∑

γ+
3,1,δi

#M0(γ+3,1; δ1, x1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ

+
3,1

F2(x2, γ1) =
∑

γ+
3,1,δi

#M0(γ+3,1; δ1, γ1, δ2, x2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ

+
3,1
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F2(γ2, x1) =
∑

γ+
3,1,δi

#M0(γ+3,1; δ1, x1, δ2, γ2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ

+
3,1

F2(γ2, γ1) =
∑

γ+
3,1,δi

#M0(γ+3,1; δ1, γ1, δ2, γ2, δ3)ε
−
1 (δ1)ε

−
2 (δ2)ε

−
3 (δ3) · γ

+
3,1

We have again to study breakings of index-1 pseudo-holomorphic curves in
the moduli spaces (29), (30), (31), and (32) in order to prove Theorem 2.
For example, we describe below the boundary of the compactification of

0

0

1 1 1
1

1 1

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

Figure 29: Pseudo-holomorphic buildings in ∂M1(γ+3,1; δ1, x1, δ2, x2, δ3).

M1(γ+3,1; δ1, x1, δ2, x2, δ3) (see Figure 29):

∂M1(γ+3,1; δ1, x1, δ2, x2, δ3) = M1
∂
(γ+3,1; δ1, x1, δ2, x2, δ3)⋃

p∈Σ1∩Σ2

M(γ+3,1; δ
′
1, p, δ

′′
2, x2, δ3)×M(p; δ′′1, x1, δ

′
2)

⋃

q∈Σ2∩Σ3

M(γ+3,1; δ1, x1, δ
′
2, q, δ

′′
3)×M(q; δ′′2, x2, δ

′
3)

⋃

r∈Σ1∩Σ3

M(γ+3,1; δ
′
1, r, δ

′′
3)×M(r; δ′′1, x1, δ2, x2, δ

′
3)

⋃

ξ−2,1,ξ
−

1,2

M(γ+3,1; δ
′
1, ξ

−
2,1, δ

′′′
2 , x2, δ3)

× M̃(ξ−2,1; δ
′′
1, ξ

−
1,2, δ

′′
2)×MΣ12

(ξ−1,2; δ
′′′
1 , x1, δ

′
2)⋃

ξ−3,2,ξ
−

2,3

M(γ+3,1; δ1, x1, δ
′
2, ξ

−
3,2, δ

′′′
3 )

× M̃(ξ−3,2; δ
′′
2, ξ

−
2,3, δ

′′
3)×MΣ23

(ξ−2,3; δ
′′′
2 , x2, δ

′
3)
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⋃

ξ−3,1,ξ
−

1,3

M(γ+3,1; δ
′
1, ξ

−
3,1, δ

′′′
3 )

× M̃(ξ−3,1; δ
′′
1, ξ

−
1,3, δ

′′
3)×MΣ123

(ξ−1,3; δ
′′′
1 , x1, δ2, x2, δ

′
3)⋃

ξ−3,1,ξ
−

1,2,ξ
−

2,3

M(γ+3,1; δ
′
1, ξ

−
3,1, δ

′′′
3 )× M̃(ξ−3,1; δ

′′
1, ξ

−
1,2, δ

′′
2, ξ

−
2,3, δ

′′
3)

×MΣ12
(ξ−1,2; δ

′′′
1 , x1, δ

′
2)×MΣ23

(ξ−2,3; δ
′′′
2 , x2, δ

′
3)⋃

ξ+3,1

M̃1(γ+3,1;β1,1, . . . , β1,s, ξ
+
3,1, β3,1, . . . , β3,t)×M0(ξ+3,1; δ

′′
1, x1, δ2, x2, δ

′
3)

×
s∏

i=1

M0
Σ1
(β1,i; δ1,i)×

t∏

j=1

M0
Σ3
(β3,j ; δ3,j)

⋃

ξ+2,1,ξ
+
3,2

M̃1(γ+3,1;β1,1 . . . , β1,l, ξ
+
2,1, β2,1, . . . , β2,m, ξ+3,2, β3,1, . . . , β3,n)

×M0(ξ+2,1; δ
′′
1, x1, δ

′
2)×M0(ξ+3,2; δ

′′′
2 , x2, δ

′
3)

×
l∏

i=1

M0
Σ1
(β1,i; δ1,i)×

m∏

i=1

M0
Σ2
(β2,i; δ2,i)×

n∏

i=1

M0
Σ3
(β3,i; δ3,i)

where all unions except the last two are also for words of pure Reeb chords
δ′i, δ

′′
i and δ′′′i of Λ−

i such that δ′i, δ
′′
i = δi, or δ′iδ

′′
i δ

′′′
i = δi, depending on

cases. The second to last union is for:

• β1,i ∈ R(Λ+
1 ) for 1 ≤ i ≤ s,

• β3,j ∈ R(Λ+
3 ) for 1 ≤ j ≤ t,

• δ′′1 and δ1,i for 1 ≤ i ≤ s words of Reeb chords of Λ−
1 ,

• δ′3 and δ3,j for 1 ≤ j ≤ t words of Reeb chords of Λ−
3 ,

such that δ1,1 · · · δ1,sδ
′′
1 = δ1 and δ′3δ3,1 · · · δ3,t = δ3. The count of curves in

the moduli spaceM0
Σ1
(β1,i; δ1,i) contributes to the coefficient ⟨ϕΣ1

(β1,i), δ1,i⟩,
with ϕΣ1

: A(Λ+
1 ) → A(Λ−

1 ) is the chain map induced by Σ1 (see Section 3.3).
So the count of curves in

M1(γ+3,1;β1,1, . . . , β1,s, ξ
+
3,1, β3,1, . . . , β3,t)

×
s∏

i=1

M0
Σ1
(β1,i; δ1,i)×

t∏

j=1

M0
Σ3
(β3,j ; δ3,j)

contributes to ⟨µ1
ε+3 ,ε+1

(ξ+3,1), γ
+
3,1⟩ because ε+i = ε−i ◦ ϕΣi

. Finally, the last

union is for
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• β1,i ∈ R(Λ+
1 ) for 1 ≤ i ≤ l,

• β2,i ∈ R(Λ+
2 ) for 1 ≤ i ≤ m,

• β3,i ∈ R(Λ+
3 ) for 1 ≤ i ≤ n,

• δ′′1 and δ1,i for 1 ≤ i ≤ l words of Reeb chords of Λ−
1 ,

• δ′2, δ
′′′
2 and δ2,i for 1 ≤ i ≤ m words of Reeb chords of Λ−

2 ,

• δ′3 and δ3,i for 1 ≤ i ≤ n words of Reeb chords of Λ−
3 ,

such that

• δ1,1 · · · δ1,lδ
′′
1 = δ1,

• δ′2δ2,1 · · · δ2,mδ′′′2 = δ2, and

• δ′3δ3,1 · · · δ3,n = δ3.

Again, the count of broken curves in

M(γ+3,1;β1,1 . . . , β1,l, ξ
+
2,1, β2,1, . . . , β2,m, ξ+3,2, β3,1, . . . , β3,n)

×
l∏

i=1

M0
Σ1
(β1,i; δ1,i)×

m∏

i=1

M0
Σ2
(β2,i; δ2,i)×

n∏

i=1

M0
Σ3
(β3,i; δ3,i)

contributes to the coefficient ⟨µ2
ε+3 ,ε+2 ,ε+1

(ξ+3,2, ξ
+
2,1), γ

+
3,1⟩.

By denoting d++ for µ1
ε+3 ,ε+1

, the study of breakings above implies that

F2 satisfies the relation:

F2(x2, d00(x1)) + F2(x2, d0−(x1)) + F2(d00(x2), x1)(33)

+ F2(d−0(x2), x1) + d+0 ◦m
0
00(x2, x1) + d+− ◦m−

00(x2, x1)

+ d++ ◦ F2(x2, x1) + µ2
ε+3,2,1

(d+0(x2), d+0(x1)) = 0

Analogously, the different types of buildings in

∂M1
Σ123

(γ+3,1; δ1, γ1, δ2, x2, δ3)

are schematized on Figure 30, and this gives for F2 the relation:

F2(x2, d0−(γ1)) + F2(x2, d−−(γ1)) + F2(d00(x2), γ1)(34)

+ F2(d−0(x2), γ1) + d+0 ◦m
0
0−(x2, γ1) + d+− ◦m−

0−(x2, γ1)

+ d++ ◦ F2(x2, γ1) + µ2
ε+3,2,1

(d−0(x2), d+−(γ1)) = 0
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The symmetric relation for the pair (γ2, x1) of asymptotics is of course also
satisfied. Finally, pseudo-holomorphic buildings in

∂M1
Σ123

(γ+3,1; δ1, γ1, δ2, γ2, δ3)

are schematized on Figure 31 and thus we get:

F2(γ2, d0−(γ1)) + F2(γ2, d−−(γ1)) + F2(d0−(γ2), γ1)(35)

+ F2(d−−(γ2), γ1) + d+0 ◦m
0
−−(γ2, γ1) + d+− ◦m−

−−(γ2, γ1)

+ d++ ◦ F2(γ2, γ1) + µ2
ε+3,2,1

(d+−(γ2), d+−(γ1)) = 0

Combining Relations (33), (34) and its symmetric one, and (35), we deduce

0

0

0 0

0

0

0

0
0

0 0

00

0

0

00

0

1 1 1 1

1 1

Figure 30: Pseudo-holomorphic buildings in ∂M1(γ+3,1; δ1, γ1, δ2, x2, δ3).

0

1

0
0

0

0

0

0

0

0

0

0 0 0 0

1 1

1 1

Figure 31: Pseudo-holomorphic buildings in ∂M1(γ+3,1; δ1, γ1, δ2, γ2, δ3).
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that F2 satisfies:

F2(·, ∂−∞) + F2(∂−∞, ·) + F1
31 ◦m2+d++ ◦ F2 + µ2

ε+3,2,1
(F1

32,F
1
21) = 0

The map induced by F1 in homology satisfies then

F1
31 ◦m2+µ2

ε+3,2,1
(F1

32,F
1
21) = 0,

and so F1 preserves products in homology. This concludes the proof of The-
orem 2.

Let us now prove Corollary 1. Given Σ1,Σ2,Σ3 pairwise transverse exact
Lagrangian cobordisms from Λ−

i to Λ+
i as before, Theorem 2 gives that the

following diagram is commutative.

HF−∞(Σ2,Σ3)⊗HF−∞(Σ1,Σ2)
F32⊗F21−−−−−→ H

(
C(Λ+

2 ,Λ
+
3 )
)
⊗H

(
C(Λ+

1 ,Λ
+
2 )
)

m2 ↓ ↓ µ2
ε+3,2,1

HF−∞(Σ1,Σ3) −−−−→
F31

H
(
C(Λ+

1 ,Λ
+
3 ))

Now, assume that Λ−
1 = ∅, then Σ1 is an exact Lagrangian filling of Λ+

1 .
Then ε+1 in this case is given by the DGA map ϕΣ : A(Λ+

1 ) → A(Λ−
1 ) = Z2.

We denote Σ := Σ1, Λ := Λ+
1 and εΣ := ε+1 . Let us assume moreover that

the cobordisms Σ2, Σ3 are appropriate Hamiltonian perturbations of Σ as
considered in Section 4.2 and that we recall now. First, remember that by the
Weinstein Lagrangian neighborhood theorem, a neighborhood of Σ ⊂ R× Y
is identified with a neighborhood U0 of the 0-section in T ∗Σ. For ϵ sufficiently
small, then Σ̃2 := Φϵ

HD
(Σ) and Σ̃3 := Φ2ϵ

HD
(Σ) are identified with the graph

of d(ϵHD) and d(2ϵHD) respectively in U0, for the functions ϵHD and 2ϵHD

restricted to Σ. Define then Σ2 ⊂ R× Y (resp. Σ3 ⊂ R× Y ) to be the exact
Lagrangian cobordism identified with the graph of df2 (resp. df3) in U0, for
f2, f3 : Σ → R Morse functions such that:

1) f2 is a small perturbation of ϵHD on Σ,

2) f3 is a small perturbation of 2ϵHD on Σ,

3) the critical points of f2 and f3 are all contained in Σ ∩
(
[−T, T ]× Y

)
,

4) the cylindrical positive ends R× Λ+
2 of Σ2 and R× Λ+

3 of Σ3 are such
that the link Λ ∪ Λ+

2 ∪ Λ+
3 is a perturbed 3-copy of Λ (see Section 3.2).
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Then we haveHF−∞(Σ1,Σ2) = HF (Σ1,Σ2) ≃ H∗(Σ,Λ), where the first
equality comes from the fact that the negative ends are empty, and the
second equality comes from Proposition 2 (here we used that Λ = ∂+Σ)). We
also haveHF−∞(Σ2,Σ3) ≃ HF−∞(Σ1,Σ3) ≃ H∗(Σ,Λ). By Proposition 2 we
also have that

H
(
C(Λ,Λ+

2 )
)
≃ H

(
C(Λ+

2 ,Λ
+
3 )
)
≃ H

(
C(Λ,Λ+

3 )
)
≃ LCH∗

εΣ(Λ)

In this case, the vertical arrow on the left in the diagram above is given
by a count of pseudo-holomorphic disks with 3 punctures on the boundary
asymptotic to intersection points (the negative ends are empty so there is
no Reeb chord asymptotic). Moreover, these intersection points are all con-
tained in a compact so these disks will also all be contained in a compact
subset of R× Y . So by the discussion in [37, Section 8.l], the map m2 com-
putes the cup product on H∗(Σ,Λ). A proof of this fact is also contained in
[30], the authors prove an isomorphism between Morse and Floer cohomol-
ogy rings for the 0-section of the cotangent bundle of a compact manifold.
On the other side, we saw in Section 3.2 that the product µ2

εΣ on LCH∗
εΣ(Λ)

can be computed as the product on the 3-copy of Λ, which is the vertical
map on the right in the diagram above. We end by a remark on the degree.
Recall that the Cthulhu complex is defined with a grading shift, i.e. we have

Cth(Σ1,Σ2) = C(Λ+
1 ,Λ

+
2 )[2]⊕ CF (Σ1,Σ2)⊕ C(Λ−

1 ,Λ
−
2 )[1]

Considering these shifts, the two horizontal maps in the diagram have degree
1 and the two vertical maps have degree 0.

Remark 16. We could use other types of Hamiltonian perturbations to
compute the product. We give here some example with no details. If Σ1,
Σ2, Σ3 are pairwise transverse exact Lagrangian cobordisms such that Σ2

(resp Σ3) is a small Morse perturbation of Φ−ϵ
HD

(Σ1) (resp Φ−2ϵ
HD

(Σ1)), then

we have HF−∞(Σi,Σi+1) ≃ H∗(Σ1,Λ
−
1 ). Moreover, by [6, Proposition 7.5],

H∗C(Λ±
i ,Λ

±
i+1) ≃ LCH

ε±i ,ε±i+1

n−1−∗ (Λ
±
1 ). In the same setting but if the cobor-

disms Σi are Lagrangian fillings, then Theorem 2 illustrates the fact that
the Legendrian contact homology is endowed with a unital ring structure,
corresponding to the cohomology ring of Σ1, as observed in [34, Remark 5.9].

Remark 17. Actually, (a unital version of) Corollary 1 appears in a paper
of Ekholm and Lekili [20]. Considering an exact Lagrangian filling Σ in a
Liouville domain X of a Legendrian Λ in ∂X, the [20, Theorem 53] states
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that there is an A∞-quasi-isomorphism between the Floer complex of L af-
ter adding a unit and the Legendrian A∞-algebra LA∗

εΣ(Λ). This Legendrian
A∞-algebra can be computed using perturbed k-copies of Λ. The case corre-
sponding to Corollary 1 is when this k-copy Λ = Λ1,Λ2, . . . ,Λk is such that
Λi is a perturbation of Λ + iϵR where R the Reeb vector field, then LA∗

εΣ(Λ)
is the A∞-algebra Z2 ⊕ LCH∗

εΣ(Λ), where the extra Z2 is used to make the
algebra unital. The A∞-structure on CF (Σ) is also computed using a sys-
tem of parallel copies Σ = Σ1,Σ2, . . . ,Σd+1 of the filling. The maps giving
the A∞-structure are then the same as the maps mk (defined in Section 7
below) for the case of fillings. Moreover, the family of maps we construct in
Theorem 4 in this paper, for the case of fillings, recover the maps defining
the functor in the proof of [20, Theorem 53] computed with the parallel
copies such that the positive end consists in the k-copy Λ = Λ1,Λ2, . . . ,Λk

as above.

6. Example

We give in this section a very simple example of computation of the prod-
uct using Theorem 2. Consider a cobordism Λ−

1 ≺Σ1
Λ+
1 where Λ−

1 is the
Legendrian unknot and Λ+

1 the right-handed trefoil in R3 (see Figure 32).
The unknot has one Reeb chord c in degree 1, and the Chekanov-Eliashberg

c b2 b3b1

a1

a2

Figure 32: Left: Lagrangian projection of Λ−
0 , right: Lagrangian projection

of Λ+
0 .

DGA A(Λ−
1 ) admits a unique augmentation ε− which is trivial (ε−(c) = 0).

The trefoil has 5 Reeb chords with |bi| = 0 and |ai| = 1. The differential is
given by

∂a1 = 1 + b1 + b3 + b1b2b3

∂a2 = 1 + b1 + b3 + b3b2b1

∂bi = 0, i = 1, 2, 3
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The DGA A(Λ+
1 ) admits five augmentations, which are all geometric (see

[19]). Let us assume that the cobordism Σ1 is such that ε− ◦ ϕΣ1
= ε+

where ε+ is the augmentation of A(Λ+
1 ) defined by ε+(b1) = 1 and ε+(b2) =

ε+(b3) = 0.
Consider now a small Morse perturbation Σ2 of Φϵ

HD
(Σ1) by a Morse

function f2 as described in Section 4.2 and in the proof of Corollary 1. We
have Λ−

2 ≺Σ2
Λ+
2 , where Λ±

2 is a perturbation of Λ±
1 + ϵ ∂

∂z
. Moreover, the

critical points of f2 are contained in Σ1 ∩ ([−T, T ]× R3) and we assume
that there is no minimum (it is possible since Σ1 is a punctured torus). For
a small enough perturbation, the DGAs A(Λ±

1 ) and A(Λ±
2 ) are the same (by

canonical identification of the Reeb chords). Furthermore, the Reeb chords
from Λ±

2 to Λ±
1 are in bijection with the Reeb chords of Λ±

1 (Section 3.2),
we denote by γ21 the chord from Λ2 to Λ1 corresponding to the chord γ of
Λ1.

We have C(Λ+
1 ,Λ

+
2 ) = Z2⟨a

1
21, a

2
21, b

1
21, b

2
21, b

3
21⟩ and using the augmenta-

tion ε+ we can compute

d++(b
1
21) = d++(b

3
21) = a121 + a221

d++(b
2
21) = 0

d++(a
i
21) = 0, i = 1, 2

and we get

H
(
(C(Λ+

1 ,Λ
+
2 ), d++)

)
≃ Z2⟨[a

1
21]⟩ ⊕ Z2⟨[b

1
21 + b321], [b

2
21]⟩ ≃ LCH∗

ε+(Λ
+
1 ).

On the other side we have C(Λ−
1 ,Λ

−
2 ) = Z2⟨c21⟩, and d−− = 0, thus

H
(
(C(Λ−

1 ,Λ
−
2 ), d−−)

)
≃ Z2⟨[c21]⟩ ≃ LCH∗

ε−(Λ
−
1 ).

Using a third copy Σ3 being a perturbation of Φ2ϵ
HD

(Σ1) by a Morse
function f3, such that f3 − f2 is also Morse and these two Morse functions
have no minima, we compute that the non trivial components of

µ2
ε+ : C(Λ+

2 ,Λ
+
3 )⊗ C(Λ+

1 ,Λ
+
2 ) → C(Λ+

1 ,Λ
+
3 )

in homology are

µ2
ε+([b

1
32 + b332], [b

2
21]) = µ2

ε+([b
2
32], [b

1
21 + b321]) = [a131]

(which under canonical identification of the generators is the product on
LCH∗

ε+(Λ
+
1 )).

We now want to compute HF−∞(Σ1,Σ2) and the product structure on
it. Recall that F1 : CF−∞(Σ1,Σ2) → C(Λ+

1 ,Λ
+
2 ) is a quasi-isomorphism, so
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HF−∞(Σ1,Σ2) is of rank 3. Also, there exists

[A] = [A0 +A−] ∈ HF−∞(Σ1,Σ2),

with A0 ∈ CF (Σ1,Σ2) and A− ∈ C(Λ−
1 ,Λ

−
2 ), such that F1([A]) = [a121] in

homology. This gives

[d+0(A0) + d+−(A−)] = [a121]

which implies |A0| = |a121|+ 1 = 2 and |A−| = |a121| = 1 as d+0 is a degree
−1 map and d+− a degree 0 map. By Proposition 2, A0 corresponds to a
linear combination of critical points of f2 of Morse index 0, but we have
assumed that f2 has no minimum so there is no such A0. Then the only pos-
sibility is A− = c21 and so c21 is a non-trivial cycle in HF−∞(Σ1,Σ2), with
F([c21]) = [a121]. Then, there must also exist [x21], [y21] ∈ HF−∞(Σ1,Σ2),
with x21, y21 ∈ CF (Σ1,Σ2) of degree 1 such that F([x21]) = [b121 + b321] and
F([y21]) = [b221]. Therefore, by Theorem 2, the product in homology

m2 : HF−∞(Σ2,Σ3)⊗HF−∞(Σ1,Σ2) → HF−∞(Σ1,Σ3)

is given by m2([x32], [y21]) = m2([y32], [x21]) = [c31].
Of course, if we fill the unknot by a disk then Σi are Lagrangian fillings

of the trefoil. In this case, the homology HF−∞(Σ1,Σ2) is generated by
x21, y21 and a minimum m21 ∈ CF (Σ1,Σ2). By Corollary 1, the non trivial
components of the product on HF−∞ are the non trivial components of the
cup product on the punctured torus

∪ : H1(Σ1,Λ
+
1 )⊗H1(Σ1,Λ

+
1 ) → H2(Σ1,Λ

+
1 )

7. An A∞-structure

The goal of this section is to show that the product structure can be ex-
panded to an A∞-structure induced by a fixed sequence of pairwise trans-
verse cobordisms. More precisely, let us consider a fixed (d+ 1)-tuple of
transverse cobordisms Σ1, . . . ,Σd+1. For every 1 ≤ k ≤ d and every (k + 1)-
tuple i1, . . . , ik+1 of distinct indices in {1, . . . , d+ 1}, we will construct a
map mk:

mk : CF−∞(Σik ,Σik+1
)⊗ · · · ⊗ CF−∞(Σi1 ,Σi2) → CF−∞(Σi1 ,Σik+1

)
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such that the family of maps {mk}1≤k≤d satisfies for every 1 ≤ k ≤ d and
every (k + 1)-tuple of distinct indices i1, . . . , ik+1:

∑

1≤j≤k
0≤n≤k−j

mk−j+1(id
⊗k−j−n⊗mj ⊗ id⊗n) = 0

where in the sum above, for 1 ≤ j ≤ k and 0 ≤ n ≤ k − j, we have

mj : CF−∞(Σin+j
,Σin+j+1

)⊗ · · · ⊗ CF−∞(Σin+1
,Σin+2

)

→ CF−∞(Σin+1
,Σin+j+1

)

and mk−j+1 has domain

CF−∞(Σik ,Σik+1
)⊗ · · · ⊗ CF−∞(Σin+1

,Σin+j+1
)⊗ · · · ⊗ CF−∞(Σi1 ,Σi2)

and codomain CF−∞(Σi1 ,Σik+1
).

In order to simplify notations when defining these maps in the following
section, we will assume without loss of generality that the (k + 1)-tuple
of distinct indices i1, . . . , ik+1 is equal to 1, . . . , k + 1. Then, for each 1 ≤
k ≤ d, we have mk = m0

k +m−
k where m0

k takes values in CF (Σ1,Σk+1) and
m−

k takes values in C∗(Λ−
1 ,Λ

−
k+1). We will define those two components

separately.

7.1. Definition of the operations

Let Σ1, . . . ,Σd+1, for d ≥ 2, be transverse Lagrangian cobordisms from Λ−
i

to Λ+
i for i = 1, . . . , d+ 1 such that the algebras A(Λ−

i ) admit augmenta-
tions ε−i . For 1 ≤ k ≤ d, we define mk as follows. First, for k = 1, the map
m1 : CF−∞(Σ1,Σ2) → CF−∞(Σ1,Σ2) is the differential ∂−∞ on the Floer
complex. For k = 2, it is the product on Floer complexes as defined in Sec-
tion 5.1. Then, for 3 ≤ k ≤ d, the component m0

k is naturally the generaliza-
tion of m0

2 and is thus defined by a count of rigid pseudo-holomorphic disks
with boundary on non cylindrical parts of the cobordisms, and with k + 1
mixed asymptotics. Indeed, we define:

m0
k : CF ∗

−∞(Σk,Σk+1)⊗ · · · ⊗ CF ∗
−∞(Σ1,Σ2) → CF ∗(Σ1,Σk+1)
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by

m0
k(ak, . . . , a1) =

∑

x+∈Σ1∩Σk+1

δ1,...,δk+1

#M0(x+; δ1, a1, δ2, . . . , ak, δk+1) · ε
− · x+(36)

where δi are words of Reeb chords of Λ−
i for 1 ≤ i ≤ k + 1, and the term “ε−”

means that we augment all the pure Reeb chords with the corresponding
augmentations, i.e. ε− should be replaced by ε−1 (δ1)ε

−
2 (δ2) · · · ε

−
k+1(δk+1)

in the formula. Also, the choice of Lagrangian label for the moduli spaces
involved in the definition of m0

k is (Σ1, . . . ,Σk+1). Now let us define m−
k .

As in the case k = 2, this map is defined by a count of unfinished pseudo-
holomorphic buildings, except when all the asymptotics are Reeb chords,
and so we define it as a composition of maps. First, consider the map

f (k) : CF−∞(Σk,Σk+1)⊗ · · · ⊗ CF−∞(Σ1,Σ2) → Cn−1−∗(Λ
−
k+1,Λ

−
1 )

defined for a k-tuple of asymptotics (ak, . . . , a1) with ai ∈ CF−∞(Σi,Σi+1)
by:

f (k)(ak, . . . , a1)

=
∑

γ1,k+1

δ1,...,δk+1

#M0
Σ1,...,k+1

(γ1,k+1; δ1, a1, δ2, . . . , ak, δk+1) · ε
− · γ1,k+1

These maps f (k) are generalizations of the maps f (1) and f (2) defined in
Section 5.1. For k ≥ 2, in the case where all the mixed asymptotics are Reeb
chords (γk, . . . , γ1), with γi ∈ C∗(Λ−

i ,Λ
−
i+1), we have f

(k)(γk, . . . , γ1) = 0 for
energy reasons. However, recall that for k = 1 and γ ∈ C∗(Λ−

1 ,Λ
−
2 ) a Reeb

chord, we set by convention f (1)(γ) = γ (and not f (1)(γ) = 0).
Now we generalize the bananas b (Section 4.1) and b(2) (Section 5.1) in a
family of maps b(k), 1 ≤ k ≤ d. For j > i, recall that we denote C∗(Λ−

i ,Λ
−
j ) =

Cn−1−∗(Λ
−
j ,Λ

−
i )⊕ C∗(Λ−

i ,Λ
−
j ). We define for all 1 ≤ k ≤ d:

b(k) : C∗(Λ−
k ,Λ

−
k+1)⊗ · · · ⊗ C

∗(Λ−
1 ,Λ

−
2 ) → C∗(Λ−

1 ,Λ
−
k+1)

by

b(k)(γk, . . . , γ1) =
∑

γk+1,1

δ1,...,δk+1

#M̃1(γk+1,1; δ1, γ1, δ2, . . . , γk, δk+1) · ε
− · γk+1,1



✐

✐

“5-Legout” — 2021/1/27 — 1:11 — page 1729 — #83
✐

✐

✐

✐

✐

✐

Product structures in Floer theory 1729

where the choice of Lagrangian label is (R× Λ−
1 , . . . ,R× Λ−

k+1), and the δi
are still words of Reeb chords of Λ−

i and are negative asymptotics. This for-
mula for k = 1 gives b(1) = b+ d−− and for k = 2 it is the same formula as
in Section 5.1 to define b(2). Remark also that as for k = 2, for any k-tuple
(γk, . . . , γ1) of chords γi ∈ C∗(Λ−

i ,Λ
−
i+1) with k ≥ 2, the map b(k) is equal to

the map µk
ε−k+1,...,ε

−

1

restricted to C(Λ−
k ,Λ

−
k+1)⊗ · · · ⊗ C(Λ−

1 ,Λ
−
2 ) in the aug-

mentation category Aug−(Λ
−
1 ∪ · · · ∪ Λ−

k+1). On Figure 33 are schematized
examples of curves involved in the definition of the banana maps.

1
1

Figure 33: Left: a curve contributing to b(3)(γ3,4, γ2,3, γ1,2); right: a curve
contributing to b(4)(γ4,5, γ3,4, γ3,2, γ2,1).

Finally, for 3 ≤ k ≤ d, we generalize the maps ∆(1) := δ−− and ∆(2) (defined
in Section 5.2.2) by:

∆(k) : C∗(Λ−
k ,Λ

−
k+1)⊗ · · · ⊗ C

∗(Λ−
1 ,Λ

−
2 ) → Cn−1−∗(Λ

−
k+1,Λ

−
1 )

defined for (γk, . . . , γ1) a k-tuple of Reeb chords, with γi ∈ C
∗(Λ−

i ,Λ
−
i+1), by:

∆(k)(γk, . . . , γ1) =
∑

γ1,k+1

δi

#M̃1(γ1,k+1; δ1, γ1, δ2, . . . , γk, δk+1) · ε
− · γ1,k+1

where the Lagrangian label is (R× Λ−
1 , . . . ,R× Λ−

k+1). If (γk, . . . , γ1) is a

k-tuple of Reeb chords γi ∈ C∗(Λ−
i ,Λ

−
i+1), we have ∆(k)(γk, . . . , γ1) = 0 for

energy reasons. Remark that chords from Λ−
i to Λ−

i+1 that are asymptotics

of curves in moduli spaces involved in the definition of ∆(k) are positive
asymptotics, while chords from Λ−

i+1 to Λ−
i are negative asymptotics. These

maps ∆(k) are not directly involved in the definition of m−
k but they will be

useful in order to express algebraically the unfinished pseudo-holomorphic
buildings appearing in the study of breakings of pseudo-holomorphic curves.
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We schematized on Figure 34 examples of curves contributing to f (k) and
∆(k). Now we can finally define the map:

0

1

Figure 34: Left: a curve contributing to f (3)(x3,4, x2,3, γ2,1); right: a curve
contributing to ∆(4)(γ4,5, γ3,4, γ2,3, γ2,1).

m−
k : CF ∗

−∞(Σk,Σk+1)⊗ · · · ⊗ CF ∗
−∞(Σ1,Σ2) → C∗(Λ−

1 ,Λ
−
k+1)

by setting

(37) m−
k (ak, . . . , a1)

=
∑

1≤j≤k
i1+···+ij=k

b(j)
(
f (ij)(ak, . . . , ak−ij+1), . . . , f

(i1)(ai1 , . . . , a1)
)

for a k-tuple of generators (ak, . . . , a1), and recall the following conventions
on the f (i)’s in the formula:

f (1)(ai) = ai if ai = γi+1,i(38)

f (s)(γi+1,i, γi,i−1, . . . , γi−s+2,i−s+1) = 0 for 1 < s ≤ i ≤ d(39)

Remark that the formulas (36) and (37) in the case k = 1 give m1 = ∂−∞

and in the case k = 2 recover the product m2 as defined in Section 5.1.
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7.2. Proof of Theorem 3

In order to show the A∞-relations, again we study breakings of pseudo-
holomorphic curves. TheA∞-relations for the maps {mk}1≤k≤d can be rewrit-
ten as follows. For all 1 ≤ k ≤ d:

∑

1≤j≤k
0≤n≤k−j

m0
k−j+1(id

⊗k−j−n⊗mj ⊗ id⊗n)

+
∑

1≤j≤k
0≤n≤k−j

m−
k−j+1(id

⊗k−j−n⊗mj ⊗ id⊗n) = 0

First we start by showing that

∑

1≤j≤k
0≤n≤k−j

m0
k−j+1(id

⊗k−j−n⊗mj ⊗ id⊗n) = 0(40)

and then we will prove that

∑

1≤j≤k
0≤n≤k−j

m−
k−j+1(id

⊗k−j−n⊗mj ⊗ id⊗n) = 0(41)

7.2.1. Proof of Relation (40).. To show this relation we need to under-
stand the different types of pseudo-holomorphic buildings contributing to
the maps in the sum. For a k-tuple (ak, . . . , a1) of asymptotics, each term
of (40) is either of the form

m0
k−j+1

(
ak, . . . ,m

0
j (an+j , . . . , an+1), an, . . . , a1

)
(42)

or

m0
k−j+1

(
ak, . . . ,m

−
j (an+j , . . . , an+1), an, . . . , a1

)
(43)

The pseudo-holomorphic buildings contributing to (42) are of height 0|1|0.
The middle level of each building contains two curves which have a com-
mon asymptotic on an intersection point, and can be glued on a pseudo-
holomorphic disk in the moduli space

M1(x+; δ1, a1, δ2, a2, . . . , δk, ak, δk+1)(44)

The same happens for pseudo-holomorphic buildings contributing to the
terms in (43). Such a building is of height 1|1|0 and has components that
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can be glued on an index-1 curve in the moduli space (44). Indeed,m− counts
unfinished buildings (as soon as one asymptotic at least is an intersection
point, otherwise it counts just one banana) of height 1|1|0 such that the
curve with boundary on the negative cylindrical ends is a banana which
has for output a positive chord γn+j+1,n+1 ∈ R(Λ−

n+j+1,Λ
−
n+1). The map

m0 applied to the remaining asymptotics and γn+j+1,n+1 is then given by
the count of index-0 pseudo-holomorphic curves in the middle level. The
unfinished buildings contributing to m− and the curves contributing to m0

together give a pseudo-holomorphic building, and the corresponding glued
curve is an index-1 pseudo-holomorphic curve in (44).

Now, in order to establish Relation (40), we must study the boundary of
the compactification of this moduli space. As for the case d = 2, the pseudo-
holomorphic buildings arising as limit of a one parameter family of disks in
(44) must satisfy some conditions that we recall here:

1) each curve in the building must have positive energy,
2) each curve in the building has a non negative Fredholm index,
3) the building is asymptotic (the asymptotics that are not nodes) to

x+, a1, . . . , ak, so in particular contains at least one non trivial curve
with boundary on the compact parts of the cobordisms, having the
intersection point x+ as asymptotic.

4) if the building consists of the pseudo-holomorphic disks {ui}, the re-
lation

∑
ind(ui) + ν = 1 must be satisfied (where ν is the number of

pair of nodes asymptotic to intersection points, see Section 2.6), which
implies that there are basically two types of buildings to consider:
a) buildings with two rigid components and boundary on the compact

parts having a common asymptotic at an intersection point (pair
of nodes),

b) buildings with several disjoint rigid components with boundary on
the compact parts, each having a node asymptotic to a negative
Reeb chord, and one index-1 component with boundary on the neg-
ative ends, having these Reeb chords as positive asymptotics, and
possibly some negative Reeb chord asymptotics among a1, . . . , ak.

In the case (4)(a), the limit building is of height 0|1|0 and the middle level
contains two index-0 disks having a node asymptotic to an intersection point
q ∈ CF (Σn+1,Σn+j+1) for some 1 ≤ j ≤ k and 0 ≤ n ≤ k − j. One disk is
asymptotic to (x+, a1, . . . , an, q, an+j+1, . . . , ak), the other one is asymptotic
to (q, an+1, . . . , an+j) in this cyclic order when following the boundary of the
curves counter-clockwise. Such a pseudo-holomorphic building contributes
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then to:

m0
k−j+1

(
ak, . . . ,m

0
j (an+j , . . . , an+1), an, . . . , a1

)

In the case (4)(b), the limit building is of height 1|1|0. The middle level
contains some rigid curves and the bottom level contains one index-1 banana.
For some 1 ≤ j ≤ k and 0 ≤ n ≤ k − j, there is a disk in the middle level
asymptotic to x+, a1, . . . , an, γn+j+1,n+1, an+j+1, . . . , ak in this cyclic order
and which contributes to the map m0. Then, there are some Reeb chords
γαs,αs+1

for 1 ≤ s ≤ r, such that (αs)s is a strictly increasing finite sequence
of length r ≤ j, with n+ 1 ≤ αs ≤ n+ j + 1 such that each of the other
disks in the middle level has one negative puncture asymptotic to a chord
γαs,αs+1

and αs+1 − αs other asymptotics. Such a curve contributes to the
map f (αs+1−αs). The banana in the bottom level has positive Reeb chords
asymptotics to γn+j+1,n+1 (the output), and γαs,αs+1

(which are inputs),
and possibly negative Reeb chords among the asymptotics (an+j , . . . , an+1)
which are not asymptotics of curves in the middle level (see Figure 35 for
an example of such kind of breaking). So finally such a pseudo-holomorphic
building contributes to:

m0
k−j+1

(
ak, . . . ,

∑

1≤s≤j
i1+···+is=j

b(s)
(
f (is)(an+j , . . . ), . . . , f

(i1)(· · · )
)
, an, . . . , a1

)

which is by definition equal to

m0
k−j+1

(
ak, . . . ,m

−
j (an+j , . . . , an+1), an, . . . , a1

)

We have thus described every types of pseudo-holomorphic buildings
arising as limits of curves in the moduli space

M1(x+; δ1, a1, δ2, a2, . . . , δk, ak, δk+1).

These buildings are in bijection with the elements in the boundary of the
compactification of the moduli space. This compactification being a 1-
dimensional manifold with boundary, its boundary components arise in pair,
which gives 0 modulo 2. This implies Relation (40).

Remark 18. As in Section 5, ∂-breaking can occur when a family of
curves in the moduli space M1(x+; δ1, a1, δ2, a2, . . . , δk, ak, δk+1) breaks on
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10 0

0
0

0

Figure 35: Example of pseudo-holomorphic building arising as limit of a
family of disks in M1(x+; a1, a2, a3, a4, a5, a6).

a pure Reeb chord γ ∈ R(Λ−
i ). In such a type of breaking, we get a pseudo-

holomorphic building of height 1|1|0 with one rigid component in the mid-
dle level and a disk contributing to ∂i(γ) in the bottom level, where ∂i is
the differential on the Chekanov-Eliashberg algebra asssociated to Λ−

i (Sec-
tion 3.1). Then as we apply the augmentations ε−j to all pure negative Reeb

chords, and as ε−i ◦ ∂i = 0, the contribution of such a pseudo-holomorphic
building vanishes. In the following section, ∂-breaking also occurs, but its
contribution vanishes for the same reason so we don’t mention it.

7.2.2. Proof of Relation (41).. In this section, in order to cause less
confusion, we do not write the pure chords asymptotics in the moduli spaces
anymore. As before, the left-hand side of Relation (41), with inputs a k-tuple
of asymptotics (ak, . . . , a1), splits into two sums:

∑

1≤j≤k
0≤n≤k−j

m−
k−j+1

(
ak, . . . , an+j+1,m

0
j (an+j , . . . , an+1), an, . . . , a1

)
(45)

and

∑

1≤j≤k
0≤n≤k−j

m−
k−j+1

(
ak, . . . , an+j+1,m

−
j (an+j , . . . , an+1), an, . . . , a1

)
(46)

First, let us look for example the term

b(1) ◦ f (k−j+1)
(
ak, . . . ,m

0
j (an+j , . . . , an+1), an, . . . a1

)
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appearing in (45). If (ak, . . . , a1) is a k-tuple of Reeb chords, then as we
already saw this term vanishes for energy reasons. So let us assume that at
least one ai is an intersection point. Then, the term we consider is given by
a count of unfinished buildings of height 1|1|0 with two components in the
middle level having a common asymptotic at an intersection point, and a
banana in the bottom level. Gluing the middle level components gives an
unfinished building in (see Figure 36):

M̃1(γk+1,1; γ1,k+1)×M1(γ1,k+1; a1, a2, . . . , ak)

1

0

0

1

1

1

00

Figure 36: On the top: example of unfinished building contributing to b(1) ◦
f (4)(x4,5, x3,4, x2,3, γ2,1) and the corresponding glued curve. On the bottom:
impossible breaking for energy reasons.

Let us take another term of (45), for example:

b(2)
(
f (k−n−j)

(
ak, . . . , an+j+1

)
, f (n+1)

(
m0

j (an+j , . . . , an+1), an, . . . , a1
))

This one counts again unfinished buildings of height 1|1|0 with the following
conditions:
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1) assume ak, . . . , an+j+1 are Reeb chords: if n+ j + 1 < k, then

f (k−n−j)(ak, . . . , an+j+1) = 0,

and if n+ j + 1 = k, then f (1)(ak) = ak. In this latter case, the term
above counts unfinished buildings with two components in the middle
level having a common asymptotic to an intersection point, and one
banana in the bottom level having 3 mixed Reeb chords asymptotics:
one output positive Reeb chord asymptotic at a chord γk+1,1, and two
inputs which are a positive Reeb chord γ1,k (output of f (n+1)), and
the chord ak as a negative asymptotic.

2) if ak, . . . , an+j+1 contains at least one intersection point, we get then
an unfinished building with three components in the middle level: two
of them have a common asymptotic to an intersection point and the
other is disjoint from them and has asymptotics to ak, . . . , an+j+1 and a
Reeb chord γn+j+1,k+1 (output of f

(k−n−j)). The bottom level contains
a banana with 3 mixed Reeb chord asymptotics which are all positive:
a Reeb chord γ1,n+j+1 (the output of f

(n+1)) and the chord γn+j+1,k+1

as inputs, and a chord γk+1,1 as output.

In the two cases above, we assume that at least one asymptotic among
an+j , . . . , an+1, an, . . . , a1 is an intersection point, otherwise the term van-
ishes for energy reasons. Then, in each case the two components in the middle
level having a common asymptotic can be glued and thus after gluing we
get an unfinished building in:

M̃1(γk+1,1; γ1,k, ak)×M1(γ1,k; a1, a2, . . . , ak−1)(47)

for the case (1) above, and in

M̃1(γk+1,1; γ1,n+j+1, γn+j+1,k+1)×M1(γ1,n+j+1; a1, a2, . . . , an+j)(48)

×M0(γn+j+1,k+1; an+j+1, an+j+2, . . . , ak)

for the case (2) above. More generally, each term of the sum (45) takes the
form

b(j)
(
f (ij) ⊗ · · · ⊗ f (is)(id⊗p⊗m0

q ⊗ id⊗r)⊗ · · · ⊗ f (i1)
)

with p+ q + r = is. Hence, analogously to the two special terms described
above, the unfinished buildings contributing to (45), are composed by sev-
eral rigid curves in the middle level so that two of them have a common
asymptotic to an intersection point, and one index-1 banana in the bottom
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level, having for positive input asymptotics the output chords of the maps
f (iα), and potentially some negative chords among a1, . . . , ak (which hap-
pens when f (iα) = f (1) and the corresponding input is a Reeb chord), and
finally a positive Reeb chord asymptotic γk+1,1 as output. These buildings
are in the boundary of the compactification of products of moduli spaces of
type (48), with possibly more or no (as for (47)) rigid components in the
middle level. In such products, there is only one moduli space of non-rigid
pseudo-holomorphic disks. These disks have:

1) boundary on the compact parts of the Lagrangian cobordisms that
without loss of generality we label Σ1, . . . ,Σk+1 (in order to simplify
the indices notation in the description of the boundary below),

2) punctures asymptotic to intersection points and chords in the com-
plexes CF−∞(Σi,Σi+1),

3) one negative puncture asymptotic to a Reeb chord γ1,k+1 (output of
the map f (k)).

We denote by

M1
Σ1,...,k+1

(γ1,k+1; a1, a2, . . . , ak)

such non compact moduli spaces, with ai ∈ CF−∞(Σi,Σi+1), and say that
these moduli spaces are of type A. The discussion above implies that in
order to deduce Relation (41), we will have to study the boundary of the
compactification of moduli spaces of type A. Before that, let us describe the
kinds of buildings that contribute to the terms of the sum (46). One of the
terms in (46) is for example:

b(1) ◦ f (k−1)
(
ak, . . . , a3, b

(1) ◦ f (2)(a2, a1)
)

which vanishes if a2, a1 are both Reeb chords or if ak, . . . , a3 are all Reeb
chords. If it does not vanish, such a composition of maps is given by a
count of unfinished buildings of height 2|1|0 such that the components in
the middle level and in the bottom level on floor −1, corresponding to curves
contributing to f (k−1)

(
ak, . . . , a3, b

(1) ◦ f (2)(a2, a1)
)
, form together a pseudo-

holomorphic building and therefore can be glued. After gluing, we get an
unfinished building in

M̃1(γk+1,1; γ1,k+1)×M1(γ1,k+1; a1, a2, . . . , ak)(49)

(see Figure 37) where the first moduli space is a rigid banana and the second
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1

0
0

1

1

1

0

Figure 37: Unfinished pseudo-holomorphic building contributing to b(1) ◦
f (3)(x4,5, x3,4, b

(1) ◦ f (2)(γ3,2, x1,2)) and the corresponding glued curve.

is of type A. Another term appearing in (46) is for example:

b(2)
(
f (k−2)(ak, . . . , a3), f

(1) ◦ b(1) ◦ f (2)(a2, a1)
)

= b(2)
(
f (k−2)(ak, . . . , a3), b

(1) ◦ f (2)(a2, a1)
)

where the equality comes from the convention (38). The unfinished pseudo-
holomorphic buildings contributing to this term are of height 2|1|0 again,
but this time the components in the bottom level (on floor −1 and floor
−2) form a building. After gluing the components of this building we get an
unfinished building in:

M̃2(γk+1,1; γ1,3, γ3,k+1)×M0(γ1,3; a1, a2)(50)

×M0(γ3,k+1; a3, a4, . . . , ak)

The first moduli space is a moduli space of non rigid bananas, whereas the
two last moduli spaces are rigid and contribute respectively to the maps f (2)

and f (k−2).
More generally, each term of (46) is given by a count of unfinished build-

ings of height 2|1|0 such that either

(A) the components in the middle level and in the bottom level floor −1
form a building, or

(B) the components in the bottom levels form a building.

In the first case, after gluing we get an unfinished building in a product of
moduli spaces of type (49) (with possibly several rigid curves with boundary
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on the non-cylindrical parts). In such a product, the only non compact
moduli space is of type A. In the second case (which appears only when the
interior m− is composed with f (1), because f (1) ◦m− = m− by convention)
we get an unfinished building in a product of type (50). In this case, the
non-rigid disks are index-2 bananas: disks with boundary on the negative
cylindrical ends of the cobordisms, with input punctures asymptotics to
positive Reeb chords (which are outputs of maps f (i), i ≥ 2)) and negative
Reeb chords (in the case of f (1)), and an output puncture asymptotic to a
positive Reeb chord. We will say that such moduli spaces of index-2 bananas
are of type B.

To sum up, we have seen that each term on the left-hand side of Relation
(41) is defined by a count of unfinished pseudo-holomorphic buildings arising
at the boundary of the compactification of some product of moduli spaces
(as (47), (48), (49), (50) and with possibly more rigid curves with boundary
on the compact parts). In any case, the non compact components in such
products are moduli spaces of type A or of type B. So let us now describe
the boundary of the compactification of such moduli spaces.

Type A: We describe now ∂M1
Σ1,...,k+1

(γ1,k+1; a1, a2, . . . , ak). Remark first
that this moduli space is empty if the asymptotics ai are all Reeb chords
in CF−∞(Σi,Σi+1). The pseudo-holomorphic buildings arising as limits of a
one parameter family of disks of type A must satisfy:

1) each curve in the building has positive energy,
2) each curve in the building has a non negative Fredholm index,
3) the building is asymptotic (the asymptotics that are not nodes) to

γ1,k+1, a1, . . . , ak,
4) if the building consists of the pseudo-holomorphic disks {ui}, the re-

lation
∑

ind(ui) + ν = 1 must be satisfied. This implies that the fol-
lowing types of buildings can appear:
a) buildings of height 0|1|0 with two rigid components and boundary

on the compact parts having a common asymptotic at an intersec-
tion point (pair of nodes),

b) buildings of height 1|1|0 with several disjoint rigid components with
boundary on the compact parts, and one index-1 component with
boundary on the negative ends. We can divide this case into two
subcases:
(i) the output chord γ1,k+1 is an asymptotic of a disk with bound-

ary on the compact parts in the building,
(ii) the chord γ1,k+1 is an asymptotic of the non trivial disk with

boundary on the negative ends of the cobordisms.
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In the case (4)(a), the component containing the output γ1,k+1 has a
node asymptotic to an intersection point q ∈ CF (Σn+1,Σn+j+1) for some
1 ≤ j ≤ k and 0 ≤ n ≤ k − j. This disk is asymptotic to

γ1,k+1, a1, . . . , an, q, an+j+1, . . . , ak

in this cyclic order, and thus contributes to the map f (k−j+1) (with output
γ1,k+1). The other component is asymptotic to q, an+1, . . . , an+j and con-
tributes to ⟨m0(an+j , . . . , an+1), q⟩ (coefficient of q in m0(an+j , . . . , an+1)).
Thus in this case the building contributes to

f (k−j+1)
(
ak, . . . ,m

0
j (an+j , . . . , an+1), an, . . . , a1

)
.

In the case (4)(b)(i), the disk containing the output γ1,k+1 is asymptotic
to

γ1,k+1, a1, . . . , an, γn+j+1,n+1, an+j+1, . . . , ak

with γn+j+1,n+1 ∈ C(Λ−
n+1,Λ

−
n+j+1) negative Reeb chord which is a node

corresponding thus to the positive output Reeb chord asymptotic of the
disk in level −1. This disk in the middle level contributes to

⟨f (k−j+1)(ak, . . . , an+j+1, γn+j+1,n+1, an, . . . , a1), γ1,k+1⟩.

Then, the disk in level −1 is a banana with output γn+j+1,n+1 and may have
inputs at

• negative Reeb chord asymptotics among an+1, . . . , an+j ,

• positive Reeb chord asymptotics which are nodes and are therefore
negative asymptotics for (rigid) disks in the middle level having asymp-
totics among an+1, . . . , an+j .

The banana together with the rigid components in the middle level not
containing γ1,k+1 contribute to ⟨m−

j (an+j , . . . , an+1), γn+j+1,n+1⟩. Putting
these together, the buildings of case (4)(a)(i) contribute to:

f (k−j+1)
(
ak, . . . ,m

−
j (an+j , . . . , an+1), an, . . . , a1

)

In the case (4)(b)(ii), the disk containing the output γ1,k+1 is an index-1
curve contributing to a map ∆. Then, every curve in the middle level (such
a curve exists because as observed before we can assume that at least one
asymptotic is an intersection point otherwise the moduli spaces of type A
are empty) has in particular a negative Reeb chord asymptotic not in the
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Floer complexes (chords γi,i′ with i < i′) which corresponds to the output
of a map f . These chords are nodes being also positive Reeb chords inputs
for the map ∆. Of course, the disk in level −1 can also have negative Reeb
chords asymptotics among a1, . . . , ak. Using the conventions (38) and (39),
we have that the pseudo-holomorphic buildings of case (4)(b)(ii) contribute
to:

∆(s)
(
f (is)(ak, . . . , ak−is+1), . . . , f

(i1)(ai1 , . . . , a1)
)

with is + · · ·+ i1 = k

Finally, all these possibilities of breakings give the relation:

∑

1≤j≤k
0≤n≤k−j

f (k−j+1)
(
id⊗k−j−n⊗m0

j ⊗ id⊗n
)

(51)

+
∑

1≤j≤k−1
0≤n≤k−j

f (k−j+1)
(
id⊗k−j−n⊗m−

j ⊗ id⊗n
)

+
∑

1≤s≤k
i1+···+is=k

∆(s)
(
f (is) ⊗ · · · ⊗ f (i1)

)
= 0

with conventions (38) and (39).

Type B: Index-2 bananas. Let us assume without loss of generality that
such an index-2 banana has boundary on the Lagrangian label R× Λ−

1,...,k+1,

with output a positive Reeb chord asymptotic at γk+1,1 ∈ R(Λ−
k+1,Λ

−
1 ) and

other Reeb chord asymptotics at Reeb chords γi ∈ C
∗(Λ−

i ,Λ
−
i+1), for 1 ≤

i ≤ k. We want to describe ∂M2(γk+1,1; γ1, . . . , γk). An index-2 banana in
M2(γk+1,1; γ1, . . . , γk) is a pseudo-holomorphic disk with boundary on the
negative cylindrical ends of the cobordisms, so it can break on a pseudo-
holomorphic building with boundary on the negative cylindrical ends too,
in particular, each (non trivial) component of the building has index at least
1. So, an index-2 banana can only break into a building of height 2|0|0 such
that each floor in the bottom level contains one non trivial component, and
both have a common asymptotic to a Reeb chord (node which is a positive
asymptotic for the component on floor −2 and negative asymptotic for the
component on floor −1). We can distinguish two cases:

1) the output γk+1,1 is an asymptotic of the component on floor −1,

2) the output γk+1,1 is an asymptotic of the component on floor −2.
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In case (1), the component on floor −1 is asymptotic to

γk+1,1, γ1, . . . , γn, γn+j+1,n+1, γn+j+1, . . . , γk

with γn+j+1,n+1 ∈ R(Λ−
n+j+1,Λ

−
n+1) negative asymptotic which is a node, for

some 1 ≤ j ≤ k and 0 ≤ n ≤ k − j. Then, the disk on floor −2 has asymp-
totics to γn+j+1,n+1, γn+1, . . . , γn+j with γn+j+1,n+1 positive output. So the
two components of the buildings are bananas and together contribute to

b(k−j+1)
(
γk, . . . , b

(j)(γn+j , . . . , γn+1), γn, . . . , γ1
)

In case (2), the component on floor −2 is asymptotic to

γk+1,1, γ1, . . . , γn, γn+1,n+j+1, γn+j+1, . . . , γk

with γn+1,n+j+1 ∈ R(Λ−
n+1,Λ

−
n+1+j) positive asymptotic which is a node, for

some 1 ≤ j ≤ k and 0 ≤ n ≤ k − j. Then, the disk on floor −1 has asymp-
totics to γn+1,n+j+1, γn+1, . . . , γn+j with γn+1,n+j+1 negative output. Thus,
this disk on floor −1 contributes to

⟨∆(γn+j , . . . , γn+1), γn+1,n+j+1⟩

and the disk on floor −2 is a banana with output γk+1,1. Hence, the building
in case (2) contributes to

b(k−j+1)
(
γk, . . . ,∆

(j)(γn+j , . . . , γn+1), γn, . . . , γ1
)

We described above all the types of pseudo-holomorphic buildings in the

boundary of the compactification of M̃2(γk+1,1; γ1, . . . , γk) and we deduce
from this the relation:

∑

1≤j≤k
0≤n≤k−j

b(k−j+1)
(
id⊗k−j−n⊗(b(j) +∆(j))⊗ id⊗n

)
= 0(52)
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By combining Relations (51) and (52), we get the following:

∑

1≤s≤k
i1+···+is=k

1≤α≤s

b(s)

(
f (is) ⊗ · · · ⊗ f (iα+1)

⊗
∑

1≤j≤iα
0≤n≤iα−j

f (iα−j+1)
(
id⊗iα−n−j ⊗m0

j ⊗ id⊗n
)
⊗ · · · ⊗ f (i1)

)

+
∑

1≤s≤k
i1+···+is=k

1≤α≤s

b(s)

(
f (is) ⊗ · · ·

⊗
∑

1≤j≤iα−1
0≤n≤iα−j

f (iα−j+1)
(
id⊗iα−n−j ⊗m−

j ⊗ id⊗n
)
⊗ · · · ⊗ f (i1)

)

+
∑

1≤s≤k
i1+···+is=k

1≤α≤s

b(s)

(
f (is) ⊗ · · · ⊗ f (iα+1)

⊗
∑

1≤j≤iα
n1+···+nj=iα

∆(j)
(
f (nj) ⊗ · · · ⊗ f (n1)

)
⊗ · · · ⊗ f (i1)

)

+
∑

1≤s≤k
i1+···+is=k

∑

1≤j≤s
0≤n≤s−j

b(s−j+1)
(
f (is) ⊗ · · ·

⊗ b(j)
(
f (in+j) ⊗ · · · ⊗ f (in+1)

)
⊗ · · · ⊗ f (i1)

)

+
∑

1≤s≤k
i1+···+is=k

∑

1≤j≤s
0≤n≤s−j

b(s−j+1)
(
f (is) ⊗ · · ·

⊗∆(j)
(
f (in+j) ⊗ · · · ⊗ f (in+1)

)
⊗ · · · ⊗ f (i1)

)
= 0

where the sum of the first three lines equals zero because of (51), as well
as the sum of the two last lines because of (52). The sums in the third and
fifth lines are equal so cancel each other (on Z2) and we get then:

∑

1≤s≤k
i1+···+is=k

1≤α≤s

b(s)

(
f (is) ⊗ · · ·

⊗
∑

1≤j≤iα
0≤n≤iα−j

f (iα−j+1)
(
id⊗iα−n−j ⊗m0

j ⊗ id⊗n
)
⊗ · · · ⊗ f (i1)

)
+
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+
∑

1≤s≤k
i1+···+is=k

1≤α≤s

b(s)

(
f (is) ⊗ · · ·

⊗
∑

1≤j≤iα−1
0≤n≤iα−j

f (iα−j+1)
(
id⊗iα−n−j ⊗m−

j ⊗ id⊗n
)
⊗ · · · ⊗ f (i1)

)

+
∑

1≤s≤k
i1+···+is=k

∑

1≤j≤s
0≤n≤s−j

b(s−j+1)
(
f (is) ⊗ · · ·

⊗ b(j)
(
f (in+j) ⊗ · · · ⊗ f (in+1)

)
⊗ · · · ⊗ f (i1)

)
= 0

The first sum corresponds to

∑

1≤j≤k
0≤n≤k−j

m−
k−j+1

(
id⊗k−j−n⊗m0

j ⊗ id⊗n
)

and the two last sums to

∑

1≤j≤k
0≤n≤k−j

m−
k−j+1

(
id⊗k−j−n⊗m−

j ⊗ id⊗n
)

because the sum in the third line is equal to the missing terms

b(s−j+1)
(
f (is) ⊗ · · · ⊗ f (in+j+1) ⊗m−

j ⊗ · · · ⊗ f (i1)
)

in the second line, which gives the relation. This ends the proof of Theorem 3.

7.3. A∞-functor

In this subsection, we naturally generalize the maps F1 and F2 with higher
order maps. Again, let us consider a fixed (d+ 1)-tuple of pairwise trans-
verse exact Lagrangian cobordisms Σ1, . . . ,Σd+1. For every 1 ≤ k ≤ d and
every (k + 1)-tuple i1, . . . , ik+1 of distinct indices in {1, . . . , d+ 1}, we will
construct a map

Fk : CF−∞(Σik ,Σik+1
)⊗ · · · ⊗ CF−∞(Σi1 ,Σi2) → C∗(Λ+

i1
,Λ+

ik+1
)

such that the family of maps {Fk}1≤k≤d satisfies the A∞-functor relation, i.e.
for every 1 ≤ k ≤ d and every (k + 1)-tuple i1, . . . , ik+1 of distinct indices,
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we have:

∑

1≤j≤k
0≤n≤k−j

Fk−j+1(id⊗k−j−n⊗mj ⊗ id⊗n)(53)

+
∑

1≤s≤k
j1+···+js=k

µs(F js ⊗ · · · ⊗ F j1) = 0

where

• for 1 ≤ j ≤ k and 0 ≤ n ≤ k − j we have

mj : CF−∞(Σin+j
,Σin+j+1

)⊗ · · · ⊗ CF−∞(Σin+1
,Σin+2

)

→ CF−∞(Σin+1
,Σin+j+1

)

and Fk−j+1 has domain

CF−∞(Σik ,Σik+1
)⊗ · · · ⊗ CF−∞(Σin+1

,Σin+j+1
)⊗ · · · ⊗ CF−∞(Σi1 ,Σi2)

and codomain CF−∞(Σi1 ,Σik+1
),

• for all 1 ≤ s ≤ k, all indices j1, . . . , js such that j1 + · · ·+ js = k and
all 1 ≤ α ≤ s, the domain of F jα is

CF−∞(Σij1+···+jα
,Σij1+···+jα+1

)⊗ · · · ⊗ CF−∞(Σij1+···+jα−1+1
,Σij1+···+jα−1+2

)

and the codomain is CF−∞(Σij1+···+jα−1+1
,Σij1+···+jα+1

),

• µs are the A∞-maps of the augmentation category Aug−(Λ
+
1 ∪ · · · ∪

Λ+
k+1). In the formula above, we have

µs : CF−∞(Σij1+···+js−1+1
,Σik+1

)⊗ · · · ⊗ CF−∞(Σi1 ,Σij1+1
)

→ CF−∞(Σi1 ,Σik+1
)

and we did not write the augmentations in the index in order for the
formula to stay readable.

Now, to simplify notations once again, let us assume that the (k + 1)-
tuple i1, . . . , ik+1 of distinct indices is equal to 1, . . . , k + 1. The maps Fk,
for k ≥ 3, are defined analogously to the maps F1 and F2, by a count of
rigid pseudo-holomorphic disks, but with more mixed asymptotics (see for
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example Figure 38). So we define

Fk : CF−∞(Σk,Σk+1)⊗ · · · ⊗ CF−∞(Σ1,Σ2) → C∗(Λ+
1 ,Λ

+
k+1)

by

(54) Fk(ak, . . . , a1) =∑

γ+∈R(Λ+
k+1,Λ

+
1 )

δ1,...,δk+1

#M0
Σ1,2,...,k+1

(γ+; δ1, a1, . . . , δk, ak, δk+1) · ε
− · γ+

where as always the δi’s are words of Reeb chords of Λ−
i , and again the term

ε− should be replaced by
∏

ε−i (δi). In order to show the A∞-functor relation,

0

Figure 38: Example of curve contributing to F4(γ5,4, x3,4, γ3,2, x1,2).

we study degeneration of curves in the moduli space M1(γ+; δ1, a1, . . . , δk,
ak, δk+1). A family of curves in such a moduli space can break into:

1) a pseudo-holomorphic building of height 0|1|0 such that the middle
level contains two index-0 curves which have a common asymptotic at
an intersection point. These buildings contribute thus to

⟨Fk−j+1(id⊗k−j−n⊗m0
j ⊗ id⊗n), γ+⟩

2) a pseudo-holomorphic building of height 1|1|0 with possibly several
index-0 curves in the middle level and one index-1 banana in the bot-
tom level (for index reasons, this level can not contain any other non
trivial curve). These buildings contribute to

⟨Fk−j+1(id⊗k−j−n⊗m−
j ⊗ id⊗n), γ+⟩
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3) a pseudo-holomorphic building of height 0|1|1 with again possibly sev-
eral index-0 disks in the middle level and one index-1 curve in the top
level. These buildings contribute to

⟨µs(F js ⊗ · · · ⊗ F j1), γ+⟩

As boundary of a 1-dimensional manifold, the sum of all these contributions
gives 0 modulo 2, and this implies the relation (53).
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[2] M. Audin and M. Damian, Théorie de Morse et Homologie de Floer,
Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP
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