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We prove that any small enough neighborhood of a closed con-
tact submanifold is always tight provided its normal bundle has
a nowhere vanishing section. The non-existence of C0–small posi-
tive loops of contactomorphisms in general overtwisted manifolds
is shown as a corollary.

1. Introduction

A contact manifold (M, ξ) is an (2n+ 1)–dimensional manifold equipped
with a maximally non–integrable codimension 1 distribution ξ ⊂ TM . If we
assume that ξ is coorientable, as will be the case in the article, the hyperplane
distribution can be written as the kernel of a global 1–form α, ξ = ker(α),
and the maximal non–integrable condition reads as α ∧ (dα)n ̸= 0. These
conditions imply that (ξ, dα) is a symplectic vector bundle overM . However,
in general a hyperplane distribution ξ with a symplectic structure ω on its
fibers does not yield a contact structure. The data (ξ, ω) is called almost
contact structure or formal contact structure. We will employ the second
alternative throughout the paper as it is closer to other terminology related
to the h–principle.

Let Cont(M) and FCont(M) denote the set of contact and formal con-
tact structures, respectively. Gromov proved that if M is open the natural
inclusion is a homotopy equivalence [13]. This equivalence does not hold for
closed manifolds. However, in dimension 3 Eliashberg introduced a subclass
ContOT (M) of Cont(M), the so–called overtwisted contact structures, and
proved that any formal contact homotopy class contains a unique, up to iso-
topy, overtwisted contact structure. Recently, this result has been extended
to arbitrary dimension in [2] so the notion of overtwisted contact structure
has been settled in general.

Prior to [2], different proposals for the definition of the overtwisting phe-
nomenum appeared in the literature. The plastikstufe, introduced in [19],
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resembled the overtwisted disk in the sense that it provides an obstruction
to symplectic fillability. The presence of a plastikstufe has been shown to
be equivalent to the contact structure being overtwisted (check [3, Theo-
rem 1.1] and [16] for a list of disguises of an overtwisted structure). One of
the corollaries obtained in [3] is a stability property for overtwisted struc-
tures: if (M, kerα) is overtwisted then (M × D2(R), ker(α+ r2dθ)) is also
overtwisted provided R > 0 is large enough, where D2(R) denotes the open
2–disk of radius R and r2dθ denotes the standard radial Liouville form in
R2. It is conjectured that tight structures (by definition, tight means not
overtwisted) are also preserved by stabilization, i.e. (M, kerα) tight implies
(M × R2, ker(α+ r2dθ) is tight. In fact, our article can be interpreted as a
first step towards the conjecture.

1.1. Statements of the results

This paper explores the other end of the previous discussion, can small
neighborhoods of contact submanifolds be overtwisted? We provide a nega-
tive answer to the question in several instances. The main result presented
in the article is the following:

Theorem 1. Let (M, kerα) be a closed contact manifold. Then there exists
ε > 0 such that (M × D2(ε), ker(α+ r2 dθ)) is tight.

This theorem was previously obtained by Casals, Presas and Sandon in
the case of overtwisted 3–manifolds [5] and later by Gironella [11, Corol-
lary H] for general 3–manifolds with a completely different approach. An
interesting consequence of Theorem 1 is stated in the next corollary:

Corollary 2. Given any overtwisted closed contact manifold (M,α), there
exists a radius R0 ∈ R+ \ {0} such that (M × D2(R), α+ r2 dθ) is tight if
R ∈ (0, R0] and is overtwisted if R ∈ (R0,+∞).

As stated above, the property for large radii was proven in [3]. Note that
a statement similar to the part of Corollary 2 that concerns large radii was
already proven in [20] for GPS (generalized plastikstufe) instead of over-
twisted disks.

The size threshold pointed out by Corollary 2 is similar to the case of
Legendrians studied by Murphy in [18]. In brief, any Legendrian has a chart
in which it can be expressed as the product of a zig-zag and a disk but the
size of the disk can only be greater than 1 if the Legendrian is loose.
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Theorem 1 can be extended to arbitrary neighborhoods of contact sub-
manifolds M whose normal bundle has a nowhere vanishing section:

Theorem 3. Suppose M is a closed contact submanifold of the contact
manifold (N, ξ). Assume that the normal bundle of M has a nowhere van-
ishing section. Then, there is a neighborhood of M in N that is tight.

The nowhere vanishing section provides a term D2(ε) in a splitting of
a neighborhood of M in N but some additional arguments that involve
h–principle are needed to be able to apply Theorem 1.

Let us briefly outline how the results and ideas are presented in the
article. The proof of Theorem 1, and thus also of 3, is based on Theorem 10.
This result studies the contact manifold M × P 2m(ε), where P 2m(ε) denotes
the 2m-dimensional polydisk D2(ε)× · · · × D2(ε). Theorem 10 states that
for m large enough and ε small (M × P 2m(ε), ker(α+

∑m
i=1 r

2
i dθi)) admits

a contact embedding in a closed contact manifold of the same dimension
that is Stein fillable, therefore M × P 2m(ε) is automatically tight. However,
Theorems 1 and 3 do not prove such a strong result. Their proof uses [3,
Theorem 1.1.(ii)] and some packing lemmas to obtain a contradiction by
stabilizing and reducing to Theorem 10.

The case in which the contact distribution ξ = kerα is trivial as a vector
bundle over M is adequate to introduce the basic ideas needed to prove the
tightness of M × P 2m(ε) for large m. Choose a metric on M and extend
it to T ∗M in a way that α has norm 1 everywhere. Then M contact em-
beds in the unit cotangent bundle ST ∗M via e : p 7→ αp for every p ∈ M .
The normal bundle to the embedding is equal to ξ∗ so it is trivial. Thus, if
ε > 0 is small M × P 2n(ε), where 2n+ 1 = dimM , is contactomorphic to a
neighborhood of e(M) in the Weinstein fillable manifold ST ∗M (a filling is
given by DT ∗M). Since ST ∗M is tight we conclude that M × P 2n(ε), be-
ing contactomorphic to a neighborhood of e(M), is also tight. The general
case is addressed in Section 2. Theorem 10 shows that we can always em-
bed M in the boundary of a Stein fillable manifold W with trivial normal
bundle, the tightness of M × P 2m(ε) then follows automatically. The idea is
to “add” a bundle τ that trivializes ξ and consider the pullback of the pre-
vious construction. Our arguments use h–principle crucially. The minimum
codimension of the embedding found in the proof is 2n+ dim τ .

Theorems 1 and 3 do not prove tightness as a consequence of the stronger
fact of the existence of an embedding into a Stein fillable manifold. Section 3
presents the proof of Theorem 1. The first step deals with the stabiliza-
tion of the previous construction. Suppose for the moment that W is the
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Weinstein filling of a contact manifold Y = ∂W and R > 0 is arbitrary. In-
side W × R2 we can find a Weinstein domain such that Y × D2(R) contact
embeds in its boundary and we deduce that Y × D2(R) is tight. Now, in
our setting, after composing with the embedding that led to Theorem 10
we obtain that M × P 2m+2(ε, . . . , ε, R) is tight for any R > 0. The nota-
tion P 2m+2(ε, . . . , ε, R) simply means D2(ε)× · · · × D2(ε)× D2(R). On the
other hand, if M × D2(ε) were overtwisted after stabilization (cf. [3, Theo-
rem 1.1.(ii)]) we would produce an overtwisted manifold that would contact
embed (using a symplectic packing result [14]) in M × P 2m+2(ε, . . . , ε, R) if
R is large enough. This is the contradiction that concludes Theorem 1.

Finally, Section 4 discusses the extension of the previous results to con-
tact submanifolds. The nowhere vanishing section provides a splitting of
a neighborhood of M in N of the form U × D2(ε). We use h–principle to
embed U into a closed contact manifold of the same dimension to apply
Theorem 1 and conclude Theorem 3.

1.2. Applications

1.2.1. Remarks about contact submanifolds. We are assuming an
arbitrary but fixed choice of contact forms whenever the measure of a radius
of the tubular neighborhoods of a contact submanifold is required.

1. Assume that (M, ξ) contact embeds into an overtwisted contact man-
ifold (N, ξOT ) as a codimension 2 submanifold with trivial normal bundle.
By Theorem 1, it is clear that the overtwisted disk cannot be localized on
arbitrary small neighborhoods of M , even assuming that M itself is over-
twisted. This stands in sharp contrast with some related questions addressed
in the literature. For instance, in dimension 3 Giroux criterium [12, Theorem
4.5a] tells that whenever you have a convex surface with a homotopically
trivial dividing curve then there is an overtwisted disk in an arbitrary neigh-
borhood of the surface. Also, examples of overtwisted convex hypersurfaces
have been found in higher dimensions [15]. Another related work is [16] in
which it is shown that the overtwisted disk can be localized around a very
special kind of codimension n submanifold: a plastikstufe [19].

2. Assume now that (M, ξOT ) is overtwisted and contact embeds into a
tight contact manifold (N, ξ) as a codimension 2 submanifold with trivial
normal bundle. Then we can perform a fibered connected sum of (N, ξ) with
itself along (M, ξOT = kerαOT ). Briefly, the construction of the connected
sum goes as follows (cf. [10, Section 7.4]). Given a sufficiently small neigh-
borhood U of M , There is a contactomorphism between the open domain
U \M in N and (M × (0, ε)× S1, αOT + t dθ). Form the fibered connected
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sum N#MN by identifying the two copies of M inside N . After changing
coordinates (t, θ) 7→ (−t,−θ) in a neighborhood of M in one of the copies of
N , N#MN can be given a contact structure that agrees with the original
one in the complementary of M and a neighborhood of the gluing region in
the connected sum is contactomorphic to (M × (−ε, ε)× S1, αOT + t dθ).

It is clear that the contact connection associated to the contact fibration
M × (−ε, ε)× S1 → (−ε, ε)× S1 [21] induces the identity map when we lift
by parallel transport the loop {0} × S1. The parallel transport of an over-
twisted disk of the fiber generates a plastikstufe, see [21] for more details.
By [16], the manifold is overtwisted.

Call RM > 0 the biggest radius for which M ×D2(RM ) contact embeds
in N . We claim that the connected sum N#MN increases the biggest radius
at least to RN#MN ≥

√
2RM . Indeed, the annulus has twice the area of the

original disk and therefore you can embed symplectically a disk of radius
r =

√
2RM − δ in (ε, ε)× S1 for any δ > 0. This (exact) symplectic embed-

ding can be lifted to a contact embedding M × D2(r) → M × (ε, ε)× S1.
However, we get much more, since we actually obtain RN#MN = ∞. This
is because we can always formally contact embed M × R2 into N#MN .
Moreover, we can assume that the embedding restricted to a very small
neighborhood U of the fiber M × {0} provides a honest fibered contact em-
bedding into M × (−ε, ε)× S1. Indeed, applying [2, Corollary 1.4] relative
to the domain U we obtain a contact embedding of M × R2 thanks to the
fact that N#MN is overtwisted. This just means that the contact embed-
ding of the tubular neighborhood can be really sophisticated and its explicit
construction is far from obvious.

1.2.2. Small loops of contactomorphisms. Theorem 1 allows to ex-
tend the result of non–existence of small positive loops of contactomorphisms
in overtwisted 3–manifolds contained in [5] to arbitrary dimension. A loop of
contactomorphisms or, more generally, a contact isotopy is said to be posi-
tive if it moves every point in a direction positively transverse to the contact
distribution. The notion of positivity induces for certain manifolds, called
orderable, a partial order on the universal cover of the contactomorphism
group and it is related with non–squeezing and rigidity in contact geometry,
see [7, 9]. As explained in [9], orderability is equivalent to the non–existence
of a positive contractible loop of contactomorphisms.

Any contact isotopy is generated by a contact Hamiltonian Ht : M → R

that takes only positive values in case the isotopy is positive. The main re-
sult of [5] states that if (M, kerα) is an overtwisted 3–manifold there exists a
constant C(α) such that any positive loop of contactomorphisms generated
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by a Hamiltonian H : M × S1 → R+ satisfies ||H||C0 ≥ C(α). The result has
been recently extended to arbitrary hypertight or Liouville (exact symplec-
tically) fillable contact manifolds in [1]. As a consequence of Theorem 1, we
can eliminate the restriction on the dimension in the overtwisted case:

Theorem 4. Let (M, kerα) be an overtwisted contact manifold. There ex-
ists a constant C(α) such that the norm of a Hamiltonian H : M × S1 → R+

that generates a positive loop {ϕθ} of contactomorphisms on M satisfies

||H||C0 ≥ C(α)

The strategy of the proof copies that of [5]. The first step is to prove
that M × D2(ε) is tight, this is provided by Theorem 1. The second step
shows that a small positive loop provides a way to lift a plastikstufe in M
(whose existence is equivalent to overtwistedness as discussed above [16]) to a
plastikstufe in M × D2(ε). This is exactly Proposition 9 in [5]. This provides
a contradiction that forbids the existence of the small positive loop.

It is worth mentioning that the argument forbids the existence of (pos-
sibly non–contractible) small positive loops as in [1, 5]. This is in contrast
with the work in progress by S. Sandon [22] in which they rule out the exis-
tence of contractible small positive loops. It is also important to notice that
overtwisted manifolds are not orderable in general, positive loops in certain
overtwisted 3-manifolds were found in [4].

Remark 5. The hypothesis in Theorem 4 can be changed by the probably
weaker notion of GPS-overtwisted, see [20]. Indeed, assume that the mani-
fold (M, ξ) is GPS-overtwisted. This means that there is an immersed GPS
in the manifold. The positive loop produce a GPS in M × D2(ε) by parallel
transport of the GPS around a closed loop in the base D2(ε). In this case,
we need to iterate the process k times to produce a GPS in M × P 2k(ε).
Now, Theorem 10 concludes that this manifold embeds into a Stein fillable
one providing a contradiction with the main result in [20].
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2. M × P 2m(ε) admits a contact embedding into a Stein
fillable contact manifold

2.1. Construction of a formal contact embedding M → ∂W with
trivial normal bundle

Recall that (ξ, dα) defines a symplectic vector bundle over M , thus it is
equipped with a complex bundle structure unique up to homotopy. Denote
ξ∗ the dual complex vector bundle of ξ. The theory of vector bundles (check,
for instance [17, Proposition 5.8]) guarantees the existence of a complex
vector bundle τ → M such that ξ∗ ⊕ τ → M is trivial, that is, there is an
isomorphism of complex vector bundles over M between ξ∗ ⊕ τ and M ×
Ck = C

k, where k is a positive integer large enough.
Denote π : T ∗M → M the cotangent bundle projection and denote pr :

π∗τ → T ∗M the bundle projection. Define π̃ = π ◦ pr. Let us understand
Ŵ = π∗τ as a smooth almost complex manifold. Choosing a ξ–compatible
contact form α, i.e ξ = kerα, it is clear that

TŴ ∼= π̃∗τ ⊕ pr∗T (T ∗M) ∼= π̃∗τ ⊕ π̃∗T ∗M ⊕ π̃∗TM
∼= π̃∗τ ⊕ π̃∗(ξ∗ ⊕ ⟨α⟩)⊕ π̃∗TM
∼= π̃∗(τ ⊕ ξ∗)⊕ π̃∗⟨α⟩ ⊕ π̃∗TM

∼= π̃∗
C
k ⊕ π̃∗⟨α⟩ ⊕ π̃∗TM

In particular, the vector bundle π∗τ
π̃→ M is isomorphic to C

k ⊕ ⟨α⟩. Fix a
direct sum bundle metric h in π∗τ such that h(α, α) = 1. Now define

W = {(v, p) ∈ Ŵ : h(v, v) ≤ 1}.

We are going to fix a compatible almost complex structure on T ∗M .
Compatible in the sense that it is defined by choosing a Riemannian metric
in TM that automatically induces a Riemannian metric in T ∗M and this
obviously induces a metric in TT ∗M = π∗TM ⊕ π∗T ∗M . It is well known
that this choice makes the almost complex structure compatible with the
Liouville form in T ∗M . The choice that we make for the Riemannian metric
in the tangent bundle is the usual compatible metric for a contact form;
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it is defined by fixing a dα–compatible j in the distribution ξ and setting
g(u, v) = dα(u, jv) and declaring the Reeb vector field Rα in M unitary and
orthogonal to ξ. The almost complex structure pairs the lifts of the Reeb
vector field Rα and the contact form α to TT ∗M .

By a direct sum with a complex structure in τ we obtain a complex struc-
ture J in TŴ . Then, (W,J) is an almost complex manifold with boundary
∂W that has a natural formal contact structure ξ0 = T∂W ∩ J(T∂W ). The
reason to choose this adapted complex structure J is that we will later
have to check that the ensuing embedding is formal contact. Consider the
embedding

(1) e0 : M → ∂W = S(Ck ⊕ ⟨α⟩) : p 7→ (0, 1)

that sends each point p ∈ M to α(p). In particular, e0 = z0 ◦ e where e :
M → S(T ∗M) is the natural section provided by the choice of contact form
for ξ and z0 : S(T

∗M) → π∗τ is the embedding defined by the zero section of
the vector bundle. We claim that the normal bundle to e0 is trivial because
it is equal to π̃∗C

k.
By the choice of metric, the tangent to the embedding is (π̃∗TM)|im(e0)

and its normal bundle inside Ŵ = π∗τ is (π̃∗C
k ⊕ π̃∗⟨α⟩)|im(e0). It follows

that the normal bundle to e0 is (T∂W ∩ (π̃∗C
k ⊕ π̃∗⟨α⟩))|im(e0) and, in view

of the definition of e0, this simplifies to (π̃∗C
k)|im(e0).

2.2. W admits a Stein structure and thus ∂W is contact

The distribution T∂W ∩ J(T∂W ) is not necessarily a contact structure in
∂W . However, we will deform this distribution to a genuine contact structure
using the following result.

Theorem 6 (Eliashberg [6]). Let (V 2n, J) be an almost complex mani-
fold with boundary of dimension 2n > 4 and suppose that f : V → [0, 1] is a
Morse function constant on ∂V such that indp(f) ≤ n for every p ∈ Crit(f).
Then, there exists a homotopy of almost complex structures {Jt}1t=0 such that
J0 = J , J1 is integrable and f is J1–convex.

We are clearly in the hypothesis since our manifoldW is almost complex,
has dimension 2k + 1 + dimM > 4 (because 2k ≥ dim ξ = dimM − 1) and
deformation retracts to M .

From Theorem 6 we obtain a homotopy of almost complex structures
{Jt} in W such that J0 = J and, J1 is integrable. Moreover (W,J1) is a
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Stein domain and ∂W inherits a contact structure given by ξ1 = J1(T∂W ) ∩
T∂W . In fact, there is a homotopy of formal contact structures between ξ0
and ξ1 provided by ξt = Jt(T∂W ) ∩ T∂W .

2.3. Properties of the embedding e0 : (M, ξ) → (∂W, ξ1)

Recall the following definition:

Definition 7. An embedding e : (M0, ξ0, J0) → (M1, ξ1, J1) is called for-
mal contact if there exists an homotopy of monomorphisms {Ψt : TM0 →
TM1}1t=0 such that Ψ0 = de, ξ0 = Ψ−1

1 (ξ1) and Ψ1 : (ξ0, J0) → (ξ1, J1) is
complex.

So far we have produced an embedding e0 : (M, ξ, j) → (∂W, ξ0, J0) that
is formal contact with the constant homotopy equal to de0. Indeed, we have
that de−1

0 (ξ0) = ξ. Since by the definition (1), we have that e0 = z0 ◦ e and
from this composition formula the claim is clear.

Also de0(ξ) is a complex subbundle of ξ0. There is a family of complex
isomorphisms Φt : ξ0 → ξt such that Φ0 = id. Fix a Reeb vector field R as-
sociated to ξ and define R̂0 = de0(R). Build a family {Rt} of vector fields
in T∂W satisfying R0|im e0 = R̂0 and ⟨Rt⟩ ⊕ ξt = T∂W . We take a family
of metrics gt in ∂W defined in the following way: its restriction to ξt is
Hermitian for the complex bundle (ξt, Jt) and Rt is unitary and orthogonal
to ξt.

Extend Φt to an isomorphism of T∂W |im e0 in such a way that Φt(R0) =
Rt. Define

Et = Φt ◦ de0 : TM → T∂W.

The family {Et}1t=0 is composed of bundle monomorphisms and clearly sat-
isfies that E−1

t (ξt) = ξ and E1(ξ) is a complex subbundle of ξ1. Therefore,
(e0, Et) is a formal contact embedding.

Define Nt = Et(TM)⊥gt that is a bundle over im e0 which is complex by
construction. N0 is isomorphic to C

k and therefore all the bundles Nt are
trivial complex bundles.

2.4. Obtaining a contact embedding via h–principle

The only missing piece to complete the puzzle is to prove that the embedding
e0 can be made contact.

Using h–principle it is possible to deform (e0, Et) to a contact embedding
thanks to the following theorem (cf. [8, Theorem 12.3.1]):
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Theorem 8. Let (e, Et), e : (M0, ξ0 = kerα0) → (M1, ξ1 = kerα1), be a for-
mal contact embedding between closed contact manifolds such that dimM0 +
2 < dimM1. Then, there exists an isotopy of embeddings ẽs : M0 → M1 such
that:

• ẽ0 = e and ẽ1 is contact,

• dẽ1 is homotopic to E1 through monomorphisms Gs : TM0 → TM1,
lifting the embeddings ẽs, such that Gs(ξ0) ⊂ ξ1 and the restrictions
Gs|ξ0 : (ξ0, dα0) → (ξ1, dα1) are symplectic.

Theorem 8 applied to (e0, Et) provides a family of embeddings {es}
in which e1 : (M, ξ) → (∂W, ξ1) is a contact embedding and a family of
monomorphisms Gs : TM → T∂W that lift es such that G0 = E1, G1 = de1
and Gs(ξ) ⊂ ξ1 is a complex subbundle.

Lemma 9. The normal bundle of im(e1) in (∂W, ξ1) is trivial.

Proof. Recall that N1 = E1(TM)⊥g1 = G0(TM)⊥g1 is a trivial complex vec-
tor bundle. Define, for s ∈ [1, 2], Ns = Gs−1(TM)⊥g1 . Clearly, N2 is the nor-
mal bundle of the contact embedding e1. Since N1 is a trivial vector bundle
so is N2. □

Denote the 2m–dimensional polydisk by

P 2m(r1, . . . , rm) = D
2(r1)× · · · × D

2(rm)

and abbreviate it as P 2m(r) when r1 = . . . = rm = r. The following result
summarizes the work completed in this section and an important conse-
quence (namely, the title of the section): M × P 2m(ε) admits a contact em-
bedding into a Stein fillable contact manifold.

Theorem 10. Any closed contact manifold (M, kerα) contact embeds in
the boundary of a Stein fillable manifold with trivial normal bundle. Fur-
thermore, there exists k ≥ 1 such that for any m ≥ k

(
M × P 2m(ε), ker

(
α+

m∑

i=1

r2i dθi

))

is tight with ε > 0 small enough depending only on α and m.

Proof. The map e1 proves the first part because by Lemma 9 the normal
bundle of the contact embedding e1 : (M, ξ) → (∂W, ξ1) is trivial. Notice that
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the codimension of the embedding is equal to 2k = dim τ and by replacing τ
with τ ′ = τ ⊕ C

m−k we obtain embeddings of arbitrary codimension 2m ≥
2k.

Suppose henceforth that m ≥ k. By an standard neighborhood theorem
in contact geometry it follows that there is a contactomorphism between
a neighborhood of im(e1) in (∂W, ξ1) and a neighborhood of M × {0} in
(M × R2m, ker(α+

∑k
i=1 r

2
i dθi)). Therefore, for some ε0 > 0, the previous

contactomorphism provides an embedding from M × P 2m(ε0) into ∂W .
Finally, since (∂W, ξ1) is Stein fillable, it is tight. Thus, any of its open

subsets is also tight and the conclusion follows. □

3. M × D
2(ε) is tight if ε is small

The argument leading to Theorem 10 provided no bound on the first positive
integer k such that M × P 2k(ε) is tight. Indeed, k was fixed at the beginning
of Section 2, depending on the rank of τ → M , the bundle constructed to
make the sum ξ∗ ⊕ τ trivial.

The insight needed to prove Theorem 1 is supplied by the understanding
of overtwisted contact manifolds briefly discussed in the introduction. To
be more concrete, the precise statement we will use in this section is the
following:

Theorem 11 (Casals, Murphy and Presas [3, Theorem 3.2]). Sup-
pose that (M, kerα) is an overtwisted contact manifold. Then, if R is large
enough, (M × D2(R), ker(α+ r2dθ)) is also overtwisted.

The idea is to embed ∂W × D2(R) for arbitrary R in the boundary ∂V of
a Weinstein manifold that depends on R. Using the embedding constructed
in the previous section we obtain then an embedding M × D2(R) → ∂V that
has trivial normal bundle. This leads to the proof of a statement similar to
Theorem 10 in which we replace (M, kerα) by (M × D2(R), ker(α+ r2dθ)).
Note that it is key to construct the embedding for arbitrary (but fixed)
R > 0.

The Stein fillable manifold W supplied by Theorem 10 is naturally
equipped with a Weinstein structure (W = f−1(0, 1], ω, f, Y ) that satisfies
ξ1 = ker(iY ω|∂W ). Recall that a Weinstein structure in W is composed of a
symplectic form ω, a Liouville vector field Y and a Morse function f : W → R

that is pseudo-gradient for Y . The product W × R2(r, θ) can be equipped
with the Weinstein structure (ω + r dr ∧ dθ,X = Y + r ∂

∂r
, fq), where q ≥ 1
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and fq : W × R2 → (0,∞) is defined by:

(fq)
q = f q + (r/2R)2q

Note that (check for instance [10, Lemma 2.1.5]) the flow along a Li-
ouville vector field induces contactomorphisms between transversal hyper-
surfaces (equipped with the contact form ιX(ω + r dr ∧ dθ)). The ensuing
proposition follows from the observation that f−1

q (1) gets C∞–close to ∂W ×
R2 on compact sets as q → ∞ (this explains the choice of fq above) and X
is transverse to ∂W × R2.

Proposition 12. There exists q > 1 large enough and a function µ : ∂W ×
D2(R) → R− such that ϕµ : ∂W × D2(R) → W × D2(R) satisfies ϕµ(∂W ×
D2(R)) ⊂ f−1

q (1), where ϕµ denotes the Liouville flow up to time µ.

D
2(2R)

W

−X

f−1

q
(1)

∂W ×D
2(R)

φµ(∂W ×D
2(R))

Figure 1: Contact embedding of ∂W × D2(R) into f−1
q (1).

Thus, for the integer q supplied by Proposition 12 the manifold V =
f−1
q (0, 1] is Weinstein. Denote α′ = ιX(ω + r dr ∧ dθ). The following propo-
sition summarizes the previous reasoning:

Proposition 13. For any R > 0, the contact manifold

(∂W × D
2(R), ker(α′|∂W×D2(R)))

admits a contact embedding into the boundary of a Weinstein manifold.
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Combining the last proposition and the results from the previous section
we obtain:

Corollary 14. Given a contact manifold (M,α) there exists k ∈ N and
ε0 > 0 such that for every R > 0 the contact manifold

(
M × P 2k+2(ε0, . . . , ε0, R), ker

(
α+

k+1∑

i=1

r2i dθi

))

is tight.

Let us emphasize that ε0 does not depend on R: for any R > 0, M ×
P 2k+2(ε0, . . . , ε0, R) is tight.

Proof. The integer k and the number ε0 both come from Theorem 10. Denote
by e′ the contact embedding from (M × P 2k(ε0), ker(α+

∑k
i=1 r

2
i dθi)) into

(∂W, ξ1 = ker(iY ω)) and let exp(η) be the conformal factor of e′, (e′)∗iY ω =
exp(η)(α+

∑k
i=1 r

2
i dθi)). If necessary, decrease the value of ε0 to guarantee

that sup η is finite.
Proposition 13 supplies a Weinstein manifold (V = f−1

q (0, 1], ω + r dr ∧
dθ, fq, X) and a contact embedding

φ : (∂W × D
2(exp(sup η/2)R), α′) →֒ (∂V, α′).

Therefore, the map φ̃ : M × P 2k+2(ε0, . . . , ε0, R) → ∂V given by

φ̃(p, ri, θi, r, θ) = φ(e′(p, ri, θi), exp(η/2)r, θ)

is a contact embedding. Since ∂V is exact symplectically fillable the conclu-
sion follows. □

We are ready now to prove Theorem 1. To ease the notation, we shall
understand the contact form is equal to α+

∑
r2i dθi in case it is omitted.

Let us proceed by contradiction. Suppose that M × D2(ε) is overtwisted
for ε smaller than ε0. Applying Theorem 11 k times consecutively we obtain
a radius Rε > 0 such that M × P 2k+2(ε,Rε, . . . , Rε) is overtwisted. As we
will show below, this manifold contact embeds intoM × P 2k+2(ε0, . . . , ε0, R)
provided R is large enough. From Corollary 14 we know that the latter
manifold is tight so we reach a contradiction. Therefore, M × D2(ε) is tight.
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The only missing ingredient is the announced contact embedding:

(2) M × P 2k+2(ε,Rε, . . . , Rε) → M × P 2k+2(ε0, . . . , ε0, R)

Its existence, subject to the conditions ε < ε0 and R large enough, is a
consequence of the following packing theorem in symplectic geometry proved
by Guth [14, Theorem 1].

Theorem 15. For every m ∈ N there is a constant C(m) ≥ 1 such that
for any pair of ordered m–tuples of positive numbers R1 ≤ . . . ≤ Rm and
R′

1 ≤ . . . ≤ R′
m that satisfy

• C(m)R1 ≤ R′
1 and

• C(m)R1 · . . . ·Rm ≤ R′
1 · . . . ·R′

m.

there is a symplectic embedding

P 2m(R1, . . . , Rm) →֒ P 2m(R′
1, . . . , R

′
m)

The symplectic embedding supplied by Theorem 15 is automatically ex-
tended to our desired contact embedding (2) thanks to the following lemma.
Notice that the Reeb flow is complete in M because M is closed.

Lemma 16. Let Ψ: (D1, dλ1) → (D2, dλ2) be an exact symplectic embed-
ding. For any contact manifold (M, kerα) with a choice of contact form α
that makes the associated Reeb flow complete, Ψ induces a (strict) contact
embedding

(M ×D1, α+ λ1) → (M ×D2, α+ λ2).

Proof. Since Ψ is exact, there exists a smooth function H : D1 → R such
that dH = Ψ∗λ2 − λ1. If we denote the Reeb flow in M by Φ,

φ : (M ×D1, α+ λ1) → (M ×D2, α+ λ2), φ(p, x) = (Φ−H(x)(p),Ψ(x))

is a strict contact embedding because φ∗(α+ λ2) = φ∗α+Ψ∗λ2 = (Φ∗α−
dH) + (λ1 + dH) = α+ λ1. □

4. Extension to contact submanifolds

The results from the previous sections can be extended to a more general
setting: contact submanifolds with arbitrary normal bundle. In the presence
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of a nowhere vanishing section of the normal bundle we will prove that
the contact submanifold has a tight neighborhood. This is the content of
Theorem 3.

Let π : E → M be a complex vector bundle over a contact manifold
equipped with an Hermitian metric and a unitary connection ∇. The as-
sociated vertical bundle is denoted by V = ker(dπ). The standard Liou-
ville form in R2n is U(n)–invariant and induces a global 1–form in V that
will be denoted λ̃. This real 1–form can be extended to TE by the ex-
pression λ = λ̃ ◦ πV after we choose a projection onto the vertical direction
πV : TE → V. The map πV is determined by the choice of unitary connection
so it is not canonical. The 1–form in TE associated to the connection ∇ is
α̃ = π∗α+ λ.

Even though the 1-form α̃ can be seen as the lift of the contact form α
to E, it may not satisfy the contact condition everywhere in E. However,
the contact condition is verified around the zero section E0 of the vector
bundle so α̃ defines a contact form in a neighborhood of E0.

Lemma 17. α̃ is a contact form in a neighborhood of E0. The restriction
(E0, ker(α̃|E0

)) is contactomorphic to (M, ξ = kerα). Moreover, given any
other contact structure kerβ that coincides with ker(α̃) in E0 and with the
same complex structure in the normal bundle, there exist neighborhoods U, V
of E0 such that (U, ker(β|U )) and (V, ker(α̃|V )) are contactomorphic.

Suppose henceforth that π has a global nowhere vanishing section s :M→
E. The section s creates a complex line subbundle π|L : L → M . Then, using
the Hermitian metric on the fibers, the bundle E splits as E = F ⊕ L and
L is trivial, i.e. there is an isomorphism ϕ : L → C that sends s(p) to 1p ∈ C

in the fiber above every point p ∈ M .
A suitable choice of unitary connection on π : E → M ensures that the

associated contact form on a neighborhood of E0 can be written as α̃ =
α′ + λ, where α′ is a contact form in F and λ is the radial Liouville form in
R2.

Proposition 18. There exists U , a neighborhood of the zero section F0 of
F , and ε > 0 such that (U × D2(ε), ker(α′ + λ)) is tight.

Note that this statement is exactly Theorem 1 except from the fact that
U is not closed.

Proof. The proof of Proposition 18 follows by embedding (U, kerα′) in a
closed contact manifold (F̃ , ker α̃′) of the same dimension and then applying
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Theorem 1 to this manifold to deduce that (F̃ × D2(ε′), ker(α̃′ + λ)) is tight
if ε′ > 0 is small. This result implies that (U × D2(ε), ker(α′ + λ)) is also
tight if ε is small enough. More precisely, it suffices to ask for (ε′/ε)2 to
be greater than the supremum conformal factor of the embedding as in
Corollary 14.

The aforementioned embedding is defined by the natural inclusion of F
in the projectivization of F ⊕ C:

F →֒ Q = P(F ⊕ C)

The complex bundle πQ : Q → M carries a natural formal contact structure
ξ′ = (dπQ)

−1(ξ) Indeed, an almost complex structure in ξ′ is obtained as
the sum of the pullback of a complex structure in ξ compatible with dα and
a complex structure on the fibers of πQ. This formal contact structure is
genuine (i.e., it is a true contact structure) in a neighborhood U of F0 by
Lemma 17. The h–principle for closed manifolds proved in [2, Theorem 1.1]
provides a homotopy from any formal contact structure to a contact struc-
ture. Furthermore, the homotopy can be made relative to a closed set in
which the formal contact structure is already genuine. Applying this theo-
rem we obtain a contact structure ξ̃′ on Q that agrees with kerα′ in U . □

We can reformulate Proposition 18 in the following way:

Theorem 19. Let π : E → M be a complex vector bundle over a closed con-
tact manifold (M, ξ). Suppose that π has a global nowhere vanishing section.
Then, there exists a neighborhood U of the zero section of the bundle such
that (U, ξ̃) is tight for any contact structure ξ̃ extending ξ and preserving the
complex structure of E.

An immediate application of Theorem 19 to the case in which M is a
contact submanifold and π is its normal bundle yields Theorem 3.
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