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On a compact symplectic manifold (X,ω) with a prequantum
line bundle (L,∇, h), we consider the one-parameter family of ω-
compatible complex structures which converges to the real polar-
ization coming from the Lagrangian torus fibration. There are sev-
eral researches which show that the holomorphic sections of the
line bundle localize at Bohr-Sommerfeld fibers. In this article we
consider the one-parameter family of the Riemannian metrics on
the frame bundle of L determined by the complex structures and
∇, h, and we can see that their diameters diverge. If we fix a base
point in some fibers of the Lagrangian fibration we can show that
they measured Gromov-Hausdorff converge to some pointed metric
measure spaces with the isometric S1-actions, which may depend
on the choice of the base point. We observe that the properties of
the S1-actions on the limit spaces actually depend on whether the
base point is in the Bohr-Sommerfeld fibers or not.
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1. Introduction

In this article we introduce a new approach to the geometric quantization
from the viewpoint of the convergence of the Riemannian manifolds with
respect to the measured Gromov-Hausdorff topology. On a compact sym-
plectic manifold (X,ω) of dimension 2n, a prequantum line bundle (L,∇, h)
is a triple of a complex line bundle L, hermitian metric h and connection ∇
preserving h with curvature form F∇ = −

√
−1ω. By considering the follow-

ing geometric structures compatible with ω, we can equip L with the finite
dimensional vector subspace consisting of the special sections of L. The first
one is an ω-compatible complex structure J , then denote by

H0(XJ , L) = {s ∈ C∞(L); ∇∂J
s = 0}

the space of all of the holomorphic sections of L.
The second one is a Lagrangian fibration µ : X → Y , where Y is a smooth

manifold, all of the points in Y are regular values of µ, and all fibers are
compact and connected. Then put

Vµ :=
⊕

y∈Y
H0
(

µ−1(y), L|µ−1(y),∇|µ−1(y)

)

,

H0
(

µ−1(y), L|µ−1(y),∇|µ−1(y)

)

:=
{

s ∈ C∞(L|µ−1(y)); ∇|µ−1(y)s ≡ 0
}

.

µ−1(y) is called a Bohr-Sommerfeld fiber if L|µ−1(y) has nontrivial parallel
sections. Tyurin showed in [19, Proposition 3.2] that if X is compact then
there are at most finitely many Bohr-Sommerfeld fibers, accordingly, dimVµ
is finite.
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In many examples of symplectic manifolds with some complex structures
and Lagrangian fibrations, it is observed that

dimVµ = dimH0(XJ , L)

when the Kodaira vanishing holds, which can be interpreted as the local-
ization of the Riemann-Roch index to the Bohr-Sommerfeld fibers, and dis-
cussed by Andersen [1], by Fujita, Furuta and Yoshida [8], and by Kubota
[14].

Moreover, on smooth toric varieties, Baier, Florentino, Mourão and
Nunes have constructed a one parameter family of the pairs of the com-
plex structures and the basis of the spaces of holomorphic sections of L,
then showed that the holomorphic sections localize on the Bohr-Sommerfeld
fibers in [3]. The similar phenomena were observed in the case of the abelian
varieties by Baier, Mourão and Nunes [4] and the flag varieties by Hamilton
and Konno [11]. In these examples, the family of complex structures and
holomorphic sections are described concretely.

In the context of the geometric quantization, the ω-compatible com-
plex structures and Lagrangian fibrations are treated uniformly by using
the notion of polarizations. The one-parameter families of complex struc-
tures given in the above papers are taken such that the Kähler polarizations
corresponding to them converge to the real polarization corresponding to
the Lagrangian fibration.

Recently, Yoshida showed the localization of holomorphic sections of pre-
quantum line bundle to the Bohr-Sommerfeld fiber if X admits a Lagrangian
fibration with a complete base in [21], where the family of complex struc-
tures are taken such that it converges to the real polarization corresponding
to the Lagrangian fibration.

In this article, we also study the behavior of holomorphic sections of
L where the family of complex structures converges to the real polariza-
tion from the view of the point of the measured Gromov-Hausdorff con-
vergence. Fix an ω-compatible complex structure J . Then H0(XJ , L) can
be identified with the eigenspace of a Laplace operator as follows. Put
S := {u ∈ L; h(u, u) = 1} ⊂ L be the orthogonal frame bundle of (L, h),
then there is the standard identification

C∞(X,L) ∼= (C∞(S)⊗ C)ρ,
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where ρ : S1 → GL(C) is the 1-dimensional unitary representation of S1 de-
fined by ρ(e

√
−1t) := e

√
−1t, and the S1-action on C∞(S)⊗ C is defined by

{e
√
−1t · (f ⊗ ξ)}(u) := e−

√
−1tf(ue

√
−1t)⊗ ξ

for any f ∈ C∞(S), ξ ∈ C and u ∈ S. The connection ∇ gives the connection
1-form on S and the decomposition of TS into the horizontal and vertical
subspaces. Then we have the Riemannian metric ĝ on S which respects the
connection form and the Kähler metric gJ := ω(·, J ·). The precise definition
of ĝ is given by Section 3. Denote by ∆ĝ the Laplace operator of ĝ. Since S1

acts on (S, ĝ) isometrically, the C-linear extension of ∆ĝ gives the operator
acting on (C∞(S)⊗ C)ρ. Then we can see that H0(XJ , L) is identified with
the eigenspace of

∆ĝ : (C
∞(S)⊗ C)ρ → (C∞(S)⊗ C)ρ

associate with the eigenvalue n+ 1.
Now, we suppose that a one-parameter family of the ω-compatible com-

plex structures {Js}s>0 on X is given, then we consider the one-parameter
family of the operators

∆ĝs : (C
∞(S)⊗ C)ρ → (C∞(S)⊗ C)ρ.

There are several research of the spectral convergence of the metric Laplacian
on Riemannian manifolds or the connection Laplacians on vector bundles
under the convergence of the spaces in the sense of the measured Gromov-
Hausdorff topology [5][9][13][15][16][17]. Therefore, there should be the sig-
nificant relation between the convergence of principal bundle S with the
connection metric ĝs and the convergence of holomorphic sections with re-
spect to Js. This article focus on the convergence of (S, ĝs, p) as s→ 0 in the
sense of the pointed S1-equivariant measured Gromov-Hausdorff topology
and we study the metric measure spaces appearing as the limit.

Now we explain the main result of this article. Let (X,ω) be a sym-
plectic manifold of dimension 2n, which is not necessarily to be compact,
(L,∇, h) be a prequantum line bundle and {Js}0<s≤1 be a smooth family
of ω-compatible complex structures. Assume that there is a smooth map
µ : X → Y , where Y is an n-dimensional smooth manifold, and for any reg-
ular values y of µ, µ−1(y) is a compact connected Lagrangian submanifold.
Fix a regular value y. We assume that {Js}0<s≤1 converges to the real po-
larizations induced by µ near µ−1(y) as s→ 0, there is a constant κ ∈ R

such that RicgJs
≥ κgJs

for all s. We also suppose additional assumptions
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which are precisely described in ♠ of Section 7.2. Let gm,∞ and µ∞ be a
Riemannian metric and a measure on Rn × S1 defined by

gm,∞ :=
1

m2(1 + ∥y∥2)(dt)
2 +

n
∑

i=1

(dyi)
2,

dµ∞ := dy1 · · · dyndt,

where m is a positive integer, y = (y1, . . . , yn) ∈ Rn and e
√
−1t ∈ S1. We de-

fine the isometric S1-action on (Rn × S1, gm,∞, µ∞) by (y, e
√
−1t) · e

√
−1τ :=

(y, e
√
−1(t+mτ)) for e

√
−1τ ∈ S1. The followings are the main results of this

article.

Theorem 1.1. Let m be a positive integer and u ∈ S|µ−1(y). Assume that

µ−1(y) is a Bohr-Sommerfeld fiber of L⊗m and not a Bohr-Sommerfeld fiber

of L⊗m′
for any 0 < m′ < m. Then for some positive constant K > 0, the

family of pointed metric measure spaces with the isometric S1-action

{(

S, ĝs,
µĝs

K
√
s
n , u

)}

s

converges to
(

Rn × S1, gm,∞, µ∞, (0, 1)
)

as s→ 0 in the sense of the pointed

S1-equivariant measured Gromov-Hausdorff topology.

Theorem 1.2. Let u ∈ S|µ−1(y) and assume that µ−1(y) is not a Bohr-

Sommerfeld fiber of L⊗m for any positive integer m. Then {(S, ĝs, µĝs

K
√
s
n , u)}s

converges to (Rn, tdy · dy, dy1 · · · dyn, 0) as s→ 0 in the sense of the pointed

S1-equivariant measured Gromov-Hausdorff topology. Here, the S1-action on

Rn is trivial.

Now let S∞ be the metric measure space appears as the limit in The-
orem 1.1 or Theorem 1.2 and denote by ∆∞ its Laplacian. Denote by
W (n+ 1) the eigenspace of

∆∞ : (C∞(S∞)⊗ C)ρ → (C∞(S∞)⊗ C)ρ

associate with the eigenvalue n+ 1.

Theorem 1.3. If S∞ be the metric measure space appears as the limit in

Theorem 1.1, then dimW (n+ 1) = 1 if m = 1 and dimW (n+ 1) = 0 if m >
1. If S∞ be the metric measure space appears as the limit in Theorem 1.2,

then dimW (n+ 1) = 0.
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This article is organized as follows. First of all, we explain how to iden-
tify the holomorphic sections of L on (X, J) with the eigenfunctions on the
frame bundle S equipped with the connection metric in Section 2 and 3. In
Section 4, we review the definition of Bohr-Sommerfeld fibers for the pairs
of symplectic manifolds and prequantum line bundles. In Section 5, we re-
view the notion of Polarizations, which enables us to treat the ω-compatible
complex structures and the Lagrangian fibrations. In Section 6 we explain
the notion of the pointed S1-equivariant measured Gromov-Hausdorff con-
vergence. This notion is the special case of the convergence introduced by
Fukaya and Yamaguchi [10]. These sections are the preparations for the
main argument. In Section 7, we show the pointed S1-equivariant measured
Gromov-Hausdorff convergence near the Bohr-Sommerfeld fibers. First of
all we obtain the local description of the connection metric ĝs on S, then
discuss the condition equivalent to the existence of the lower bound of the
Ricci curvatures. Then we show the convergence of ĝs to gm,∞ as s→ 0. In
Section 9 we consider the limit of ĝs near the non Bohr-Sommerfeld fibers,
then show that the S1-action on the limit space is trivial. In Section 8, we
study the spectral structure of the Laplacian of the metric measure spaces
appearing as the limit of ĝs. In Section 10, we raise some examples to which
these approaches can be applied.

2. Holomorphic line bundles

Let (X, J, ω) be a compact Kähler manifold. We write X = XJ when we
regard X as a complex manifold. Let πE : E → XJ be a holomorphic line
bundle over XJ . Suppose h is a hermitian metric on E and ∇ : Γ(E) →
Ω1(E) is the Chern connection. Under the decomposition Ω1 = Ω1,0 ⊕ Ω0,1,
we have the decomposition ∇ = ∇1,0 +∇0,1. Let ∇∗, (∇1,0)∗, (∇0,1)∗ are the
formal adjoint of ∇,∇1,0,∇0,1, respectively.

For a holomorphic coordinate (U, z1, . . . , zn) on XJ , put ω=
√
−1gij̄dz

i∧
dz̄j . Then we may write

∇∗ = (∇1,0)∗ + (∇0,1)∗,

(∇1,0)∗ = −gij̄ι∂i
∇∂̄j

,

(∇0,1)∗ = −gij̄ι∂̄j
∇∂i

,

where ∂i :=
∂
∂zi . Let F ∈ Ω1,1(XJ) be the curvature form. Since we have

(∇1,0)∗∇1,0s = (∇0,1)∗∇0,1s+ gij̄F (∂i, ∂̄j)s,
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we obtain

∇∗∇ = 2∆∂̄ + ΛωF,

∆∂̄ := (∇0,1)∗∇0,1,

ΛωF := gij̄F (∂i, ∂̄j) ∈ C∞(X).

Let L→ XJ be a holomorphic line bundle with hermitian metric h and
hermitian connection ∇ such that the curvature form is equal to −

√
−1ω,

and put E = Lk. Then for the connection on E determined by ∇ we have
F = −k

√
−1ω, then

ΛωF = nk.

Now, put

H0(XJ , L
k) :=

{

s ∈ C∞(Lk); ∇0,1s = 0
}

.

Since X is compact, we can see

H0(XJ , L
k) =

{

s ∈ C∞(Lk); ∇∗∇s = nks
}

.

3. Holomorphic sections on line bundles and eigenfunctions

on frame bundle

Let (X,ω) be a connected symplectic manifold of dimension 2n and (π : L→
X,∇, h) be a prequantum line bundle over (X,ω), that is, a complex line
bundle with a hermitian metric h a connection ∇ preserving h whose cur-
vature form is equal to −

√
−1ω.

The complex structure J on X is ω-compatible if ω(J ·, J ·) = ω holds and
gJ := ω(·, J ·) is positive definite. If J is ω-compatible, then ω is a Kähler
form on XJ .

Since ω is of type (1, 1), ∇ determines a holomorphic structure on L,
consequently ∇ is the Chern connection determined by h and J .

By the previous section we have ∇∗∇ = 2∆∂̄ + n. Put

S := S(L, h) := {u ∈ L; |u|h = 1},

which is a principal S1-bundle over X equipped with the S1-connection√
−1Γ ∈ Ω1(S,

√
−1R) corresponding to ∇. The S1-connection induces the
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following decomposition

TuS := Hu ⊕ Vu,

Hu := Ker (Γu : TuS → R),

Vu := {ξ♯u ∈ TuS; ξ ∈
√
−1R},

where ξ♯u := d
dte

tξ|t=0. Then the connection metric ĝ = ĝ(L, J, h, σ,∇) on S
is defined by

ĝ(L, J, h, σ,∇) := σ · Γ2 + (dπ|H)∗gJ

for σ > 0.

Remark 3.1. By regarding −Γ as a contact structure and −
√
−1

♯
as the

Reeb vector field, (S, ĝ(L, J, h, 2,∇)) becomes a Sasakian manifold.

Now we can recover L by S as the associate bundle as follows. Let
ρk : S

1 → GL1(C) be defined by ρk(λ) = λk for k ∈ Z, then we have the
identification Lk ∼= S ×ρk

C. Then there are natural isomorphisms

C∞(X,Lk) ∼= (C∞(S)⊗ C)ρk ,

where the action of S1 on C∞(S)⊗ C is defined by (λ · f)(u) := λkf(uλ). By
applying the argument in the previous section for E = Lk we have ∇∗∇ =
2∆∂̄ + kn. Note that we may regard ∇∗∇ and ∆∂̄ as operators acting on
(C∞(S)⊗ C)ρk , then by [13, Section 3] we have ∇∗∇ = ∆ĝ − k2

σ , therefore
we obtain

2∆∂̄ = ∆ĝ −
(

k2

σ
+ kn

)

: (C∞(S)⊗ C)ρk → (C∞(S)⊗ C)ρk .

On some open set U ⊂ X, suppose that L|U is trivial as C∞ complex
bundles, then there exists a global smooth section E ∈ C∞(U,L) such that
h(E,E) ≡ 1. Let γ ∈ Ω1(U,R) be defined by ∇E =

√
−1γ ⊗ E. Under the

diffeomorphism U × S1 → S(L|U , h) defined by (z, e
√
−1t) 7→ e

√
−1tEz, one

can obtain the following identification as Riemannian manifolds with iso-
metric S1-action;

(S|U , ĝ) ∼= (U × S1, gJ |U + σ(dt+ γ)2).(1)
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4. Bohr-Sommerfeld fibers

Let (π : L→ X,∇) be a prequantum line bundle over a symplectic manifold
(X,ω). A Lagrangian fibration over (X,ω) is a smooth map µ : X → B,
where B is a smooth manifold of dimension dimX

2 , such that Xb := µ−1(b) is
a Lagrangian submanifold for every b ∈ B \Bsing and B \Bsing is open dense
in B. We suppose that B and all of the fibers Xb are path-connected. Then
every Xb is diffeomorphic to a compact torus by Liouville-Arnold theorem.

For a subset Y ⊂ X, the holonomy Hol(L|Y ,∇) is defined by

Hol(L|Y ,∇) := {e
√
−1t ∈ S1; c̃(1) = c̃(0)e

√
−1t, c ∈ P(a)},

where P(a) consists of piecewise smooth curve c : [0, 1] → X with c(0) =
c(1) = a ∈ Y , Im(c) ⊂ Y and c̃ is the horizontal lift of c. Note that
Hol(L|Y ,∇) does not depend on a ∈ Y if Y is path-connected.

Definition 4.1.

(i) Xb is a Bohr-Sommerfeld fiber of µ : X → B if Hol(L|Xb
,∇) is trivial.

(ii) Xb is an m-BS fiber of µ : X → B if Hol(L|Xb
,∇) is a subgroup of

Z/mZ.Xb is a strict m-BS fiber of µ : X → B if Hol(L|Xb
,∇) ∼= Z/mZ.

Remark 4.2. Xb is a m-BS fiber of µ : X → B iff Hol(Lm|Xb
,∇) is trivial.

Remark 4.3. In this article we suppose that

Bm := {b ∈ B; Xb is an m-BS fiber}

are discrete in B for all m > 0. For example, if Bsing is empty, then Tyurin
has shown in [19] that Bm is always discrete. If we put

B′
m := {b ∈ B; Xb is a strict m-BS fiber},

then Bm =
⊔

l|mB
′
l holds.

5. Polarizations

In this section we review the notion of polarizations in the sense of [20] to
treat complex structures and Lagrangian fibrations uniformly.

Let VR be a real vector space of dimension 2n with symplectic form
α ∈

∧2 V ∗ and put V = VR ⊗ C. Then α extends C-linearly to a complex
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symplectic form on V . A Lagrangian subspace Wof V is a complex vector
subspace of V such that dimCW = n and α(u, v) = 0 for all u, v ∈W . Put

Lag(V, α) := {W ⊂ V ; W is a Lagrangian subspace} ,

which is a submanifold of Grassmannian Gr(n, V ).
For a symplectic manifold (X,ω), put

Lagω :=
⊔

x∈X
Lag(TxX ⊗ C, ωx).

This is a fiber bundle over X, and a section P of Lagω is a subbundle of
TX ⊗ C. P is said to be integrable if

[Γ(P|U ),Γ(P|U )] ⊂ Γ(P|U )

holds for any open set U ⊂ X, and we call such P a polarization of X. In
this article we consider the following two types of polarizations.

Kähler polarizations. Let J be an ω-compatible complex structure. The
subbundle

PJ := T 0,1
J X ⊂ TX ⊗ C

is called a Kähler polarization.

Real polarizations. Let Y be a smooth manifold of dimension n, µ : X →
Y be a smooth map such that all b ∈ µ(X) are regular values and µ−1(b)
are Lagrangian submanifolds. Then

Pµ := Ker(dµ)⊗ C ⊂ TX ⊗ C

is called a real polarization.

Define l : Lag(V, α) → {0, 1, . . . , n} by l(W ) := dimC(W ∩W ). Then for
any Kähler polarization PJ we have l((PJ)x) = 0, and for any real polariza-
tion Pµ we have l((Pµ)x) = n.

Conversely, for a polarization P such that l(Px) = 0 for all x ∈ X, there
is a unique complex structure J such that ω(J ·, J ·) = ω and P = T 0,1

J X. For
a polarization P such that l(Px) = n for all x ∈ X, we obtain the Lagrangian
foliation.
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Next we observe the local structure of Lag(V, α). For W ∈ Lag(V, α),
we can take a basis {w1, . . . , wn} ⊂W and vectors u1, . . . , un ∈ V such that
{w1, . . . , wn, u

1, . . . , un} is a basis of V and

α(wi, wj) = α(ui, uj) = 0, α(ui, wj) = δij

hold. Put W ′ := spanC{u1, . . . , un} and take A ∈ Hom(W,W ′). Then the
subspace

WA := {w +Aw ∈ V ; w ∈W}

is Lagrangian iff the matrix (Aij) defined by Awi = Aiju
j is symmetric.

Consequently, we have the identification

TWLag(V, α) =
{

A ∈ Hom(W,W ′); Aij = Aji

}

.(2)

Now, we fixW such that l(W ) = n. Then w1, . . . , wn, u
1, . . . , un can be taken

to be real vectors, hence

l(WA) = dimKer(A−A) = n− rank(A−A)

holds. Moreover WA comes from an almost complex structure which makes
α positive hermitian iff ImA ∈Mn(R) is the positive definite symmetric
matrix. We define

TWLag(V, α)+ :=
{

A ∈ Hom(W,W ′); Aij = Aji, ImA > 0
}

under the identification (2). If Wt is a smooth curve in Lag(V, α) such
that l(W0) = n and d

dtWt|t=0 ∈ TW0
Lag(V, α)+, then there is δ > 0 such that

l(Wt) = 0 and α(w, w̄) > 0 for any w ∈Wt \ {0} and 0 < t ≤ δ. Conversely,
even if Wt satisfies l(W0) = n and

l(Wt) = 0, α(w, w̄) > 0 for any w ∈Wt \ {0}

for all t > 0, d
dtWt|t=0 is not necessary to be in TW0

Lag(V, α)+ since the
closure of positive definite symmetric matrices contains semi-positive definite
symmetric matrices.

6. Topology

In this section we explain the notion of the S1-equivariant measured Gromov-
Hausdorff topology. The following notion is the special case of [10, Defini-
tion 4.1].
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Definition 6.1. Let G be a compact topological group.

(i) Let (P ′, d′) and (P, d) be metric spaces with isometric G-action. A map
ϕ : P ′ → P is an G-equivariant ε-approximation if ϕ is G-equivariant
and ε-approximation. Here, ε-approximation means that |d′(x′, y′)−
d(ϕ(x′), ϕ(y′))| < ε holds for all x′, y′ ∈ P ′ and P ⊂ B(ϕ(P ′), ε). More-
over if ϕ is a Borel map then it is called a Borel G-equivariant ε-
approximation.

(ii) Let {(Pi, di, νi, pi)}i be a sequence of pointed metric measure spaces
with isometric G-action. (P∞, d∞, ν∞, p∞) is said to be the pointed G-
equivariant measured Gromov-Hausdorff limit of {(Pi, di, νi, pi)}i if G
acts on P∞ isometrically and for any R > 0 there are positive numbers
{εi}i, {Ri}i with

lim
i→∞

εi = 0, lim
i→∞

Ri = R,

and Borel G-equivariant εi-approximation

ϕi : (π
−1
i (B(xi, Ri)), pi) → (π−1

∞ (B(x∞, R)), p∞)

for every i such that ϕi∗(νi|π−1
i (B(xi,Ri))

) → ν∞|π−1
∞ (B(x∞,R)) vaguely

(see Remark 6.2). Here, π : Pi → Pi/G is the quotient map and xi =
πi(pi).

Remark 6.2.

(i) Let X,Y be topological spaces, ϕ : X → Y be a Borel map and ν be
a Borel measure on X. Then ϕ∗ν is the pushforward measure, that
is, the measure on Y defined by ϕ∗ν(B) := ν(ϕ−1(B)) for any Borel
subset B ⊂ Y .

(ii) Let X be a topological space and (νi)
∞
i=1 be a sequence of Borel mea-

sures on X. Then (νi)i converges to a measure ν on X vaguely if

∫

X
fdνi →

∫

X
fdν

as i→ ∞ for any continuous function f ∈ C(X) with compact support.
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7. Convergence

Throughout of this section let (X2n, ω) be a symplectic manifold, Y n a
smooth manifold and

µ : X → Y

be a smooth surjective map such that µ−1(y) are smooth compact con-
nected Lagrangian submanifolds for all regular value y ∈ Y . Assume that
y0 ∈ Y is a regular value of µ. Then by [2][7][18], there are open neighbor-
hoods U ⊂ X of X0 := µ−1(y0), B

′ ⊂ Y of y0, B ⊂ Rn of the origin 0, dif-

feomorphisms f̃ : B × Tn
∼=→ U and f : B′ ∼=→ B such that f̃∗ω =

∑n
i=1 dxi ∧

dθi, and f(y0) = 0, where x = (x1, . . . , xn) = f ◦ µ ◦ f̃ and θ = (θ1, . . . , θn) ∈
Tn = Rn/Zn. Therefore, we may suppose

U = B × Tn, µ = (x1, . . . , xn), ω = dxi ∧ dθi,

B =

{

x = (x1, . . . , xn) ∈ R
n; ∥x∥ =

√

x21 + · · ·+ x2n < R

}

,

X0 = {0} × Tn

for some 0 < R ≤ 1.
Let (L,∇) be the prequantum line bundle on (X,ω) and h be a hermitian

metric such that ∇h = 0. Since [ω|U ] = 0 ∈ H2(U), then the 1st Chern class
of (L,∇)|U vanishes, hence L|U is trivial as C∞ complex line bundle by [6,
Section 5].

From now on we consider some covering spaces of U given by the follow-
ings. Let Φ: Zn → Z/mZ be a homomorphism of Z-modules. Then KerΦ is
of rank n, hence Rn/KerΦ is diffeomorphic to the n-dimensional torus. Now
we have the natural projection

Rn/KerΦ → Tn

∈ ∈

θmodKerΦ 7→ θmodZn

which give a covering space and a covering map

UΦ := B × (Rn/KerΦ) , pΦ : UΦ → U.
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From now on we denote by θ the element of Rn/KerΦ or Tn for the sim-
plicity, if there is no fear of confusion. If we take w ∈ Zn then

β(Φ(w)) : UΦ → UΦ

∈ ∈

(x, θ) 7→ (x, θ +w)

gives the action of ImΦ on UΦ, which is the deck transformations of pΦ.

Proposition 7.1. Let X0 be a strict m-BS fiber. Then there are surjective

homomorphism Φ: Zn → Z/mZ and E ∈ C∞(p∗ΦL) such that h(E,E) ≡ 1
and ∇E = −

√
−1xidθ

i ⊗ E. Moreover, the deck transformations of pΦ sat-

isfies β(k)∗E = e
2k

√
−1π

m E for k ∈ Z/mZ.

Proof. Since X0 is the m-BS fiber, one can obtain the flat section Ê of
(Lm|U )|x=0) such that h⊗m(Ê, Ê) ≡ 1. Then Ê can be extended to the
nowhere vanishing section of C∞(Lm|U ) with h⊗m(Ê, Ê) ≡ 1. Define γ ∈
Ω1(U) by ∇Ê =

√
−1γ ⊗ Ê. By computing the curvature form of ∇ one ob-

tain dγ = −mω|U = −mdxi ∧ dθi which implies that γ +mxidθ
i is a closed

1-form on U . Denote by α the cohomology class represented by γ +mxidθ
i

and let ι : {0} × Tn → U be the natural embedding. Since Ê|x=0 is flat, then
one can see that ι∗γ = 0 and ι∗α = 0. Since ι∗ : H1(B × Tn) → H1({0} ×
Tn) is isomorphic, one can see that α = 0, therefore there exists τ ∈ C∞(U,R)
such that γ +mxidθ

i = dτ .
Then one have

∇(e−
√
−1τ Ê) =

√
−1(−dτ + γ)⊗ e−

√
−1τ Ê = −m

√
−1xidθ

i ⊗ e−
√
−1τ Ê,

accordingly, by replacing e−
√
−1τ Ê by Ê, we may suppose

∇Ê = −m
√
−1xidθ

i ⊗ Ê.

Let p̃ : Ũ = B × Rn → B × Tn be the universal cover of U . Then there
is a nowhere vanishing section E ∈ C∞(p̃∗L) such that E⊗m = p̃∗Ê, con-
sequently we obtain the homomorphism Φ: π1(U) = Zn → Z/mZ defiend
by

E(x,θ+k) = e2π
√
−1Φ(k)E(x,θ)

for k ∈ Zn. Therefore, E descends to the section of p∗ΦL, then

∇E = −
√
−1xidθ

i ⊗ E
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holds. Since X0 is the strict m-BS fiber, Φ is surjective and pΦ is an m-fold
covering. □

7.1. Local description of the complex structures and the metrics

We assume that an ω-compatible complex structure J on X is given
such that PJ |U is close to Pµ|U with respect to C0-topology, as sections
of Lagω|U → U . Define P ′

µ by

(P ′
µ)p := spanC

{

(

∂

∂x1

)

p

, . . . ,

(

∂

∂xn

)

p

}

⊂ TpU ⊗ C,

then we have the direct decomposition TU ⊗ C = Pµ ⊕ P ′
µ. Since PJ |U is

close to Pµ|U , the identification (2) gives

A = (Aij(x, θ))i,j ∈ C∞(U)⊗Mn(C)

such that

Aij = Aji, ImA > 0

and

∂

∂θi
+ Āij(x, θ)

∂

∂xj
, i = 1, . . . , n

is a frame of PJ |U = T 0,1
J U . Moreover the integrability of J gives

∂Ajk

∂θi
− ∂Aik

∂θj
+Ail

∂Ajk

∂xl
−Ajl

∂Aik

∂xl
= 0.(3)

Conversely, if a complex matrix valued function A satisfies above proper-
ties then we can recover J |U . Therefore, the ω-compatible J complex struc-
ture close to Pµ is identified with the matrix valued function A on U .
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If we put Aij = Pij +
√
−1Qij , where Pij , Qij ∈ R, and denote by (Qij)

the inverse of (Qij), then one can see

J

(

∂

∂θi

)

= −PijQ
jk ∂

∂θk
− (Qik + PijQ

jlPlk)
∂

∂xk
,(4)

J

(

∂

∂xi

)

= Qik ∂

∂θk
+QijPjk

∂

∂xk
,(5)

Jdθk = −PijQ
jkdθi +Qikdxi,(6)

Jdxk = −(Qik + PijQ
jlPlk)dθ

i +QijPjkdxi,(7)

therefore we obtain

gJ |U = gA := (Qij + PikQ
klPlj)dθ

idθj − 2PikQ
jkdθidxj +Qijdxidxj .

Denote by dg the Riemannian distance of a Riemannian metric g. Then
gJ |U = gA, dgJ |U ≤ dgA always holds, however, the opposite inequality does
not hold in general since the shortest path connecting two points in U need
not be included in U . Here we consider the lower estimate of dgJ and the
upper estimate of dgA .

For a real symmetric positive definite matrix valued function S(x, θ) =
(Sij(x, θ))i,j depending on (x, θ) ∈ U continuously, let λ1(x, θ), . . . , λn(x, θ)
be the eigenvalues of S(x, θ). Define

Ur := {(x, θ) ∈ R
n × Tn; ∥x∥ < r} ⊂ U (r ≤ R),

supS := sup
i,(x,θ)∈UR

2

λi(x, θ), inf S := inf
i,(x,θ)∈UR

2

λi(x, θ).

Since UR

2
is compact, 0 < inf S ≤ supS <∞ holds.

Proposition 7.2. Put

Θ := Q+ PQ−1P

for A = P +
√
−1Q. The following inequalities

√

inf(Θ−1) ∥x− x′∥ ≤ dgJ (u, u
′),

dgA(u, u
′) ≤

√

sup(Θ−1)∥x− x′∥+
√
n supΘ

2

hold for any u = (x, θ), u′ = (x′, θ′) ∈ UR

2
.
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Proof. First of all we show the first equality. If we write

dθ =







dθ1

...
dθn






, dx =







dx1
...

dxn






, x =







x1
...
xn






,

then we may write

gA = tdθ ·Θ · dθ − tdx ·Q−1P · dθ − tdθ · PQ−1 · dx+ tdx ·Q−1 · dx
= t
(√

Θdθ −
√
Θ−1PQ−1dx

)

·
(√

Θdθ −
√
Θ−1PQ−1dx

)

+ tdx ·
(

Q−1 −Q−1PΘ−1PQ−1
)

· dx.

Since we have

Θ
(

Q−1 −Q−1PΘ−1PQ−1
)

= 1 + PQ−1PQ−1 − PΘ−1PQ−1 − PQ−1PQ−1PΘ−1PQ−1

= 1 + PQ−1PQ−1 − PQ−1
(

Q+ PQ−1P
)

Θ−1PQ−1

= 1 + PQ−1PQ−1 − PQ−1PQ−1 = 1,

we can see

Θ−1 = Q−1 −Q−1PΘ−1PQ−1.

Therefore,

gA = t
(√

Θdθ −
√
Θ−1PQ−1dx

)

·
(√

Θdθ −
√
Θ−1PQ−1dx

)

(8)

+ tdx ·Θ−1 · dx

holds. Now let c1 : [0, 1] → X be a path connecting u, u′ ∈ UR

2
, and put u =

(x, θ) and u′ = (x′, θ′) with ∥x∥, ∥x′∥ < R
2 . Note that the image of c1 is not

always contained in UR

2
. If Im(c1) ⊂ UR

2
does not hold, then let

τ0 := inf{τ ∈ [0, 1]; c1(τ) /∈ UR

2
}.
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If Im(c1) ⊂ UR

2
holds, then put τ0 := 1. Put c1(τ) = (x(τ), θ(τ)). Then by

(8) we can see

L(c1) ≥
∫ τ0

0

√

tx′(τ) ·Θ−1 · x′(τ)dτ

≥
√

inf(Θ−1)

∫ τ0

0
|x′(τ)|dτ ≥

√

inf(Θ−1) ∥x− x′∥.

Next we show the second inequality. To show it, we compute the length
of two types of paths in UR

2
.

For θ ∈ Rn put c2(τ) := (x, τθ), then (8) gives

L(c2) =
∫ 1

0
|c′2(τ)|gAdτ =

∫ 1

0

√

Θijθiθjdτ

≤
√

supΘ∥θ∥.

If c3(τ) := (τx+ (1− τ)x′, θ), where ∥x∥ ≤ R
2 , then

L(c3) =
∫ 1

0
|c′3(τ)|ĝAdτ =

∫ 1

0

√

Θij(xi − x′i)(xj − x′j)dτ

≤
√

sup(Θ−1)∥x− x′∥.

Connecting these two types of paths one can see

dA(u, u
′) ≤

√

sup(Θ−1)∥x∥+
√

supΘ · diam(Tn)

=
√

sup(Θ−1)∥x∥+
√
n supΘ

2
.

□

Now, we describe Riemannian metric ĝ(L|U , J, h, σ,∇) using the identi-
fication (1) in the case of X0 is a strict m-BS fiber. First of all we consider
the connection metric with respect to the pullback of gJ and L|U by the
covering map pΦ : UΦ → U , which is obtained in Proposition 7.1. We also
denote by pΦ : pΦ

∗L→ L|U the lift of the covering map, then the following
commutative diagram is obtained;

p∗ΦL → L|U
↓ ⟲ ↓
UΦ → U
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Let p∗ΦJ be the complex structure on UΦ inherited from U by the covering
map. Then one can see

S(pΦ
∗L, pΦ

∗h) = p−1
Φ (S(L, h))

and

ĝ(pΦ
∗L, pΦ

∗J, pΦ
∗h, σ, pΦ

∗∇) = pΦ
∗ĝ(L|U , J, h, σ,∇).

Since pΦ
∗L is trivial as C∞ complex line bundle, there is the identifica-

tion
UΦ × S1 → S(pΦ

∗L, pΦ∗h)
∈ ∈

(x, θ, e
√
−1t) 7→ e

√
−1t · E(x,θ)

by (1), where E ∈ C∞(pΦ
∗L) is taken as in Proposition 7.1. Under the iden-

tification we have

ĝ(pΦ
∗L, pΦ

∗J, pΦ
∗h, σ, pΦ

∗∇)

= σ(dt− xidθ
i)2 + (Qij + PikQ

klPlj)dθ
idθj

− 2PikQ
jkdθidxj +Qijdxidxj .

By Proposition 7.1, the deck transformation of

pΦ : (S(pΦ
∗L, pΦ

∗h)) → S(L|U , h)

is identified with

k · (x, θ, e
√
−1t) := (x, θ + kw0, e

√
−1(t− 2kπ

m
)) (k ∈ Z/mZ),(9)

where w0 ∈ Zn is taken such that Φ(w0) = 1 ∈ Z/mZ. Thus we obtain the
next proposition.

Proposition 7.3. Define the Riemannian metric ĝA on UΦ × S1 by

ĝA = σ(dt− xidθ
i)2 + (Qij + PikQ

klPlj)dθ
idθj

− 2PikQ
jkdθidxj +Qijdxidxj ,

which is invariant under the Z/mZ action defined by (9). If X0 is a strict

m-BS fiber, then

pΦ
∗ ĝ(L|U , J |U , h, σ,∇) = ĝA

holds.
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7.2. Boundedness of the Ricci curvatures

First of all we compute the Ricci curvature of gJ |U . Since ω is the Kähler
form on (U, J), it suffices to compute the Ricci form of ω. First of all we can
see that

∂θi
(

∂

∂θj
+Ajk

∂

∂xk

)

= dθi
(

∂

∂θj
+Ajk

∂

∂xk

)

= δij ,

hence ∂θ1, . . . , ∂θn forms the dual frame of Ω1,0.

Proposition 7.4. The Kähler form ω|U and the Ricci form ρω|U are given

by

ω|U = 2
√
−1Qij∂θ

i ∧ ∂θj ,
ρω|U =

√
−1∂∂ log det(Qij)−

√
−1∂α+

√
−1 ∂α,

where

α :=
∂Āij

∂xi
∂θj ∈ Ω0,1(U).

Proof. Since dxi −Aijdθ
j is of type (0, 1), one can see ∂xi = Aij∂θ

j . Then
we have

ω|U = dxi ∧ dθi = ∂xi ∧ ∂θi + ∂xi ∧ ∂θi = 2
√
−1Qij∂θ

i ∧ ∂θj .

Take f ∈ C∞(U ′,C×) such that Ω := f∂θ1 ∧ · · · ∧ ∂θn is a nowhere van-
ishing holomorphic section of the canonical bundle KX |U ′ on some open set
U ′ ⊂ U . If we put β = f−1∂f , then the Ricci form ρω|U ′ is given by

−
√
−1∂∂ log

ω|nU ′

Ω ∧ Ω
= −

√
−1∂∂ log det(Qij) +

√
−1∂∂ log |f |2

= −
√
−1∂∂ log det(Qij) +

√
−1∂β −

√
−1 ∂β.

Since we have

0 = f−1∂Ω = β ∧ ∂θ1 ∧ · · · ∧ ∂θn + ∂(∂θ1 ∧ · · · ∧ ∂θn),(10)
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it suffices to compute ∂∂θi to describe β. Now, we have

∂∂θi
(

∂

∂θk
+Akj

∂

∂xj
,
∂

∂θl
+ Ālh

∂

∂xh

)

= d∂θi
(

∂

∂θk
+Akj

∂

∂xj
,
∂

∂θl
+ Ālh

∂

∂xh

)

= −∂θi
([

∂

∂θk
+Akj

∂

∂xj
,
∂

∂θl
+ Ālh

∂

∂xh

])

= −
(

∂Ālh

∂θk
+Akj

∂Ālh

∂xj

)

∂θi
(

∂

∂xh

)

+

(

∂Akj

∂θl
+ Ālh

∂Akj

∂xh

)

∂θi
(

∂

∂xj

)

.

Since

∂

∂xh
=

Qhl

2
√
−1

(

∂

∂θl
+Alk

∂

∂xk
− ∂

∂θl
− Ālk

∂

∂xk

)

holds, we have ∂θi
(

∂
∂xh

)

= Qhi

2
√
−1

, which gives

∂∂θi = − Qhi

2
√
−1

(

∂Ālh

∂θk
+Akj

∂Ālh

∂xj
− ∂Akh

∂θl
− Ālj

∂Akh

∂xj

)

∂θk ∧ ∂θl.

Moreover, the integrability of J implies

∂Ālh

∂θk
+Akj

∂Ālh

∂xj
=
∂Ālh

∂θk
+ Ākj

∂Ālh

∂xj
+ 2

√
−1Qkj

∂Ālh

∂xj

=
∂Ākh

∂θl
+ Ālj

∂Ākh

∂xj
+ 2

√
−1Qkj

∂Ālh

∂xj
,

accordingly one can see that

∂∂θi = Qhi

(

∂Qkh

∂θl
+ Ālj

∂Qkh

∂xj
−Qkj

∂Ālh

∂xj

)

∂θk ∧ ∂θl.(11)

By combining (10), we have

β =

(

Qih∂Qih

∂θl
+ ĀljQ

ih∂Qih

∂xj
− ∂Ālj

∂xj

)

∂θl.
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Now the Jacobi’s formula yields

∂(log det(Qij)) = Qih∂Qih = Qih

(

∂Qih

∂θl
∂θl +

∂Qih

∂xj
∂xj
)

= Qih

(

∂Qih

∂θl
+ Ājl

∂Qih

∂xj

)

∂θl,

therefore, we obtain

β = ∂(log det(Qij))−
∂Ālj

∂xj
∂θl,

which gives the assertion. □

Proposition 7.5. Let α be as in Proposition 7.4. Then we have

∂α =

(

∂2Āil

∂θk∂xi
+Akh

∂2Āil

∂xh∂xi

)

∂θk ∧ ∂θl

−Qmh∂Āim

∂xi

(

∂Qkh

∂θl
+ Ālj

∂Qkh

∂xj
−Qkj

∂Ālh

∂xj

)

∂θk ∧ ∂θl.

Proof. Since

∂α = ∂

(

∂Āil

∂xi
∂θl
)

=

(

∂2Āil

∂θk∂xi
+Akh

∂2Āil

∂xh∂xi

)

∂θk ∧ ∂θl + ∂Āil

∂xi
∂∂θl,

the assertion follows from (11). □

From now on we consider the one parameter family of ω-compatible
complex structures {Js}0<s<δ on (X,ω). Then we denote by A(s, ·) the ma-
trix valued function corresponding to Js|U . For simplicity, we often write
A = A(s, ·) if there is no fear of confusion. We assume the following condi-
tion ♠ for {Js}. Let pr : X × [0, δ) → X be the projection and pr∗Lagω be
the pullback bundle.

♠ There is a smooth section P of pr∗Lagω|U×[0,δ) → U × [0, δ) such that
P(·, s) = PJs

|U for s > 0, P(·, 0) = Pµ|U and

d

ds
P(x, s)

∣

∣

∣

s=0
∈ TPµ(x)Lag(TxX ⊗ C, ωx)+.
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By assuming ♠, there are a constant K > 0 and A0 ∈ C∞(U)⊗Mn(C) such
that supi,j ∥Aij(s, ·)− sA0

ij∥C2(U) ≤ Ks2, Im(A0) is a positive definite sym-

metric matrix and supi,j ∥A0
ij∥C2(U) <∞.

For a function f0(s, x, θ) and f1(s, x, θ) we write

f0(s, x, θ) = f1(s, x, θ) +OCl(sk)

if there exists a constant K > 0 such that ∥f0(s, x, θ)− f1(s, x, θ)∥Cl(U) ≤
Ksk. For instance, if {Js}s satisfies ♠, then we may write

Aij = sA0
ij +OC2(s2).

Proposition 7.6. Assume that {Js}s satisfies ♠. Put

A0
ij = P 0

ij +
√
−1Q0

ij

for P 0
ij , Q

0
ij ∈ C∞(U,R).

(i)
∂A0

ij

∂θk = ∂A0
ik

∂θj hold for any i, j, k.

(ii) Let RicgJs
be the Ricci curvature of gJs

. There exists a constant κ ∈ R

such that RicgJs
≥ κgJs

hold for all 0 < s < δ, if and only if Q0
ij(x, θ)

are independent of θ ∈ Tn.

Proof. We have ∂Aij

∂θk = s
∂A0

ij

∂θk +OC1(s2) and ∂Aij

∂xk
= s

∂A0
ij

∂xk
+OC1(s2), then

by (3) and taking s→ 0 we obtain (i).
Next we show (ii). It suffices to discuss the existence of κ such that

ρω ≥ κω holds. To show it, we write ρω =
√
−1ρkl∂θ

k ∧ ∂θl for ρkl ∈ R, then
we expand ρkl about s = 0.

We have

detQij = sn
(

detQ0
ij +OC2(s)

)

,

log detQij = log(sn) + log detQ0
ij +OC2(s),

where A0
ij = P 0

ij +
√
−1Q0

ij , and

Qij = s−1Q0,ij +OC2(1),
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where (Q0,ij)i,j is the inverse of (Q0
ij)i,j . Since

∂
∂θi +Aij

∂
∂xj

forms the dual

basis of ∂θi, we have

∂∂ log detQij =

(

∂2(log detQ0
ij)

∂θk∂θl
+OC0(s)

)

∂θk ∧ ∂θl,

∂α− ∂α = (OC0(s)) ∂θk ∧ ∂θl.

Set H = log detQ0
ij . We obtain

ρω =
√
−1

(

∂2H

∂θk∂θl
+OC0(s)

)

∂θk ∧ ∂θl.

Put Q = (Qij)ij , Q
0 = (Q0

ij)ij and HessθH = ( ∂2H
∂θi∂θj )ij , and let

√
Q be the

symmetric matrix such that
√
Q

2
= Q. Since ω = 2

√
−1Qkl∂θ

k ∧ ∂θl, then
ρω ≥ κω holds for some κ ∈ R if and only if the eigenvalues of

√

Q−1(HessθH +OC0(s))
√

Q−1

are bounded from the below by a constant. Since

√

Q−1 =
√
s−1
√

(Q0)−1 +OC2(s) =
√
s−1

(

√

(Q0)−1 +OC2(s)
)

,

we obtain

√

Q−1(HessθH +OC0(s))
√

Q−1

= s−1
(

√

(Q0)−1 +OC2(s)
)

(HessθH +OC0(s))
(

√

(Q0)−1 +OC2(s)
)

= s−1
√

(Q0)−1HessθH
√

(Q0)−1 +OC0(1).

Therefore, the existence of the lower bound of the Ricci curvatures of
{gJs

} is equivalent to

√

(Q0)−1HessθH
√

(Q0)−1 ≥ 0,

moreover, it is equivalent to HessθH ≥ 0. Consequently, H should be con-
stant by the maximum principle.

By the imaginary part of (i), we can see that Q0
ijdθ

j is a closed 1-form
on {x} × Tn, hence there exists a constant Q̄ij depends only on x such
that [Q̄ijdθ

j ] = [Q0
ijdθ

j ] ∈ H1({x} × Tn). Consequently, there are Fi(x, ·) ∈



✐

✐

“3-Hattori” — 2021/1/27 — 1:05 — page 1599 — #25
✐

✐

✐

✐

✐

✐

The geometric quantizations 1599

C∞({x} × Tn) such that Q0
ij = Q̄ij +

∂Fi

∂θj holds. Integrating this equality
over {x} × Tn, we have

∫

{x}×Tn

Q0
ij(x, θ)dθ

1 · · · dθn = Q̄ij(x),

which implies that (Q̄ij)i,j is a positive definite symmetric matrix. Since
∂Fi

∂θj = ∂Fj

∂θi holds, one can see that Fidθ
i is a closed 1-form on {x} × Tn, then

by repeating the above argument, there are F (x, ·) ∈ C∞({x} × Tn) and
Q̄i(x) ∈ R such that Fi = Q̄i +

∂F
∂θi , hence we may write

Q0
ij = Q̄ij +

∂2F

∂θi∂θj
.

Since Q̄ij can be obtained by integrating Q0
ij along some cycles of H1({x} ×

Tn,Z), (Q̄ij)i,j is also a positive definite symmetric matrix. Now we take
another torus Tn

copy = Rn/Zn and the coordinate τ1, . . . , τn coming from
Rn. Next we regard Mx := {x} × Tn × Tn

copy as a complex manifold whose
holomorphic coordinate is given by

z1 := θ1 +
√
−1τ1, . . . , zn := θn +

√
−1τn.

Define the Kähler form ω̂x on Mx by ω̂x :=
√
−1Q̄ij(x)dz

i ∧ dz̄j . Since Q̄ij

is constant on Mx, it is a Ricci-flat Kähler metric. Moreover

ω̂x + 4
√
−1∂∂F =

√
−1Q0

ij(x, θ)dz
i ∧ dz̄j

is also a Ricci-flat Kähler metric since detQ0 is constant. By the uniqueness
of the Ricci-flat Kähler metric in the fixed Kähler class, we obtain Q0

ij =
Q̄ij . □

7.3. Convergence

Set

UΦ,r := Br × (Rn/KerΦ) = p−1
Φ (Ur),

Sr := S(L|Ur
, h),

SΦ,r := UΦ,r × S1 = p−1
Φ (Sr)

for 0 < r ≤ R.
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For the brevity, put

d̃A := the Riemannian distance of ĝA on SΦ,R,

ĝJ := ĝ(L, J, h, σ,∇),

dJ := the Riemannian distance of ĝJ on S(L, h),

dA := the Riemannian distance of ĝJ |S(L|U ,h) on S(L|U , h),

then

dA(pΦ(u), pΦ(v)) = inf
k=0,1,...,m−1

d̃A(k · u, v),

dJ(pΦ(u), pΦ(v)) ≤ dA(pΦ(u), pΦ(v))

hold for all u, v ∈ SΦ,R.
Denote by BgJ (p, r) the geodesic ball in (X, gJ) of radius r centered at

p, and denote by BgA(p, r) the geodesic ball in (U, gA). Put

0 := (0, 0) ∈ U,

and

BdA
(r) := {p ∈ S(L|U , h); dA(pΦ(u0), p) < r},

BdJ
(r) := {u ∈ X; dJ(pΦ(u0), u) < r}.

The the connection metric ĝA given in Proposition 7.3 is written as

ĝA = σ(dt− xidθ
i)2 +Θijdθ

idθj − 2PikQ
jkdθidxj +Qijdxidxj .

Proposition 7.7.

(i) BgJ

(

0,
√

inf(Θ−1)R′
)

⊂ UR′ holds for any 0 < R′ ≤ R
2 .

(ii) Take R0 > 0 such that

2

(

1 +
2
√

sup(Θ−1)
√

inf(Θ−1)

)

R0 +

√
n supΘ + 2

√
σπ

√

inf(Θ−1)
≤ R.

Then dJ(p, p
′) = dA(p, p

′) holds for any p, p′ ∈ SR0
.
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(iii) Assume that {Js}s satisfies ♠. Then there are constants s0 > 0, 0 <
R0 <

R
2 and C > 0 such that

BgJs

(

0,
CR′
√
s

)

⊂ UR′ , dJs
|SR0

= dA(s,·)|SR0

hold for any 0 < s ≤ s0 and 0 < R′ ≤ R
2 .

Proof. (i) Let p ∈ BgJ

(

0,
√

inf(Θ−1)R′
)

and suppose p /∈ UR′ . Then there

is a piecewise smooth path c1 : [0, 1] → X such that c1(0) = 0, c1(1) = p and
the length L(c1) is less than

√

inf(Θ−1)R′. Let

τ1 := inf{τ ∈ [0, 1]; c1(τ) /∈ UR′} ≤ 1.

Then by the first inequality of Proposition 7.2,

L(c1) ≥ L(c1|[0,τ1]) ≥ dgJ (0, c1(τ1)) ≥
√

inf(Θ−1)R′

holds, hence we have the contradiction.
(ii) Take R0 > 0 which satisfies the assumption. Let p, p′ ∈ SR0

and sup-
pose dJ(p, p

′) < dA(p, p
′). Then there is a piecewise smooth path c2 : [0, 1] →

S(L, h) connecting p and p′ such that Im(c2) is not contained in SR

2
and L(c2)

is less than dA(p, p
′). Put

τ2 := inf{τ ∈ [0, 1]; c2(τ) /∈ SR

2
},

then

L(c2) ≥ L(c2|[0,τ2]) ≥ dJ(c2(0), c2(τ2))

holds. Since π : (S(L, h), ĝJ) → (X, gJ) is a Riemannian submersion,

dJ(c2(0), c2(τ2)) ≥ dgJ (π(c2(0)), π(c2(τ2)))

holds, then we can see

L(c2) ≥ dgJ (π(c2(0)), π(c2(τ2))) ≥
√

inf(Θ−1)

(

R

2
−R0

)

,
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by the first inequality of Proposition 7.2. The second inequality of Proposi-
tion 7.2 gives

√

inf(Θ−1)

(

R

2
−R0

)

< dA(p, p
′)

≤ 2
√

sup(Θ−1)R0 +

√
n supΘ

2
+
√
σπ,

therefore we obtain

R

2
<

(

1 +
2
√

sup(Θ−1)
√

inf(Θ−1)

)

R0 +
1

√

inf(Θ−1)

(√
n supΘ

2
+
√
σπ

)

,

which contradicts the assumption.
(iii) Since we have

√

inf(Θ−1) =
1√
s

(

√

inf((Θ0)−1) +O(s)
)

,

√

sup(Θ−1) =
1√
s

(

√

sup((Θ0)−1) +O(s)
)

,

√

sup(Θ) =
√
s
(

√

sup(Θ0) +O(s)
)

by the Hoffman-Wielandt’s inequality [12], there exists s0 > 0 such that

2
√

sup(Θ−1)
√

inf(Θ−1)
≤ 3

√

sup((Θ0)−1)
√

inf((Θ0)−1)
,

√
n supΘ + 2

√
σπ

√

inf(Θ−1)
≤ R

10

for all s ≤ s0. If we take 0 < R0 <
R
2 such that

2

(

1 +
3
√

sup((Θ0)−1)
√

inf((Θ0)−1)

)

R0 ≤
9R

10
,

then the assumption of (ii) is satisfied for s ≤ s0, hence we have dJs
|SR0

=
dA(s,·)|SR0

. Moreover, if we put

C := inf
0<s≤s0

√

s inf(Θ−1) > 0,
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then we can see

√

inf(Θ−1)R′ ≥ CR′
√
s

for R′ ≤ R
2 , hence we have BgJs

(

0, CR′√
s

)

⊂ UR′ by (i). □

Next we consider ω-compatible complex structures J, J ′, and compare
the Riemannian distances of gJ and gJ ′ . We will show that if gJ and gJ ′ are
close to each other in some sense then their Riemannian distances are also
close to each other.

Now, we define the distance dSym+(RN ) on

Sym+(RN ) := {g ∈MN (R); gij = gji, g > 0}

as follows. For g ∈ Sym+(RN ), take v1, . . . , vN ∈ RN such that g(vi, vj) =
δij . For g

′ ∈ Sym+(RN ) let λ1, . . . , λN ∈ R be eigenvalues of (g′(vi, vj))i,j .
Then define

dSym+(RN )(g, g
′) := max

i
| log λi|.

Moreover, if g, g′ are Riemannian metrics on M , then define

dSym+(M)(g, g
′) := sup

x∈M
dSym+(TxM)(gx, g

′
x).

Lemma 7.8. Let M be a smooth manifold of dimension N , g, g′ be Rie-

mannian metrics on M and d, d′ be the Riemannian distances of g, g′, re-
spectively. If we assume dSym+(M)(g, g

′) ≤ 2 log 2, then

|d(p0, p1)− d′(p0, p1)| ≤ dSym+(M)(g, g
′)d′(p0, p1)

holds. Moreover, for any f ∈ C0(M)

∣

∣

∣

∣

∫

M
fdµg −

∫

M
fdµg′

∣

∣

∣

∣

≤ N sup |f | · µg′(supp(f)) · dSym+(M)(g, g
′)

holds if dSym+(M)(g, g
′) ≤ log 2

N .
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Proof. Let c : [a, b] →M be a piecewise smooth path, and denote by Lg(c)
be the length of c with respect to g. Since we have

g(c′(t), c′(t)) ≤ exp
(

dSym+(Tc(t)M)(gc(t), g
′
c(t))

)

g′(c′(t), c′(t))

≤ exp
(

dSym+(M)(g, g
′)
)

g′(c′(t), c′(t))

then we can see

Lg(c) ≤ exp

(

dSym+(M)(g, g
′)

2

)

Lg′(c)

and

d(p0, p1) ≤ exp

(

dSym+(M)(g, g
′)

2

)

d′(p0, p1).

By the symmetry we also have

exp

(

−
dSym+(M)(g, g

′)

2

)

d′(p0, p1) ≤ d(p0, p1).

Therefore, we obtain

d′(p0, p1)− d(p0, p1) ≤
(

1− exp

(

−
dSym+(M)(g, g

′)

2

))

d′(p0, p1)

and

d(p0, p1)− d′(p0, p1) ≤
(

exp

(

dSym+(M)(g, g
′)

2

)

− 1

)

d′(p0, p1).

Since 1− e−
t

2 ≤ t and e
t

2 − 1 ≤ t holds for any 0 ≤ t ≤ 2 log 2, we have the
first inequality.

Next we take f ∈ C0(M) and denote by dµg the Riemannian measure of
g. Then we have

∣

∣

∣

∣

∫

M
fdµg −

∫

M
fdµg′

∣

∣

∣

∣

≤
∫

M
|f |
∣

∣

∣

∣

det g

det g′
− 1

∣

∣

∣

∣

dµg′ .

Since | log det g
det g′ | ≤ NdSym+(M)(g, g

′) holds and |et − 1| ≤ 2|t| holds for |t| ≤
log 2, we can see

∣

∣

∣

∣

∫

M
fdµg −

∫

M
fdµg′

∣

∣

∣

∣

≤ N sup |f | · µg′(supp(f)) · dSym+(M)(g, g
′)
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if dSym+(M)(g, g
′) ≤ log 2

N . □

Lemma 7.9. Let g, g′ ∈ Sym+(RN ) and {v1, · · · , vN} be a basis of RN .

Put g = (g(vi, vj))i,j and g′ = (g′(vi, vj))i,j. Denote by α1, . . . , αN be the

eigenvalues of g′g−1. Then αi ∈ R and dSym+(RN )(g, g
′) = maxi | logαi|.

Proof. Let
√
g be the square root of g. If we put ei =

∑

j

√
g−1

ij
vj , then

e1, · · · , eN is an orthonormal basis of (RN , g), therefore we have

dSym+(RN )(g, g
′) = max

i
| log λi|,

where λi are the eigenvalues of

(g′(ei, ej))ij =
√
g
−1

g′√g
−1.

Since we have

√
g
−1 ·

(

g′g−1
)

· √g =
√
g
−1

g′√g
−1,

{α1, . . . , αN} = {λ1, . . . , λN} holds. □

Suppose that X0 is a strict m-BS fiber and fix a small s > 0 and a frame

dt− xidθ
i,
√
sdθ1, . . . ,

√
sdθn,

1√
s
dx1, . . . ,

1√
s
dxn

of T ∗(UΦ × S1). Then the matrix representation of ĝA is given by

gA :=





σ 0 0
0 s−1Θ −PQ−1

0 −Q−1P sQ−1



 ,

and its inverse is

g−1
A =





σ−1 0 0
0 sQ−1 Q−1P
0 PQ−1 s−1Θ



 .

Suppose that {A(s, ·)}s corresponds to {Js} which satisfies ♠. Fix r ≥ 1.
Then there is a constant K > 0 depending only on {A(s, ·)}s such that

|A(s, x, θ)− sA0(x, θ)| ≤ Ks2

|A0(x, θ)−A0(0, θ)| ≤ K∥x∥
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for any (x, θ) ∈ UΦ. If (x, θ) ∈ UΦ,
√
sr for r ≥ 1 and s > 0 with

√
sr ≤ R,

then we have s ≤ √
sRr ≤ √

sr since R ≤ 1, hence we obtain

∣

∣s−1A(s, x, θ)−A0(0, θ)
∣

∣ ≤ K
√
sr.

Here we write

f0(s, x, θ) ∼=√
sr f1(s, x, θ)

if there is a constant K > 0 such that |f0(s, x, θ)− f1(s, x, θ)| ≤ K
√
sr holds

for any (x, θ) ∈ UΦ,
√
sr.

Now A′(s, x, θ) := sA0(0, θ) gives another family of complex structures
{J ′

s}s which satisfies ♠, by (i) of Proposition 7.6. Since we have

s−1Θ ∼=√
sr Θ

0(0, θ),

PQ−1 ∼=√
sr P

0(0, θ)Q0(0, θ)−1,

Q−1P ∼=√
sr Q

0(0, θ)−1P 0(0, θ),

sQ−1 ∼=√
sr Q

0(0, θ)−1,

where Θ0(0, θ) = Q0(0, θ) + P 0(0, θ)Q0(0, θ)−1P 0(0, θ), then we obtain

g−1
A′ gA ∼=√

sr I2n+1.

By Lemma 7.9, the eigenvalues of g−1
A′ gA are real. If 1 + λ ∈ R is one of the

eigenvalues, then

f(λ) := det
(

(1 + λ)I2n+1 − g−1
A′ gA

)

= 0

holds. Since we have

f(λ) = det
{

λI2n+1 + (I2n+1 − g−1
A′ gA)

}

,

there exists a constant K > 0 depending only on {A(s, ·)}s, and there exist
c0, c1, . . . , c2n ∈ R such that maxi |ci| ≤ K and

f(λ) = λ2n+1 +

2n
∑

i=0

ci(
√
sr)2n+1−iλi.
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Lemma 7.10. For any n ∈ Z≥0, K > 0 and r ≥ 1 there is a sufficiently

large N > 0 depending only on n and K such that for any c0, c1, . . . , c2n ∈
[−K,K] and ε > 0, the solution λ of the equation

f(λ) = λ2n+1 +

2n
∑

i=0

ciε
2n+1−iλi = 0

always satisfies |λ| ≤ Nε.

Proof. Put λ = εt. Then f(λ) = ε2n+1
(

t2n+1 +
∑2n

i=0 cit
i
)

. If f(λ) = 0 then

we have tn = −
∑2n

i=0 cit
i. Suppose |t| ≥ 1. Then

|t|2n+1 ≤
2n
∑

i=0

|ci||t|i ≤
2n
∑

i=0

K|t|2n = (2n+ 1)K|t|2n

holds, hence |t| ≤ (2n+ 1)K is obtained. Consequently we can see |λ| ≤
max{1, (2n+ 1)K}ε. □

By Lemma 7.10 we can see | log(1 + λ)| ≤ N
√
sr for the eigenvalue 1 + λ

of g−1
A′ gA, where N is the constant depending only on K. Therefore, we

obtain the following proposition by Lemma 7.9.

Proposition 7.11. Let A,A′ be as above and let r ≥ 1, s > 0 with
√
sr ≤

R. Then there exists a constant C > 0 depending only on A such that

dSym+(UΦ,
√

sr×S1)(ĝA, ĝA′) ≤ C
√
sr.

From now on we assume R > 0 satisfies

CR ≤ 2 log 2,

where C is the constant in Proposition 7.11. Then Lemma 7.8 holds for

M = SΦ,R, g = ĝA, g′ = ĝA′ .

and for

M = SΦ,R, g = ĝA′ , g′ = ĝA.

Proposition 7.12. Let {Js}s satisfy ♠ and A′(s, x, θ) := sA0(0, θ).
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(i) There are positive constants C ′
0, C

′
1 depending only on A0(0, ·) and σ

such that

BgA′ (0, C
′
0r) ⊂ U√

sr ⊂ BgA′ (0, C
′
1r)

for any r ≥ 1 and s > 0 with
√
sr ≤ R.

(ii) Suppose X0 is a strict m-BS fiber. Then there are constants C > 0 and

0 < R0 <
R
2 depending only on A and σ such that

|dJs
(p, q)− dA′(p, q)| < C

√
sr2

holds for any r ≥ 1, s > 0 with
√
sr ≤ R0 and p, q ∈ S√sr.

(iii) There are positive constants C0, C1 and 0 < R0 <
R
2 depending only

on A and σ such that

BgJs
(0, C0r) ⊂ U√

sr ⊂ BgJs
(0, C1r)

for any r ≥ 1, s > 0 with
√
sr ≤ R0.

Proof. (i) Apply Proposition 7.2 for A′. Then there are positive constants
C2, C3, C4 depending only on A0(0, ·) and σ such that

C2

√
s
−1∥x∥ ≤ dgA′ (0, u) ≤ C3

√
s
−1∥x∥+ C4

for any u = (x, θ) and s > 0. If ∥x∥ < √
sr then

dgA′ (0, u) < C3r + C4 ≤ (C3 + C4)r

holds since r ≥ 1, which implies U√
sr ⊂ BgA′ (0, (C3 + C4)r). On the other

hand if dgA′ (0, u) < C2r holds then

C2

√
s
−1∥x∥ ≤ dgA′ (0, u) < C2r

gives ∥x∥ < √
sr, hence BgA′ (0, C2r) ⊂ U√

sr holds.
(ii) By applying Proposition 7.11, there is a constant C5 > 0 such that

dSym+(SΦ,
√

sr)(ĝA, ĝA′) ≤ C5

√
sr

holds if
√
sr ≤ R. Now take R0 ≤ min{2 log 2

C5
, R} and assume

√
sr ≤ R0, then

we may apply Lemma 7.8 and we have

|d̃A(u, v)− d̃A′(u, v)| ≤ dSym+(M)(g, g
′)d̃A′(u, v) ≤ C5

√
srd̃A′(u, v)
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for all u, v ∈ SΦ,
√
sr. By the same argument in the proof of Proposition 7.2,

we have the upper estimate

d̃A′(u, v) ≤
√

sup(Q0)−1
∥x− x′∥√

s

+
√
s
√

σr2 + · supΘ0 · diam(Rn/KerΦ) +
√
σπ,

where u = (x, θ, e
√
−1t), v = (x′, θ′, e

√
−1t′). Since ∥x− x′∥ ≤ 2

√
sr,

√
sr ≤

R ≤ 1 and r ≥ 1, we have ∥x−x′∥√
s

≤ 2r and s ≤ R2

r2 ≤ 1, then there is a con-

stant C6 > 0 depending only on A0, σ,Φ such that d̃A′(u, v) ≤ C6r, which
gives

|d̃A(u, v)− d̃A′(u, v)| < 2C5C6

√
sr2.

Therefore, we can see

dA(pΦ(u), pΦ(v)) = inf
k=0,1,...,m−1

d̃A(k · u, v)

< inf
k=0,1,...,m−1

{

d̃A′(k · u, v) + 2C5C6

√
sr2
}

= dA′(k · u, v) + 2C5C6

√
sr2

and similarly dA′(pΦ(u), pΦ(v)) < dA(k · u, v) + 2C5C6
√
sr2 is obtained.

By (iii) of Proposition 7.7, we can take 0 < R′
0 <

R
2 and s0 > 0 such that

dJs
|SR′

0
= dA|SR′

0
holds for any 0 < s ≤ s0. If we put C = 2C5C6 and R0 =

min{2 log 2
C5

, R′
0,
√
s0}, then

√
sr ≤ R0 implies s ≤ s0, hence we have (ii).

(iii) Take C, s0, R0 as in (iii) of Proposition 7.7 and replace R0 by
the smaller one such that R0 ≤

√
s0. Then we have BgJs

(0, Cr) ⊂ U√
sr if√

sr ≤ R0. Next we assume u ∈ U√
sr. By (i), we have u ∈ BgA′ (0, C

′
1r). Since

π : (SR, ĝJs
) → (UR, gJs

) and π : (SR, ĝA′) → (UR, gA′) are Riemannian sub-
mersions, therefore (ii) gives

dgJs
(π(u), π(u′)) = inf

e
√

−1t∈S1
dJs

(ue
√
−1t, u′)

≤ inf
e
√

−1t∈S1
dA′(ue

√
−1t, u′) + C

√
sr2

= dgA′ (π(u), π(u
′)) + C

√
sr2.

Consequently we obtain

dgJs
(0, u) ≤ dgA′ (0, u) + C

√
sr2 < C ′

1r + CR0r,
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which implies U√
sr ⊂ BgJs

(0, C1r) by putting C1 = C ′
1 + C. □

Proposition 7.13. Let {Js}s satisfy ♠ and A′(s, x, θ) := sA0(0, θ). There
exist constants R0, C > 0 such that

id :
(

π−1(BgJs
(0, r − C

√
sr2)), dJs

)

→
(

π−1(BgA′(s,·)(0, r)), dA′(s,·)
)

is a Borel C
√
sr2-S1-equivariant Hausdorff approximation for any r ≥ 1 and

s ≤ R2
0

Cr2 . Moreover, if f : SR → R is a Borel function such that supp(f) ⊂
SR′ for some R′ ≤ R and sup |f | <∞, then

∣

∣

∣

∣

∫

SR

fdµĝA′ −
∫

SR

fdµĝJs

∣

∣

∣

∣

≤ C sup |f |(R′)n+1

holds.

Proof. Fix r ≥ 1. TakeR0, C0, C1, C
′
0, C

′
1, C such that Proposition 7.12 holds.

We may suppose C>1 and C0 = C ′
0 = C−1, C1 = C ′

1 = C. Then BgJs
(0, r)⊂

UC
√
sr and

|dJs
(p, q)− dA′(p, q)| < C2√sr2

hold for any p, q ∈ SC
√
sr and 0 < s ≤ R2

0

C2r2 . If u ∈ BgJs
(0, r − C2√sr2), then

dgA′ (0, u) < dgJs
(0, u) + C2√sr2 < r,

which implies BgJs
(0, r − C2√sr2) ⊂ BgA′ (0, r).

Now, BgA′ (0, r) ⊂ UC
√
sr holds. We also have

BgA′ (0, r) ⊂ BgJs
(0, r + C2√sr2).

Since dgJs
is an intrinsic metric, we have

BgJs
(0, r + C2√sr2) = BgJs

(

BgJs
(0, r − C2√sr2), 2C2√sr2

)

.

hence we can see that

id :
(

π−1(BgJs
(0, r − C2√sr2)), dJs

)

→
(

π−1(BgA′ (0, r)), dA′(s,·)
)

is a Borel εi-S
1-equivariant Hausdorff approximation.
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Let f : SR → R be a Borel function such that supp(f) ⊂ SR′ for some
R′ ≤ R and sup |f | <∞. Then one can see

∣

∣

∣

∣

∫

SR

fdµĝA′ −
∫

SR

fdµĝJs

∣

∣

∣

∣

≤ 2n sup |f | · µĝA′ (SR′) · CR′

by Lemma 7.8 and Proposition 7.11. Since

dµgA′ = det(gA′)dtdθ1 · · · dθndx1 · · · dxn

and

det(gA′) = σ det

(

Θ0 −P 0(Q0)−1

−(Q0)−1P 0 (Q0)−1

)

,

one can see that µgA′ (SR′) = σC ′(R′)n, which gives the assertion. □

Let {Js}s satisfy ♠ and A′(s, x, θ) := sA0(0, θ). By Proposition 7.6,
P 0
ij(0, θ)dθ

j is a closed 1-form on Tn. Then there are constants P̄ij ∈ R such
that

[P 0
ij(0, ·)dθj ] = [P̄ijdθ

j ] ∈ H1(Tn,R),

hence there are Hi ∈ C∞(Tn) such that

P 0
ij(0, ·)dθj = P̄ijdθ

j + dHi.

Since P 0
ij = P 0

ji and

P̄ij =

∫

Tn

P 0
ij(0, θ)dθ

1 · · · dθn,

we have P̄ij = P̄ji and
∂Hi

∂θj = ∂Hj

∂θi . Consequently, Hidθ
i is closed, therefore

there are P̄i ∈ R and H ∈ C∞(Tn) such that Hi = P̄i +
∂H
∂θi , which gives

P 0
ij(0, ·) = P̄ij +

∂2H
∂θi∂θj

.
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If RicgJs
has the lower bound, then by Proposition 7.6 we have Q0

ij(0, ·) =
Q̄ij ∈ R and

gA′ = s(Q̄ij + P 0
ikQ̄

klP 0
lj)dθ

idθj − 2P 0
ikQ̄

jkdθidxj + s−1Q̄ijdxidxj

= sQ̄ijdθ
idθj +

Q̄ij

s

(

dxi − sP 0
ikdθ

k
)(

dxj − sP 0
jldθ

l
)

= sQ̄ijdθ
idθj

+
Q̄ij

s

{

d

(

xi − s
∂H
∂θi

)

− sP̄ikdθ
k

}{

d

(

xj − s
∂H
∂θj

)

− sP̄jldθ
l

}

.

Now, define Fs : R
n × Tn → Rn × Tn by

Fs(x, θ) :=

(

x1 + s
∂H
∂θ1

, . . . , xn + s
∂H
∂θn

, θ

)

.

Then F−s is the inverse of Fs and

F ∗
s gA′ = sQ̄ijdθ

idθj +
Q̄ij

s

(

dxi − sP̄ikdθ
k
)(

dxj − sP̄jldθ
l
)

holds. Moreover, we can lift Fs to

F̂s : R
n × (Rn/KerΦ)× S1 → R

n × (Rn/KerΦ)× S1

by

F̂s(x, θ, e
√
−1t) :=

(

x1 + s
∂H
∂θ1

, . . . , xn + s
∂H
∂θn

, θ, e
√
−1(t+sH(θ))

)

.

One can easy to check that F̂s is Z/mZ-equivariant and S1-equivariant map,
and

F̂ ∗
s ĝA′ = σ(dt− xidθ

i)2 + sQ̄ijdθ
idθj

+
Q̄ij

s

(

dxi − sP̄ikdθ
k
)(

dxj − sP̄jldθ
l
)

.
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Put P̄ = (P̄ij)i,j , Q̄ = (Q̄ij)i,j , Θ̄ = Q̄+ P̄ Q̄−1P̄ and y =
√
sΘ̄

−1
x, τ =√

sΘ̄θ. Then we may write

F̂ ∗
s ĝA′ = σ(dt− tx · dθ)2 + tdθ · sQ̄ · dθ

+ t
(

dx− sP̄ dθ
)

· Q̄
−1

s
·
(

dx− sP̄ dθ
)

= σ(dt)2 − 2σ(ty · dτ)dt+ tdτ ·
(

1 + σy · ty
)

· dτ

+ tdy ·
√

Θ̄Q̄−1
√

Θ̄ · dy − 2 · tdy ·
√

Θ̄Q̄−1P̄
√

Θ̄
−1

· dτ.

Since Ky := 1 + σy · ty is positive definite, it has the inverse and the square
root. Accordingly, we have

F̂ ∗
s ĝA′ = σ(dt)2 − 2σ(ty · dτ)dt+ tdτ ·Ky · dτ

+ tdy ·
√

Θ̄Q̄−1
√

Θ̄ · dy − 2 · tdy ·
√

Θ̄Q̄−1P̄
√

Θ̄
−1

· dτ

= t

(

√

Kydτ − σ
√

Ky
−1
ydt−

√

Ky
−1
√

Θ̄
−1
P̄ Q̄−1

√

Θ̄dy

)

·
(

√

Kydτ − σ
√

Ky
−1
ydt−

√

Ky
−1
√

Θ̄
−1
P̄ Q̄−1

√

Θ̄dy

)

+
(

σ − (σ2)tyK−1
y y

)

(dt)2

− 2σty ·K−1
y

√

Θ̄
−1
P̄ Q̄−1

√

Θ̄dydt

+ tdy ·
√

Θ̄

(

Q̄−1 − Q̄−1P̄
√

Θ̄
−1
K−1

y

√

Θ̄
−1
P̄ Q̄−1

)

√

Θ̄ · dy.

Here, we have

ty ·K−1
y =

ty

1 + σ∥y∥2 ,

ty ·K−1
y · y =

∥y∥2
1 + σ∥y∥2 ,

and the similar computation as in the proof of Proposition 7.2 gives

Θ̄−1 = Q̄−1 − Q̄−1P̄ Θ̄−1P̄ Q̄−1.

Put

T := dτ − σK−1
y · ydt−K−1

y

√

Θ̄
−1
P̄ Q̄−1

√

Θ̄dy,

S̄ :=
√

Θ̄
−1
P̄ Q̄−1

√

Θ̄.
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Then we may write

F̂ ∗
s ĝA′ = tT ·Ky · T +

σ

1 + σ∥y∥2 (dt)
2 − 2σ

1 + σ∥y∥2
ty · S̄dydt

+ tdy ·
(

1 + tS̄
(

1−K−1
y

)

S̄
)

· dy.

Since we have

1−K−1
y = (Ky − 1)K−1

y = σy · ty ·K−1
y =

σy · ty
1 + σ∥y∥2 ,

we can see that

F̂ ∗
s ĝA′ = tT ·Ky · T +

σ

1 + σ∥y∥2 (dt)
2 − 2σ

1 + σ∥y∥2
ty · S̄dydt

+ tdy ·
(

1 + tS̄

(

σy · ty
1 + σ∥y∥2

)

S̄

)

· dy

= tT ·Ky · T +
σ

1 + σ∥y∥2
(

dt− ty · S̄dy
)2

+ tdy · dy

Define ϕm,s : SΦ,R → Rn × S1 by

ϕm,s(x, θ, e
√
−1t) := (

√

sΘ̄
−1
x, e

√
−1t).

and define Z/mZ-action on Rn × S1 by k · (y, e
√
−1t) := (y, e

√
−1(t− 2kπ

m
)).

Then ϕm,s is Z/mZ-equivariant map and

ϕm,s : (R
n × (Rn/KerΦ)× S1, F̂ ∗

s ĝA′) → (Rn × S1, g∞)

is a Riemannian submersion, where

g∞ =
σ

1 + σ∥y∥2
(

dt− ty · S̄dy
)2

+ tdy · dy.

Denote by µ∞ the measure on Rn × S1 defined by dµ∞ = dy1 · · · dyndt.

Proposition 7.14. Let f ∈ C0(R
n × S1). Then there is a constant K > 0

depending only on Φ, σ, Θ̄ such that

∫

Rn×(Rn/KerΦ)×S1

f ◦ ϕm,sdµF̂ ∗
s ĝA′

= K
√
s
n
∫

Rn×S1

fdµ∞.
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Proof. Since

dµF̂ ∗
s ĝA′

=

(

σ

1 + σ∥y∥2 det(Ky)

) 1

2

dtdτ1 · · · dτndy1 · · · dyn

=

(

σ

1 + σ∥y∥2 (1 + σ∥y∥2)
) 1

2

dtdτ1 · · · dτndy1 · · · dyn

=
√
σdtdτ1 · · · dτndy1 · · · dyn,

we have
∫

Rn×(Rn/KerΦ)×S1

f ◦ ϕm,sdµF̂ ∗
s ĝA′

=

∫

Rn×(Rn/KerΦ)×S1

f ◦ ϕm,s

√
σdtdτ1 · · · dτndy1 · · · dyn

=
√
σ
√
s
n
√

det Θ̄

∫

Rn×(Rn/KerΦ)×S1

f ◦ ϕm,sdtdθ
1 · · · dθndy1 · · · dyn

=
√
σVol (Rn/KerΦ)

√

det Θ̄
√
s
n
∫

Rn×S1

fdtdy1 · · · dyn.
□

Now, we put

SΦ :=
Rn × (Rn/KerΦ)× S1

Z/mZ
,

then ĝA′ and F̂ ∗
s ĝA′ induces the Riemannian metrics on SΦ such that pΦ is

local isometry. We also denote by ĝA′ and F̂ ∗
s ĝA′ , respectively if there is no

fear of confusion.
Since ϕm,s is Z/mZ-equivariant, we have the following commutative di-

agram;

(Rn × (Rn/KerΦ)× S1, F̂ ∗
s ĝA′)

ϕm,s→ (Rn × S1, g∞)
pΦ ↓ pm ↓

(SΦ, F̂
∗
s ĝA′)

ϕs→ (Rn × S1, gm,∞)

where pm is the quotient map defined by pm(y, e
√
−1t) := (y, e

√
−1mt) and

gm,∞ is defined by

gm,∞ =
σ

1 + σ∥y∥2
(

dt

m
− ty · S̄dy

)2

+ tdy · dy(12)

such that pm
∗gm,∞ = g∞ and ϕs is the Riemannian submersion.
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Proposition 7.15. Let {Js}s satisfy ♠ and A′(s, x, θ) := sA0(0, θ) and put

p0 = pΦ(0, 0, 1) ∈ SΦ. Assume that there are constants s0 > 0 and κ ∈ R

such that RicgJs
≥ κgJs

for any 0 < s ≤ s0. Then the family of pointed met-

ric measure spaces with the isometric S1-action

{(

SΦ, dA′ ,
µĝA′

K
√
s
n , p0

)}

s

converges to
(

Rn × S1, dgm,∞ , µ∞, (0, 1)
)

as s→ 0 in the sense of the pointed

S1-equivariant measured Gromov-Hausdorff topology.

Proof. Since F̂s is an S1-equivariant isometry, it suffices to show that

{(

SΦ, dF̂ ∗
s ĝA′

,
µF̂ ∗

s ĝA′

K
√
s
n , p0

)}

s

converges to
(

Rn × S1, dgm,∞ , µ∞, (0, 1)
)

as s→ 0 in the sense of the pointed
S1-equivariant measured Gromov-Hausdorff topology. Since

F̂ ∗
s ĝA′ = tT KyT + g∞,

one can see that ϕs is a Riemannian submersion and the diameters of the
fibers ϕ−1

s (y, t) are at most C
√

s(1 + σ∥y∥2), where C > 0 is a constant
depending only on P̄ , Q̄ and Φ, hence the pointed Gromov-Hausdorff con-
vergence follows. Moreover, Proposition 7.14 implies that (ϕm,s)∗µF̂ ∗

s ĝA′
=

K
√
s
n
µ∞, especially we also have the vague convergence of the measures.

□

Theorem 7.16. Let {Js}s satisfies ♠ and suppose that there there are

constants s0 > 0 and κ ∈ R such that RicgJs
≥ κgJs

for any 0 < s ≤ s0.
Put p0 = pΦ(0, 0, 1) ∈ S(L|U , h). Then the family of pointed metric measure

spaces with the isometric S1-action

{(

S(L, h), dJs
,
µĝJs

K
√
s
n , p0

)}

s

converges to
(

Rn × S1, dgm,∞ , µ∞, (0, 1)
)

as s→ 0 in the sense of the pointed

S1-equivariant measured Gromov-Hausdorff topology.
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Proof. Put A′(s, x, θ) := sA0(0, θ). By Proposition 7.13, there exist con-
stants R0, C > 0 such that

id :
(

π−1(BgJs
(0, r − C

√
sr2)), dJs

)

→
(

π−1(BgA′(s,·)(0, r)), dA′(s,·)
)

is a Borel C
√
sr2-S1-equivariant Hausdorff approximation for any r ≥ 1 and

s ≤ R2
0

Cr2 . Since C
√
sr2 → 0 as s→ 0 for any fixed r, therefore,

{(S(L, h), dJs
, p0)}s

S1-GH−→
(

R
n × S1, dgm,∞ , (0, 1)

)

as s→ 0 by Proposition 7.15.
Next we show the vague convergence of the measures. Now the ap-

proximation from (S(L, h), dJs
, p0) to

(

Rn × S1, dgm,∞ , (0, 1)
)

is induced by

the Z/mZ-equivariant maps ψs := ϕm,s ◦ F̂−s. Take f ∈ C0(R
n × S1). Then

Proposition 7.14 gives

∫

Rn×S1

fdµ∞ =
1

K
√
s
n

∫

Rn×(Rn/KerΦ)×S1

f ◦ ϕm,sdµF̂ ∗
s ĝA′

=
1

K
√
s
n

∫

Rn×(Rn/KerΦ)×S1

f ◦ ψsdµĝA′ .

Note that sup |f ◦ ψs| ≤ sup |f | <∞. By the definition of ϕm,s, there is r > 0
independent of s such that supp(f ◦ ψs) ⊂ S√sr holds for any 0 < s ≤ s0.
Then Proposition 7.13 gives some constants C2 > 0 such that

1

K
√
s
n

∣

∣

∣

∣

∣

∫

Rn×(Rn/KerΦ)×S1

f ◦ ψsdµĝJs
−
∫

Rn×(Rn/KerΦ)×S1

f ◦ ψsdµĝA′

∣

∣

∣

∣

∣

≤ C2 sup |f |(
√
sr)n+1

K
√
s
n → 0

as s→ 0. □

8. The spectral structures on the limit spaces

In this section we consider the metric measure space (Rn × S1, gm,∞, µ∞)
defined by (12). Now, note that

S̄ =
√

Θ̄
−1
P̄ Q̄−1

√

Θ̄ =
√

Θ̄
−1 (

P̄ Q̄−1Θ̄
)

√

Θ̄
−1

=
√

Θ̄
−1 (

P̄ + P̄ Q̄−1P̄ Q̄−1P̄
)

√

Θ̄
−1
,
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which implies S̄ is symmetric. Consequently, we can see

dt

m
− ty · S̄ · dy = d

(

t

m
−

ty · S̄ · y
2

)

.

Here, by taking the pullback of gm,∞ by the diffeomorphism

Rn × S1 → Rn × S1
∈ ∈

(

y, e
√
−1t
)

7→
(

y, e
√
−1

(

t+m· ty·S̄·y
2

)
)

,

we may suppose

gm,∞ =
σ

m2(1 + σ∥y∥2)(dt)
2 + tdy · dy

dµ∞ = dy1 · · · dyndt

and the isometric S1-action on (Rn × S1, gm,∞) is given by

e
√
−1τ ·

(

y, e
√
−1t
)

= ·
(

y, e
√
−1(t+mτ)

)

.

Then the Laplace operator ∆m,∞ on (Rn × S1, gm,∞, µ∞) is defined such
that

∫

Rn×S1

(∆m,∞f1)f2dµ∞ =

∫

Rn×S1

⟨df1, df2⟩gm,∞dµ∞

holds for any f1, f2 ∈ C∞(Rn × S1), therefore we have

∆m,∞f = ∆Rnf − m2(1 + σ∥y∥2)
σ

∂2f

∂t2
,

where ∆Rn = −
∑n

i=1
∂2

∂y2
i

.

Let ρk be the representation of S1 defined in Section 3, then we have

(

L2(Rn × S1)⊗ C
)ρml

=
{

φ(y)e−
√
−1lt; φ ∈ L2(Rn)

}

and
(

L2(Rn × S1)⊗ C
)ρk = {0} if k /∈ mZ. Now we consider the operator

∆m,∞ −
(

k2

σ
+ kn

)

:
(

C∞(Rn × S1)⊗ C
)ρk →

(

C∞(Rn × S1)⊗ C
)ρk
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for k = ml, which corresponds to the limit of

2∆∂Js
: C∞(X,Lk) → C∞(X,Lk)

as s→ 0. Let (Rn, tdy · dy, e−k∥y∥2

dLRn) be the Gaussian space, where LRn

is the Lebesgue measure on Rn and denote by ∆Rn,k the Laplacian of this
metric measure space. Note that we have

∆Rn,kφ = ∆Rnφ+ 2k

n
∑

i=1

yi
∂φ

∂yi
.

Then we can see that the following linear isomorphism

C∞(Rn)⊗ C →
(

C∞(Rn × S1)⊗ C
)ρk

∈ ∈
φ 7→ φ · e− k∥y∥2+

√
−1lt

2

induces the isomorphism

L2(Rn, e−k∥y∥2

dLRn)⊗ C ∼=
(

L2(Rn × S1, dµ∞)⊗ C
)ρk

and the identification of the operators

∆Rn,k
∼= ∆m,∞ −

(

k2

σ
+ kn

)

.

Next we construct the eigenfunctions of ∆Rn,k by the hermitian polynomials.
For ξ ∈ R the hermitian polynomials are defined by

Hk,N (ξ) := ekξ
2 dN

dξN
e−kξ2 ,

which is a polynomial in ξ of degree N , then it is known that Hk,N solves

− d2

dξ2
Hk,N + 2kξ

d

dξ
Hk,N = 2kNHk,N
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and {Hk,N}∞N=0 is a complete orthonormal system of L2(R, e−kξ2dLR). Let
N = (N1, . . . , Nn) ∈ Zn

≥0 and put

(

∂

∂y

)N

:=
∂N1

∂yN1

1

· · · ∂
Nn

∂yNn
n

,

|N | :=
n
∑

i=1

Ni.

Then

φ(y) =

n
∏

i=1

Hk,Ni
(yi) = ek∥y∥

2

(

∂

∂y

)N

(e−k∥y∥2

)

solves

∆Rn,kφ = 2k|N |φ

and {
∏n

i=1Hk,Ni
(yi); (N1, . . . , Nn) ∈ Z≥0} is a complete orthonormal sys-

tem of L2(Rn, e−k∥y∥2

dLRn). Thus we have the following theorem.

Theorem 8.1. Let l ∈ Z>0, k = ml and

W (k, λ) :=

{

f ∈
(

C∞(Rn × S1)⊗ C
)ρk

;

(

∆m,∞ − k2

σ
− kn

)

f = 2λf

}

.

Then there is an orthogonal decomposition

(L2(Rn × S1)⊗ C)ρk =
⊕

d∈Z≥0

W (k, kd),

where

W (k, kd) = spanC

{

e
k∥y∥2

2
−
√
−1lt

(

∂

∂y

)N

(e−k∥y∥2

); N ∈ Z≥0, |N | = d

}

.

As a consequence of Theorem 8.1, we obtain the former part of Theo-
rem 1.3.

9. The fibers which are not m-BS fibers for any positive m

In this section we suppose (X2n, ω) is a symplectic manifold with a pre-
quantum line bundle (L,∇, h), and assume that there is a continuous map
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µ : X → Y to a topological space Y . Moreover we fix b0 ∈ Y such that
µ−1(b0) is not an m-BS fiber for any m ∈ Z.

Let {Js}0<s≤s0 be a one parameter family of ω-compatible complex struc-
tures, and denote by Lg(c) the length of a path c with respect to the Rie-
mannian metric g. We fix p0 ∈ µ−1(b0) and assume the followings.

⋆1 For any r > 0 and open neighborhood B ⊂ Y of b0 there is sr,B > 0
such that

µ(BgJs
(p0, r)) ⊂ B

holds for any s ≤ sr,B.

⋆2 For any piecewise smooth closed path cb0 : [0, 1] → X such that
cb0([0, 1]) ⊂ µ−1(b0) there exist an open neighborhood B of b0 and
a continuous map c : B × [0, 1] → X such that µ ◦ c(b, t) = b, c(b, 0) =
c(b, 1), c(b0, ·) = cb0 and c(b, ·) are piecewise smooth.

⋆3 For any open neighborhood B of b0 and a continuous map c : B ×
[0, 1] → X such that µ ◦ c(b, t) = b and c(b, ·) are piecewise smooth,

lim
s→0

sup
b∈B

LgJs
(c(b, ·)) = 0

holds.

Let π : S(L, h) → X be the natural projection. By the connection ∇ we
have the unique horizontal lift c̃ : [0, 1] → S(L, h) with c̃(0) = u0 for any pair
of a piecewise smooth path c : [0, 1] → X and u0 ∈ π−1(c(0)).

Proposition 9.1. Assume that µ−1(b0) is not an m-BS fiber for any m ∈
Z. For any p0 ∈ µ−1(b0), e

√
−1t ∈ S1 and δ > 0, there is a piecewise smooth

path c : [0, 1] → µ−1(b0) with c(0) = c(1) = p0 such that its horizontal lift c̃
satisfies c̃(1) = c̃(0)e

√
−1t′ and |t′ − t| < δ. In particular, if we assume ⋆3,

then lims→0 diamĝJs
(π−1(p0)) = 0 holds.

Proof. Since µ−1(b0) is not an m-BS fiber for any m ∈ Z, the holonomy
group of ∇|µ−1(b0) may not contained in any proper closed subgroup of S1,
hence we obtain the path c which satisfies the assertion. By ⋆3,

lim
s→0

LĝJs
(c̃) = lim

s→0
LgJs

(c) = 0
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holds, hence dJs
(c̃(0), c̃(1)) → 0 as s→ 0. Therefore, for any u0 ∈ π−1(p0),

e
√
−1t ∈ S1 and δ we have

lim
s→0

dJs
(u0, u0e

√
−1t) ≤ lim

s→0
dJs

(u0, u0e
√
−1t′) + σ|t− t′| < σδ,

which implies lims→0 dJs
(u0, u0e

√
−1t) = 0, hence we have

lim
s→0

diamĝJs
(π−1(p0)) = 0.

□

Let B ⊂ Y be open and c̃ : B × [0, 1] → S(L, h) be a map such that c̃y :=
c̃(y, ·) is one of the horizontal lift of cy := c(y, ·) with respect to∇. Let ty ∈ R

be defined by c̃(y, 1) = c̃(y, 0)e
√
−1ty , which is determined independent of the

choice of the initial point of c̃(y, ·). Then the map y 7→ e
√
−1ty is continuous.

For a sufficiently large integer N > 0, put t = 2π
N and δ = t = π

N and take
c and t′ as in Proposition 9.1, then we extend c to c : B × [0, 1] → X by ⋆2,
where B is an open neighborhood of b0. Then by the continuity of e

√
−1ty ,

there is an open neighborhood BN ⊂ Y of b0 such that π
N < ty <

3π
N holds

for any y ∈ BN . If we consider the path obtained by connecting k copies of
cy, we can see that

dJs
(c̃y(0), c̃y(0)e

√
−1kty) ≤ kLgJs

(cy).

If we consider the path along the fiber of S(L, h) → X, we have

dJs
(c̃y(0)e

√
−1a, c̃y(0)e

√
−1b) ≤ σ|a− b|.

Combining these estimates, we can see

dJs
(c̃y(0), c̃y(0)e

√
−1θ) ≤ NLgJs

(cy) +
3πσ

N

for any θ ∈ R, which gives

diamĝJs
(π−1(c̃y(0))) ≤ NLgJs

(cy) +
3πσ

N
.

Now we can take sN > 0 by ⋆3 such that LgJs
(cy) ≤ 1

N2 for any 0 < s ≤ sN
and y ∈ BN . We can also take 0 < sN,r ≤ sN by ⋆1 such that µ(BgJs

(p0, r)) ⊂
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BN holds for all 0 < s ≤ sN,r. Then we have

diamĝJs
(π−1(c̃y(0))) ≤

1 + 3πσ

N

for all y ∈ µ(BgJs
(p0, r)) and 0 < s ≤ sN,r. Thus we obtain the following

proposition.

Proposition 9.2. Assume ⋆1-3, µ−1(b0) is not an m-BS fiber for any m
and let u0 ∈ π−1(p0). Then for any r > 0 and ε > 0 there is 0 < sr,ε ≤ s0
such that

diamĝJs
(π−1(x)) ≤ ε

for all x ∈ BgJs
(p0, r) and 0 < s ≤ sr,ε.

Before we prove Theorem 1.2, we describe the relation between the con-
vergence of principal G-bundles and the convergence of the base spaces. Let
G be a compact Lie group, (P, d, ν) be a metric measure space with an
isometric G-action. Put X := P/G and define the distance d̄ on X by

d̄(x̄, ȳ) := inf
γ∈G

d(x, yγ),

where x̄ ∈ X is the equivalence class represented by x ∈ P .

Proposition 9.3. Let {(Pi, di, νi, pi)}i∈N be a sequence of pointed metric

measure spaces with isometric G actions and denote by πi : Pi → Xi = Pi/G
be the quotient maps. Suppose that for any r, ε > 0 there is ir,ε ∈ N such that

sup
x∈B(pi,r)

diamdi
π−1(x) < ε

holds for any i ≥ ir,ε. If {(Xi, d̄i, ν̄i, p̄i)}i converges to (X, d̄, ν̄, p̄) with respect

to the pointed measured Gromov-Hausdorff topology, then {(Pi, di, νi, pi)}s
converges to (X, d̄, ν̄, p̄) in the sense of the pointed G-equivariant measured

Gromov-Hausdorff topology. Here, the G-action on X is the trivial action.

Proof. Let ϕ̄i : (BXi
(p̄i, r), p̄i) → (X, p̄) be ε-approximations given by the

pointed Gromov-Hausdorff convergence of (Xi, p̄i). Then one can see that

ϕ := ϕ̄i ◦ πi : (π−1
i (B(p̄i, r)), pi) → (X, p̄)

are G-equivariant 2ε-approximations. Using these maps one can show the
assertion. □
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Proof of Theorem 1.2. Assume ♠ and that there is κ ∈ R such that RicgJs
≥

κgJs
. Let u ∈ S|µ−1(y) and assume that µ−1(y) is not a Bohr-Sommerfeld

fiber of Lm for any m > 0. On the neighborhood U of µ−1(y), we may write

gJs
|U = gA

for some A = A(s, x, θ). Here we consider the pointed measured Gromov-
Hausdorff limit of (X, gJs

,
µgJs

K
√
s
n , p) as s→ 0 for some p ∈ µ−1(y) and K >

0. In the same way as Subsection 7.3, it suffices to consider the limit of
gA′ , where A′(s, x, θ) = sA0(0, θ) and Q̄ = Im(A0)(0, θ) is independent of θ.
Notice that we already had P 0

ij(0, θ) = P̄ij +
∂2H

∂θi∂θj in Subsection 7.3 and

F ∗
s gA′ = t

(

√

sΘ̄dθ −
√

sΘ̄
−1
P̄ Q̄−1dx

)

·
(

√

sΘ̄dθ −
√

sΘ̄
−1
P̄ Q̄−1dx

)

+ s−1 · tdx · Θ̄−1 · dx

holds by (8), where

Fs(x, θ) =

(

x1 + s
∂H
∂θ1

, . . . , xn + s
∂H
∂θn

, θ

)

,

Θ̄ = Q̄+ P̄ Q̄−1P̄ .

Then by the transformation y =
√
sΘ̄

−1
x and τ =

√
sΘ̄θ, we have

F ∗
s gA′ = t

(

dτ − P̄ Q̄−1dy
)

·
(

dτ − P̄ Q̄−1dy
)

+ tdy · dy.

The above expression implies that (y, τ) 7→ y is the Riemannian submersion
to the Euclidean space. Since the diameters of the fibers of the submersion
converge to 0 as s→ 0, we have proved that (X,F ∗

s gA′ , p0) pointed Gromov-
Hausdorff converges to (Rn, tdy · dy, 0). The convergence of the measure is
shown by the similar argument with the proof of Proposition 7.14 and The-
orem 7.16. By Proposition 9.3 we obtain the assertion. □

As a consequence of 1.2 we obtain the latter half of Theorem 1.3, since
the S1-action on Rn in Theorem 1.2 is trivial and (C∞(Rn)⊗ C)ρk = {0}
for any k > 0.

10. Examples

In this section we give some examples to which Theorems 1.1 and 1.2 can
be applied.
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Abelian varieties. Let X = T 2n = R2n/Z2n and ω = 2π
∑

i=1 dxi ∧ dθi,
where x, θ ∈ Rn/Zn. Then there is a prequantum line bundle L on (X,ω)
(See [4]). Define the nonsingular Lagrangian fibration µ : X → Tn by
µ(x, θ) = x and define ω-compatible complex structures {Js}s such that

{

∂

∂θi
+ sΩij

∂

∂xj
; i = 1, . . . , n

}

is a frame of T 1,0
Js
X, where Ω = (Ωij)i,j ∈Mn(C) belongs to the Siegel upper

half-space

{Ω ∈Mn(C); Ωij = Ωji, Im(Ω) > 0} .

Then the family {Js}s satisfies ♠ in Subsection 7.2 and ⋆1-⋆3 in Section 9.
Therefore, for any point y ∈ Tn, Theorems 1.1 and 1.2 hold for this family.

10.0.1. Toric symplectic manifolds. In [3], the asymptotic behavior of
the vector spaces H0(XJs

, L) as s→ 0 is considered where (X,ω) is a com-
pact toric symplectic manifold, {Js} is the family of ω-compatible complex
structures, given by the symplectic potentials, tending to the large complex
structure limit. In this case the Lagrangian fibration µ : X → P is given as
the moment map and the image P is the delzant polytope in Rn. Let P̆ ⊂ P
be the interior of P . If y ∈ P \ P̆ , then y is a critical value of µ and the
inverse image µ−1(y) is a torus whose dimension is less than n. Then we
cannot apply Theorems 1.1 or 1.2 to these points. However, if Js are the
family given in [3] and y belongs to P̆ , then Theorems 1.1 and 1.2 hold. We
should notice that the parameter s in [3] corresponds to 1/s in this paper.

Acknowledgment. The author would like to express his gratitude to Pro-
fessors Hajime Fujita, Hiroshi Konno and Takahiko Yoshida for their several
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