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On a compact symplectic manifold (X,w) with a prequantum
line bundle (L, V, h), we consider the one-parameter family of w-
compatible complex structures which converges to the real polar-
ization coming from the Lagrangian torus fibration. There are sev-
eral researches which show that the holomorphic sections of the
line bundle localize at Bohr-Sommerfeld fibers. In this article we
consider the one-parameter family of the Riemannian metrics on
the frame bundle of L determined by the complex structures and
V, h, and we can see that their diameters diverge. If we fix a base
point in some fibers of the Lagrangian fibration we can show that
they measured Gromov-Hausdorff converge to some pointed metric
measure spaces with the isometric S'-actions, which may depend
on the choice of the base point. We observe that the properties of
the S'-actions on the limit spaces actually depend on whether the
base point is in the Bohr-Sommerfeld fibers or not.
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1. Introduction

In this article we introduce a new approach to the geometric quantization
from the viewpoint of the convergence of the Riemannian manifolds with
respect to the measured Gromov-Hausdorff topology. On a compact sym-
plectic manifold (X, w) of dimension 2n, a prequantum line bundle (L, V, h)
is a triple of a complex line bundle L, hermitian metric h and connection V
preserving h with curvature form FV = —/—1w. By considering the follow-
ing geometric structures compatible with w, we can equip L with the finite
dimensional vector subspace consisting of the special sections of L. The first
one is an w-compatible complex structure J, then denote by

H(X;,L) = {s € C>*(L); V5,8 =0}

the space of all of the holomorphic sections of L.

The second one is a Lagrangian fibration p: X — Y, where Y is a smooth
manifold, all of the points in Y are regular values of u, and all fibers are
compact and connected. Then put

Vi =@ H® (07 ®): Llu20ps Vi) -
yey

H® (17 ), Llyr)s Vi) = {5 € C (L= )i Viprs = 0}

p~1(y) is called a Bohr-Sommerfeld fiber if L|,-1(y) has nontrivial parallel
sections. Tyurin showed in [I9, Proposition 3.2] that if X is compact then
there are at most finitely many Bohr-Sommerfeld fibers, accordingly, dim V),
is finite.
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In many examples of symplectic manifolds with some complex structures
and Lagrangian fibrations, it is observed that

dimV,, = dim H°(X;, L)

when the Kodaira vanishing holds, which can be interpreted as the local-
ization of the Riemann-Roch index to the Bohr-Sommerfeld fibers, and dis-
cussed by Andersen [I], by Fujita, Furuta and Yoshida [8], and by Kubota
[14].

Moreover, on smooth toric varieties, Baier, Florentino, Mourao and
Nunes have constructed a one parameter family of the pairs of the com-
plex structures and the basis of the spaces of holomorphic sections of L,
then showed that the holomorphic sections localize on the Bohr-Sommerfeld
fibers in [3]. The similar phenomena were observed in the case of the abelian
varieties by Baier, Mourao and Nunes [4] and the flag varieties by Hamilton
and Konno [II]. In these examples, the family of complex structures and
holomorphic sections are described concretely.

In the context of the geometric quantization, the w-compatible com-
plex structures and Lagrangian fibrations are treated uniformly by using
the notion of polarizations. The one-parameter families of complex struc-
tures given in the above papers are taken such that the Kahler polarizations
corresponding to them converge to the real polarization corresponding to
the Lagrangian fibration.

Recently, Yoshida showed the localization of holomorphic sections of pre-
quantum line bundle to the Bohr-Sommerfeld fiber if X admits a Lagrangian
fibration with a complete base in [2I], where the family of complex struc-
tures are taken such that it converges to the real polarization corresponding
to the Lagrangian fibration.

In this article, we also study the behavior of holomorphic sections of
L where the family of complex structures converges to the real polariza-
tion from the view of the point of the measured Gromov-Hausdorff con-
vergence. Fix an w-compatible complex structure .JJ. Then H°(X;, L) can
be identified with the eigenspace of a Laplace operator as follows. Put
S:={ue€L; h(u,u) =1} C L be the orthogonal frame bundle of (L,h),
then there is the standard identification

C®(X,L) = (C™(S)® C)*,
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where p: S — GL(C) is the 1-dimensional unitary representation of S* de-
fined by p(eV 1) := eV~ and the S'-action on C*°(S) @ C is defined by

(VT (fROMu) =V flueV M @ ¢

for any f € C*°(S5), & € Cand u € S. The connection V gives the connection
1-form on S and the decomposition of T'S into the horizontal and vertical
subspaces. Then we have the Riemannian metric g on S which respects the
connection form and the Kahler metric g5 := w(+, J-). The precise definition
of § is given by Section [3| Denote by A9 the Laplace operator of §. Since S!
acts on (5, g) isometrically, the C-linear extension of A; gives the operator
acting on (C°°(S) ® C)P. Then we can see that H%(X, L) is identified with
the eigenspace of

Ag: (C(S) ® C)P — (C(S) ® C)”

associate with the eigenvalue n + 1.

Now, we suppose that a one-parameter family of the w-compatible com-
plex structures {Js}s>0 on X is given, then we consider the one-parameter
family of the operators

Ag.: (CF(S) @ C) = (C=(5) @ C)".

There are several research of the spectral convergence of the metric Laplacian
on Riemannian manifolds or the connection Laplacians on vector bundles
under the convergence of the spaces in the sense of the measured Gromov-
Hausdorff topology [5]9][13][15][16][17]. Therefore, there should be the sig-
nificant relation between the convergence of principal bundle S with the
connection metric gs and the convergence of holomorphic sections with re-
spect to Js. This article focus on the convergence of (S, gs,p) as s — 0 in the
sense of the pointed S'-equivariant measured Gromov-Hausdorff topology
and we study the metric measure spaces appearing as the limit.

Now we explain the main result of this article. Let (X,w) be a sym-
plectic manifold of dimension 2n, which is not necessarily to be compact,
(L,V,h) be a prequantum line bundle and {Js}o<s<1 be a smooth family
of w-compatible complex structures. Assume that there is a smooth map
u: X = Y, where Y is an n-dimensional smooth manifold, and for any reg-
ular values y of u, = !(y) is a compact connected Lagrangian submanifold.
Fix a regular value y. We assume that {Js}o<s<1 converges to the real po-
larizations induced by u near p=!(y) as s — 0, there is a constant x € R
such that Ricy, > kg, for all s. We also suppose additional assumptions
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which are precisely described in # of Section Let gm0 and o be a
Riemannian metric and a measure on R” x S' defined by

Im,c0 i= dt + dy ,
e (1+HyH Z '

Ao == dy1 - - - dypdt,

where m is a positive integer, y = (y1,...,yn) € R" and eVt € §1. We de-
fine the isometric S*-action on (R X S1, g 00, tioo) by (¥, eV=Ity eV 1T =
(y,eV=1+mT) for ¢V=1I7 ¢ §1. The followings are the main results of this
article.

Theorem 1.1. Let m be a positive integer and u € S|,-1,). Assume that
1~ (y) is a Bohr-Sommerfeld fiber of L™ and not a Bohr-Sommerfeld fiber
of L™ for any 0 < m' < m. Then for some positive constant K > 0, the
family of pointed metric measure spaces with the isometric S'-action

(505,

converges to (]R” X Sl,gm,oo, oo, (0, 1)) as s — 0 in the sense of the pointed
St -equivariant measured Gromov-Hausdorff topology.

Theorem 1.2. Let u € S|,-1(,) and assume that p~'(y) is not a Bohr-
Sommerfeld fiber of L™ for any positive integer m. Then {(S, s, %, u)}s
converges to (R™,*dy - dy, dy; - - - dyp,0) as s — 0 in the sense of the pointed
St -equivariant measured Gromov-Hausdorff topology. Here, the S*-action on
R™ is trivial.

Now let So be the metric measure space appears as the limit in The-
orem or Theorem [I.2] and denote by A, its Laplacian. Denote by
W (n + 1) the eigenspace of

A (C(Se0) @ C)P — (C™(Seo) ® C)P
associate with the eigenvalue n + 1.

Theorem 1.3. If S, be the metric measure space appears as the limit in
Theorem[1.1) then dim W (n +1) =1 ifm =1 and dim W(n + 1) = 0 if m >
1. If Seo be the metric measure space appears as the limit in Theorem [1.3,
then dimW(n + 1) = 0.
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This article is organized as follows. First of all, we explain how to iden-
tify the holomorphic sections of L on (X, J) with the eigenfunctions on the
frame bundle S equipped with the connection metric in Section [2[ and |3} In
Section [, we review the definition of Bohr-Sommerfeld fibers for the pairs
of symplectic manifolds and prequantum line bundles. In Section [f] we re-
view the notion of Polarizations, which enables us to treat the w-compatible
complex structures and the Lagrangian fibrations. In Section [6] we explain
the notion of the pointed S'-equivariant measured Gromov-Hausdorff con-
vergence. This notion is the special case of the convergence introduced by
Fukaya and Yamaguchi [I0]. These sections are the preparations for the
main argument. In Section [7| we show the pointed S'-equivariant measured
Gromov-Hausdorff convergence near the Bohr-Sommerfeld fibers. First of
all we obtain the local description of the connection metric g5 on S, then
discuss the condition equivalent to the existence of the lower bound of the
Ricci curvatures. Then we show the convergence of gs to gm,o0 as s — 0. In
Section [9] we consider the limit of §s near the non Bohr-Sommerfeld fibers,
then show that the S'-action on the limit space is trivial. In Section |8} we
study the spectral structure of the Laplacian of the metric measure spaces
appearing as the limit of gs. In Section we raise some examples to which
these approaches can be applied.

2. Holomorphic line bundles

Let (X,J,w) be a compact Kédhler manifold. We write X = X; when we
regard X as a complex manifold. Let mg: £ — X; be a holomorphic line
bundle over X ;. Suppose h is a hermitian metric on E and V: I'(E) —
QY(E) is the Chern connection. Under the decomposition Q' = Q19 @ Q01
we have the decomposition V = V10 4+ V01 Let V*, (V10)* (V91)* are the
formal adjoint of V, V10, V%! respectively.

For a holomorphic coordinate (U, 2%, ..., 2") on X, put w= ﬁggdﬁ/\
dz’. Then we may write

v* — (vl,O)* + (V[),l)*7
(V)" = =915,V 5,
(vo,l)* — _gZ]Léj v[’”

where 0; := 821" Let F' € QY1(X) be the curvature form. Since we have

(VRO V105 = (V)" VOls + g F(0;,0y)s,
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we obtain

V*V = 2A5 + AWF,
Ag = (VO,l)*VO,l,
A F = g F(8,,0;) € C=(X).

Let L — X; be a holomorphic line bundle with hermitian metric h and
hermitian connection V such that the curvature form is equal to —v/—1w,

and put E = L*. Then for the connection on E determined by V we have
F = —ky/—1w, then

A F = nk.
Now, put
HO(X;, L) = {5 € O® (L), VOls = 0} .
Since X is compact, we can see
H(X; LF) = {s e C®(L%); V*Vs = nk‘s} .

3. Holomorphic sections on line bundles and eigenfunctions
on frame bundle

Let (X,w) be a connected symplectic manifold of dimension 2n and (7: L —
X,V,h) be a prequantum line bundle over (X, w), that is, a complex line
bundle with a hermitian metric h a connection V preserving h whose cur-
vature form is equal to —v/—1w.

The complex structure J on X is w-compatible if w(J-, J-) = w holds and
gy :=w(-,J+) is positive definite. If J is w-compatible, then w is a Ké&hler
form on X ;.

Since w is of type (1,1), V determines a holomorphic structure on L,
consequently V is the Chern connection determined by h and J.

By the previous section we have V*V = 2A5 + n. Put

S:=S8(L,h):={u€L; |ul =1},

which is a principal S'-bundle over X equipped with the S'-connection
V—1T € Q'(S,/—1R) corresponding to V. The S!-connection induces the
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following decomposition

.8 :=H, ®V,,
H, :=Ker(I'y: T,S —» R),
V, = {¢ e T,S; € € V=1R},

where 53 = %etqt:o. Then the connection metric § = §(L, J, h,o,V) on S
is defined by

G(L,J, h,0,V) := 0 -T? + (dr|u)*gs
for o > 0.

Remark 3.1. By regarding —I" as a contact structure and —\/—1ﬁ as the
Reeb vector field, (S, (L, J, h,2,V)) becomes a Sasakian manifold.

Now we can recover L by S as the associate bundle as follows. Let
pr: ST = GL1(C) be defined by pp(\) = A\¥ for k € Z, then we have the
identification L*F = § X p, C. Then there are natural isomorphisms

O%(X, L*) = (C%(8) ® C),

where the action of S* on C°(S) @ C is defined by (X - f)(u) := A¥f(u)). By
applying the argument in the previous section for E = L* we have V*V =
2A5 + kn. Note that we may regard V*V and Aj as operators acting on
(C*(S) ® C)P¥, then by [13], Section 3] we have V*V = A, — %2, therefore
we obtain

20, = Ay — <’f + kn) L (C™(S) ® C)P — (C*(S) ® C)P*.

On some open set U C X, suppose that L|y is trivial as C°° complex
bundles, then there exists a global smooth section E € C*°(U, L) such that
h(E,E) = 1. Let v € QY(U,R) be defined by VE = /=1y ® E. Under the
diffeomorphism U x S' — S(L|y, h) defined by (z,eV ") — eV~1E,, one
can obtain the following identification as Riemannian manifolds with iso-
metric S'-action;

(1) (Slv.9) = (U x S, gslu + o(dt +7)%).
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4. Bohr-Sommerfeld fibers

Let (7m: L — X, V) be a prequantum line bundle over a symplectic manifold
(X,w). A Lagrangian fibration over (X,w) is a smooth map u: X — B,
where B is a smooth manifold of dimension di“2“X , such that X, := p~1(b) is
a Lagrangian submanifold for every b € B\ Bging and B \ Biing is open dense
in B. We suppose that B and all of the fibers X} are path-connected. Then
every Xy is diffeomorphic to a compact torus by Liouville-Arnold theorem.

For a subset Y C X, the holonomy Hol(L|y, V) is defined by

Hol(L|y, V) = {e¥~" € 8'; (1) = &0)eV" ", c € P(a)},

where P(a) consists of piecewise smooth curve c: [0,1] = X with ¢(0) =
¢(l)=a€Y, Im(c) CY and ¢ is the horizontal lift of c. Note that
Hol(L|y, V) does not depend on a € Y if Y is path-connected.

Definition 4.1.
(i) Xy is a Bohr-Sommerfeld fiber of n: X — B if Hol(L|x,, V) is trivial.

(ii) Xp is an m-BS fiber of p: X — B if Hol(L|x,, V) is a subgroup of
Z]mZ. Xy is a strict m-BS fiber of u: X — BifHol(L|x,,V) = Z/mZ.

Remark 4.2. X, is a m-BS fiber of p: X — B iff Hol(L™|x,, V) is trivial.
Remark 4.3. In this article we suppose that
By, :={b € B; X} is an m-BS fiber}

are discrete in B for all m > 0. For example, if B, is empty, then Tyurin
has shown in [19] that B,, is always discrete. If we put

Bl :={b € B; X, is a strict m-BS fiber},
then By, = | |;,,, B; holds.
5. Polarizations

In this section we review the notion of polarizations in the sense of [20] to
treat complex structures and Lagrangian fibrations uniformly.

Let Vg be a real vector space of dimension 2n with symplectic form
ae N*V* and put V = Vg ® C. Then a extends C-linearly to a complex
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symplectic form on V. A Lagrangian subspace Wof V is a complex vector
subspace of V such that dim¢ W = n and a(u,v) =0 for all u,v € W. Put

Lag(V,«) := {W C V; W is a Lagrangian subspace},

which is a submanifold of Grassmannian Gr(n, V).
For a symplectic manifold (X,w), put

Lag,, := |_| Lag(T, X ® C,wy).
reX

This is a fiber bundle over X, and a section P of Lag, is a subbundle of
TX ® C. P is said to be integrable if

[C(Plo), T(Plo)] € T'(Plv)

holds for any open set U C X, and we call such P a polarization of X. In
this article we consider the following two types of polarizations.

Kahler polarizations. Let J be an w-compatible complex structure. The
subbundle

Pr=T)'X cTX®C

is called a Kéahler polarization.

Real polarizations. Let Y be a smooth manifold of dimension n, p: X —
Y be a smooth map such that all b € u(X) are regular values and pu~1(b)
are Lagrangian submanifolds. Then

P, :=Ker(dp) ®CCcTX ®C

is called a real polarization.

Define [: Lag(V,a) — {0,1,...,n} by I(W) := dimc(W NW). Then for
any Kéahler polarization P; we have [((P),) = 0, and for any real polariza-
tion P, we have I((P,)z) = n.

Conversely, for a polarization P such that I(P,) = 0 for all x € X, there
is a unique complex structure J such that w(J-,J-) = w and P = T?’IX. For
a polarization P such that [(P,) = n for all x € X, we obtain the Lagrangian
foliation.
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Next we observe the local structure of Lag(V,«). For W € Lag(V, ),
we can take a basis {w1,...,w,} C W and vectors u',...,u" € V such that
{wy,...,wp,u',...,u"} is a basis of V and

a(wi,wy) = alu',w!) =0, alu',w;) = 5;‘

hold. Put W’ := spanc{u',...,u"} and take A € Hom(W,W’). Then the
subspace

Wap={w+AweV;we W}

is Lagrangian iff the matrix (4;;) defined by Aw; = A;ju’ is symmetric.
Consequently, we have the identification

(2) TwLag(V,a) = {A € Hom(W, W'); Aj; = Ay}

Now, we fix W such that I[(W) = n. Then wy, ..., wy, u', ..., u" can be taken
to be real vectors, hence

[(Wa) = dimKer(A — A) = n — rank(A4 — A)

holds. Moreover W4 comes from an almost complex structure which makes
a positive hermitian iff ImA € M, (R) is the positive definite symmetric
matrix. We define

TWLag(V,a)+ = {A S HOHI(W, W/); Aij = Aji7 ImA > 0}

under the identification (2)). If W; is a smooth curve in Lag(V,a) such
that [(Wy) = n and %Wﬂt:o € Tw,Lag(V, )4, then there is § > 0 such that
(W) =0 and a(w,w) > 0 for any w € Wy \ {0} and 0 < ¢t < §. Conversely,
even if W, satisfies [(Wy) = n and

(W) =0, a(w,w) >0 for any we Wi\ {0}

for all ¢ > 0, %Wthzo is not necessary to be in Ty, Lag(V,a)4 since the
closure of positive definite symmetric matrices contains semi-positive definite
symmetric matrices.

6. Topology
In this section we explain the notion of the S'-equivariant measured Gromov-

Hausdorff topology. The following notion is the special case of [10, Defini-
tion 4.1].
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Definition 6.1. Let G be a compact topological group.

(i)

Let (P’,d’) and (P, d) be metric spaces with isometric G-action. A map
¢ : P' = P is an G-equivariant e-approzimation if ¢ is G-equivariant
and e-approximation. Here, e-approximation means that |d'(2',y) —
d(o(2), ¢(y"))| < € holds for all 2/, ¢’ € P and P C B(¢(P’),e). More-
over if ¢ is a Borel map then it is called a Borel G-equivariant e-
approrimation.

Let {(P;,d;,vi,p;)}i be a sequence of pointed metric measure spaces
with isometric G-action. (Px, doo, Voos Poo) 18 said to be the pointed G-
equivariant measured Gromov-Hausdorff limit of {(P;, d;, v;,p;)}i if G
acts on P, isometrically and for any R > 0 there are positive numbers
{Ei}i, {Rl}z with

lime; =0, lim R; =R,

1—00 1—r 00
and Borel G-equivariant g;-approximation
bi: (7‘(';1(3(561', Ri))vpi) - (7To_ol (B(‘TOOv R))apoo)
for every i such that ¢i*(ui|7r;1(3(%Ri))) — Vool r 2! (B(zo, k) VAgUELY

(see Remark [6.2). Here, 7: P; — P;/G is the quotient map and z; =
7i(pi)-

Remark 6.2.

(i)

(i)

Let X,Y be topological spaces, ¢: X — Y be a Borel map and v be
a Borel measure on X. Then ¢,v is the pushforward measure, that
is, the measure on Y defined by ¢,v(B) := v(¢~!(B)) for any Borel
subset B CY.

Let X be a topological space and (1;):°; be a sequence of Borel mea-
sures on X. Then (v;); converges to a measure v on X vaguely if

/X fdv; — /X fdv

as ¢ — oo for any continuous function f € C'(X) with compact support.
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7. Convergence

Throughout of this section let (X2" w) be a symplectic manifold, Y" a
smooth manifold and

w: X =Y

be a smooth surjective map such that p~!(y) are smooth compact con-
nected Lagrangian submanifolds for all regular value y € Y. Assume that
Yo € Y is a regular value of p. Then by [2][7][18], there are open neighbor-
hoods U C X of Xg := u~(yo), B' CY of 9, B C R" of the origin 0, dif-
feomorphisms f: B x T" S U and f: B 5 B such that ffw = Som o dxi A
do', and f(yo) = 0, where z = (21,...,2,) = fopo fand O = (9%,...,0") €
T" = R™/Z"™. Therefore, we may suppose

U=BxT", p=(x1,...,2,), w=dx;Adb,

B:{x:(acl,...,xn)e]R”; |]ac]:\/a:%+'~+x%<R},

Xo={0} xT"

for some 0 < R < 1.

Let (L, V) be the prequantum line bundle on (X, w) and h be a hermitian
metric such that Vi = 0. Since [w|y] = 0 € H?(U), then the 1st Chern class
of (L, V)|y vanishes, hence L|y is trivial as C*° complex line bundle by [6
Section 5].

From now on we consider some covering spaces of U given by the follow-
ings. Let ®: Z™ — Z/mZ be a homomorphism of Z-modules. Then Ker ® is
of rank n, hence R™/Ker @ is diffeomorphic to the n-dimensional torus. Now
we have the natural projection

R"/Kerd® —  T"
W W

fmodKer® +— 6HmodZ"

which give a covering space and a covering map

Up == B x (R"/Ker®), pe:Us — U.
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From now on we denote by 6 the element of R"/Ker ® or T™ for the sim-
plicity, if there is no fear of confusion. If we take w € Z™ then

Be(w)): Us — Us
w w
(,0) — (x,0+w)

gives the action of Im ® on Ug, which is the deck transformations of pg.

Proposition 7.1. Let Xg be a strict m-BS fiber. Then there are surjective
homomorphism ®: Z"™ — Z/mZ and E € C*(p4L) such that h(E,E) =1
and VE = —/=1z;d0' @ E. Moreover, the deck transformations of ps sat-
isfies B(k)*E = T E for k € Z/mZ.

Proof. Since Xq is the m-BS fiber, one can obtain the flat section E of
(L™|t7)|e—0) such that h®™(E,E)=1. Then E can be extended to the
nowhere vanishing section of C*°(L™|y) with h®™(E, E) = 1. Define v €
QYU) by VE = /=1y ® E. By computing the curvature form of V one ob-
tain dy = —mw|y = —mdz; A df" which implies that v 4+ max;d#’ is a closed
1-form on U. Denote by « the cohomology class represented by « + ma;d6’
and let ¢: {0} x T — U be the natural embedding. Since E|,—q is flat, then
one can see that (*y =0 and (*a = 0. Since t*: H*(B x T") — H' ({0} x
T™) is isomorphic, one can see that o = 0, therefore there exists 7 € C*°(U, R)
such that v + ma;d6* = dr.
Then one have

V(e_\/leE’) =vV-1(-dr+7v)® e VR = —my/—ladd @ e VTE,

accordingly, by replacing e VITE by E, we may suppose
VE = —mvV—12;d0' @ E.

Let p: U = B x R™ — B x T" be the universal cover of U. Thel} there
is a nowhere vanishing section F € C*°(p*L) such that E®™ = p*F, con-
sequently we obtain the homomorphism ®: m(U) = Z" — Z/mZ defiend
by

Elpoix) = ezwﬁcb(k)E(xﬁ)
for k € Z". Therefore, E descends to the section of p3 L, then

VE = —vV/—-1z;d0' ® E
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holds. Since X is the strict m-BS fiber, ® is surjective and pg is an m-fold
covering. O

7.1. Local description of the complex structures and the metrics

We assume that an w-compatible complex structure J on X is given
such that P;|y is close to P,|y with respect to CP-topology, as sections
of Lag, |y — U. Define P, by

0 0
(P,)p := spang { <8:l71> e <8x> } CcT,U®C,
P n/p

then we have the direct decomposition TU ® C = P, ® 73;/1- Since Py|y is
close to P,|v, the identification gives

A = (Ajj(z, 9))i7j € C>*(U)® M,(C)
such that

Aij = Ajl‘, ImA >0

and

is a frame of Py|ly =T 3’1U . Moreover the integrability of J gives

0Aj i

DAy
(3) 900 063

A .
+ A 8.%[ at a’El

Conversely, if a complex matrix valued function A satisfies above proper-
ties then we can recover J|y. Therefore, the w-compatible J complex struc-
ture close to P, is identified with the matrix valued function A on U.
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If we put A;; = P;; + v/—1Q;j, where P;j, Q;; € R, and denote by (Q%)
the inverse of (Q;;), then one can see

) . . d
(4) J (69i> = —PF;Q’ 20k (Qur + P QY Plk)aka,
O\ _oik 9 L piip, 9
(5) J <8a:¢> = Qg + @ g
(6) JdoF = — P, Q7% d0" + Q™ du;,
(7) Jdzy, = —(Qir + Pi;Q”" Pi)d6" + QY Pjpda;,

therefore we obtain
g91lv = ga == (Qij + PxQ" Pj)df*d6? — 2P.Q"* db' dzj + QY dsd;.

Denote by d4 the Riemannian distance of a Riemannian metric g. Then
9slu = g4, dg,|v < dg, always holds, however, the opposite inequality does
not hold in general since the shortest path connecting two points in U need
not be included in U. Here we consider the lower estimate of d,, and the
upper estimate of dg, .

For a real symmetric positive definite matrix valued function S(x,6) =
(Sij(x,0));; depending on (x,6) € U continuously, let A\i(x,0),..., A\, (z,0)
be the eigenvalues of S(z,6). Define

Ur:i={(z,0) e R" xT"; ||z|| <r} CcU (r <R),
supS:= sup Ai(z,0), infS:= inf N\(z,0).
i,(a:,G)GUg Z}(a:,G)EUg

Since Uig is compact, 0 < inf.S < sup S < oo holds.
Proposition 7.2. Put
0:=Q+PQ'P
for A =P +/—1Q. The following inequalities
V@) [l — o/ < dy (u, ),
g, 0) < /sup(@ Do — o/ + VIO

hold for any u = (z,0),u = (2/,8') € Us.
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Proof. First of all we show the first equality. If we write
do* dzy T1
a iz, N
then we may write

ga="d0-©-df —"dx-Q7'P-df —"'d0 - PQ”" - dx +'dr- Q' - du
=t (Voo - VO TPQ dr) - (Vs ~ VO TPQ dx)
+ tdr - (Q,1 . Qflpefpo—l) - da.

Since we have

o (Qfl _ Q’lP@’lPQ*I)

=1+PQ'PQ ' - PO 'PQ - PQ'PQ PO IPQ!
=1+PQ'PQ ' - PQ' (Q+PQ'P)OPQ!

=1+ PQ'PQ™ - PQ'PQ ! =1,

we can see
o' =Q ' - 'POPQ™"
Therefore,

®) ga=" (\@de - @PQ*ldx) . (\/§d9 _ @PQfldx)
+tdz -0 dx

holds. Now let ¢;: [0,1] — X be a path connecting u, v € Ur, and put u =
(z,0) and v/ = (2/,0') with ||z|., [|2|| < &. Note that the image of ¢; is not
always contained in Ur. If Im(c;) C Ur does not hold, then let

10 := inf{r € [0,1]; c1(7) ¢ Ug}.



1592 Kota Hattori

If Im(¢q) € Ur holds, then put 79 := 1. Put ¢1(7) = (z(7),0(7)). Then by
we can see

Lleyz [V 6 T
0 -
> Jinf(Tl)/O @/ (7)ldr > v/inf(© ) [lz — 2.

Next we show the second inequality. To show it, we compute the length
of two types of paths in U=.
2
For # € R™ put c3(7) := (x, 70), then () gives

1 1
tle) = [ Iebrlgadr = [ \fo,000r
< \/sup©|4]].

If c3(7) == (72 + (1 — 7)2’,0), where |z[| < %7 then

1 1
£(es) :/O (7 g dr :/0 \ O s — al)(a; — al)dr
< Vsup(©~1) e — 2.

Connecting these two types of paths one can see

da(u,u") < y/sup(©—1)||z|| + /sup © - diam(T™")

vnsup ©
= V/sup(6~1) [a| + =
]

Now, we describe Riemannian metric §(L|y, J, h, o, V) using the identi-
fication in the case of Xy is a strict m-BS fiber. First of all we consider
the connection metric with respect to the pullback of g; and L|y by the
covering map pg: Up — U, which is obtained in Proposition [7.I} We also
denote by pe: pe*L — L|y the lift of the covering map, then the following
commutative diagram is obtained;

p:;)L — L’U

Lo |4
Uq;—)U
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Let p%J be the complex structure on Ug inherited from U by the covering
map. Then one can see

S(pa*L,ps*h) = pg' (S(L,h))
and
f](p<1>*L,pq>*J, pé*ha g, p<I>*V) = pQ*Q(L|U7 Ja h7 g, V)

Since pg* L is trivial as C°° complex line bundle, there is the identifica-
tion
Up x S' = S(pa*L,ps*h)
w w

(x,G,e\/jlt) — 6\/_71t‘E($70)

by , where E € C*°(pg*L) is taken as in Proposition Under the iden-
tification we have

g(pq>*L7p<I>*J7 p<I>*h7 g, pcp*v)
= o(dt — 2;d0")* + (Qij + PxQ™ Py;)do'de?
— 2P Q% d0'dx; + QY dx;dx;.
By Proposition the deck transformation of
Py (S(pfb*L7p<I>*h’)) — S(L’U7 h‘)
is identified with

2km

(9) k- (2,0,eV"1) = (2,0 + kwo, eV 10=55)) (k€ Z/mZ),

where w( € Z" is taken such that ®(wg) =1 € Z/mZ. Thus we obtain the
next proposition.

Proposition 7.3. Define the Riemannian metric G4 on Ugp x S by

ga = o(dt — 2;d0")? + (Qij + Pu,Q" P;)do'dg?
— 2Py Q" df dx; + QY dx;da;,

which is invariant under the Z/mZ action defined by @D If Xo s a strict
m-BS fiber, then

p‘f‘* g(L‘Ua J‘Ua h707 V) = flA
holds.
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7.2. Boundedness of the Ricci curvatures

First of all we compute the Ricci curvature of gs|y. Since w is the Kéhler
form on (U, J), it suffices to compute the Ricci form of w. First of all we can

see that
(0 0 (0 0 -
99 <agy * fkaxk) d (803 + J’“axk> %
hence 90!, ...,00™ forms the dual frame of Q0.

Proposition 7.4. The Kdhler form w|y and the Ricci form py,|y are given
by

wly = 2v/—=1Q;;00" A 067,
polu = V—=1091og det(Qi;) — vV—10a + V—1 da,

where

61212’3’* j 0,1
= QY .
a oz, 09 € (U)

Proof. Since dx; — A;jd#’ is of type (0,1), one can see dz; = A;;067. Then
we have

wly = dz; AdO" = dx; A OO' + Dy A OO" = 20/—1Q;;00" N\ D67

Take f € C°(U’,C*) such that  := fof' A --- A 99" is a nowhere van-
ishing holomorphic section of the canonical bundle K x|y on some open set
U' C U. If we put 3= f~10f, then the Ricci form py|y- is given by

—v/—1001og ;/\Uﬁ = —V/—19dlog det(Q;;) + v—1901og | f|?
= —V/—1901log det(Q;;) + V—108 — v/ —198.

Since we have

(10) 0=f 100 =B8N0 N\---NOO" +D(O' A --- A OO™),
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it suffices to compute 96" to describe 3. Now, we have

(D )
500 (80k+Ak]a 891 )
(0 40

(T 0 AP
=00 QaeﬁA’”a g T A g, D

OAm . 0w\ [ O OAr; - OA\ . [ D
(aek T Ak g >89 <8xh)+<891 A, )9 \ o,

Since

0 QM 0 0 d 0
g _ Y op, LY 42
9rn  2y—1 \o8l oz, T o8 oy
holds, we have 96" ( 8xh) = 2%, which gives
_ QM [0Ay, OAy,  0Ap, < 0Ap, k x Apl
000" = — — i — ——— — A, ——— | 00" N 00
oy/—1 \ 90k M or; o0t Y ou;
Moreover, the integrability of J implies
DA, OAy,  0Ay | ; OAn 3Am
ook Ak gy = agk T Mgy, TRV TG
8Akh — 8Akh aAlh
= oo Ty, TRV,
accordingly one can see that
R i (0Qkn | 1 OQkn Ay, k Al
11 = QM Ay — :
any a0 =Q (ael S5 g S ) o0 9

By combining ((10]), we have

i OQin 0Qin QA =
_ ih ih il l
= <Q ol * 4Q Ox; Oz 99
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Now the Jacobi’s formula yields

06! OxJ
n (OQin | 1 0Qin\ 5
__ yih ) l
=Q <891 —|—A]l (91‘j>697
therefore, we obtain
3 0A Japnl
/8 - 8<10g det(sz)) - 81‘]' 89 )
which gives the assertion. [l

Proposition 7.5. Let a be as in Proposition[7.4. Then we have

da = ( ;;gii + A 8?;’21) 96" A o'
—Qmh Bg_l;:n (5;201;}1 f_lzj aacil;h — Qu;j %il]h> 90F A 90"
Proof. Since
da =0 (agﬂ aal)
aﬂfi i )
- (e e Yoo e,
the assertion follows from ([L1). 0

From now on we consider the one parameter family of w-compatible
complex structures {Js}o<s<s on (X,w). Then we denote by A(s,-) the ma-
trix valued function corresponding to Jg|y. For simplicity, we often write
A = A(s,-) if there is no fear of confusion. We assume the following condi-
tion @ for {Js}. Let pr: X x [0,0) — X be the projection and pr*Lag, be
the pullback bundle.

# There is a smooth section P of pr*Lag,|i«jo,5y — U x [0,6) such that
P(-,s) =Pyl for s >0, P(-,0) = P,|y and

d
£P($73) o © Tp, (o) Lag(Te X ® C,wy) 4.
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By assuming #, there are a constant K > 0 and A° € C*°(U) ® M,,(C) such
that sup; ; [|Ai(s, ) — sA?jﬂcz(U) < Ks?, Im(A) is a positive definite sym-
metric matrix and sup; ; [| A [l o2y < oo

For a function fy(s,z,0) and fi(s,x,0) we write

fo(s,z,0) = fi(s,x,0) + (’)Cz(sk)

if there exists a constant K > 0 such that || fo(s,x,0) — fi(s,z,0)|ci @) <
K s*. For instance, if {.J,}, satisfies #, then we may write

Ay = sAY; + Oce(s%).
Proposition 7.6. Assume that {Js}s satisfies &. Put
Agj = F)i(;' +vV _IQ?j

for B}, Q) € C=(U,R).

(i) %ATZJ = %L@g’“ hold for any 1, j, k.

(ii) Let Ricg, be the Ricci curvature of gj,. There exists a constant k € R
such that Ricg, > kgy, hold for all 0 < s <, if and only if Q?j(az, 0)
are independent of 6 € T".

3 DAL,
Proof. We have %‘2}5 = 57 + O¢1(s*) and

by (3) and taking s — 0 we obtain (i).

Next we show (ii). It suffices to discuss the existence of x such that
po > kw holds. To show it, we write p,, = v/—1p00% A 06 for pi; € R, then
we expand pg; about s = 0.

We have

0A;; 0A; 2
a;m: =9 81’]: + OCI(S )7 then

det Qij =s" (det Q% + Ocz (8)) s
log det Q;; = log(s™) + log det Q?j + Oc=2(s),

where A?j = P,g + \/—IQ%, and

QY = s71Q™ 4+ 0ca (1),
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where (Q%%); ; is the inverse of (Q? ;)i Since ael + Awa forms the dual
basis of 90, we have

_ 9%(log det Q)

o — Do = (Oco(s)) 00 A BH'.

+ Oco(s)> 0% A 96,

Set H = log det Q%. We obtain

82

o=V <aakaal

+ Oco(s )> 6% A 96"

Put Q = (Qi5)ij, Q° = (QS ),j and HessyH = (891891)237 and let /@ be the
symmetric matrix such that VO© = Q. Since w = 2v/—1Q;, 90 A 90!, then
pu > kw holds for some k € R if and only if the eigenvalues of

VQ 1 (HessgH + Oco(s))/QT

are bounded from the below by a constant. Since

VQ 1= \/Sj\/(QO + Oc2(s) = (\/QO— + Oc2(s )
we obtain

vV Q 1(HessgH + Oco ())V Q1!
= g1 <\/W + (’)Cz(s)> HesspH + Oco(s (\/Qoi-i- Oc2(s )
“1V/(Q) " Hessg H+/(Q0) 1 + Oco(1)

Therefore, the existence of the lower bound of the Ricci curvatures of
{g4.} is equivalent to

V(Q0) "' Hessg H+/(Q%)~" > 0,

moreover, it is equivalent to HessgH > 0. Consequently, H should be con-
stant by the maximum principle.

By the imaginary part of (i), we can see that QO d®’ is a closed 1-form
on {z} x T", hence there exists a constant Q;; depends only on z such
that [Q;;d0’] = [Q?jdﬁj] € H'({x} x T™). Consequently, there are Fj(x,-) €
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C>®({z} x T™) such that Q% = Qij + gg;' holds. Integrating this equality
over {z} x T™, we have

/{} . QY (x,0)do" - - do"™ = Qi(x),
Ty XAL™

which implies that (QZ])” is a positive definite symmetric matrix. Since
ggj = ggf holds, one can see that F;df' is a closed 1-form on {z} x T", then
by repeating the above argument, there are F(x,-) € C*°({z} x T") and

Qi(x) € R such that F; = Q; + %, hence we may write

~ O0%F
0 _ 0.,
0= @it pgiagi

Since Q;; can be obtained by integrating Q?j along some cycles of Hy({z} x

T™, 7), (Qij)i; is also a positive definite symmetric matrix. Now we take

another torus T¢g, = R"/Z" and the coordinate 7i,...,7" coming from

R™. Next we regard M, = {z} x T™ x T5, as a complex manifold whose
holomorphic coordinate is given by

=0t 4 /=1t 2 =0 -1

Define the Kihler form @, on M, by &, := v/—1Q;j(z)dz" A dz’. Since Q;;
is constant on M, it is a Ricci-flat Kahler metric. Moreover

g + 4V =100F = /=1Q};(x, 0)dz" A dZ’

is also a Ricci-flat Kihler metric since det Q° is constant. By the uniqueness
of the Ricci-flat Kéhler metric in the fixed Kéhler class, we obtain ng =

Qij-
7.3. Convergence
Set

Usp, = B, x (R"/Ker ®) = pz*(U,),
S, :=S(L|y.,h),
Spr = U, x " = pg'(Sy)

for 0 <r <R.
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For the brevity, put

d A := the Riemannian distance of g4 on Se¢ g,

9s = g(L,J,h,0,V),

dj := the Riemannian distance of §; on S(L,h),

da := the Riemannian distance of §|s(z|,.n) on S(L|v,h),

then

dA(pCP (u)7p<1> (U)) = k:(],ll,l.l.ﬁm—l dA<k " u, 1)),

dy(pe(u),pe(v)) < da(pe(u), pe(v))
hold for all u,v € Sg g.
Denote by By, (p,r) the geodesic ball in (X, gs) of radius r centered at
p, and denote by By, (p,r) the geodesic ball in (U, ga). Put
0:=(0,0) € T,

and

Ba,(r) :={p € S(Lly, h); da(ps(uo),p) <1},
By, (r) :={u € X; dj(ps(up),u) < r}.

The the connection metric g4 given in Proposition is written as
ga = o(dt — 2;d0")? + ©;;d0'd0? — 2P Q*d0" dxj + QY dw;dx;.

Proposition 7.7.

(i) By, <0, \/inf(@—l)R’> C Up holds for any 0 < R’ < &.
(ii) Take Ry > 0 such that

-1
5 1_1_2\/sup(€) ) R0+\/nsup@+2ﬁ7r§R
inf(©~1) inf(©~1)

Then dj(p,p") = da(p,p’) holds for any p,p’ € Sg,.
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(iii) Assume that {Js}s satisfies #. Then there are constants sop >0, 0 <
Ry < g and C > 0 such that

CR’
By,, <0, \/§> CUr, dylss, =daes,|ss,

hold for any 0 < s < sg and 0 < R’ < &.

Proof. (i) Let p € By, (O, \/inf(@*l)R’) and suppose p ¢ Ug. Then there
is a piecewise smooth path ¢;: [0,1] — X such that ¢;(0) =0, ¢1(1) = p and
the length L(c1) is less than /inf(©~1)R’. Let

71 :=inf{r € [0,1]; c1(7) ¢ Ur' } < 1.
Then by the first inequality of Proposition

ﬁ(cl) > [,(01“0 T1]) > ng 0 01 7'1 \/mf R/

holds, hence we have the contradiction.

(ii) Take Ry > 0 which satisfies the assumption. Let p,p’ € Sg, and sup-
pose dj(p,p’) < da(p,p’). Then there is a piecewise smooth path ¢y: [0,1] —
S(L, h) connecting p and p’ such that Im(cz) is not contained in Sz and £L(c2)
is less than d4(p,p’). Put ’

ry = inf{r € [0, 1); ea(r) ¢ Sz},
then

L(c2) > L( ) = dj(c2(0), c2(72))

holds. Since 7: (S(L,h),gs) — (X, gs) is a Riemannian submersion,

dj(c2(0), c2(12)) = dg, (m(c2(0)), w(c2(T2)))

holds, then we can see

L(c2) > dg,(m(c2(0)), m(c2(m2))) > +/inf(©~1) (15 — R0> ,
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by the first inequality of Proposition The second inequality of Proposi-
tion [7.2] gives

WO (5~ o) < dato)
<2vsmp@ DRy + VIO 4 o

therefore we obtain

R 24/sup(©~1) 1 V/nsup ©
— < <1 + mf((ﬂ) RO + inf(@_l) < 9 + \/Eﬂ'> )

2

which contradicts the assumption.
(iii) Since we have

Vinf(©1) = = (Vinf((87 1)+ 0() .
Vo) = - (VA + 00s)).
J5up(®) = f(mw )

by the Hoffman-Wielandt’s inequality [12], there exists sg > 0 such that

%\H

24/sup(© p((©9)-1)

inf(©— ) - 1nf((@0) 1y’
Vsup® + 2o _ R
inf(6-1) ~ 10

for all s < sg. If we take 0 < Ry < % such that

3 ®0)-1
N NETCURATNET
inf((©%)~1) 10
then the assumption of (ii) is satisfied for s < so, hence we have d;,|s,, =
dA(s,)| SR, - Moreover, if we put

C:= inf +/sinf(©

0<s<sg
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then we can see

/
Vinf(0-HR > C\’/I?
s

for R < §7 hence we have B, (0, %) C Ug by (i). a

Next we consider w-compatible complex structures J, J’, and compare
the Riemannian distances of g; and gj. We will show that if g; and g are
close to each other in some sense then their Riemannian distances are also

close to each other.
Now, we define the distance dgy;,+@~) on

Sym*(RY) := {g € My (R); gij = gji» g > 0}
as follows. For g € Sym™ (RY), take v1,...,vxy € RY such that g(v;,v;) =

8ij. For ¢ € Sym™ (RY) let A1,..., Ay € R be eigenvalues of (¢'(vi,v}))i ;-
Then define

dsyin+ (ey)(9,9') = max |log Ay|.
Moreover, if g, ¢’ are Riemannian metrics on M, then define

dsym+(m) (9, 9') = sup dsym+ (1, 01y (95 G)-

Lemma 7.8. Let M be a smooth manifold of dimension N, g,g" be Rie-

mannian metrics on M and d,d" be the Riemannian distances of g,q’, re-
spectively. If we assume dgyy+(ar) (9,9") < 2log2, then

d(po, p1) — d'(po, p1)| < dsym+(ar) (9, 9")d (po, 1)

holds. Moreover, for any f € Co(M)

‘ [ faug— [ fiuy
M M
log 2

holds if dsym+ () (9,9') < %~

< Nsup|f|- pg (supp(f)) - dsym* (a1)(959")
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Proof. Let c¢: [a,b] = M be a piecewise smooth path, and denote by L,(c)
be the length of ¢ with respect to g. Since we have

/

g(c(t), (1)) <exp (dsym+( ooy 00) (Ge(t)s Get) )g
< exp (dSym+( )(g,g )) g ( (t)’ /(t>

then we can see

dsym g
L,(c) < exp <Sy+(1‘24)(gg)> Ly(c)

and

dsym+(ar)(959")

5 )d’(po,pl)-

d(po,p1) < exp <
By the symmetry we also have

d g
exp <_ Sym™ (M) (g .g)

2 ) dl(p()upl) S d(p()upl)‘

Therefore, we obtain

dsym*+ (1) (9, 9")
d' (po,p1) — d(po,p1) < (1 — exp ( SY(M2)>> d' (po,p1)

and

dsym+(11)(9:9")
) = @) < (exp (SO0 1) ),

Since 1 — e~ 2 <t and es — 1 < t holds for any 0 <t < 2log 2, we have the
first inequality.

Next we take f € Co(M) and denote by du, the Riemannian measure of
g. Then we have

[ [

Since |log ieeTt;| < Ndgym+(ar)(9,9') holds and |e* — 1| < 2|t[ holds for [¢| <
log 2, we can see

‘/M fig = /M flg

det g
det ¢’

</ ’f“ —1‘03,“9”
M

< Nsup [f| - pug (supp(f)) - dsym+ a1y (95 9')
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if dSym'*’(M) (gyg/) < 10]%2- O

Lemma 7.9. Let g,¢' € Sym™(RY) and {v1,--- ,un} be a basis of RY.
Put g = (g(vi,vj))i; and g' = (¢'(vi,v;))i ;. Denote by ou,...,an be the
eigenvalues of g'g!. Then a; € R and dgym+®~)(9,9') = max; | log ay|.

Proof. Let /g be the square root of g. If we put ¢; = Zj \/g_lijvj, then
e, ,en 1s an orthonormal basis of (RN ,g), therefore we have

dsym+ &) (9,9) = max | log Ail,
where \; are the eigenvalues of
(g (eires))ij = Ve 'g've
Since we have
vE - (gsT) vE=vE 'gVE
{ai,...,an}={\,..., An} holds. d

Suppose that X is a strict m-BS fiber and fix a small s > 0 and a frame

. 1 1
dt — z;d0%, \/sdf*, ... \/sdo", ﬁd:@l,...,%

of T*(Ugp x S'). Then the matrix representation of g, is given by

dz,

o 0 0
gA = 0 s'e —pPQ' |,
0 —Q'P sQ!
and its inverse is
ot 0 0
gzl — 0 8@71 Q*1P

0 PQ' sle

Suppose that {A(s,-)}s corresponds to {Js} which satisfies #. Fix r > 1.
Then there is a constant K > 0 depending only on {A(s,+)}s such that

|A(s, z,0) — sA%(x,0)| < Ks?
1A%z, 0) — A°(0,0)] < K|«|
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for any (z,0) € Up. If (z,0) € Ug s5, for 7 > 1 and s >0 with /sr <R,
then we have s < /s& < \/sr since R < 1, hence we obtain

|sT1A(s, 2,0) — A%(0,0)| < K+/sr.
Here we write

fo(s,z,0) = s, fi(s,z,0)

if there is a constant K > 0 such that |fo(s,z,0) — fi(s,z,0)| < K+/sr holds
for any (z,0) € Ug /5,

Now A'(s,z,0) := sA°(0,0) gives another family of complex structures
{J.}s which satisfies #, by (i) of Proposition Since we have

71@ =/sr (070)7
P = 5. P%0,0)Q°(0,6)”"
QP = 5 Q0,07 P%0,0),
sQ~ 1~ Jar Qo(o,e)*1

where ©9(0,6) = Q°(0,0) + PY(0,0)Q°(0,0)~1P°(0, ), then we obtain

g1 84 = Jar Long1

By Lemma the eigenvalues of g;l/lgA are real. If 1 + X € R is one of the
eigenvalues, then

FON) :=det ((1+ N Iopi1 — g4'84) =0
holds. Since we have

F) = det { A\ zns1 + (Ton+1 — 8484) }

there exists a constant K > 0 depending only on {A(s,-)}s, and there exist
0, C1, - - -, Cop € R such that max; |¢;| < K and

2n
f()\) _ )\2n+1 + Zci(\/gr)2n+lfi)\i.
=0
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Lemma 7.10. For any n € Z>o, K >0 and r > 1 there is a sufficiently
large N > 0 depending only on n and K such that for any co,c1,...,con €
[-K, K] and € > 0, the solution \ of the equation

2n
f()\) — /\2n+1 + Zci€2n+1—i)\i -0
=0

always satisfies |\| < Ne.

Proof. Put A\ = et. Then f(\) = g?nt! <t2”+1 +3, citi). If f(A\) =0 then
we have t" = — 327" ¢;t. Suppose [t| > 1. Then

2n 2n
P < el <Y KPP = 2+ DK
=0 =0

holds, hence |t| < (2n+ 1)K is obtained. Consequently we can see |A| <
max{1l, (2n + 1)K }e. O

By Lemma we can see | log(1 + \)| < N/sr for the eigenvalue 1 + A
of gAf,lgA, where N is the constant depending only on K. Therefore, we
obtain the following proposition by Lemma [7.9]

Proposition 7.11. Let A, A’ be as above and let r > 1, s > 0 with \/sr <
R. Then there exists a constant C > 0 depending only on A such that

Asym* Uy, s x50 (45 Gar) < CV/sr.
From now on we assume R > 0 satisfies
CR < 2log2,
where C' is the constant in Proposition Then Lemma [7.8| holds for
M=Sor g=ga g =gn.
and for
M=Ssr, g=ga, ¢ =Jga

Proposition 7.12. Let {Js}s satisfy & and A'(s,z,0) := sA%(0,0).
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(i) There are positive constants Cjy, Cy depending only on A°(0,-) and o
such that

B,,,(0,Cir) C Uy/sr C By, (0,C1r)

for any r > 1 and s > 0 with \/sr < R.

(ii) Suppose X is a strict m-BS fiber. Then there are constants C > 0 and
0< Ry < % depending only on A and o such that

dy.(p,q) — da(p,q)| < C\/sr?
holds for any r > 1, s > 0 with \/sr < Ry and p,q € S\/Er-

(iii) There are positive constants Cpy,Cy and 0 < Ry < % depending only
on A and o such that

By, (0,Cor) C U s C By, (0,Cqr)
for anyr>1, s >0 with \/sr < Ry.

Proof. (i) Apply Proposition for A’. Then there are positive constants
Cs, C3, Cy depending only on A°(0,-) and o such that

Cov/s |z < dy,, (0,0) < Csv/s™ |z + Ca
for any v = (z,0) and s > 0. If ||z|| < \/sr then
dg, (0,u) < Csr+ Cy < (C3+ Cy)r

holds since r > 1, which implies U, s, C By,, (0, (C3 + C4)r). On the other
hand if dg,, (0,u) < Cr holds then

Cav/s |z]| < dg, (0,u) < Cor

gives ||lz|| < y/s7, hence By,,(0,C2r) C U, /5, holds.
(ii) By applying Proposition there is a constant C5 > 0 such that

dsym*(Sy. /) (94, §ar) < C5v/s7

holds if \/sr < R. Now take Ry < min{2lgf2 , R} and assume /sr < Ry, then
we may apply Lemma 7.8 and we have

‘CZA(U, U) - dA’ ('LL, ’U)‘ < dSym*(M) (ga g/)dA/ (U, ’U) < C5\/§Td~A' (u7 'l))
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for all u,v € Sg /5, By the same argument in the proof of Proposition
we have the upper estimate

dar(u,v) < /sup(Q0)— Hx
++/sv/or? + -sup @0 - diam(R"/Ker®) + /o,

where u = (z,0, eV~ 1), v = (2, 0,V ). Since ||z — /| < 2v/5r, /57 <
R <1andr>1, we have % <2r and s < 1:“2 < 1, then there is a con-
stant Cg > 0 depending only on A°, o, ® such that da (u,v) < Cgr, which
gives

da(u,v) — da(u,v)] < 2C5C/s172.
Therefore, we can see

da(ps(u),ps(v)) = inf JA(k‘-u,v)

k=01,...m—1
< inf {CZA/(IC U, v) + 20506\/§T2}
k=0,1,....m—1

= dA/(kj - U, U) + 20506\/§’I“2

and similarly da (pe(u), pe(v)) < da(k - u,v) +2C5Cg/sr? is obtained.
By (iii) of Proposition we can take 0 < Rj < & and sp > 0 such that
dy. \SR, = alA|gR6 holds for any 0 < s < sg. If we put C = 2C5Cs and Ry =
mm{210g2 0>1/50}, then /st < Ry implies s < sg, hence we have (ii).

(iii) Take C,s0,Ro as in (iii) of Proposition [7.7] and replace Ry by
the smaller one such that Ry < \/sp. Then we have By, (0,Cr) C U, g5, if
Vsr < Ry. Next we assume u € U, By (i), we have u € By, (0, C{r). Since
7: (Sr,97.) = (Ur,gs.) and 7w: (Sgr,ga’) = (Ur,ga’) are Riemannian sub-
mersions, therefore (ii) gives

dg,, (w(u),w(u)) = inf dy (ueV ™1 o)

eV—TlteS1

< inf dA/(uert "+ C/sr?
evV—Tte§1

= dg,, (w(u),7(u')) + C/sr?.

Consequently we obtain

dg, (0,u) < dg,, (0,u) + Cy/sr* < Cir + CRor,
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which implies U, s, C By, (0,C1r) by putting C7 = Ci+C. O

Proposition 7.13. Let {Js}s satisfy & and A'(s,x,0) := sA%(0,0). There
exist constants Ry, C > 0 such that

id: (77" (By, (0,7 — CV/s1%)),ds.) = (77" (Bg,..,(0.7)),d(s,))

s a Bc;rel C/sr%-S-equivariant Hausdorff approzimation for anyr > 1 and
s < éi?z. Moreover, if f: Sg — R is a Borel function such that supp(f) C
Sg for some R < R and sup |f| < oo, then

Proof. Fixr > 1. Take Ry, Cy, C1, Cj), C1, C such that Proposition holds.
We may suppose C'>1and Cp = C, = C~*,Cy = C] = C. Then By, (0,7)C
ch/gr and

< Csup |f|(R)"

holds.

|ds,(p,q) — da(p,q)| < C*/sr?
hold for any p,q € SC\/ET and 0 < s < C}E—?Q. Ifu e By, (0,7 — C2/5r2), then
dg, (0,u) < dg, (0,u) + C*/sr* <r,

which implies By, (0,7 — C*\/sr?) C By,,(0,7).
Now, By, (0,7) C Ug, /5 holds. We also have

By,,(0,7) C By, (0,7 + C?\/s1?).
Since dg, is an intrinsic metric, we have
By, (0,7 + C%\/sr?) = By, (By,. (0,1 — C%\/sr?), 202\/§r2) )
hence we can see that
id: (Wﬁl(Bg‘,s (0,7 — C*\/s1r%)),dy;,) — (Wﬁl(BgA,(O,T‘)),dA/(S’_))

is a Borel ¢;-S'-equivariant Hausdorff approximation.
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Let f: Sg — R be a Borel function such that supp(f) C Sg: for some
R’ < R and sup|f| < co. Then one can see

‘/ fdlugA’ _/ fd:uQJS
SR SR

by Lemma and Proposition Since

< 2nsuplf| - pg, (Sw) - CR/

dpg,, = det(ga)dtdd* - - - d6"da, - - - dz,

and
@0 _PO(QO)fl
det(gas) = o det < —(QY)1PY Q") ;
one can see that g, (Sr/) = cC’'(R’)", which gives the assertion. O

Let {J}s satisfy & and A'(s,,0) := sA%(0,6). By Proposition
P 2 (0, 0)d67 is a closed 1-form on T™. Then there are constants P;; € R such
that

[Pz%(o? )dej] = [Pljdej] € Hl(Tnv R)v
hence there are H; € C°°(T") such that
PJ(0,-)df7 = Py;dt7 + dH;.

: 0 _ p0
Since Pij = sz’ and
P _/ Pj(0,6)do" - - do™,

we have P;; i = P and %7(;6 = 891 . Consequently, H;d§? 1s closed, therefore
there are P; € ]R and H € C(T™) such that H; = P; + 89,, which gives

O*H

0(0..) = P.
Fi0:) = Py + Ggipei-
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If Ricg, has the lower bound, then by Proposition we have Q%(O, ) =
Qij € R and

gar = s(Qij + PRQM P))d0 de? — 2P.Q7 d6' dxj + s QY dw;da;
QY

S

= sQijdé?ide +
= 5Q;;d0"de?

QY oH _ OH. o
s {d <xi_889i> — sP;.df d JTj—S% —SledH .

Now, define F5: R" x T" — R™ x T™ by

(dxi _ sﬂ%d@’f) (dxj _ sP;’,del>

+

OH OH
Fy(x,0) := <:v1 —i—saal,...,xn—i—sw,Q) )

Then F_; is the inverse of Fy and

Frga = sQi;doide? + Qsj (dzi — sPiad®) (da; — sPude')

holds. Moreover, we can lift F to

Fy: R™ x (R"/Ker®) x S' — R" x (R"/Ker®) x S*

: V= oH OH
-1ty .— vV —1(t+sH(O
Fs(x;07€ )— <x1+88917...,xn+889n76,e (t+ ()))

One can easy to check that FisZ /mZ-equivariant and S'-equivariant map,
and

Frga = o(dt — 2;d0")? + sQy;d9'dg’
QY

S

_l’_

(d:ci — sPidek) (dxj — sl5jld<9[> .
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Put P = (Py)ij, Q= (Qi)ij, ©=Q+PQ'P and y= \/séilx, T=
V500. Then we may write

Frga =o(dt —tz-df)* +1d6 - sQ - do
A—1
! (da — sPd9) - . (de — sPdb)
S
= o(dt)* —20("y - dr)dt +'dr - (L + oy -'y) - dr

Fdy VOO NG - dy —2-tdy VOO PVE - dr.

Since K, := 1+ oy - 'y is positive definite, it has the inverse and the square
root. Accordingly, we have

E¥ga = o(dt)? —20('y - dr)dt + 'dr - K, - dr
Ly VOQVG dy 2ty OG PVE - dr
—t <\/f?yd7 — oK, ydt — @‘1\@_1PQ1@dy>
: <\/K7yd7' — o /K, \ydt - \/fy‘l\fé_lﬁq‘)l@dy>
+ (o= (6*)'yK, 'y) (dt)?
— 95ty Ky—H@_IPQ—leédydt
+tdy- V6 (Ql - QlP\fé_leleé_lﬁQ1> V6 - dy.

Here, we have

t

t -1 Y
y Kyl =
Y I4alyl?
b -1 ly]1?
y Ky y=o s
Y L+afyl?

and the similar computation as in the proof of Proposition gives

e l=Q - 'rPotPQ.
Put
——1_ _ —
T :=dr — aKy_l - ydt — Ky_l\@ PQ_I\F@dy,

5.-/6 'PGV6.
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Then we may write

. o 20 —
Frgao =T K, T+ ———(dt)? — ————ty - Sdydt
: v T T e T T

+tdy - (1+t§(1 ny_l) S’) - dy.
Since we have

_ _ oy -ty
1- K '=(K,- 1)K ' = K, 99 J

v = - DK =0y -y T 1oy
we can see that

o 20
————=(dt)® —
L+ olly|? allyl

t
_ oy -y _
+idy- (1488 ——-Z_)S]) -d
Y ( <1+o||y||2> ) Y

=T K, T+ ty-gdy)2+tdy-dy

Flga ='T K, T+ Tyt Svdt

o

Define ¢, s: Sp.r — R™ X St by

Om.s(x, 0, ert (V sO x ert

and define Z/mZ-action on R"™ x §' by k- (y,eV 1) := (y, eV 150,
Then ¢y, s is Z/mZ-equivariant map and

Gm.s: (R™ x (R"/Ker ®) x ST, F¥ga) = (R" x ST, goo)

is a Riemannian submersion, where

g

— % (dt—ty-Sdy) +tdy - dy.
T oz (@Y Sdy)" +dy - dy

Joo =
Denote by fiso the measure on R™ x St defined by dpee = dyi - - - dyndt.

Proposition 7.14. Let f € Co(R" x S1). Then there is a constant K > 0
depending only on ®,0,0 such that

fo (Zsm,sd,ulﬁ;gAI = K\/gn fditoo-

/R”'X(R"/Keré)xsl Rn» xSt
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Proof. Since

=

dit s, - det(K dtdrt - - dr"dyy - - - dys,
FEzga <1+auy||2€(y)> T

NE

1+UHyH2)> dtdr! - drdy; - - - dy
< L+oly H2 "
= odtdr! - - dr"dy; - - - dyn,

we have

/ U ¢m’sdﬂﬁ*f]m
R" x (R" /Ker ®)x §1 :

f © ¢m,s\/5dtd7‘1 tee dTndyl cee dyn

/]R »x (R /Ker @) xSt
= /o/s" Vdet @/ f o pmsdtdd - do™dy, - - - dy,

R % (R™/Ker &) x S*
— /o Vol (R"/Ker ®) /det ©/5" fdtdy, - dyn.
R™ xSt 0

Now, we put

R™ x (R"/Ker ®) x S

S¢ =
® Z/mZ ’

then g4 and Fs* gar induces the Riemannian metrics on Sg such that pg is
local isometry. We also denote by ga- and F; g, respectively if there is no
fear of confusion.

Since ¢, s is Z/mZ-equivariant, we have the following commutative di-
agram;

(R™ x (R"/Ker ®) x S, F*g0) ™% (R" x S', goo)

Po | Pm

(S‘Pst*gA’) (Rn X Slagm,oo)

&

where py, is the quotient map defined by p, (v, e\/?lt) = (y, e\/jlmt) and
Jm,co is defined by

o dt _ 2
12 oo = ————— [ — —ty. Sdy | +'dy-d
(12) Im, T+ oyl (m Y y) y - dy

such that p,,*gm,co = goo and ¢ is the Riemannian submersion.
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Proposition 7.15. Let {Js}s satisfy & and A'(s,x,0) := sA°(0,0) and put
po = pa(0,0,1) € Sg. Assume that there are constants so >0 and k € R
such that Ricy, > kgy, for any 0 < s < sg. Then the family of pointed met-
ric measure spaces with the isometric S*-action

Mg ar
Sa,da
{( (o3} AaK\/gnva)}s

converges to (R” x ST, g, oo s oos (0, 1)) as s — 0 in the sense of the pointed
St-equivariant measured Gromov-Hausdorff topology.

Proof. Since F,isan S L_equivariant isometry, it suffices to show that

converges to (R" x S, g, s Phoos (O, 1)) as s — 0 in the sense of the pointed
Sl-equivariant measured Gromov-Hausdorff topology. Since

Frga ='"TK,T + goo,

one can see that ¢, is a Riemannian submersion and the diameters of the

fibers ¢;'(y,t) are at most Cy/s(1+ oyl[?), where C' >0 is a constant
depending only on P, and ®, hence the pointed Gromov-Hausdorff con-

vergence follows. Moreover, Proposition implies that (¢m,s)«u Frgn =
K /5" liso, especially we also have the vague convergence of the measures.

O

Theorem 7.16. Let {J}s satisfies & and suppose that there there are
constants so >0 and k € R such that Ricy, > kgy, for any 0 <s < sq.
Put po = ps(0,0,1) € S(L|y,h). Then the family of pointed metric measure
spaces with the isometric S'-action

(s, f2m)}

converges to (R” x St dg, s oo, (0, 1)) as s — 0 in the sense of the pointed
St -equivariant measured Gromov-Hausdorff topology.
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Proof. Put A'(s,z,0) := sA°(0,0). By Proposition there exist con-
stants Ry, C' > 0 such that

id: (ﬂfl(BgJS (0,1 — C\/§r2)),djs) — (W*I(BQA,(SV)(O,r)),dA,(s,.))

is a Borel C./sr?-Sl-equivariant Hausdorff approximation for any » > 1 and
s < C 0. Since C'/sr2 — 0 as s — 0 for any fixed r, therefore,

{(S(Lah)adJsap(])}s S_—G>H (Rn X Sl,dgm,,ac7 (07 1))

as s — 0 by Proposition |7.15

Next we show the vague convergence of the measures. Now the ap-
proximation from (S(L,h),ds,,po) to (R" x St dg, ,(0,1)) is induced by
the Z/mZ-equivariant maps s := @y, s © F_,. Take f € Co(R™ x S1). Then
Proposition [7.14] gives

fdps = Joomsdup.,
/]R"xsl = K\[ R™x (R™/Ker ®)x St THEE G4

fovsdug,, .

K\/gn R x (R" /Ker ) x 51 o
Note that sup | f o 95| < sup|f| < co. By the definition of ¢y, s, there is r > 0
independent of s such that supp(fo1s) C S s, holds for any 0 < s < so.
Then Proposition gives some constants Cy > 0 such that

1
foviduy, - [ f 0 badg,,
K\f R x (R” /Ker &) x S1 97 R x (R™ /Ker &) x S I
_ CoswplfI(y5r)™
K\/s"
as s — 0. OJ

8. The spectral structures on the limit spaces

In this section we consider the metric measure space (R" x S*, Gm,00s Hoo)
defined by . Now, note that

5=vV6 PG Ve=ve (PG'6)Ve
~ V6 (P+PGPQP)VE
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which implies S is symmetric. Consequently, we can see

dt ~ t ty.S-
m m 2

Here, by taking the pullback of g, o by the diffeomorphism

R*x St — R™ x St
w w

(y,e\/j”) > <y,e\/?1<t+m'ty2‘w>),

we may suppose

g
Imee = 2 (1 + olyl?)
dproo = dyy - - - dypdt

(dt)* +'dy - dy

and the isometric S'-action on (R™ x S, g;.00) is given by

eV I (y,eﬁt) = (yje

ﬁ(t+m7)) ,

Then the Laplace operator Ay, oo on (R™ X S, gy 00, foo) is defined such
that

/ (Amoe 1) Fadjion = / (dfr, dfa)g,. — diine
R7 xSt

Rn xSt
holds for any f1, fo € C°(R"™ x S!), therefore we have

m*(1 4 ollyl*) 8*f
o ot?’

Am,oof = AR"f_

2
where Agn = —>"7" | 8%?'

Let py be the representation of St defined in Section [3| then we have
(L2R" x $Y) @ €)= {(y)e™ ™1 o € I2R") |

and (L*(R" x S') ® C)™ = {0} if k ¢ mZ. Now we consider the operator

)

2
Aumoe — (IZ + k”) - (C®®" x $") @ C)" — (C*([R" x 5") ®C)”
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for kK = ml, which corresponds to the limit of
205+ C%(X, LY — C=(X, L¥)

as s — 0. Let (R",*dy - dy, e *I"I°dLp.) be the Gaussian space, where Lgn
is the Lebesgue measure on R™ and denote by Ag~ j the Laplacian of this
metric measure space. Note that we have

—~ 0
Agn oo = Arngp + kayzai

i=1 ¢
Then we can see that the following linear isomorphism

C*R"M®C — (C=(R"x S ®C)*
w w

_ kllyli?+v=Tit
@) — -e 2

induces the isomorphism
LAR", e FWI° g ) @ C = (L3(R™ x S, dpios) ® C)**

and the identification of the operators
/{2
ARn7k = Am,oo - (U + k:n> .

Next we construct the eigenfunctions of Ag- ;, by the hermitian polynomials.
For £ € R the hermitian polynomials are defined by

k£2 dN 7]&‘52
Hk,N(f) =€ W@ s

which is a polynomial in § of degree N, then it is known that Hy n solves

d? d
——H, 2kéE—H =2kNH
agz N + gdf k,N kN
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and {Hj, N }3_, is a complete orthonormal system of L?(R,e " dLg). Let
N = (Ny,...,Ny) € Z% and put

oY M 9N
(@) =

n
IN|:=> N
=1

Then

n e o N iyl
e(y) = il;[lHk:,Ni(yi) = ekl <8y> (e M)

solves
AR",kSO = 2k|N|yp

and {[[", Hgn,(vi); (N1,...,Ny,) € Z>p} is a complete orthonormal sys-
tem of L2(R", e *IvI*dLp.). Thus we have the following theorem.

Theorem 8.1. Letl € Z~g, k =ml and
k2
W(k,\) = {f € (COO(]R" X Sl) ® (C)pk ; <Am,oo - — k:n) f= 2)\f} .
o
Then there is an orthogonal decomposition

(L*(R" x SHY @ C)* = @ Wk, kd),
d€Z>o

where

E|lyll? 0 N 5
W (k, kd) = spang {eg—ﬁlt (ay> (e—kllyll ); N € Zso, |N| = d} '

As a consequence of Theorem we obtain the former part of Theo-
rem

9. The fibers which are not m-BS fibers for any positive m

In this section we suppose (X2", w) is a symplectic manifold with a pre-
quantum line bundle (L, V, k), and assume that there is a continuous map



The geometric quantizations 1621

i: X =Y to a topological space Y. Moreover we fix by € Y such that
1~ t(bp) is not an m-BS fiber for any m € Z.

Let {Js}o<s<s, be a one parameter family of w-compatible complex struc-
tures, and denote by L4(c) the length of a path ¢ with respect to the Rie-
mannian metric g. We fix pog € u~!(bg) and assume the followings.

%1 For any r > 0 and open neighborhood B C Y of by there is s, p >0
such that

1(By,_ (po,7)) C B

holds for any s < s, p.

*2 For any piecewise smooth closed path cp,: [0,1] — X such that
¢, ([0,1]) € u=1(bp) there exist an open neighborhood B of by and
a continuous map c: B x [0,1] — X such that poc¢(b,t) = b, ¢(b,0) =
e(b, 1), c(bo, ) = ¢, and c(b, ) are piecewise smooth.

*3 For any open neighborhood B of by and a continuous map c¢: B X
[0,1] — X such that g oc(b,t) = b and c(b,-) are piecewise smooth,

lim sup L, (¢(b,-)) =0
lim sup £y, (e(b.")

holds.

Let 7: S(L,h) — X be the natural projection. By the connection V we
have the unique horizontal lift ¢: [0, 1] — S(L, h) with ¢(0) = ug for any pair
of a piecewise smooth path c: [0,1] — X and ug € 7 1(c(0)).

Proposition 9.1. Assume that =" (by) is not an m-BS fiber for any m €
Z. For any po € p~*(bo), eV=1t € Sl and § > 0, there is a piecewise smooth
path c: [0,1] — p=t(by) with c(0) = (1) = py such that its horizontal lift ¢
satisfies &(1) = &(0)eY ™" and |t/ —t| < 8. In particular, if we assume x3,
then limy_,o diamg, (7~!(po)) =0 holds.

Proof. Since p~'(by) is not an m-BS fiber for any m € Z, the holonomy
group of V|,-1(;,) may not contained in any proper closed subgroup of S L
hence we obtain the path ¢ which satisfies the assertion. By =3,

lim L4, (€) = lim Ly, (c) =0

s—0 s—0
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holds, hence d, (¢(0),&(1)) — 0 as s — 0. Therefore, for any ug € 7~ (po),
eV~ € §1 and § we have

lim d, (ug, upe¥ ) < lim dy_ (ug, upeY ") + o|t — t'| < 00,
s—0 s—0

which implies limg_ d_(up, uoe\/jlt) = 0, hence we have

lig(l) diamg, (7Y (po)) = 0. -

Let B CY beopen and é: B x [0,1] = S(L, h) be a map such that ¢, :=
¢(y, -) is one of the horizontal lift of ¢, := ¢(y, -) with respect to V. Let t, € R
be defined by ¢é(y, 1) = é(y, O)eﬁty, which is determined independent of the
choice of the initial point of é(y, -). Then the map y — eV=1ts is continuous.

For a sufficiently large integer N > 0, put t = QW” and 0 =t = & and take
c and t' as in Proposition then we extend ¢ to ¢: B x [0,1] — X by 2,
where B is an open neighborhood of by. Then by the continuity of eﬁt’y,
there is an open neighborhood By CY of by such that £ <t, < %’r holds
for any y € By. If we consider the path obtained by connecting k copies of
¢y, we can see that

1, (@/(0), & (0)eY ") < kL, (cy).
If we consider the path along the fiber of S(L,h) — X, we have
dy. (&,(0)eY 1%, 2,(0)eV 1) < ola — b].

Combining these estimates, we can see

3o

dy1,(6(0),2(0)eY 1) < NLy, (¢) + <7

for any 6 € R, which gives

. 1~ 3ro
diamg, (7 (2,(0)) < NLg, (¢,) + 27
Now we can take sy > 0 by %3 such that £, (cy) < % for any 0 < s < sy
and y € By. We can also take 0 < sy, < sy by 1 such that u(Bg, (po,r)) C
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By holds for all 0 < s < spy,-. Then we have

1
diamg,, (17 (7(0)) < o7

for all y € u(By, (po,r)) and 0 < s < sy,. Thus we obtain the following
proposition.

Proposition 9.2. Assume x1-3, p~1(bg) is not an m-BS fiber for any m
and let ug € 71 (py). Then for any r >0 and € > 0 there is 0 < s, < s
such that

diamg, (rYz)) <e
for all x € By, (po,r) and 0 < 5 < sp.

Before we prove Theorem [1.2] we describe the relation between the con-
vergence of principal G-bundles and the convergence of the base spaces. Let
G be a compact Lie group, (P,d,v) be a metric measure space with an
isometric G-action. Put X := P/G and define the distance d on X by

d(Z,y) := inf d(z,y7v),
(2,9) = Inf d(@,y7)
where & € X is the equivalence class represented by x € P.

Proposition 9.3. Let {(F;,d;,vi,pi) }ien be a sequence of pointed metric
measure spaces with isometric G actions and denote by m;: P; — X; = P;/G
be the quotient maps. Suppose that for any r,e > 0 there is i, € N such that

sup diamgm 1 (z) < e
z€B(p;,r)

holds for any i > i.c. If {(X;, d;, U;, pi) }i converges to (X, d, v, p) with respect
to the pointed measured Gromov-Hausdorff topology, then {(P;, d;,vi,pi)}s
converges to (X,d,v,p) in the sense of the pointed G-equivariant measured
Gromov-Hausdorff topology. Here, the G-action on X is the trivial action.

Proof. Let ¢;: (Bx,(pi,7),pi) — (X,p) be e-approximations given by the
pointed Gromov-Hausdorff convergence of (Xj, p;). Then one can see that

¢:=giom: (m; {(B(pi,r)),pi) = (X, D)

are G-equivariant 2e-approximations. Using these maps one can show the
assertion. O
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Proof of Theorem[1.3. Assume # and that there is & € R such that Ricy, >
kg7, Let u € S|,-1(,) and assume that p~'(y) is not a Bohr-Sommerfeld
fiber of L™ for any m > 0. On the neighborhood U of 1~!(y), we may write

g91.lu =9a

for some A = A(s,x,0). Here we consider the pointed measured Gromov-
Hausdorff limit of (X, g, I?gi\/%‘n,p) as s — 0 for some p € p~(y) and K >
0. In the same way as Subsection it suffices to consider the limit of
gar, where A'(s,z,0) = sA°(0,0) and Q= Im(A%)(0,0) is independent of 6.
Notice that we already had PZ%(O, ) = Pi; + % in Subsection (7.3 and

— —1 _ _ = ——1 _ _
Frgy =1 (\/s@d& —Vs0 PQldg;) . <\/s@d9 —Vs0 PQldg;>
+s i tde- 07 dx

holds by , where

OH OH
Fs(z,0) = <m1+s(%1,...,xn—|—saen,9> ,

©=Q+PQ'P.
Then by the transformation y = 5(:)_13; and 7 = V500, we have
Frga =" (dr — PQ7'dy) - (dr — PQ™'dy) + 'dy - dy.

The above expression implies that (y,7) — y is the Riemannian submersion
to the Euclidean space. Since the diameters of the fibers of the submersion
converge to 0 as s — 0, we have proved that (X, Fga, po) pointed Gromov-
Hausdorff converges to (R",!dy - dy,0). The convergence of the measure is
shown by the similar argument with the proof of Proposition [7.14] and The-
orem [7.16] By Proposition [9.3] we obtain the assertion. O

As a consequence of [I.2] we obtain the latter half of Theorem since
the S'-action on R™ in Theorem is trivial and (C*°(R"™) ® C)** = {0}
for any k > 0.

10. Examples

In this section we give some examples to which Theorems and can
be applied.
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Abelian varieties. Let X = 72" =R>/7Z?" and w =27 Y_,_, dx; A d’,
where x,0 € R"/Z". Then there is a prequantum line bundle L on (X, w)
(See [M]). Define the nonsingular Lagrangian fibration p: X — 7" by
p(x,0) =z and define w-compatible complex structures {Js}s such that

0 o .
{W—i—SQUax],Z—l,,n}

is a frame of T}S’OX, where = (€;5);; € M, (C) belongs to the Siegel upper
half-space

{Q S Mn<(C), Qij = jS, Im(Q) > O}

Then the family {Js}s satisfies # in Subsection and *1-*3 in Section [9]
Therefore, for any point y € 7", Theorems [I.1] and [I.2] hold for this family.

10.0.1. Toric symplectic manifolds. In [3], the asymptotic behavior of
the vector spaces H(X ;. ,L) as s — 0 is considered where (X,w) is a com-
pact toric symplectic manifold, {.Js} is the family of w-compatible complex
structures, given by the symplectic potentials, tending to the large complex
structure limit. In this case the Lagrangian fibration p: X — P is given as
the moment map and the image P is the delzant polytope in R". Let Pcp
be the interior of P. If y € P\ P, then y is a critical value of p and the
inverse image p~!(y) is a torus whose dimension is less than n. Then we
cannot apply Theorems or to these points. However, if J; are the
family given in [3] and y belongs to P, then Theorems and hold. We
should notice that the parameter s in [3] corresponds to 1/s in this paper.
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