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Given a two-variable invertible polynomial, we show that its cate-
gory of maximally-graded matrix factorisations is quasi-equivalent
to the Fukaya–Seidel category of its Berglund–Hübsch transpose.
This was previously shown for Brieskorn–Pham and D-type singu-
larities by Futaki–Ueda. The proof involves explicit construction
of a tilting object on the B-side, and comparison with a specific
basis of Lefschetz thimbles on the A-side.
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1. Introduction

1.1. Berglund–Hübsch mirror symmetry

Suppose f : Cn → C is a polynomial with an isolated singularity at the ori-
gin. This paper is concerned with two A∞-categories one can naturally asso-
ciate to such an object: the Fukaya–Seidel category F(f) as defined in [20]
(the ‘A-model’), which categorifies the intersections of vanishing cycles in
the Milnor fibre of a Morsification of f ; and the (dg-)category mf(Cn, f) of
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matrix factorisations of f (the ‘B-model’). Mirror symmetry predicts that
for certain pairs of singularities the A-model of one is equivalent to the B-
model of the other (after taking some symmetries into account), and vice
versa, and our main result confirms this conjecture for curve singularities
(n = 2).

More precisely, given an n× nmatrix A with non-negative integer entries
aij , one can define a polynomial w in C[x1, . . . , xn] by

w =

n
∑

i=1

n
∏

j=1

x
aij

j .

The Berglund–Hübsch transpose of w, denoted w̌, is then defined by

w̌ =

n
∑

i=1

n
∏

j=1

x̌
aji

j .

A polynomial is called invertible if it is quasi-homogeneous and of the form
w for some matrix A with non-zero determinant, such that both w and w̌
have isolated singularities at the origin.

Quasi-homogeneity means that there exist positive integral weights

d1, . . . , dn and h

such that

w(td1x1, . . . , t
dnxn) = thw(x1, . . . , xn)

for all t in C∗. The maximal symmetry group Γw of w is defined by

Γw = {(t1, . . . , tn+1) ∈ (C∗)n+1 : w(t1x1, . . . , tnxn) = tn+1w(x1, . . . , xn)}.

This group acts on Cn in the obvious way, and we consider the category
mf(Cn,Γw,w) of matrix factorisations which are equivariant with respect
to this group action. This is equivalent to considering graded matrix factori-
sations with respect to the maximal grading group for which w is homoge-
neous, namely the abelian group L freely generated by elements x⃗1, . . . , x⃗n
(the degrees of x1, . . . , xn respectively) and c⃗ (the degree of w) modulo the
relations

n
∑

j=1

aij x⃗j = c⃗ for all i.

The prediction of mirror symmetry is then:
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Conjecture 1. For any invertible polynomial w there is a quasi-equivalence
of pretriangulated A∞-categories

mf(Cn,Γw,w) ≃ F(w̌).

Remark 1.1. Our Fukaya categories are all implicitly completed with re-
spect to cones.

This conjecture appears in [5], which explains some of the background
on mirror symmetry for Landau–Ginzburg models. See also [12, Conjecture
1.2], and references therein. The underlying construction of mirror pairs
via the transpose operation originated with Berglund–Hübsch [2], and was
later extended by Krawitz [10], who replaced the Γw on the left-hand side of
Conjecture 1 with a subgroup. This requires the introduction of a ‘transpose’
group on the right-hand side, but to make this precise one would need a
rigorous definition of an orbifold Fukaya–Seidel category which is currently
out of reach [5, Problem 3].

Recall that the derived category of singularities of a stack X0 is defined
to be the quotient

Db
sing(X0) := Db(X0)/Perf(X0)

of the derived category of coherent sheaves on X0 by the category of perfect
complexes (those complexes quasi-isomorphic to complexes of vector bun-
dles). Orlov [13, Theorem 39] showed that when X0 is a hypersurface in a
regular scheme, its singularity category can be expressed in terms of matrix
factorisations of the defining equation. This can be extended to stacks [15,
Proposition 3.19] and in our setting we obtain an equivalence of triangulated
categories

(1) HMF(C2,Γw,w) → Db
sing([w

−1(0)/Γw]),

where HMF(C2,Γw,w) denotes the cohomology category of mf(C2,Γw,w).
Conjecture 1 therefore relates the algebraic geometry of the singularity w
to the symplectic topology of the singularity w̌.

Our main result is:

Theorem 1. Conjecture 1 holds when n = 2, i.e. for curve singularities.

As a by-product of our proof we also show:
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Theorem 2 ([12, Conjecture 1.4, n = 2]). For every two-variable invert-
ible polynomial w the category mf(C2,Γw,w) has a tilting object, meaning an
object E satisfying Endi(E) = 0 for all i ̸= 0 and such that hom•(E , X) ≃ 0
implies X ∼= 0.

1.2. Proof outline

Invertible polynomials have been classified Kreuzer–Skarke [11] and are
known to be Thom–Sebastiani sums of atomic polynomials of the follow-
ing three types:

• Fermat, or type Ap−1: w = xp

• chain: w = xp1

1 x2 + · · ·+ x
pn−1

n−1 xn + xpn

n

• loop: w = xp1

1 x2 + · · ·+ x
pn−1

n−1 xn + xpn

n x1.

Example 1.2. A sum of Fermat polynomials is called Brieskorn–Pham,
and Conjecture 1 was established for these polynomials, for all values of n,
by Futaki–Ueda [5, 6].

Example 1.3. The Dk singularity corresponds to the polynomial x21x2 +
xk−1
2 of chain type. Futaki and Ueda also proved the conjecture for these

singularities [7] (where the Dk polynomial is on the A-side), as well as for
Thom–Sebastiani sums of Brieskorn–Pham and type D polynomials.

We restrict attention to n = 2, and use variables x and y rather than xi,
and p and q in place of pi. By the above classification we need to deal with
the following cases:

• Brieskorn–Pham: w = xp + yq, w̌ = x̌p + y̌q

• chain: w = xpy + yq, w̌ = x̌p + x̌y̌q

• loop: w = xpy + xyq, w̌ = x̌py̌ + x̌y̌q.

We treat all three families in a uniform way, and obtain new proofs of the
results of Futaki–Ueda for the two-variable Brieskorn–Pham and type D
(chain, q = 2) singularities. We shall always assume that p and q are at least
2. In the Brieskorn–Pham and chain cases these inequalities are necessary
in order for the origin to be a critical point of both w and w̌, whilst if p or
q is 1 in the loop case then w and w̌ can be reduced to x2 + y2 and x̌2 + y̌2

by a change of variables.
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The general strategy of proof is familiar: we match up explicit collections
of generators on the two sides. Concretely, on the A-side we compute the
directed A∞-category A associated to a basis of vanishing cycles in the
Milnor fibre of w̌. Seidel [20, Theorem 18.24] famously showed that after
taking twisted complexes we obtain a quasi-equivalence

TwA → F(w̌),

and readers unfamiliar with Fukaya–Seidel categories can take this as a
definition of F(w̌). The number of vanishing cycles in the basis, i.e. the
Milnor number of the singularity, is given by

(p− 1)(q − 1)

in the Brieskorn–Pham case,

pq − p+ 1 = (p− 1)(q − 1) + (q − 1) + 1

in the chain case, and

pq = (p− 1)(q − 1) + (p− 1) + (q − 1) + 1

in the loop case. These quantities, and the reasons for expressing them in
this way, will fall out of our computations.

On the B-side we identify a collection of objects in mf(C2,Γw,w) whose
corresponding full subcategory B is quasi-equivalent to A. Since the matrix
factorisation category is already pretriangulated we obtain a functor

TwB → mf(C2,Γw,w),

and by a generation result (see Lemma 2.16 and Remark 2.17) this becomes
a quasi-equivalence after taking the idempotent completion. Our calcuations
will actually show that the objects in B form a full exceptional collection so
by [20, Remark 5.14] the categories are in fact already idempotent complete.
Putting everything together we obtain a chain of quasi-equivalences

F(w̌) ≃ TwA ≃ TwB ≃ mf(C2,Γw,w),

proving Theorem 1. The sum of the objects in B gives the tilting object of
Theorem 2.

The choice of generators on the B-side is fairly natural; the main dif-
ficulty in proving Theorem 1 is to construct a Morsification and basis of
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vanishing paths for w̌ such that the category A built from the correspond-
ing vanishing cycles matches up with B. In order to do this systematically
we make a preliminary perturbation of w̌ by subtracting εx̌y̌ for small posi-
tive real ε. This has Morse critical points but not, in general, distinct critical
values — following a suggestion of Yankı Lekili, we call this a resonant Mor-
sification. The central fibre is nodal and upon passing to a nearby regular
fibre the nodes are smoothed to thin necks, each supporting a vanishing cycle
as the waist curve. These cycles naturally pair up with the B-side generators
supported along components of w−1(0).

Understanding the remaining vanishing cycles, mirror to sheaves sup-
ported at the origin in w−1(0), requires most of the work. There is an ob-
vious ‘real’ vanishing cycle, and by acting by roots of unity on the x̌- and
y̌-coordinates we obtain curves which are almost the other vanishing cycles.
The problem is that they live in different regular fibres, and carrying them
to the same fibre requires explicit analysis of the parallel transport equa-
tion on the thin neck regions. The resulting vanishing paths overlap each
other, so we carefully perturb them to reduce to a small set of transverse
intersections, and then eliminate these intersections by large deformations
of the paths which do not affect the vanishing cycles. Finally we modify
the vanishing cycles by Hamiltonian perturbations to resolve the remaining
ambiguities in their intersection pattern.

We end this discussion by pointing out recent work of Hirano and Ouchi
[8], which constructs semi-orthogonal decompositions of matrix factorisation
categories for sums of polynomials which are only partially decoupled (non-
Thom–Sebastiani). In particular, this gives an approach to understanding
the B-model for chain polynomials, and Hirano–Ouchi show that in this case
the category has a full exceptional collection whose size matches the Mil-
nor number of the Berglund–Hübsch transpose, providing further evidence
for Conjecture 1 in higher dimensions. Shortly after the present paper ap-
peared on arXiv, Aramaki and Takahashi gave an explicit full exceptional
collection for chain polynomials, and showed that the Euler characteristics
of the morphism complexes match the intersection form for a specific choice
of vanishing cycles on the mirror, proving the chain case of Conjecture 1 at
the level of Grothendieck groups [1, Corollary 3.8].

1.3. Structure of the paper

We first consider the case of loop polynomials in detail, describing the B-
model in Section 2 and the A-model in Section 3, culminating in proofs of
Theorem 2 and Theorem 1 (in the loop case) respectively. In Sections 4 and 5
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we describe the minor modifications needed to deal with chain polynomials,
and finally in Section 6 we summarise the further modifications needed for
Brieskorn–Pham polynomials. We emphasise that these modifications are
essentially just simplifications of the argument — the general approach is
identical and all of the ingredients are contained in the loop case.
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2. B-model for loop polynomials

2.1. Graded matrix factorisations

Our goal in this section is to understand the category mf(C2,Γw,w = xpy +
xyq) of equivariant matrix factorisations for the loop polynomial. Recall that
here p and q are assumed to be at least 2. We begin by briefly reviewing the
definition, following [7]. As mentioned in Section 1.1, we shall encode equiv-
ariance as respect for the grading by the abelian group L freely generated
by elements x⃗, y⃗ and c⃗ modulo the relations

px⃗+ y⃗ = x⃗+ qy⃗ = c⃗.

Equivalently, L is the quotient of Z2 by the subgroup generated by (p−
1, 1− q): the elements x⃗, y⃗ and c⃗ correspond to (1, 0), (0, 1) and (p, 1) =
(1, q) respectively. Note that the quotient L/Zc⃗ is isomorphic to Z/(pq − 1),
generated by x⃗ or equivalently by y⃗ = −px⃗.

Let S denote the L-graded algebra C[x, y] in which x has degree x⃗ and
y has degree y⃗. The polynomial w = xpy + xyq is a homogeneous element
of degree c⃗, and we write R for the quotient S/(w). Given an L-graded
R- or S-module M , and an element l of L, we write M(l) for the module
obtained from M by shifting the degree of each element downwards by l.
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We shall use subscripts to denote L-graded pieces, so that M(l)i = Mi+l

and Sx⃗ = k · x for example. Note that our notation for R and S is consistent
with Futaki–Ueda [7], but opposite to that of Dyckerhoff [4].

By an L-graded matrix factorisation of W we mean a sequence

K• = (· · · → Ki ki

−→ Ki+1 ki+1

−−→ Ki+2 → · · · )

of L-graded free S-modules of finite rank such that K•[2] is identified with
K•(c⃗) — i.e. Ki+2 with Ki(c⃗) and ki+2 with ki(c⃗) for all i — and such that
under these identifications the composition of any two consecutive maps
in the sequence is multiplication by w. A finitely generated L-graded R-
module M gives rise to a matrix factorisation by taking a free resolution,
which eventually stabilises (becomes 2-periodic to the left, up to shifting the
L-grading by c⃗ every two terms), then extending this 2-periodic part indef-
initely to the right, and replacing the free R-modules by the corresponding
free S-modules; see [4, Sections 2.1 and 2.2]. This is the stabilisation of M .

The set of L-graded matrix factorisations forms a Z-graded dg-category
mf(C2,Γw,w) as follows: homi(K•, H•) comprises sequences (f• : K• →
H•[i]) satisfying f•[2] = f•(c⃗), the differential

d : homi(K•, H•) → homi+1(K•, H•)

is given by [4, Definition 2.1], namely

df = h ◦ f − (−1)if ◦ k,

and composition is component-wise. We shall write Homi for the degree i
cohomology of hom•.

Finitely generated L-graded R-modules correspond to coherent sheaves
on the stack [w−1(0)/Γw] and this gives a natural equivalence between
Db

sing([w
−1(0)/Γw]) and the derived category of singularities of graded R-

modules

Db
sing(grR) := Db(grR)/Perf(grR),

where Perf now refers to complexes of projective modules (Db(grR) is
the usual derived category of finitely-generated L-graded R-modules). The
equivalence (1) then becomes an equivalence

(2) HMF(C2,Γw,w) → Db
sing(grR).
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Stabilisation of a module gives an inverse to this equivalence, and we will
frequently switch between talking about matrix factorisations, modules, and
sheaves on [w−1(0)/Γw].

2.2. The basic objects

The stack [w−1(0)/Γw] has three components: the lines x = 0 and y = 0 and
the curve xp−1 + yq−1 = 0. For brevity we will denote xp−1 + yq−1 by w, so
that w = xyw. The matrix factorisations corresponding to the structure
sheaves of these components are

Kx
• = (· · · → S(−c⃗)

yw
−−→ S(−x⃗)

x
−→ S → · · · ),

Ky
• = (· · · → S(−c⃗)

xw
−−→ S(−y⃗)

y
−→ S → · · · ),

and

Kw
• = (· · · → S(−c⃗)

xy
−→ S(−c⃗+ x⃗+ y⃗)

w
−→ S → · · · )

respectively, obtained by applying the stabilisation procedure of Section 2.1
to the L-graded R-modules R/(x), R/(y) and R/(w). In each case, the third
of the three terms written lies in degree 0 within the sequence. We will be
particularly interested in the shifts

iKx = Kx((i+ 1− p)x⃗) for i = 1, . . . , p− 1

and

jKy = Kx((j + 1− q)y⃗) for j = 1, . . . , q − 1

of the Kx and Ky objects.
The unique singular point of the stack is the origin, and the other main

objects we will be interested in are L-grading shifts of the structure sheaf of
its fattenings. Specifically, for i = 1, . . . , p− 1 and j = 1, . . . , q − 1 let i,jK0

•

be the matrix factorisation

S(x⃗+ y⃗) S(x⃗+ (j + 1)y⃗) S(c⃗+ x⃗+ y⃗)

S(−c⃗+ (i+ 1)x⃗+ (j + 1)y⃗) S((i+ 1)x⃗+ y⃗) S((i+ 1)x⃗+ (j + 1)y⃗)

yj

−xi

· · ·
⊕

xyq−j

xi

⊕ ⊕

· · ·xp−iy

xyq−j

−xp−iy

yj

corresponding to the R-module R((i+ 1)x⃗+ (j + 1)y⃗)/(xi, yj). This stabili-
sation can be computed by starting with the obvious first steps of an R-free
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resolution

R(x⃗+ (j + 1)y⃗)⊕R((i+ 1)x⃗+ y⃗)
(xi yj )
−−−−→ R((i+ 1)x⃗+ (j + 1)y⃗)

and extending by hand. Shifts of the object R/(x, y) appear in the work
of Dyckerhoff [4, Section 4.1], who calls it kstab (k is the ground field), and
Seidel [21, Section 11]; here the resolution is described abstractly as a Koszul
complex. A concrete example close to our setting is given by Futaki–Ueda
[7, Section 4].

Remark 2.1. The motivation for considering these objects is Orlov’s result
[13, Theorem 40(ii)], extended to the present setting in [8, Theorem B.2],
which gives a semi-orthogonal decomposition

Db
sing(grR) = ⟨C, Db(Y )⟩,

where Y is the projectivised stack [(w−1(0) \ {0})/Γw] and C is the full sub-
category on a certain collection of grading shifts of the structure sheaf of the
origin. In our case Y is the zero locus of w inside the weighted projective line
ProjS, and it consists of three points: one is smooth and its structure sheaf
corresponds to Kw; the other two are stacky and their structure sheaves,
twisted by characters of their isotropy groups, are given by the iKx and
jKy. We replace C by the related category ⟨i,jK0⟩ to give the right pattern
of morphisms.

Let B be the full A∞-subcategory of mf(C2,Γw,w) on the pq objects

{i,jK0,
iKx[3],

jKy[3], Kw[3]}i=1,...,p−1; j=1,...,q−1.

The reason for the shifts is so that all morphisms turn out to have degree
0. In Sections 2.3 to 2.7 we compute the morphisms between these objects
in the cohomology category HMF(C2,Γw,w). The reader willing to take
these calculations on trust may skip immediately to Section 2.8, where we
assemble the results and deduce that B is quasi-equivalent to a specific quiver
algebra with relations, with formal A∞-structure. Then in Section 2.9 we
address the issue of generation, and show that TwB → mf(C2,Γw,w) is a
quasi-equivalence. We conclude that the sum of the objects in B is a tilting
object for mf(C2,Γw,w), proving Theorem 2 for loop polynomials.
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2.3. Morphisms between Kx’s, between Ky’s,
and from Kw to itself

We wish to compute the morphisms between the basic objects in the co-
homology category HMF(C2,Γw,w), and a priori this involves taking the
cohomology of the morphism complexes described in Section 2.1. Thinking
of matrix factorisations as stabilisations of R-modules, this corresponds to
computing module Ext’s by (projectively) resolving both the domain and
codomain. One might expect the latter to be unnecessary, and Buchweitz [3,
Section 1.3, Remark (a)] showed that this is indeed the case: given L-graded
R-modules M and M ′ with stabilisations K and K ′, we have

Hom•

HMF(C2,Γw,w)(K,K ′) ∼= H•
(

HomgrR(K ⊗S R,M ′)
)

.

The Hom on the right-hand side is taken component-wise on the complex
K ⊗S R.

For any l in L we therefore have

Hom•(Kx, Kx(l)) ∼= H•
(

· · · → (R/(x))l
x
−→ (R/(x))l+x⃗

yw
−−→ (R/(x))l+c⃗ → · · ·

)

,

where the first of the three written terms now lives in degree 0 (we have taken
L-graded module homomorphisms from Kx

• ⊗S R into R(l)/(x)). This gives

Hom2m(Kx, Kx(l)) ∼= (R/(x, yw))mc⃗+l

for any integer m, whilst Hom2m+1(Kx, Kx(l)) = 0.
One can easily compute a basis of Hom2m by hand in this situation,

but since we will repeatedly make similar arguments we record the following
general facts relating gradings and divisibility:

Lemma 2.2. Suppose that a and b are integers satisfying a ≤ p− 1 and
b ≤ q − 1, and that s is an element of S (or R) which is homogeneous modulo
c⃗, of degree ax⃗+ by⃗ mod c⃗. Then:

(i) s lies in the ideal (xa, yq−1+b) ∩ (xp−1+a, yb).

(ii) If a ≤ p− 2 then s also lies in (xa, yq+b).

(iii) If b ≤ q − 2 then s also lies in (xp+a, yb).
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Proof. Assume a ≤ p− 1 and b ≤ q − 1, and let xuyv be a monomial in s,
so that

(3) (u− a)x⃗+ (v − b)y⃗ ≡ 0 mod c⃗.

We claim first that u ≥ a or v ≥ q − 1 + b, so suppose for contradiction that
neither holds. Then

−(p− 1) ≤ u− a ≤ −1 and − (q − 1) ≤ v − b ≤ q − 2,

so (u− a)− p(v − b) is non-zero (by reducing modulo p) and lies strictly
between ±(pq − 1). Substituting y⃗ = −px⃗ mod c⃗ into (3) tells us that (u−
a)− p(v − b) ≡ 0 mod (pq − 1), which gives the desired contradiction, and
we deduce that u ≥ a or v ≥ q − 1 + b, and hence that s lies in (xa, yq−1+b).
The other arguments are analogous. □

Lemma 2.3. Suppose s is an element of degree 0 mod c⃗. Then the non-
constant terms in s lie in the ideal (xpq−1, xpy, xyq, ypq−1).

Proof. Let xuyv be a non-constant monomial in s. If u = 0 (or v = 0) then
one easily obtains v ≥ pq − 1 (respectively u ≥ pq − 1), so suppose now that
u and v are both positive. We have u− pv ≡ 0 mod (pq − 1), so if u < p
then we must have u− pv ≤ −(pq − 1) and hence v ≥ q. □

From these we conclude:

Lemma 2.4. In HMF(C2,Γw,w) the objects 1Kx, . . . ,
p−1Kx are excep-

tional (the endomorphisms of each are just the scalar multiples of the iden-
tity) and pairwise orthogonal.

Proof. By the above computation the morphisms from iKx to IKx are given
by the elements of R/(x, yw) of degree (I − i)x⃗ mod c⃗. If I − i > 0 then
Lemma 2.2(ii) tells us that all such elements lie in (x, yq) = (x, yw), and
hence vanish in the quotient. If I − i < 0 then the same argument applies but
using Lemma 2.2(i) instead, after rewriting the degree as (p+ I − i)x⃗+ y⃗
mod c⃗. Finally, if I = i then Lemma 2.3 tells us that only constants survive
in the quotient. □

Likewise we have:



✐

✐

“2-Smith” — 2021/2/2 — 1:11 — page 1527 — #13
✐

✐

✐

✐

✐

✐

Homological B–HMS for curve singularities 1527

Lemma 2.5. The objects

1Ky, . . .
q−1Ky

are exceptional and pairwise orthogonal.

Similar calculations give

Hom2m(Kw, Kw) ∼= (R/(xy,w))mc⃗

and Hom2m+1(Kw, Kw) = 0, so by Lemma 2.3 we deduce:

Lemma 2.6. The object Kw is exceptional.

2.4. Morphisms between Kx’s, Ky’s, and Kw

For all l and m we have

Hom2m+1(Kx, Ky(l)) ∼= (R/(x, y))mc⃗+l+x⃗

whilst Hom2m(Kx, Ky(l)) = 0. This gives:

Lemma 2.7. Each iKx is orthogonal to each jKy.

Proof. For morphisms iKx to jKy we need to show that there are no (non-
zero) elements in R/(x, y) of degree (1− i)x⃗+ jy⃗ mod c⃗, and this follows
from Lemma 2.2(i). The argument is similar for morphisms in the opposite
direction. □

Analogous computations yield

Hom2m+1(Kx(l), Kw) ∼= (R/(x,w))mc⃗−l+x⃗

and Hom2m(Kx(l), Kw) = 0 for all l and m. Similarly

Hom2m+1(Kw, Kx(l)) ∼= (R/(x,w))(m+1)c⃗+l−y⃗

whilst Hom2m(Kw, Kx(l)) = 0.
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Likewise

Hom2m+1(Ky(l), Kw) ∼= (R/(y, w))mc⃗−l+y⃗,

Hom2m+1(Kw, Ky(l)) ∼= (R/(y, w))(m+1)c⃗+l−x⃗,

Hom2m(Ky(l), Kw) = Hom2m(Kw, Ky(l)) = 0.

In particular:

Lemma 2.8. For each i and j the objects iKx and jKy are orthogonal
to Kw.

Proof. For orthogonality of iKx and Kw we need to check that elements of
degree (p− i)x⃗ or (i+ 1)x⃗ modulo c⃗ lie in the ideal (x,w) = (x, yq−1). This
follows immediately from Lemma 2.2(i), except that for (i+ 1)x⃗ with i =
p− 1 we must first rewrite the degree as x⃗+ (q − 1)y⃗ mod c⃗. The argument
for jKy is analogous. □

Remark 2.9. These results match our expectation from Remark 2.1 that
the objects iKx,

jKy and Kw correspond to structure sheaves of disjoint
points in the projective stack Y , twisted by characters of their isotropy
groups, and hence should be exceptional and orthogonal.

2.5. Morphisms between Kw and K0’s

We now fix (i, j) with 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1, and see that

Hom•(Kw,
i,jK0) ∼= H•

(

· · · → (R/(xi, yj))l
w
−→ (R/(xi, yj))l+c⃗−x⃗−y⃗

xy
−→ (R/(xi, yj))l+c⃗ → · · ·

)

,

where l = (i+ 1)x⃗+ (j + 1)y⃗. The terms in odd positions in the complex
have degree ix⃗+ jy⃗ mod c⃗ so by Lemma 2.2(i) they lie in (xi, yj) and there-
fore vanish. The same holds in even positions after rewriting the degree
(i+ 1)x⃗+ (j + 1)y⃗ mod c⃗ as (i+ 1− p)x⃗+ jy⃗ mod c⃗.

In the other direction, Hom•(i,jK0, Kw) is the cohomology of the com-
plex

(R/(w))−c⃗−x⃗−y⃗ (R/(w))−x⃗−(j+1)y⃗ (R/(w))−x⃗−y⃗

(R/(w))−(i+1)x⃗−(j+1)y⃗ (R/(w))−(i+1)x⃗−y⃗ (R/(w))c⃗−(i+1)x⃗−(j+1)y⃗

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy
⊕ ⊕

· · ·
xi

yj

−xi

xyq−j
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For each m, Hom2m(i,jK0, Kw) is therefore given by

Ker

(

xyq−j xi

−xp−iy yj

)

modulo Im

(

yj −xi

xp−iy xyq−j

)

in (R/(w))(m−1)c⃗−x⃗−y⃗ ⊕ (R/(w))mc⃗−l. Ignoring gradings for a second, this
kernel is spanned by those f , g in R such that there exist h, k in R with

xyq−jf + xig = (xp−1 + yq−1)h and − xp−iyf + yjg = (xp−1 + yq−1)k.

Subtracting xi times the latter from yj times the former we see that h = xh′

and k = yk′ for some polynomials h′ and k′, and that f = yj−1h′ − xi−1k′.
Plugging this back in gives g = xp−ih′ + yq−jk′, so Hom2m(i,jK0, Kw) is
parametrised by

(

yj−1 −xi−1

xp−i yq−j

)(

h′

k′

)

modulo Im

(

yj −xi

xp−iy xyq−j

)

(and modulo w),

with h′ ∈ R(m−2)c⃗+(q−j)y⃗ and k′ ∈ R(m−2)c⃗+(p−i)x⃗. From this description it
is clear that h′ and k′ only matter modulo (y, w) = (y, xp−1) and (x,w) =
(x, yq−1), but h′ and k′ must lie in these ideals by Lemma 2.2(i), so we
conclude that Hom2m(i,jK0, Kw) vanishes.

Similarly, Hom2m+1(i,jK0, Kw) is parametrised by

(

yq−j−1 xi

−xp−i−1 yj

)(

h′

k′

)

modulo Im

(

xyq−j xi

−xp−iy yj

)

(and w),

with h′ ∈ Rmc⃗−x⃗−(j+1)y⃗ and k′ ∈ Rmc⃗−(i+1)x⃗−y⃗. Obviously k′ can be elimi-
nated and we’re left with

Hom2m+1(i,jK0, Kw) ∼= (R/(xy,w))(m−1)c⃗

(

yq−j−1

−xp−i−1

)

,

and by Lemma 2.3 (R/(xy,w))(m−1)c⃗ has only constants. The upshot is:

Lemma 2.10. In HMF(C2,Γw,w) the only morphisms between Kw and
i,jK0 are from the latter to the former, spanned by (yq−j−1,−xp−i−1) in
degree 3 in the above complex.
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2.6. Morphisms between Kx’s and Ky’s and K0’s

For each I we have that Hom•(IKx,
i,jK0) vanishes since again the whole

complex is zero by Lemma 2.2(i). Morphisms the other way are computed
by the complex

(R/(x))−2c⃗+Ix⃗ (R/(x))−c⃗+Ix⃗−jy⃗ (R/(x))−c⃗+Ix⃗

(R/(x))−c⃗+(I−i)x⃗−jy⃗ (R/(x))−c⃗+(I−i)x⃗ (R/(x))(I−i)x⃗−jy⃗

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy
⊕ ⊕

· · ·
xi

yj

−xi

xyq−j

All differentials vanish except yj , which is injective, so we get

Hom2m(i,jK0,
IKx) ∼= (R/(x, yj))(m−2)c⃗+Ix⃗,

Hom2m+1(i,jK0,
IKx) ∼= (R/(x, yj))(m−1)c⃗+(I−i)x⃗.

The former is zero by Lemma 2.2(i), whilst the latter is zero unless I = i,
when it contains only constants, by the argument used in the proof of Lemma
2.4. From this we get:

Lemma 2.11. In HMF(C2,Γw,w) there are no morphisms from IKx to
i,jK0. There are no morphisms in the other direction unless I = i, in which
case the morphism space is spanned by (0, 1) in degree 3 in the above complex.
Similarly for morphisms between JKy and i,jK0.

2.7. Morphisms between K0’s

The complex computing Hom•(i,jK0,
I,JK0) is

(R/(xI , yJ))−c⃗+Ix⃗+Jy⃗ (R/(xI , yJ))Ix⃗+(J−j)y⃗ (R/(xI , yJ))Ix⃗+Jy⃗

(R/(xI , yJ))(I−i)x⃗+(J−j)y⃗ (R/(xI , yJ))(I−i)x⃗+Jy⃗ (R/(xI , yJ))c⃗+(I−i)x⃗+(J−j)y⃗

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy
⊕ ⊕

· · ·
xi

yj

−xi

xyq−j

By Lemma 2.2(i) all of the terms vanish except the bottom term in the even
positions, giving

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))(I−i)x⃗+(J−j)y⃗,

Hom2m+1(i,jK0,
I,JK0) = 0.
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If I < i then we can rewrite (I − i)x⃗+ (J − j)y⃗ as (p+ I − i)x⃗+ (J − j +
1)y⃗ modulo c⃗ and apply Lemma 2.2(i) to see that Hom2m vanishes. Likewise
if J < j.

Now assume that I ≥ i and J ≥ j. By Lemma 2.2(i), any element of
degree (I − i)x⃗+ (J − j)y⃗ mod c⃗ is divisible by xI−iyJ−j modulo (xI , yJ).
So we can rewrite Hom2m as

(R/(xi, yj))0 · x
I−iyJ−j ,

and by Lemma 2.3 the only surviving term is C · xI−iyJ−j . We deduce:

Lemma 2.12. For all (i, j) and (I, J) we have that

Hom•(i,jK0,
I,JK0) ∼=

{

C · xI−iyJ−j if I ≥ i, J ≥ j and • = 0

0 otherwise.

2.8. The total endomorphism algebra of the basic objects

Combining the results of Sections 2.3 to 2.7 we see that in HMF(C2,Γw,w)
the basic objects iKx,

jKy, Kw and i,jK0 are all exceptional, and that the
morphisms between distinct objects are spanned by:

• (0, 1) in degree 3 from each i,jK0 to iKx

• (0, 1) in degree 3 from each i,jK0 to jKy

• (yq−j−1,−xp−i−1) in degree 3 from each i,jK0 to Kw

• xI−iyJ−j in degree 0 from i,jK0 to I,JK0 whenever I ≥ i and J ≥ j.

We immediately see that morphisms between the i,jK0 compose in the ob-
vious way so that their total endomorphism algebra is the tensor product
Ap−1 ⊗Aq−1 of the path algebras of the Ap−1- and Aq−1-quivers (this is the
path algebra of the obvious product quiver subject to the relations which
say that the squares commute). In fact, we have:

Theorem 2.13. The cohomology-level total endomorphism algebra of the
objects iKx[3],

jKy[3], Kw[3] and
i,jK0 in B is the path algebra of the quiver-

with-relations described in Fig. 1, with all arrows living in degree zero. In
particular, B is a Z-graded A∞-category concentrated in degree 0, so is in-
trinsically formal.
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· · ·

· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i,jK0

iKx[3]

jKy[3]

Kw[3]

Relations: (i) Squares commute; (ii) Dashed compositions vanish

Figure 1: The quiver describing the category B for loop polynomials.

Proof. To prove the cohomology statement we just need to check that the
morphisms compose correctly, namely that for I ≥ i and J ≥ j the compo-
sitions

Hom3(I,JK0, Kw)⊗Hom0(i,jK0,
I,JK0) → Hom3(i,jK0, Kw),

Hom3(i,JK0,
iKx)⊗Hom0(i,jK0,

i,JK0) → Hom3(i,jK0,
iKx),

Hom3(I,jK0,
jKy)⊗Hom0(i,jK0,

I,jK0) → Hom3(i,jK0,
jKy)

send generators to generators. This is immediate from the explicit descrip-
tions of the morphisms above after noting that the generator

R((i+ 1)x⃗+ (j + 1)y⃗)/(xi, yj)
xI−iyJ−j

−−−−−−→ R((I + 1)x⃗+ (J + 1)y⃗)/(xI , yJ)

of Hom0(i,jK0,
I,JK0) induces the maps

(

1 0
0 xI−iyJ−j

)

in even degree and

(

yJ−j 0
0 xI−i

)

in odd degree

between the matrix factorisations (the degree 3 matrix is the only one we
actually need).
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The final claim, about the A∞-structure, follows from the fact that a
directed algebra concentrated in degree zero is formal — there is no room
for non-trivial higher A∞-operations. □

2.9. Generation

We have now found the quasi-isomorphism type of the full A∞-subcategory
B ⊂ mf(C2,Γw,w) on the basic objects iKx,

jKy, Kw,
i,jK0. The goal of this

subsection is to prove:

Proposition 2.14. The functor

Π(TwB) → Π(mf(C2,Γw,w))

is a quasi-equivalence, where Π denotes A∞- (or dg-) idempotent completion.

Remark 2.15. As mentioned in Section 1.2, the Π’s can be removed from
this statement (and this is what we need to prove Theorem 1) using the fact
that the objects in B form a full exceptional collection in TwB, so that the
category is already idempotent complete by [20, Remark 5.14].

For a triangulated category C and a collection V of objects in C, let ⟨V ⟩
denote the smallest full triangulated subcategory of C which contains the
objects in V and is closed under isomorphism, and let superscript π denote
idempotent completion. We’ll say that V split-generates C if the functor
⟨V ⟩π → Cπ induced by the obvious inclusion of ⟨V ⟩ in C is an equivalence.

The content of Proposition 2.14 is that the set

V = {iKx,
jKy, Kw,

i,jK0}

split-generates C = HMF(C2,Γw,w). The key to establishing this is the fol-
lowing application of a result of Polishchuk–Vaintrob:

Lemma 2.16 ([16, Proposition 2.3.1]). The category HMF(C2,Γw,w)
is split-generated by the L-grading shifts of the stabilisation of the module
R/(x, y).

Remark 2.17. The cited result is a modification of the non-equivariant
case, previously obtained by several authors including Schoutens [17], Dyck-
erhoff [4, Corollary 5.3], Seidel [21, Lemma 12.1] (building on work of Orlov
[14]), and Murfet [9, Proposition A.2].
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Proof of Proposition 2.14. By Lemma 2.16 it suffices to show that under
the equivalence (2) the category ⟨V ⟩ contains all of the L-grading shifts of
R/(x, y). In other words, it is enough to prove that for all l in L the L-graded
R-module R(l)/(x, y) can be built from the objects

R((i+ 1− p)x⃗)/(x), R((j + 1− q)y⃗)/(y), R/(w),

and R((i+ 1)x⃗+ (j + 1)y⃗)/(xi, yj)

with 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1, by taking cones and shifts (in the tri-
angulated category sense, rather than in the L-grading). Since [2] is equiv-
alent to (c⃗), we actually only need consider l in a set of representatives of
L/Zc⃗.

For any 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1 we have a morphism (of L-
graded R-modules)

(4) R(ix⃗+ jy⃗)/(xi−1, yj−1)
x
−→ R((i+ 1)x⃗+ jy⃗)/(xi, yj−1)

whose cone — which is just the cokernel in this case — is the module R((i+
1)x⃗+ jy⃗)/(x, yj−1). Both objects in (4) lie in V unless i or j is 1, in which
case the offending objects are zero, so we conclude that this cone lies in ⟨V ⟩.
Similarly R((i+ 1)x⃗+ (j + 1)y⃗)/(x, yj) is in ⟨V ⟩, and hence

R((i+ 1)x⃗+ (j + 1)y⃗)/(x, y) ∼= Cone
(

R((i+ 1)x⃗+ jy⃗)/(x, yj−1)
y
−→ R((i+ 1)x⃗+ (j + 1)y⃗)/(x, yj)

)

is also in ⟨V ⟩. This gives (p− 1)(q − 1) of the pq − 1 objects we need.
Next consider the extension

0 → R((i+ 1)x⃗+ y⃗)/(x)
yj

−→ R((i+ 1)x⃗+ (j + 1)y⃗)/(x)

→ R((i+ 1)x⃗+ (j + 1)y⃗)/(x, yj) → 0.

The outer terms are in ⟨V ⟩ (the first is iKx[2] and the last is built from
R(ax⃗+ by⃗)/(x, y) for a = i+ 1 and b = 2, 3, . . . , j + 1 by taking cones), so
the middle term is in ⟨V ⟩. In particular, taking j = q − 1 we see that

R(ix⃗)/(x) = R((i+ 1)x⃗+ qy⃗)[−2]/(x)

lies in ⟨V ⟩. If i is at least 2 then R(ix⃗+ y⃗)/(x) = i−1Kx[2] is also in ⟨V ⟩,
and hence so is

R(ix⃗+ y⃗)/(x, y) ∼= Cone
(

R(ix⃗)/(x)
y
−→ R(ix⃗+ y⃗)/(x)

)

.
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One can make a similar argument with the roles of x and y interchanged to
construct R(x⃗+ jy⃗)/(x, y) when 2 ≤ j ≤ p− 1.

So far we have thus seen that R(ax⃗+ by⃗)/(x, y) lies in ⟨V ⟩ for 1 ≤ a ≤ p
and 1 ≤ b ≤ q, except for the cases (a, b) = (1, 1), (1, q) and (p, 1). If we can
fill in these missing three cases (the latter two are in fact equivalent — both
correspond to R(c⃗)/(x, y)) then we will have constructed shifts of R/(x, y)
by representatives of each class in L/Zc⃗, and will therefore be done.

To build R(x⃗+ y⃗)/(x, y) note that it is the cokernel of

R(x⃗)/(x)⊕R(y⃗)/(y)
( y x )
−−−→ R(x⃗+ y⃗)/(xy).

The two summands in the domain were constructed above, and the codomain
is Kw[1]. Finally, to get R(c⃗)/(x, y) observe that R/(x, y) is the cokernel of

(5) R(−y⃗)/(x, ypq−2)
y
−→ R/(x, ypq−1).

The domain can be built from R(−by⃗)/(x, y) for b = 1, . . . , pq − 2 by taking
cones, and these objects are all (up to repeated applications of [±2]) ones
that we have already constructed. The codomain, meanwhile, is given by

Cone
(

R(−(p− 1)c⃗)/(x)
ypq−1

−−−→ R/(x)
)

,

and the two terms inside the cone are p−1Kx[−2(p− 1)] and p−1Kx. This
means that both objects in (5) lie in ⟨V ⟩, and hence so does the cokernel
R/(x, y). Shifting by [2] gives the object R(c⃗)/(x, y) that we need. □

Remark 2.18. We proved that B generates mf(C2,Γw,w) by showing that
it generates the objects R(l)/(x, y), which split-generate the category, and
then invoking the fact that TwB is idempotent complete. The R(l)/(x, y)
themselves cannot possibly generate (as opposed to split-generate), for the
following reason: mf(C2,Γw,w) has a full exceptional collection of size pq, so
its Grothendieck group is free of rank pq, whereas the span of the R(l)/(x, y)
has rank at most |L/Zc⃗| = pq − 1.

As a corollary of Proposition 2.14, we obtain:

Theorem 2.19 (Theorem 2, loop polynomial case). The object

E :=

(

⊕

i=1,...,p−1
j=1,...,q−1

i,jK0

)

⊕

(

p−1
⊕

i=1

iKx[3]

)

⊕

(

q−1
⊕

j=1

jKy[3]

)

⊕ Kw[3]
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is a tilting object for mf(C2,Γw,w).

Proof. We need to show Endi(E) = 0 for all i ̸= 0 and that hom•(E , X) ≃ 0
implies X ∼= 0. The first statement follows immediately from Theorem 2.13,
whilst the second is a consequence of Proposition 2.14: if hom•(E , X) ≃ 0
then there are no non-zero morphisms from ⟨V ⟩π to X in HMF(C2,Γw,w),
which forces X to be quasi-isomorphic to 0. □

3. A-model for loop polynomials

3.1. A resonant Morsification

We are now interested in the polynomial w̌ = x̌py̌ + x̌y̌q as a map C2 → C.
To construct the category A we should Morsify w̌ by adding a small per-
turbation, fix a regular value ∗, then pick a distinguished basis of vanishing
paths (γ1, . . . , γN ) in the base C, where γi is a smooth embedded path from
∗ the ith critical value. We require that the γi are pairwise disjoint except
for their common initial point γi(0) = ∗, that the vectors γ̇i(0) in T∗C are
non-zero and distinct, and that the corresponding directions are in clockwise
order as i increases from 1 to N (we are free to choose the starting direction
for this clockwise ordering). We then consider the corresponding vanishing
cycles in the fibre Σ over ∗ (strictly we should take Σ to be the Liouville
completion of the Milnor fibre, but this is equivalent in our case), and de-
fine A to be the directed A∞-category on these cycles whose morphisms
and compositions in the allowed direction are given by those in the compact
Fukaya category F(Σ). Note that we are free to modify the vanishing cycles
by Hamiltonian isotopy in order to compute A up to quasi-equivalence.

In order to implement this, we first consider the perturbation

w̌ε := w̌ − εx̌y̌ = x̌y̌(x̌p−1 + y̌q−1 − ε)

of w̌, where ε is a small positive real number; in analogy with Section 2 we
shall denote x̌p−1 + y̌q−1 by w̌. We call this a resonant Morsification, since
its critical points are Morse but the critical values are not all distinct. In
fact, the critical points fall into four types:

(i) x̌p−1 = ε, y̌ = 0

(ii) x̌ = 0, y̌q−1 = ε

(iii) x̌ = y̌ = 0
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(iv) (x̌p−1, y̌q−1) = ε
pq−1(q − 1, p− 1).

The critical points of the types (i)–(iii) all lie over the critical value zero,
whilst for type (iv) the critical value is −x̌y̌ε(p− 1)(q − 1)/(pq − 1) so is
non-zero and lies on the ray through −x̌y̌.

We denote by (x̌+crit, y̌
+
crit) the unique positive real critical point of type

(iv), with corresponding critical value ccrit (this is negative real). Letting ζ
and η denote the roots of unity

ζ = e2πi/(p−1) and η = e2πi/(q−1),

the full set of type (iv) critical points is then given by

{(ζ lx̌+crit, η
my̌+crit) : 0 ≤ l ≤ p− 2, 0 ≤ m ≤ q − 2}.

The critical value corresponding to (ζ lx̌+crit, η
my̌+crit) is ζ

lηmccrit, so there are
gcd(p− 1, q − 1) critical points in each of these critical fibres.

We now fix our regular fibre Σ to be w̌−1
ε (−δ) where δ is a positive real

number much less than ε (in other words, we take ∗ = −δ). The condition
δ ≪ ε is to allow us to understand Σ as a smoothing of w̌−1

ε (0). For the
critical points of types (i)–(iii) we choose the vanishing path given by the
straight line segment from −δ to 0. For the critical point (ζ lx̌+crit, η

my̌+crit),
meanwhile, we define the preliminary vanishing path γl,m by following the
circular arc −δeiθ as θ increases from 0 to

θl,m := 2π

(

l

p− 1
+

m

q − 1

)

and then following the radial straight line segment from −ζ lηmδ to ζ lηmccrit.
As the name suggests, we will later modify these preliminary vanishing paths
(they currently do not form a distinguished basis since they intersect and
overlap each other), but they serve an important intermediate role.

Figure 2 shows the critical values of w̌ε, the vanishing path for the
type (i)–(iii) critical points, and the preliminary vanishing paths for (l,m) =
(0, 0), (1, 0) and (1, 2), all in the case (p, q) = (4, 6). We have slightly sepa-
rated the arcs for clarity — really they both have radius δ. Note that θl,m
may be greater than 2π, in which case γl,m covers more than a full circle, but
these paths are difficult to indicate on a diagram. Note also that different
values of (l,m) may give rise to different preliminary vanishing paths, even
if the critical values are the same.
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γ1,2

γ1,0

γ0,0

−δ 0

Figure 2: The critical values of w̌ε (crosses), the vanishing path for critical
value 0, and three of the preliminary vanishing paths, when (p, q) = (4, 6).

3.2. The zero-fibre and its smoothing Σ

The fibre of w̌ε over zero has three components: the lines {x̌ = 0} and {y̌ =
0}, and the smooth curve {w̌ = ε}. Schematically the picture is as in Fig.
3. The crosses denote transverse intersections between the components, and
the dotted line where the planes appear to meet is to indicate that they are
actually disjoint in C2 except for the intersection at the origin. In Σ, each of
the nodes is smoothed to a thin neck whose waist curve is the corresponding
vanishing cycle. We denote these vanishing cycles by lVy̌w̌,

mVx̌w̌ and Vx̌y̌

for l = 0, . . . , p− 2 and m = 0, . . . , q − 2, corresponding to critical points
(ζ lε1/(p−1), 0), (0, ηmε1/(q−1)) and (0, 0) respectively.

Remark 3.1. We can compute the genus and number of punctures of Σ
as follows. The punctures correspond to boundary components at infinity,
where the defining equation looks like x̌py̌ + x̌y̌q = 0. The lines {x̌ = 0} and
{y̌ = 0} each give rise to a boundary component, whilst {x̌p−1 + y̌q−1 = 0}
gives gcd(p− 1, q − 1) components. We deduce

# punctures of Σ = gcd(p− 1, q − 1) + 2.

The pq vanishing cycles form a basis for H1(Σ;Z), whose rank is

2g(Σ) + # punctures− 1,



✐

✐

“2-Smith” — 2021/2/2 — 1:11 — page 1539 — #25
✐

✐

✐

✐

✐

✐

Homological B–HMS for curve singularities 1539

x̌ = 0
y̌ = 0

w̌ = ε

p− 1

q − 1

Figure 3: The fibre w̌−1
ε (0) for loop polynomials.

so we obtain

g(Σ) =
1

2
(pq − gcd(p− 1, q − 1)− 1) .

If δ is chosen sufficiently small then the monodromy of parallel transport
around the circle of radius δ is supported in small neighbourhoods of these
p+ q − 1 curves, and is simply the product of the Dehn twists in them. It
is not strictly true that the monodromy is supported in these neighbour-
hoods, but as explained in [18, Section 19] it can be made so by a small
deformation of the fibration, which does not affect the categories and which
we will not explicitly notate. After deleting these neighbourhoods (and cor-
responding neighbourhoods in the other fibres) we may therefore trivialise
the fibration w̌ε over the disc of radius δ, and identify each fibre with the
curve Σ′ obtained from w̌−1

ε (0) by removing neighbourhoods of the critical
points marked in Fig. 3. Equivalently, we may think of Σ′ as being obtained
from Σ by removing the neck regions. Concretely, it consists of: a complex
line (the x̌-axis) with small balls around the origin and the (p− 1)th roots
of ε removed; a complex line (the y̌-axis) with small balls around the origin
and the (q − 1)th roots of ε removed; and a (p− 1)(q − 1)-fold cover of the
line {u+ v = ε} with small balls about (ε, 0) and (0, ε) removed, with the
covering map given by (u, v) = (x̌p−1, y̌q−1). All of the interesting parallel
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transport occurs in the neck regions which we have deleted, and is described
by ‘partial Dehn twists’ which we explicitly describe later in a local model.

3.3. The preliminary vanishing cycles

Let l,mV pr
0 denote the preliminary vanishing cycle in Σ corresponding to

the critical point (ζ lx̌+crit, η
my̌+crit) and the preliminary vanishing path γl,m.

The goal of this subsection is to describe these cycles, by a combination of
symmetry considerations and parallel transport computations.

Since w̌ε has real coefficients, we can temporarily view it as a function
R2 → R. This function has a local minimum at (x̌+crit, y̌

+
crit), where it attains

the value ccrit < 0. There are no critical values in the interval (ccrit, 0), so
the level sets w̌−1

ε (c) for c in this range have a component which is a smooth
loop encircling (x̌+crit, y̌

+
crit), and which shrinks down to this point as c ↓ ccrit.

As c ↑ 0 this loop, which we’ll denote by Λc, converges to the boundary of
the region in the upper right quadrant of R2 that is bounded on the left by
x̌ = 0, below by y̌ = 0, and above and to the right by w̌ = ε. We’ll denote
this piecewise smooth limiting loop by Λ0.

Now return from this purely real discussion to the full complex picture.
Symplectic parallel transport between the fibres of w̌ε over a path c(t) is
described by the ODE

(6)

(

˙̌x
˙̌y

)

=
ċ

|dw̌ε|2

(

∂x̌w̌ε

∂y̌w̌ε

)

.

This obviously preserves the real part of the fibre when c moves along the
real axis, as it did in the previous paragraph, so we see that the loops Λc are
carried to one another by parallel transport. In particular, Λ−δ is exactly
the preliminary vanishing cycle 0,0V pr

0 .
Just as we viewed Σ as a smoothing of w̌−1

ε (0), we shall understand
0,0V pr

0 = Λ−δ as a smoothing of Λ0. In Σ′ it comprises: the real line segment
joining the deleted ball about 0 to the deleted ball about ε1/(p−1) in the x̌-
axis; the real line segment joining the deleted ball about 0 to the deleted ball
about ε1/(q−1) in the y̌-axis; the positive real lift of the line segment joining
the deleted balls about (ε, 0) and (0, ε) in {u+ v = ε}, under the covering
map (x̌, y̌) 7→ (u, v) described above. It enters three of the neck regions,
namely those corresponding to 0Vy̌w̌,

0Vx̌w̌ and Vx̌y̌, in each of which it is
given by the positive real locus in (x̌, y̌)-coordinates. This is indicated in
Fig. 4, where the deleted balls are indicated by the grey blobs and the three
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segments of 0,0V pr
0 are respectively the the horizontal dash-dotted line, the

vertical dotted line, and the dotted diagonal arc.

0,0V pr
0 0,1V pr

0

2,2V pr
0

Figure 4: Schematic picture of some preliminary vanishing cycles in Σ′ for
loop polynomials.

To compute the other l,mV pr
0 we decompose the path γl,m into its radial

segment and its circular arc. The map

fl,m : (x̌, y̌) 7→ (ζ lx̌, ηmy̌)

gives a symplectomorphism of C2 which w̌ε intertwines with multiplication
by ζ lηm on C, so the curve fl,m(0,0V pr

0 ) is the vanishing cycle in the fibre
over −ζ lηmδ that corresponds to the critical point (ζ lx̌+crit, η

my̌+crit) and the
vanishing path given by the radial segment of γl,m. This means that l,mV pr

0

is obtained from fl,m(0,0V pr
0 ) by parallel transporting around the circular

arc of γl,m.
We can therefore immediately describe the part of l,mV pr

0 lying in Σ′,
since it is obtained from the corresponding part of 0,0V pr

0 by applying fl,m. In
full detail, it comprises: the radial line segment joining the deleted ball about
0 to the deleted ball about ζ lε1/(p−1) in the x̌-axis; the real line segment
joining the deleted ball about 0 to the deleted ball about ηmε1/(q−1) in
the y̌-axis; the lift to ζ lR+ × ηmR+ ⊂ C2 of the line segment joining the
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deleted balls about (ε, 0) and (0, ε) in {u+ v = ε}, under the covering map
(x̌, y̌) 7→ (u, v). This is shown in Fig. 4, where 2,2V pr

0 is drawn in solid black
and 0,1V pr

0 is drawn dashed (the segment along which it overlaps with 0,0V pr
0

is shown dash-dotted). The segments lying in the two coordiate axes should
all really be straight, with the grey blobs lying on a circle about the origin,
but we have deformed the picture in order to draw it in two dimensions.

To see what l,mV pr
0 looks like in the three neck regions it meets, namely

those corresponding to lVy̌w̌,
mVx̌w̌ and Vx̌y̌, we simply have to take the

(ζ lR+ × ηmR+)-locus in each of these necks over −ζ lηmδ and parallel trans-
port clockwise through angle θl,m around the circle of radius δ; this is our
next task. Near the critical point (0, 0), where x̌ and y̌ are both small, we
may approximate w̌ε by −εx̌y̌. This corresponds to the Vx̌y̌-neck region in
Σ, and in this approximation the parallel transport equation (6) simplifies
to

(7)

(

˙̌x
˙̌y

)

=
−ċ

ε(|x̌|2 + |y̌|2)

(

y̌
x̌

)

.

We may also approximate the (ζ lR+ × ηmR+)-locus in the Vx̌y̌-neck over
−ζ lηmδ by the hyperbola

(x̌, y̌) =
√

δ/ε(ζ les, ηme−s)

parametrised by a small real variable s. We want to parallel transport over
the path c(t) = −δeit as t decreases from θl,m to 0, and we postulate a solu-
tion of the form (x̌, y̌) =

√

δ/ε(es+iφ, e−s+i(t−φ)) where φ is a real function
of s and t.

Plugging this into (7) we obtain

(

φ̇x̌
(1− φ̇)y̌

)

=
x̌y̌

|x̌|2 + |y̌|2

(

y̌
x̌

)

,

so after imposing the initial condition φ(s, θl,m) = 2πl/(p− 1) we get the
unique solution

(8) φ =
2πl

p− 1
+

e−2s(t− θl,m)

e2s + e−2s
.

In particular, the value of φ at the end of the parallel transport (t = 0),
which we denote by φl,m, is given by

(9) φl,m(s) := φ(s, 0) =
2π

e2s + e−2s

(

e2sl

p− 1
−

e−2sm

q − 1

)

.
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This is supposed to describe the argument of the x̌-component of l,mV pr
0

(or minus the argument of the y̌-component) on the Vx̌y̌-neck region of Σ,
and note that it is consistent with the description we already have on Σ′:
when s becomes large this neck joins the x̌-axis, where we know that the
x̌-component of l,mV pr

0 has argument 2πl/(p− 1); when s becomes small
the neck joins the y̌-axis, where we know that y̌-component of l,mV pr

0 has
argument 2πm/(q − 1).

We can run analogous arguments on the other two necks that l,mV pr
0

passes through. To combine this information into a visualisable format, note
that we can coordinatise the union of the x̌-axis part of Σ′ and the Vx̌y̌-
and lVy̌w̌-necks by x̌. The x̌-projection of this region consists of the complex
plane with a puncture at 0, a puncture at ζ lx̌+crit, and small balls about all
other ζj x̌+crit removed. Small balls around the two punctures represent the
two necks. Strictly the punctures are extremely tiny deleted balls, but we
will not make this distinction.

Away from the two neck regions in this picture, we are simply on the x̌-
axis part of Σ′, so l,mV pr

0 is given by the radial segment connecting them. On
the Vx̌y̌-neck, near the puncture at 0, the computation above shows that as
we approach the pucture the argument of x̌ interpolates from 2πl/(p− 1) to
−2πm/(q − 1). We can do the same on the lVy̌w̌ neck, near the puncture at
ζ lx̌+crit, but now the local coordinate is x̌′ where x̌ = ζ lx̌+crit − x̌′, and this time
it is the argument of x̌′ which interpolates from 2πl/(p− 1) to −2πm/(q − 1)
as we approach the puncture. The cases (l,m) = (1, 0) and (l,m) = (1, 1)
with (p, q) = (4, 3) are shown in Fig. 5. We have drawn separate diagrams
for the two choices of (l,m) since the cycles overlap along their central
segment and so would be difficult to distinguish if drawn on top of each
other. The dashed circles represent the boundaries of the deleted balls, the
dotted circles represent the boundaries of the neck regions, and the blobs
represent the punctures. The feint solid circles are the waist curves Vx̌y̌ and
lVy̌w̌.

There is a corresponding picture for the y̌-projection of the y̌-axis part
of Σ′ and the Vx̌y̌- and

mVx̌w̌- necks. The picture on {w̌ = ε} part of Σ′ is
essentially uninteresting since the l,mV pr

0 are pairwise disjoint there. This
is because on that part the different l,mV pr

0 are different lifts of the same
segment in {u+ v = ε}. Combining the pictures on these three parts of Σ
gives a complete description of all of the preliminary vanishing cycles.

Remark 3.2. There are some obvious points to note here, which are clear
parallels of the structure of the generating set on the B-side. First, the
vanishing cycles Vx̌y̌,

lVy̌w̌ and mVx̌w̌ are all pairwise disjoint. Second, each
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Figure 5: The x̌-projection of the preliminary vanishing cycles 1,0V pr
0 (left)

and 1,1V pr
0 (right) in the x̌-axis part of Σ′ and the Vx̌y̌- and

lVy̌w̌-necks, with
(p, q) = (4, 3).

l,mV pr
0 intersects Vx̌y̌ exactly once, tranvsersely. Third, l,mV pr

0 and LVy̌w̌

intersect once, transversely, if l = L and are disjoint otherwise (similarly for
MVx̌w̌). And finally, if l ̸= L and m ̸= M then l,mV pr

0 and L,MV pr
0 are disjoint

except on the Vx̌y̌-neck region, where (9) tells us that they intersect once,
transversely, if l > L and m > M or vice versa, and are disjoint otherwise
(as |x̌| increases, the difference in their x̌-arguments varies monotonically
from 2π(m−M)/(q − 1) to 2π(L− l)/(p− 1)).

3.4. Modifying the vanishing paths

As already noted, the preliminary vanishing paths (plus the vanishing paths
connecting −δ to zero) do not form a distinguished basis of vanishing paths
because they intersect and overlap each other. In this subsection we describe
how to remedy this, which also involves perturbing w̌ to separate the critical
values, in such a way that the vanishing cycles are basically unaffected.

By plotting modulus and argument+π we may view the preliminary
paths γl,m as right-angled paths in R2 from (δ, 0) to (δ, θl,m) to (−ccrit, θl,m).
We define modified paths γ′l,m using this picture to be the piecewise linear
paths as follows:

• If θl,m < 2π then take the path from

(δ, 0) to (δ + δ′, θl,m) to (−ccrit, θl,m)
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for some small positive δ′.

• If θl,m ≥ 2π then take the path from

(δ, 0) to (δ + δ′, 2π + λ(θl,m − 4π)) to (δ + 2δ′, 2π + λ(θl,m − 4π))

to (δ + 3δ′, θl,m − θ′)) to (−ccrit, θl,m − θ′)

for some small positive λ and θ′.

In the second case we have moved the end-point of the path so we corre-
spondingly perturb the fibration so that the critical point (ζ lx̌+crit, η

my̌+crit)
has its critical value ζ lηmccrit rotated by e−iθ′

. The paths are illustrated in
the case (p, q) = (4, 6) in Fig. 6. The feint lines are the preliminary paths

Figure 6: The paths γ′l,m in modulus-(argument+π) space, when (p, q) =
(4, 6).

γl,m and the dashed line is at height 2π.
This construction has the following key properties:

• The clockwise ordering of the tangent directions γ̇′l,m(0) is by decreas-
ing value of θl,m.

• If θl,m = θL,M then γ′l,m = γ′L,M .
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• If θl,m ̸= θL,M then γ′l,m and γ′L,M are disjoint unless θl,m > θL,M + 2π
(or vice versa), in which case they intersect once, transversely, close to
−ζLηMδ (respectively −ζ lηmδ).

The control on the position of the intersection point in the third property is
the reason for the curious kink in the paths γ′l,m for θl,m ≥ 2π. If we had in-
stead taken these paths to be (δ, 0) to (δ + δ′, θl,m − θ′) to (−ccrit, θl,m − θ′)
then the intersection between γ′l,m and γ′L,M when θl,m > θL,M + 2π woud
have occurred on the sloping regions of both paths, and therefore been awk-
ward to locate.

Our next task is to explain how to modify those γ′l,m for which θl,m >
2π in order to remove the transverse intersections just described. The key
observation is:

Lemma 3.3. Suppose θl,m > θL,M + 2π, and let z denote the intersection
point of γ′l,m and γ′L,M . Inside the fibre Σz = w̌−1

ε (z) there are vanishing
cycles corresponding to the critical points

(ζ lx̌+crit, η
my̌+crit) and (ζLx̌+crit, η

M y̌+crit)

and the truncations of the vanishing paths γ′l,m and γ′L,M . Denoting these by
V1 and V2 respectively, we have

V1 ∩ V2 = ∅.

Proof. First note that if l ≤ L then θl,m − θL,M is at most 2π(q − 2)/(q − 1),
so we must have l > L and similarly m > M . By applying f−1

L,M we may
then assume without loss of generality that L = M = 0 and l,m > 0. The
former means that z is approximately −δ, and that V2 ⊂ Σz is approximately
0,0V pr

0 ⊂ Σ. The curve V1, meanwhile, is constructed in approximately the
same way as l,mV pr

0 but with the parallel transport around the circle of
radius δ done from θl,m to 2π, rather than to 0. For the rest of the argument
we take these approximations to be exact. Since the cycles V1 and V2 are
compact, once we show that they are disjoint after our small approximation
we automatically deduce that they were disjoint before (compact and disjoint
implies separated by a positive distance).

Since l and m are both positive we see that V1 and V2 =
0,0V pr

0 are
disjoint on Σ′ ⊂ Σ, and that the only neck region that they both pass through
is that corresponding to Vx̌y̌. This means that the only possible intersections
occur in this neck, which we can coordinatise by projection to x̌. In this
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projection we know that 0,0V pr
0 and V1 are parametrised by

x̌ =
√

δ/εes and x̌ =
√

δ/εes+iφ,

respectively, where φ is given by setting t = 2π in (8). It therefore suffices
to show that this function φ never hits 2πZ. To prove this, simply note that
the function is monotonically increasing from 2π − 2πm/(q − 1), which is
strictly positive, to 2πl/(p− 1), which is strictly less than 2π. □

Now let γ′′l,m denote the path obtained from γ′l,m by introducing a long
thin finger which loops around the radial segment of γ′L,M , for each (L,M)
with θl,m > θL,M + 2π. Figure 7 illustrates γ′′2,4 in the case (p, q) = (4, 6).
The feint lines show the paths γ′L,M which we have had to loop around.
In principle, each time we go around one of the fingers the ‘intermediate

Figure 7: The path γ′′2,4 when (p, q) = (4, 6).

vanishing cycle’ V1 is changed by the monodromy around ζLηMccrit, which
is precisely the Dehn twist in V2 (or, more accurately, the product of the
Dehn twists in all cycles constructed in the same way as V2 as (L,M) ranges
over all pairs with the same value of θL,M ), and by Lemma 3.3 this has no
effect. We conclude that the vanishing cycles for the new paths γ′′l,m coincide
with those of the previous paths γ′l,m, which in turn are small perturbations
of those of the preliminary paths γl,m. Note also that we can construct the
new paths so as not to introduce any new intersections between them (for
example, we can make sure the fingers for γ′′2,3 go outside the fingers for γ′′2,4
shown in Fig. 7).
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The upshot is that we now have vanishing paths γ′′l,m, plus the vanishing
paths connecting −δ to 0, which form a distinguished basis except for the
fact that some of the paths coincide with each other. This is straightfor-
wardly fixed by making a small perturbation of the fibration to separate the
critical values, and corresponding small perturbations of the paths. The pre-
cise way in which this is done will affect the ordering of the paths, and hence
the ordering of the vanishing cycles in A, but this is irrelevant since the am-
biguity is always between cycles which are disjoint and therefore orthogonal
in the category.

We conclude:

Proposition 3.4. There exists a Morsification of w̌ and a distinguished
basis of vanishing paths such that the corresponding vanishing cycles are
arbitrarily small pertubations of the l,mV pr

0 , lVy̌w̌,
mVx̌w̌ and Vx̌y̌ as con-

structed above. The l,mV pr
0 are ordered by decreasing value of θl,m, and by

choosing the starting direction for our clockwise ordering to be eiθ, for θ a
small positive angle, they occur before all of the other vanishing cycles.

3.5. Isotoping the vanishing cycles and computing the morphisms

Let us refer to the small perturbations of the preliminary vanishing cycles
l,mV0 that appear in Proposition 3.4 as temporary vanishing cycles. In order
to compute the category A we need to understand the intersection pattern of
these temporary cycles. Some pairs of these cycles were already transverse
before perturbing, as described in Remark 3.2 — in fact, all pairs except
those of the form l,mV pr

0 , L,MV pr
0 with l = L or m = M — so their inter-

sections are unaffected by the small perturbations. For the non-transverse
pairs of preliminary cycles, however, which actually overlap along segments,
we cannot pin down the intersections of the corresponding temporary cycles
without keeping more careful track of the perturbations, which is impracti-
cal.

In order to overcome this we shall modify these problematic temporary
cycles, which are small perturbations of the l,mV pr

0 , by Hamilton isotopies
to obtain final vanishing cycles l,mV0 which we will use to compute A. This
does not affect the quasi-equivalence type of the category. These isotopies
will be small in the absolute sense, and in particular will only affect intersec-
tions between pairs of cycles which were non-transverse before perturbing
from preliminary to temporary, but will not be small compared with these
perturbations. Indeed, their very point is to undo any uncertainty in the
intersection pattern which these perturbations introduced.
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Remark 3.5. Since each waist curve lVy̌w̌,
mVx̌w̌, and Vx̌y̌ was already

transverse to all other cycles, the corresponding perturbed curve in Proposi-
tion 3.4 has the same intersection pattern. We therefore do not notationally
distinguish between the waist curves and their perturbations.

We only need describe the isotopies on the regions where the preliminary
cycles were non-transverse. This means that for each l,mV pr

0 we may focus
on neighbourhoods of its segments lying in the x̌-axis and y̌-axis regions of
Σ′. So fix an (l,m) and consider the part of l,mV pr

0 (strictly the temporary
cycle obtained from this) lying in the x̌-axis part of Σ′ and the Vx̌y̌- and
lVy̌w̌-necks. We view this in the x̌-projection, as in Fig. 5.

We first isotope the x̌-axis segment, between the two necks, anticlock-
wise about x̌ = 0 by an amount proportional to m. This of course requires
corresponding small modifications at the boundaries of the neck regions
to keep the curve continuous. To make the isotopy Hamiltonian, we then
push the curve slightly clockwise just inside the Vx̌y̌-neck. The result is
shown schematically in Fig. 8 for the (l,m) = (1, 0) and (1, 1) cycles with
(p, q) = (4, 3). We then do a similar thing on the y̌-axis part of Σ′ and the

Figure 8: The x̌-projection of the final vanishing cycles 1,0V0 and 1,1V0 in
the x̌-axis part of Σ′ and the Vx̌y̌- and

1Vy̌w̌-necks, with (p, q) = (4, 3).

Vx̌y̌- and
lVy̌w̌-necks.

The result is that the final cycles l,mV0 are all pairwise disjoint, except
on the Vx̌y̌-neck. Inside this neck, the intersections between

l,mV0 and L,MV0

remain as described in Remark 3.2 when l ̸= L and m ̸= M . When l = L and
(without loss of generality) m > M the effect is as follows. Before perturbing
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and isotoping, the x̌-arguments of the curves on the Vx̌y̌-neck are described
by (9) and illustrated in the top part of Fig. 9. In particular, the curves
converge as |x̌| becomes large. The isotoped curves are shown schematically

arg x̌

2πl/(p− 1)

−2πM/(q − 1)

−2πm/(q − 1)

log |x̌|

arg x̌

2πl/(p− 1)

−2πM/(q − 1)

−2πm/(q − 1)

log |x̌|

Figure 9: The Vx̌y̌-neck regions of the curves l,mV0 and l,MV0 before (top)
and after (bottom) perturbing and isotoping.

in the bottom part of the same diagram, and we see that now they intersect
once, transversely, where l,mV0 has been pushed further anticlockwise than
l,MV0.

Combining this with Remark 3.2 and Proposition 3.4 (with the l,mV0 now
being used in place of the l,mV pr

0 ) we obtain a model for A with precisely
the following basis of morphisms:

• An identity morphism for each object.

• A morphism from l,mV0 to L,MV0 whenever (l,m) ̸= (L,M) but both
l ≥ L and m ≥ M .

• A morphism from each l,mV0 to each of Vx̌y̌,
lVy̌w̌ and mVx̌w̌.
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This is a chain-level description, but for any pair of objects the morphism
complexes are either one- or zero-dimensional, so all differentials trivially
vanish. Additively the cohomology algebra therefore matches exactly with
the quiver description of B in Fig. 1, under the identification

(10)

l,mV0 ↔
i,jK0

lVy̌w̌ ↔ iKx[3]
mVx̌w̌ ↔ jKy[3]

Vx̌y̌ ↔ Kw[3]

with
i+ l = p− 1

j +m = q − 1.

To complete the proof of Theorem 1 in the loop case, we just need to check
that the compositions agree, and that the vanishing cycles can be graded
so as to place all morphisms in degree 0. These are the subjects of the next
two subsections.

Remark 3.6. The identification (10) is between the objects of A ⊂ F(Σ)
and B ⊂ mf(C2,Γw,w). In the ultimate equivalence F(w̌) ≃ mf(C2,Γw,w)
the vanishing cycles in (10) should be replaced by their images under the
equivalence TwA → F(w̌), which are the corresponding Lefschetz thimbles.

3.6. Composition

Suppose L0, L1 and L2 are three (final) vanishing cycles such that L0 < L1 <
L2 with respect to the ordering on the category A (we are calling them L
rather than V to avoid conflict with our earlier notation for specific cycles).
We need to compute the composition

(11) HF ∗(L1, L2)⊗HF ∗(L0, L1) → HF ∗(L0, L2),

which is defined by counting pseudo-holomorphic triangles, and Seidel [20,
Section (13b)] shows that this can be done combinatorially by simply count-
ing triangular regions bounded by the Li. The crucial point is that one
can do without Hamiltonian perturbations or perturbations of the complex
structure because the directedness of the category automatically rules out
contributions from constant discs. (It also rules out discs in which the order-
ing of the Lagrangians around the boundary does not match their ordering
in the category.)

In order for this composition to have a chance of being non-zero (i.e. in
order for all three HF ∗ groups to be non-zero) we must have L0 =

l,mV0 and
L1 =

L,MV0 for some distinct (l,m) and (L,M) with l ≥ L and m ≥ M . We
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then have four cases, depending on whether L2 is Vx̌y̌,
LVy̌w̌,

MVx̌w̌, or of
the form r,sV0 for some (r, s) ̸= (L,M) with r ≤ L and s ≤ M . We restrict
our attention to these four cases from now on.

In each case there is a single obvious holomorphic triangle contributing
to the product. In the first and fourth cases the triangle lies in the Vx̌y̌-neck
region, as illustrated in Fig. 10, whilst in the second (respectively third) case

log |x̌|

arg x̌

L0

L1

L2
L0

L1

L2

Figure 10: The obvious triangles in the Vx̌y̌-neck contributing to the product
in the first (left) and fourth (right) cases.

it stretches between the Vx̌y̌- and
lVy̌w̌- (respectively

mVx̌w̌-) neck regions in
the x̌- (respectively y̌-) axis part of Σ′ as shown in Fig. 11. We claim that

Figure 11: The x̌-projection of the obvious triangle between 1,0V0,
1,1V0, and

1Vy̌w̌, when (p, q) = (4, 3).

there are no other triangles, whence (11) is the non-degenerate multiplication
e12 ⊗ e01 7→ ±e02, where eij is the generator of HF ∗(Li, Lj) corresponding
to the unique intersection point of Li and Lj . In fact there are two natural
generators, differing by sign, and the ± in the multiplication depends on
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the specific generators chosen as well as the orientation on the moduli space
of holomorphic triangles, but we shall argue shortly that all signs can be
arranged to be positive.

To prove the claim, suppose u is a non-constant holomorphic triangle
with boundary on L∪, defined to be the union of the Li. By the open map-
ping theorem, after deleting L∪ the image of u consists of a union of com-
ponents of Σ \ L∪ whose closures in Σ are compact. Such components nat-
urally correspond to generators of H2(Σ/L∪;Z) ∼= H2(Σ, L∪;Z), which the
long exact sequence of the pair tells us is isomorphic to the kernel of the
inclusion pushforward H1(L∪;Z) → H1(Σ;Z). In all of our cases, the space
L∪ is homeomorphic to three circles that touch pairwise, so its H1 has rank
four. Its image in H1(Σ;Z) meanwhile, contains the classes of L0, L1 and
L2, which are linearly independent since the vanishing cycles form a basis
for H1(Σ;Z). We conclude that H2(Σ, L∪;Z) has rank at most one, so there
is at most one component of Σ \ L∪ that u can enter. We have already seen
that there is at least one component, and counted the obvious triangle that
it contributes, so we conclude that there are no other triangles.

To compute the signs we should equip each Li with an orientation and
the non-trivial spin structure (this is the one that is induced by viewing Li

as the boundary of a Lefschetz thimble in the total space of our Morsified
fibration), and then calculate the induced orientation on the moduli space
of holomorphic triangles. As mentioned above, however, we can choose the
generators of the morphism spaces so that all of the signs turn out to be
positive. We make these choices by induction on the length of the morphism,
defined to be the maximal length of a chain of non-identity morphisms whose
composition is the given morphism (so, for example, the length of a generator
of HF ∗(l,mV0,

L,MV0) is l − L+m−M).
First, choose arbitrary signs for the generators of length 1. Now modify

these as follows. Start at the bottom left-hand square in the quiver picture
Fig. 1 — explicitly this corresponds to the square

p−1,q−2V0
p−2,q−2V0

p−1,q−1V0
p−2,q−1V0

If this commutes then do nothing, otherwise reverse the sign of the morphism
along the top edge. Then consider the next square to the right and do the
same, and continue all the way along to the bottom right-hand square. Now
run the same procedure on the next row of squares up, and then the next,
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all the way to the top. In this way we obtain sign choices for all generators
of length 1 such that the small squares commute.

For each morphism space of length k > 1 we choose its generator by
expressing the space as a composition of k morphism spaces of length 1 and
taking the positive generator of each factor. There may be several different
ways of decomposing the space into length 1 factors, but any two can be
joined by a chain of moves where one commutes across a small square. We
have arranged it so that these moves have no effect, so there is no ambiguity
in the overall procedure. This proves that all signs can be taken to be +.

We conclude:

Proposition 3.7. There is a model for A which, under the identification
(10), is described by the quiver in Fig. 1 up to yet-to-be-determined gradings.

3.7. Gradings and completing the proof

Recall from [19, 20] that to equip the Fukaya category of a symplectic man-
ifold X with a Z-grading one must choose a homotopy class of trivialisation
of the square K−2

X of the anticanonical bundle of X; this is possible if and
only if 2c1(X) vanishes in H2(X;Z), and in this case the set of choices forms
a torsor for H1(X;Z). We are interested in the Fukaya–Seidel category F(w̌)
and the subcategory A of the compact Fukaya category of the smooth fibre,
for which the relevant choices of X are C2 and Σ respectively. The former
has a unique grading, defined by the section σ = (∂x̌ ∧ ∂y̌)

⊗2 of K−2
C2 , which

induces a grading of the latter, and it is with respect to this induced grading
that the quasi-equivalence TwA → F(w̌) is graded.

Trivialisations of K−2
Σ correspond naturally to line fields ℓ on Σ, i.e. sec-

tions of the real projectivisation PRTΣ of the tangent bundle, and given a
choice of ℓ the Lagrangian L represented by an embedded curve γ : S1 → Σ
is gradable if and only if the sections γ∗ℓ and γ∗TL of γ∗PRTΣ are homo-
topic. In this case a grading of L is a homotopy class of homotopy between
them. At each point of L we can measure the anticlockwise angle from ℓ to
TL, and we denote this by πα, where α is an element of R/Z. The gradings
of L are then in bijection with lifts α# of this element to R. Given two
graded Lagrangians L0 and L1, which intersect transversely at a point x, let
their corresponding lifts at x be α#

0 and α#
1 respectively. By [20, Example

11.20], the grading of x as a generator of the Floer complex CF ∗(L0, L1) is
then given by

(12) ⌊α#
1 − α#

0 ⌋+ 1.
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From now on we will use ℓ to denote the specific (homotopy class of) line
field corresponding to the grading on Σ induced by the grading on C2.

To compute ℓ note that each Lefschetz thimble ∆ in F(w̌) is gradable
with respect to σ (∆ is contractible so the grading obstruction trivially
vanishes), and each choice of grading induces a grading of the corresponding
vanishing cycle V ⊂ Σ with respect to ℓ. In particular, all of the vanishing
cycles V are gradable with respect to ℓ, and since they form a basis for
H1(Σ;Z) this property — that ℓ has winding number zero around each V
— determines ℓ uniquely.

Remark 3.8. Recall that the ordering on A is determined by a choice
of starting direction in the base C, and strictly this choice enters into the
construction of the bijection between gradings of a thimble ∆ and of the
corresponding vanishing cycle V . This is unimportant for our present pur-
poses, but we will see a manifestation of it in Section 6.2, where a change
in this direction leads to a change in the grading of a vanishing cycle.

Using this characterisation, one can draw ℓ as shown in Fig. 12: the top
diagram depicts a foliation of the line {u+ v = ε} with the points (ε, 0) and
(0, ε) deleted, and we lift its tangent distribution to give the line field on the
branched cover comprising the {w̌ = ε} part of Σ′ and the attached neck
regions; the bottom diagram depicts a foliation whose tangent distribution
gives the line field on the x̌-axis part of Σ′ and the attached neck regions
in the case q = 4 — it is clear how this generalises to other values of q and
that a similar picture can be drawn for the y̌-axis part. As usual, the dotted
circles represent the boundaries of the neck regions. Note that on each neck
region the line field is longitudinal, so the different pictures glue together.

Each l,mV0 is approximately tangent to ℓ along its approximately straight
segments in the three components of Σ′, and we choose to grade it so that
the homotopy from TL to ℓ is approximately constant on these regions.
This is consistent, in the sense that these homotopies patch together across
the neck regions. On each neck region, the lift α# is valued approximately
between 0 and 1/2, and where two of these cycles intersect the one with
the greater value of θl,m is ‘steeper’ and hence has greater α#. We conclude
that for distinct (l,m) and (L,M) with l ≥ L and m ≥ M the generator of
HF ∗(l,mV0,

L,MV0) lies in degree 0 (in the notation of (12) we have 1/2 >
α#
0 > α#

1 > 0).
Each of the other vanishing cycles is a waist curve on a neck region and

as such is orthogonal to the line field. We grade it so that the lift α# is
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Figure 12: Foliations defining the line field ℓ used to grade Σ.

−1/2. This puts the generators of

HF ∗(l,mV0,
lVy̌w̌), HF ∗(l,mV0,

mVx̌w̌), and HF ∗(l,mV0, Vx̌y̌)

all in degree 0. This means that the identification (10) matches up gradings,
and we deduce:

Theorem 3.9 (Theorem 1, loop polynomial case). Under (10), the
Z-graded A∞-category A is described by the quiver with relations in Fig. 1
and is formal. In particular, by Theorem 2.13 it is quasi-equivalent to B,
and hence there is an induced quasi-equivalence

mf(C2,Γw,w) ≃ F(w̌).
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Proof. The cohomology-level version of the first statement follows by com-
bining Proposition 3.7 with the above grading computations. Formality then
follows immediately from directedness and the fact that the morphisms are
concentrated in degree 0 as in Theorem 2.13. This shows that A and B are
quasi-equivalent, and the final statement then follows from the argument
outlined in Section 1.2. □

4. B-model for chain polynomials

4.1. The basic objects

We now deal with the case of the chain polynomial w = xpy + yq. This time
the maximal grading group L is the abelian group freely generated by x⃗, y⃗
and c⃗ modulo the relations

px⃗+ y⃗ = qy⃗ = c⃗.

In contrast to the loop case, we have L/Zc⃗ ∼= Z/(pq), generated by x⃗ but
not by y⃗ = −px⃗. In keeping with our earlier notation let S be the L-graded
algebra C[x, y], with x and y in degrees x⃗ and y⃗ respectively, and let R =
S/(w). Let w now denote xp + yq−1 so that w = yw.

The stack [w−1(0)/Γw] has two components, whose structure sheaves
correspond to the matrix factorisations

Ky
• = (· · · → S(−c⃗)

w
−→ S(−y⃗)

y
−→ S → · · · ),

and

Kw
• = (· · · → S(−c⃗)

y
−→ S(−c⃗+ y⃗)

w
−→ S → · · · ).

We will need the shifts

jKy = Ky((j + 1− q)y⃗) for j = 1, . . . , q − 1.

Note that Kw[1] ∼= Ky(y⃗).
The unique singular point of the stack is still the origin, and the objects

we need that are supported at this point are the i,jK0 defined by

S(y⃗) S((j + 1)y⃗) S(c⃗+ y⃗)

S(−c⃗+ ix⃗+ (j + 1)y⃗) S(ix⃗+ y⃗) S(ix⃗+ (j + 1)y⃗)

yj

−xi

· · ·
⊕

yq−j

xi

⊕ ⊕

· · ·xp−iy

yq−j

−xp−iy

yj
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for i = 1, . . . , p− 1 and j = 1, . . . , q − 1, obtained by stabilising R(ix⃗+ (j +
1)y⃗)/(xi, yj).

4.2. Morphisms between the Ky’s and Kw

For all l in L, and all integers m, we have

Hom2m(Ky, Ky(l)) ∼= (R/(y, w))mc⃗+l and Hom2m−1(Ky, Ky(l)) = 0.

The analogue of Lemma 2.2 and Lemma 2.3, proved by similar arguments,
is now:

Lemma 4.1. Suppose a and b are integers, with a ≤ p− 1, and s is an ele-
ment of S (or R) which is homogeneous modulo c⃗, of degree ax⃗+ by⃗ mod c⃗.
Then:

(i) s is divisible by xa.

(ii) If also b ≤ q − 1 then s lies in the ideal (xayb, xp+a).

(iii) If a = b = 0 then the non-constant terms of s lie in (xpq, xpy, yq).

Applying this to the above computation we obtain:

Lemma 4.2. The objects

1Ky, . . .
q−1Ky

are exceptional and pairwise orthogonal.

Using the fact that Kw[1] ∼= Ky(y⃗), we also get:

Lemma 4.3. The object Kw is exceptional and is orthogonal to the jKy.

4.3. Morphisms between Ky’s and Kw and K0’s

For all l and all (i, j), Hom•(Ky(l),
i,jK0) is given by the cohomology of the

complex

· · · → (R/(xi, yj))ix⃗+(j+1)y⃗−l
y
−→ (R/(xi, yj))ix⃗+(j+2)y⃗−l
w
−→ (R/(xi, yj))c⃗+ix⃗+(j+1)y⃗−l → · · · .
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By Lemma 4.1(i) we see that for all J

Hom•(JKy,
i,jK0) = Hom•(Kw,

i,jK0) = 0.

Morphisms in the other directions are computed by the complex

(R/(y))−c⃗−y⃗+l (R/(y))−(j+1)y⃗+l (R/(y))−y⃗+l

(R/(y))−ix⃗−(j+1)y⃗+l (R/(y))−ix⃗−y⃗+l (R/(y))c⃗−ix⃗−(j+1)y⃗+l

yq−j

−xp−iy

· · ·
⊕

yj

xp−iy
⊕ ⊕

· · ·
xi

yj

−xi

yq−j

The only non-vanishing differentials are xi, so we get

Hom2m(i,jK0,
JKy) ∼= (R/(xi, y))(m−2)c⃗+Jy⃗,

Hom2m+1(i,jK0,
JKy) ∼= (R/(xi, y))(m−1)c⃗+(J−j)y⃗,

Hom2m(i,jK0, Kw) ∼= (R/(xi, y))(m−1)c⃗−jy⃗,

Hom2m+1(i,jK0, Kw) ∼= (R/(xi, y))(m−1)c⃗,

and hence:

Lemma 4.4. In HMF(C2,Γw,w) there are no morphisms from JKy or Kw

to i,jK0. The morphism spaces in the other direction are spanned by

(1, 0) ∈ Hom3(i,jK0,
jKy)

and

(0, 1) ∈ Hom3(i,jK0, Kw)

in the above complexes.

Proof. The even degree morphisms all vanish by Lemma 4.1(ii), and if j ̸= J
then the same holds for Hom2m+1(i,jK0,

JKy) (if J < j then rewrite the
grading as (q + J − j)y⃗ mod c⃗). Lemma 4.1(iii) tells us that the only sur-
viving odd morphisms are the constants. □

4.4. Morphisms between the K0’s

The complex computing Hom•(i,jK0,
I,JK0) is
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(R/(xI , yJ))−c⃗+Ix⃗+Jy⃗ (R/(xI , yJ))Ix⃗+(J−j)y⃗ (R/(xI , yJ))Ix⃗+Jy⃗

(R/(xI , yJ))(I−i)x⃗+(J−j)y⃗ (R/(xI , yJ))(I−i)x⃗+Jy⃗ (R/(xI , yJ))c⃗+(I−i)x⃗+(J−j)y⃗

yq−j

−xp−iy

· · ·
⊕

yj

xp−iy
⊕ ⊕

· · ·
xi

yj

−xi

yq−j

The top row vanishes by Lemma 4.1(i), and the same is true of the bottom
row if I < i (after adding px⃗+ y⃗ mod c⃗ to the gradings), so assume that
I ≥ i. The complex becomes

· · · → (R/(xI , yJ))(I−i)x⃗+(J−j)y⃗
yj

−→ (R/(xI , yJ))(I−i)x⃗+Jy⃗

yq−j

−−−→ (R/(xI , yJ))c⃗+(I−i)x⃗+(J−j)y⃗ → · · ·

and the odd position terms vanish by Lemma 4.1(ii), so

Hom2m+1(i,jK0,
I,JK0) = 0

and

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))mc⃗+(I−i)x⃗+(J−j)y⃗.

If J < j then this is zero by Lemma 4.1(ii) (after adding qy⃗ mod c⃗ to the
grading), so assume J ≥ j. Lemma 4.1(ii) tells us that any element is divisi-
ble by xI−iyJ−j modulo (xI , yJ), and then Lemma 4.1(iii) tells us that only
constant multiples survive. We conclude:

Lemma 4.5. For all (i, j) and (I, J) we have that

Hom•(i,jK0,
I,JK0) ∼=

{

C · xI−iyJ−j if I ≥ i, J ≥ j and • = 0

0 otherwise.

4.5. The total endomorphism algebra of the basic objects

It is easy to compute the compositions between the morphisms and obtain
the following description of the full subcategory B of mf(C2,Γw,w) on the
objects jKy[3], Kw[3],

i,jK0:

Theorem 4.6. The cohomology category H(B) is the path algebra of the
quiver-with-relations described in Fig. 13. Any Z-graded A∞-structure on
this algebra — and hence in particular that induced from the dg-structure on
mf(C2,Γw,w) — is formal.



✐

✐

“2-Smith” — 2021/2/2 — 1:11 — page 1561 — #47
✐

✐

✐

✐

✐

✐

Homological B–HMS for curve singularities 1561

· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i,jK0
jKy[3]

Kw[3]

Relations: (i) Squares commute; (ii) Dashed compositions vanish

Figure 13: The quiver describing the category B for chain polynomials.

4.6. Generation

The final thing we need to check is:

Lemma 4.7. The objects in B split-generate HMF(C2,Γw,w).

Proof. Let V = {jKy, Kw,
i,jK0}. As in the loop case, it suffices to prove

that the category ⟨V ⟩ contains all of the L/Zc⃗-grading shifts of R/(x, y).
Again following the loop case, we easily have that R(ix⃗+ (j + 1)y⃗)/(x, y)
lies in ⟨V ⟩ for any 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1.

By combining Kw
∼= Ky(y⃗)[−1], the jKy, and all of their [·]-shifts, we

see that ⟨V ⟩ contains R(l)/(y) for all l in Zy⃗ + Zc⃗ (the Zc⃗ is redundant here
but we include it for clarity). Consequently, for each integer j we have that
⟨V ⟩ contains the cokernel of

R((j + 1)y⃗ − c⃗)/(y)
xp

−→ R(jy⃗)/(y),

which is R(jy⃗)/(xp, y). Peeling off one-dimensional pieces R(ix⃗+ jy⃗)/(x, y)
for i = −1, . . . ,−(p− 1), by taking cones, we’re left with R(jy⃗)/(x, y). If j
lies in 1, . . . , q − 1 then (after applying the trivial operation (px⃗+ y⃗)[−2])
each of these pieces is in ⟨V ⟩ by the previous paragraph. The conclusion is
that R(jy⃗)/(x, y) lies in ⟨V ⟩ for all such j.
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We have therefore constructed R(ax⃗+ by⃗)/(x, y) for 0 ≤ a ≤ p− 1 and
0 ≤ b ≤ q − 1 except for (a, b) = (0, 0) and (a, b) = (1, 1), . . . , (1, p− 1). To
obtain the latter, consider the extension

0 → R/(w)
xi

−→ R(ix⃗)/(w) → R(ix⃗)/(xi, yq−1) → 0

for i = 1, . . . , p− 1. The outer terms are Kw and i,q−1K0[−2], so lie in ⟨V ⟩,
and we deduce that R(ix⃗)/(w) also lies in ⟨V ⟩. Again using the fact that
Kw

∼= Ky(y⃗)[−1], we get that R(ix⃗+ y⃗)/(y) is in ⟨V ⟩ for i = 0, . . . , p− 1
(the i = 0 case comes from Kw[1] itself, not from the preceding argument).
From these we see that

R(ix⃗+ y⃗)/(x, y) ∼= Cone
(

R((i− 1)x⃗+ y)/(y)
x
−→ R(ix⃗+ y⃗)/(y)

)

lies in ⟨V ⟩ for i = 1, . . . , p− 1.
All that is left to show now is that we have R/(x, y) in ⟨V ⟩, and this

closely follows the loop case: we can realise this module as the cokernel of

R(−x⃗)/(xpq−1, y)
x
−→ R/(xpq, y),

and the domain can be built of the shifts of R/(x, y) that we already have.
The codomain, meanwhile, is given by

Cone
(

R(−(q − 1)c⃗)/(y)
xpq

−−→ R/(y)
)

. □

Remark 4.8. The R(l)/(x, y) still only split-generate the category (which
we saw for loop polynomials in Remark 2.18), since the above proof shows
that they are annihilated by the homomorphism

K0(mf(C2,Γw,w)) → Z/2

which sends the basis elements i,jK0 to 0 but jKy and Kw to 1.

As in the loop case, we deduce:

Theorem 4.9 (Theorem 2, chain polynomial case). The object

E :=

(

⊕

i=1,...,p−1
j=1,...,q−1

i,jK0

)

⊕

(

q−1
⊕

j=1

jKy[3]

)

⊕ Kw[3]

is a tilting object for mf(C2,Γw,w).
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This was proved by Futaki–Ueda [7, Section 4] in the case q = 2.

5. A-model for chain polynomials

5.1. The setup

Just as for the B-model, our basic strategy for understanding the A-model
will closely follow the loop polynomial case. This time the Berglund–Hübsch
transpose is w̌ = x̌p + x̌y̌q, and our starting point is once more the resonant
Morsification w̌ε = w̌ − εx̌y̌ for small positive real ε. We denote x̌p−1 + y̌q

by w̌. The critical points now fall into three types:

(i) x̌ = 0, y̌q−1 = ε

(ii) x̌ = y̌ = 0

(iii) y̌q−1 = ε
q , x̌

p−1 = (q−1)εy̌
pq .

The first two types have critical value zero, whilst the third type has critical
value

−x̌y̌ε(p− 1)(q − 1)/pq,

on the ray through −x̌y̌. These critical points are indeed all Morse.
There is a unique positive real solution to (iii) which we denote by

(x̌+crit, y̌
+
crit), and again we call the corresponding (negative real) critical value

ccrit. Still letting ζ and η denote the roots of unity

ζ = e2πi/(p−1) and η = e2πi/(q−1),

but now also letting µ = e2πi/(p−1)(q−1), the type (iii) critical points are

{(ζ lµmx̌+crit, η
my̌+crit) : 0 ≤ l ≤ p− 2, 0 ≤ m ≤ q − 2},

with critical values µ(q−1)l+pmccrit.
Taking regular fibre Σ = w̌−1

ε (−δ) with 0 < δ ≪ ε, we again choose the
straight line segment from −δ to 0 as the vanishing path for the critical
points over zero, and denote the corresponding vanishing cycles by mVx̌w̌ and
Vx̌y̌. We also choose the same preliminary vanishing paths γl,m as before,
but with θl,m now given by

θl,m = 2π

(

l

p− 1
+

pm

(p− 1)(q − 1)

)

,

and write l,mV pr
0 for the preliminary vanishing cycles.
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5.2. The vanishing cycles

The central fibre w̌−1
ε (0), shown in Fig. 14, now has only two components,

namely the line {x̌ = 0} and the smooth curve {w̌ = εy̌}. The q nodes are
smoothed to thin necks in Σ, whose complement we again refer to as Σ′, and
we trivialise the fibration w̌ε on this complement over the disc of radius δ.
This time we compute

x̌ = 0

w̌ = εy̌
q − 1

Figure 14: The fibre w̌−1
ε (0) for chain polynomials.

# punctures of Σ = gcd(p− 1, q) + 1

g(Σ) =
1

2
(pq − p+ 1− gcd(p− 1, q)) .

Just as in the loop case, the preliminary cycle 0,0V pr
0 is given by the loop

in the positive quadrant of the real part of Σ. On Σ′ the other preliminary
cycles are given by the action of (ζ lµm, ηm). In particular, they are pairwise
disjoint on the {w̌ = εy̌} part of Σ′ (since x̌ and y̌ are both nowhere-zero
here). The only intersections on the {x̌ = 0} part occur when the m-values
coincide, and in this case the cycles overlap (at least in the limit δ ↓ 0)
exactly as before.
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On the Vx̌y̌-neck region, the argument of the y̌-component of l,mV pr
0

interpolates from

−2π

(

l

p− 1
+

m

(p− 1)(q − 1)

)

to
2πm

q − 1

as |y̌| increases, whilst on the mVx̌w̌-neck the argument of y̌ − ηmy̌+crit inter-
polates back the other way as its argument decreases. This is completely
analogous to the picture in Fig. 5.

We modify the preliminary paths, and correspondingly perturb the fi-
bration, exactly as in Section 3.4. The chain polynomial version of Lemma
3.3 is:

Lemma 5.1. Suppose θl,m > θL,M + 2π, and let z = γ′l,m ∩ γ′L,M . Inside

Σz = w̌−1
ε (z) we have vanishing cycles V1 and V2 corresponding to the crit-

ical points (ζ lµmx̌+crit, η
my̌+crit) and (ζLµM x̌+crit, η

M y̌+crit) and the truncations
of γ′l,m and γ′L,M . These cycles are disjoint.

Proof. We must have l ≥ L and m > M , so we can apply f−1
L,M to get

(L,M) = (0, 0) with m > 0. The latter ensures that V1 and V2 are disjoint
on Σ′ ⊂ Σ ≈ Σz, and that their only possible intersection is in the Vx̌y̌-neck
region. On this region the argument of y̌ is approximately 0 for V2, and
interpolates between

2π

(

1−
l

p− 1
−

m

(p− 1)(q − 1)

)

and
2πm

q − 1

for V1, so they are disjoint there too. □

This allows us to introduce fingers to the vanishing paths γ′l,m, as before,
without affecting the vanishing cycles. We then make Hamiltonian isotopies
as in Section 3.5 (but now only in the y̌-axis part of Σ′ and the Vx̌y̌- and
mVx̌w̌-necks) to obtain the final vanishing cycles. This gives a model for A
with the following basis of morphisms:

• An identity morphism for each object.

• A morphism from l,mV0 to L,MV0 whenever (l,m) ̸= (L,M) but both
l ≥ L and m ≥ M .

• A morphism from each l,mV0 to Vx̌y̌ and to mVx̌w̌.

As in the loop case the differentials on morphism complexes trivially vanish
so we are left to check compositions and gradings.
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5.3. Composition and gradings

Once more we have one obvious triangle contributing to each non-trivial
product, and by the same homology computation as for loop polynomials
there can be no others. We can also run the same inductive argument to
ensure that all of the signs in the compositions are positive.

To grade the category we must again take the unique homotopy class
of line field ℓ on Σ whose winding number along each vanishing cycle V
is zero, and then pick a homotopy class of homotopy from ℓ|V to TV . By
homotoping ℓ we may assume it points longitudinally in each neck region,
orthogonal to the waist curves, and then up to homotopy it must look like
the right-hand diagram in Fig. 12 in the union of the neck regions and the
y̌-axis part of Σ′. We can then define the gradings in the same way as in the
loop case, and see that all morphisms then lie in degree 0.

The conclusion is:

Theorem 5.2 (Theorem 1, chain polynomial case). Under the corre-
spondence

l,mV0 ↔
i,jK0

mVx̌w̌ ↔ jKy[3]

Vx̌y̌ ↔ Kw[3]

with
i+ l = p− 1

j +m = q − 1

the Z-graded A∞-category A is described by the quiver with relations in
Fig. 13 and is formal, so there is a quasi-equivalence

mf(C2,Γw,w) ≃ F(w̌).

This was also proved by Futaki–Ueda for q = 2, as a special case of
[7, Theorem 1.2]. They state the result at the level of derived categories,
i.e. after passing to cohomology, but as we have seen it is trivial to upgrade
from this to the full A∞ result.

6. Brieskorn–Pham polynomials

6.1. B-model

Now w is given by xp + yq, and the maximal grading group L is generated
by x⃗, y⃗ and c⃗ modulo

px⃗ = qy⃗ = c⃗,
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so is simply Z/p⊕ Z/q, generated by x⃗ = (1, 0) and y⃗ = (0, 1). Let S =
k[x, y], graded by L in the obvious way, and let R = S/(w).

The stack [w−1(0)/Γw] has only one component this time, and the ob-
jects that we need are the matrix factorisations i,jK0 given by

S S(jy⃗) S(c⃗)

S(−c⃗+ ix⃗+ jy⃗) S(ix⃗) S(ix⃗+ jy⃗)

yj

−xi

· · ·
⊕

yq−j

xi

⊕ ⊕

· · ·
xp−i

yq−j

−xp−i

yj

for i = 1, . . . , p− 1 and j = 1, . . . , q − 1, stabilising R(ix⃗+ jy⃗)/(xi, yj).
For any (i, j) and (I, J) the morphism space Hom•(i,jK0,

I,JK0) is com-
puted by the complex

(R/(xI , yJ))−c⃗+Ix⃗+Jy⃗ (R/(xI , yJ))Ix⃗+(J−j)y⃗ (R/(xI , yJ))Ix⃗+Jy⃗

(R/(xI , yJ))(I−i)x⃗+(J−j)y⃗ (R/(xI , yJ))(I−i)x⃗+Jy⃗ (R/(xI , yJ))c⃗+(I−i)x⃗+(J−j)y⃗

yq−j

−xp−i

· · ·
⊕

yj

xp−i

⊕ ⊕

· · ·
xi

yj

−xi

yq−j

By considering gradings modulo x⃗ and modulo y⃗, one sees that the top row
and the odd position terms in the bottom row vanish, and the remaining
terms vanish if I < i or J < j. We therefore assume that I ≥ i and J ≥ j,
and read off that Hom2m+1(i,jK0,

I,JK0) = 0 and

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))(I−i)x⃗+(J−j)y⃗.

Arguing as in the loop and chain cases, this is spanned by xI−iyJ−j .
The full A∞-subcategory of mf(C2,Γw,w) on the objects i,jK0 is there-

fore described by the quiver with relations in Fig. 15, and is formal as before.
This is the tensor product of the Ap−1 and Aq−1 quivers, which describe the
one-variable graded matrix factorisations of xp and yq respectively.

To prove these objects generate we just need to check that we can
build all L/Zc⃗-shifts of R/(x, y) from them. One easily constructs R(ax⃗+
by⃗)/(x, y) for a = 1, . . . , p− 1, b = 1, . . . , q − 1 by taking cones on these gen-
erators as in the previous cases. To construct the remaining shifts, note
that the modules R(ix⃗+ jy⃗)/(xi, yj) and R(c⃗)/(xp−i, yq−j) are isomorphic
in the singularity category, as they give rise to equivalent matrix factorisa-
tions. Taking i = p− 1 and j = q − 1, q − 2, . . . , 1 in turn, we can inductively
build the a = 0 shifts from R(c⃗)/(xp−i, qq−j). Reversing the roles of x and y
gives the remaining shifts. In contrast to Remark 2.18 and Remark 4.8, the
R(l)/(x, y) now generate the category, rather than just split-generate.
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· · ·

· · ·

· · ·

...
...

...
.... .

.
i,jK0

Relations: (i) Squares commute

Figure 15: The quiver describing the category B for Brieskorn–Pham poly-
nomials.

We conclude the following well-known result, which goes back to at least
[5, Theorem 6], [6, Theorem 1.2]:

Theorem 6.1 (Theorem 2, Brieskorn–Pham polynomial case). The
object

E :=
⊕

i=1,...,p−1
j=1,...,q−1

i,jK0

is a tilting object for mf(C2,Γw,w).

6.2. A-model

We consider the resonant Morsification w̌ε := x̌p + y̌q − εx̌y̌ of the Berglund–
Hübsch transpose w̌ = x̌p + y̌q. The critical points are:

(i) x̌ = y̌ = 0

(ii) x̌p−1 = εy̌
p , y̌

q−1 = εx̌
q .

These are Morse, with critical values 0 and−x̌y̌ε(pq − p− q)/pq respectively.
The equations (ii) reduce to

x̌(p−1)(q−1)−1 =
εq

pq−1q
and y̌ =

px̌p−1

ε
,
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so there is a unique positive real solution (x̌+crit, y̌
+
crit) whose critical value we

denote by ccrit as before. All other critical points differ by the action of (pq −
p− q)th roots of unity with weights (q − 1, 1), or equivalently (1, p− 1), on
(x̌, y̌). We parametrise these critical points, and the associated vanishing
paths and cycles, by

(l,m) ∈ ({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(p− 2, q − 2)}

as

(µ(q−1)l+mx̌+crit, µ
l+(p−1)my̌+crit),

where µ = e2πi/(pq−p−q).
The fibre w̌−1

ε (0) is shown in Fig. 16. This time it is irreducible. At

w̌ = εx̌y̌

Figure 16: The fibre w̌−1
ε (0) for Brieskorn–Pham polynomials.

infinity the defining equation looks like x̌p + y̌q = 0 so the smooth fibre Σ =
w̌−1

ε (−δ) satisfies

# punctures of Σ = gcd(p, q)

g(Σ) =
1

2
((p− 1)(q − 1)− gcd(p, q) + 1) .

We divide Σ into Σ′ and a single neck region, and trivialise the fibration
on Σ′ over a small disc. We define preliminary vanishing paths and cycles
Vx̌y̌ and l,mV pr

0 as usual, taking

θl,m =
2π(ql + pm)

pq − p− q
.

Note that by our bounds on l and m this lies in [0, 4π). The cycle Vx̌y̌ is the
waist curve on the neck, whilst 0,0V pr

0 lives in the positive quadrant of the
real part of Σ. The other l,mV pr

0 are obtained from 0,0V pr
0 by the action of
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roots of unity on Σ′ and by a local parallel transport computation on the
neck. In particular, all intersections between the vanishing cycles occur on
the neck. We modify the vanishing paths (and correspondingly perturb the
fibration), introducing fingers to remove their intersections, in the familiar
way.

There is now no need to isotope the cycles further, since they are already
all transverse. In particular, on the Vx̌y̌-neck the argument of x̌ along l,mV pr

0

interpolates from

−2π
l + (p− 1)m

pq − p− q
to 2π

(q − 1)l +m

pq − p− q

as its modulus increases. The intersection pattern is thus described by the
morphisms in the quiver Fig. 17, in the sense that the number of intersections
between two curves is the dimension of the corresponding morphism space;
the l and m indices decrease from bottom left to top right. This is not

· · ·

· · ·

· · ·

...
...

...
.... .

.
l,mV0

Relations:

(i) Squares commute

Vx̌y̌

Figure 17: The quiver describing the intersection pattern.

quite the pattern we want, but this can be rectified as follows. Recall that
the ordering of the cycles is determined by the clockwise ordering of the
directions of their vanishing paths as they emanate from the reference base
point −δ. We have so far been starting the ordering from the direction eiθ for
0 < θ ≪ 2π, but we now change this to e−iθ. This has the effect of moving
Vx̌y̌ from last to first in the ordering, and hence modifying the quiver from
Fig. 17 to Fig. 15.
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Remark 6.2. Alternatively, one can leave the starting direction as eiθ and
instead replace the indexing set

({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(p− 2, q − 2)},

over which (l,m) ranges, by

({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(0, 0)}.

This moves the top right vertex inside the rectangle in Fig. 17 to the bottom
left. Now θl,m lies in (0, 4π], rather than [0, 4π), so the prescription given
at the start of Section 3.4 has to be modified so that γ′l,m is described in
modulus-(argument+π) space by the piecewise linear path:

• If θl,m ≤ 2π:

(δ, 0) to (δ + δ′, θl,m) to (−ccrit, θl,m)

for some small positive δ′.

• If θl,m > 2π:

(δ, 0) to (δ + δ′, 2π + λθl,m) to (δ + 2δ′, 2π + λθl,m)

to (δ + 3δ′, θl,m − θ′)) to (−ccrit, θl,m − θ′)

for some small positive λ and θ′.

Note that the inequalities < 2π and ≥ 2π have become ≤ 2π and > 2π,
whilst the λ(θl,m − 4π) terms have become λθl,m, so that the short horizontal
segments in Fig. 6 are pushed slightly above the dashed 2π line.

Compositions are non-degenerate by the standard argument, and we
can arrange all signs to be positive. To fix gradings we take the unique
homotopy class of line field ℓ on Σ with respect to which all vanishing cycles
are gradable. We may assume ℓ is longitudinal on the neck, and equip the
l,mV0 with the standard gradings (we choose the lift α# to be approximately
between 0 and 1/2). We previously gave Vx̌y̌ the grading with α# = −1/2,
but now that we have changed the ordering we should choose α# = 1/2 to
put all morphisms in degree 0.

We arrive at the following result of Futaki–Ueda [5, Theorem 5], [6,
Theorem 1.3]:
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Theorem 6.3 (Theorem 1, Brieskorn–Pham case). Under the corre-
spondence

l,mV0 ↔
i,jK0

Vx̌y̌ ↔ 1,1K0

with
i+ l = p− 1

j +m = q − 1

the Z-graded A∞-category A is described by Fig. 15 and is formal, so there
is a quasi-equivalence

mf(C2,Γw,w) ≃ F(w̌).
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