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This paper is concerned with the existence of metrics of constant
Hermitian scalar curvature on almost-Kähler manifolds obtained
as smoothings of a constant scalar curvature Kähler orbifold, with
A1 singularities. More precisely, given such an orbifold that does
not admit nontrivial holomorphic vector fields, we show that an
almost-Kähler smoothing (Mε, ωε) admits an almost-Kähler struc-
ture (Ĵε, ĝε) of constant Hermitian curvature. Moreover, we show
that for ε > 0 small enough, the (Mε, ωε) are all symplectically
equivalent to a fixed symplectic manifold (M̂, ω̂) in which there is
a surface S homologous to a 2-sphere, such that [S] is a vanishing
cycle that admits a representant that is Hamiltonian stationary
for ĝε.
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1. Introduction

1.1. Context: gluing methods in Kähler geometry

Let M be a compact complex manifold of Kähler type. The program of
Calabi is concerned with the existence of canonical metrics in a given Kähler
class Ω onM . More specifically, Calabi proposed the study of the functional

ω ∈ Ω>0 7→
∫

M

s(ω)2
ωm

m!
;

here Ω>0 denotes the set of definite positive representants of the cohomol-
ogy class Ω, and s(ω) is the scalar curvature of the associated metric. The
critical points of this functional are called extremal metrics, and they are
the candidates for canonical metrics in this framework.

Computing the corresponding Euler-Lagrange equation, one obtains that
a Kähler metric is extremal if and only if the Hamiltonian vector field Xs(ω)

is real holomorphic. In particular, constant scalar curvature metrics are ex-
tremal, and both notions coincide if M admits no non-trivial holomorphic
vector field.

Non-trivial holomorphic vector fields appear as an obstruction in con-
structions of constant scalar curvature metrics. More precisely, on a Kähler
manifold (M,J, ω), the obstructions on the structure of the Lie algebra
h(M,J) of holomorphic vector fields found by Matsushima [29], or the Futaki
invariant [18], involve the following subset of h(M,J):

h0(M,J) = {X ∈ h(M,J), ∃p ∈M | X(p) = 0}.

On a Kähler manifold (or orbifold), h0(M) form a Lie subalgebra of the
Lie algebra h(M,J) (see for instance [25], Theorem 1). Therefore, it will be
natural to assume that h0(M,J) = {0}, to ensure that said obstructions do
not appear.

This will be the case if the group of automorphisms of the (M,J) is
discrete. However, it is not a necessary condition; if M is a torus, obtained
as the quotient of C2 by a lattice, we do have h0(M) = {0}, as it turns out
in this case that all holomorphic vector fields are parallel.

The existence of canonical metrics on a given Kähler manifold is an
open problem in general. As a consequence, the construction of classes of
examples through gluing methods has been the focus of many works. For
instance, Arezzo and Pacard [2, 3] have obtained constant scalar curvature
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Kähler (cscK) metrics on blow-up of cscK manifolds or orbifolds; Arezzo,
Lena and Mazzieri have generalized these methods to resolutions of compact
orbifolds with isolated singularities; Biquard and Rollin [8] have studied
smoothings of canonical singularities, generalizing results by Spotti [43] on
smoothings of A1 singularities in the Kähler-Einstein case. In the case of
extremal metrics, one may cite the works of Arezzo, Pacard and Singer [4]
or Szekelyhidi [46, 48].

Another aspect of the existence problem for extremal metrics is its gener-
alisation to almost-Kähler manifolds. These are symplectic manifolds (M,ω)
endowed with a compatible almost-complex structure, that is not assumed
to be integrable. The space ACω of almost complex structures is known to be
a contractible Fréchet space, endowed with a natural Kähler structure. The
action of the group of Hamiltonian symplectomorphisms acts on ACω by
pullback. The key observation, due to Donaldson [13] (generalizing Fujiki’s
work [17] to the non-integrable setting), is that this action is Hamiltonian,
with moment map given by the Hermitian scalar curvature of (M,ω, J),
which is to say the trace of the curvature of the Chern connection on the
anticanonical bundle.

Thus, the suitable reframing of the problem is then the study of the
functional

J ∈ ACω 7→
∫

M

(s∇(J))2
ωm

m!
,

which coincide with the Calabi functional in the Kähler case. In this direc-
tion, Lejmi [26] has generalised many notions linked to the existence problem
of canonical metrics, and its relation to K-stability, such as the Futaki in-
variant. In another direction, Weinkove et al. [11, 49] study the Calabi-Yau
equation on an almost-Kähler 4-manifold (M,ω, J).

1.2. Statement of results

Let (M4, ωM , JM ) be a compact Kähler orbifold with isolated singularities
of type A1, denoted p1 . . . , , pℓ. This means that M is endowed with a holo-
morphic atlas that maps neighborhoods of the pi to neighborhoods of 0 in
C2/Z2.

Such orbifold surfaces, and more generally surfaces with canonical sin-
gularities, arise naturally by global quotient constructions, as well as in the
context of pluricanonical Kodaira ‘embeddings’ of surfaces of general type.
Such maps are obtained by contraction of divisors of self-intersection -2 in
a surface of general type, which results in canonical singularities.
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In Section 3, we detail the construction of a family of smooth sym-
plectic manifolds Mε indexed by a parameter ε ∈ (0, ε0), called a family
of smoothings of the orbifold (M,ωM ). We will obtain these smoothings
by a symplectic connected sum between M and an ALE Kähler model
(X ≃ T ∗S2, JX , ωX), Ricci flat, and with exact symplectic form ωX . The
construction of this ALE metric is detailed in the Annex.

For now, we simply highlight the fundamental properties of the smooth-
ing.

1) The manifold Mε will split into Mε = (M \ ∪iB(pi, r(ε))) ∪Kε, where
Kε is diffeomorphic to a compact neighborhoods K̃ε of the zero section
in T ∗S2. Moreover r(ε) goes to 0 as ε goes to 0, and T ∗S2 = ∪εK̃ε.

2) Mε is endowed with a symplectic form ωε such that, on the one hand,
the injection (M \ ∪iB(pi, r(ε)) →֒Mε, sends ωM to ωε, and, on the
other hand, the diffeomorphism ψε : Kε → K̃ε sends ε

−2ωε to ωX .

From these properties, we will see in Lemma 15 that the manifolds Mε

are all diffeomorphic, and actually symplectomorphic. Indeed, there is a
canonical injection

(1) H2
c (M \ {p1, . . . , pℓ}) →֒ H2(Mε,R)

that sends [ωM ] to [ωε]. In this sense, the cohomology classes of [ωε] all agree.

Furthermore, the identifications of regions of Mε with regions of M and
X enable us to make sense of the convergence, when ε goes to zero, of
sequences of functions (or tensors) fε :Mε → R on compact sets of M∗ :=
M \ {p1, . . . , pℓ} on the one hand, and on compact sets of X on the other
hand.

Making this construction precise is the object of Section 3. In this situ-
ation, we obtain the following result.

Theorem 1. Assume that (M,JM ) admits no nontrivial holomorphic vec-
tor fields that vanish somewhere on M , and that (M,ωM , JM ) is Kähler,
of constant scalar curvature. For a positive parameter ε small enough, we
endow the symplectic manifolds (Mε, ωε) with a family of smooth compatible
almost-Kähler structures Jε, gε of constant Hermitian scalar curvature, such
that, when ε goes to zero,

• The sequence of almost complex structures Jε converges, in Ck,α-norm,
to the orbifold complex structure JM , on every compact set of M∗, for
every k ∈ N.
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• The pushed-forward almost complex structures (ψε)∗Jε converges, in
any Ck,α-norm, to the ALE complex structure JX , on every compact
set of X, for every k ∈ N.

Remark 2. In [8], the same result is obtained in the case where Jε is
integrable.

However, the methods presented here are new. In usual gluing meth-
ods, the deformation of the approximate solution into a canonical metrics is
obtained by adding a potential function. The ∂∂̄-lemma makes such an ap-
proach natural in the Kähler setting. As we will see, this approach does not
work so well in the almost-Kähler setting. In dimension 4, ‘almost-Kähler
potentials’ have been used by Weinkove [49] in his study of the Calabi-
Yau equation on almost-Kähler manifolds, and by Lejmi [27]. However, this
method involves the use of pseudo-differential operators.

To prove our result, we will instead turn to an approach inspired by
Fujiki [17] and Donaldson’s [13] moment map picture for canonical metrics.

Besides the almost-Kähler setting, an element of novelty here is that the
cohomology class of the ωε is different from the one obtained with gluing
techniques like Arezzo and Pacard’s. On blow-ups, constant curvature metric
are usually obtained in a class of the form

Ω = [ω]−
∑

i

ε2λi[Ei],

where the [Ei] are Poincaré-dual to the holomorphic exceptional divisor, and
the λi are positive coefficients. Instead, in our construction, the zero section
of T ∗S2 is included in the compact sets K̃ε, thus, via the identification
K̃ε → Kε ⊂Mε, yields a Lagrangian sphere Sε:

[ωε] · [Sε] = 0.

This last observation enables us to extend another part of the results
obtained by Biquard and Rollin in [8], namely the existence of a family of
Hamiltonian stationary spheres corresponding to our family of metrics gε.
Let (M,ω, J, g) be a Kähler (or almost-Kähler) manifold. A Hamiltonian
stationary surface is a Lagrangian surface L which is a critical point of the
area functional under Hamiltonian deformations, which is to say that, for
any smooth function F ∈ C∞(M), we have

(2)
d

ds |s=0
V olg(exp(sXF )(L)) = 0,
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where exp(sXF ) denotes the flow of the Hamiltonian vector field XF . Such
surfaces have been introduced and studied by Oh in [37, 38]; new examples
generalizing Oh’s have been obtained by Joyce, Lee and Schoen in [21].
Schoen and Wolfson [42] have studied the existence of Lagrangian surfaces
that minimize the area.

In this direction, we obtain:

Theorem 3. On (Mε, ωε, Jε), for ε small enough, the Lagrangian sphere Sε
admits a Hamiltonian deformation that is a Hamiltonian stationary 2-sphere
for the metric gε.

1.3. Outline of the method

Let us now flesh out some details of the gluing construction. Following the
gluing methods introduced by Arezzo and Pacard in [2], we seek to endow
a smooth manifold Mε, obtained from M by a connected sum construction
with a suitable asymptotically locally euclidean (ALE) model X, with a
constant Hermitian curvature structure.

For such a construction to work, the ALE surface X needs to be asymp-
totic to C2/Z2, in the sense that the Riemannian metric and complex struc-
ture on X converge to the Euclidean ones J0, g0 on C2/Z2 fast enough. This
ALE model will be provided by smoothings

(3) Cε = {z ∈ C3, z21 + z22 + z23 = ε2}

of the quotient singularity C2/Z2, which we identify to the cone

C = {z ∈ C3, z21 + z22 + z23 = 0}.

For ε > 0, these are diffeomorphic to T ∗S2, which is endowed with Eguchi-
Hanson’s Ricci-flat metric and a complex structure that is a deformation of
the one obtained when blowing up the quotient singularity C2/Z2. We refer
to the Annex for more details about the ALE model.

Remark 4. The minimal resolution of the A1 singularity is an hyperKähler
manifold biholomorphic to T ∗CP1. Our choice here consists of taking a
different complex structure in the hyperKähler family. This observation is
the starting point of the construction of Hamiltonian stationary spheres later
on.
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The next step is to glue together M and X in a generalized connected
sum, that is a smooth, compact manifold: we replace a very small neighbor-
hood of each singularity pi of M by a suitably scaled-down ‘ball’ of large
radius in X. Performing this construction in Darboux charts, we ensure that
the obtained smooth manifold Mε is naturally endowed with a symplectic
form ωε.

Then, we endow Mε with an almost-Kähler structure (ωε, Ĵε, ĝε) by
patching together the model structures on M and X. This ‘patching’ comes
at the price of the integrability of the obtained almost-complex structure Ĵε.
Then, we perturb this approximate solution into an almost-Kähler structure
of constant Hermitian scalar curvature. This requires to depart from ‘usual’
gluing methods.

Since we are not working on a Kähler manifold, the Ricci and scalar cur-
vature stemming from the Riemannian metric ĝε := ωε(·, Ĵε·) do not retain
the same pleasant properties they have on a Kähler manifold. As a conse-
quence, we study the Hermitian scalar curvature instead; this is motivated
by the moment-map point of view of Donaldson [13].

Observe, moreover, that we have no appropriate notion of Kähler poten-
tial to perturb the symplectic form. Indeed, symplectic forms of the form

ωf := ωε + dĴεdf

are not Ĵε-invariant, thus do not provide an almost-Kähler structure on Mε.
Instead, we are going to fix the symplectic form ωε and modify the almost
complex structure Ĵε along directions orthogonal to the Hamiltonian action,
in a way that preserves compatibility with ωε.

This method allows us to rewrite the condition of constant Hermitian
curvature as an elliptic fourth order PDE on Mε. To solve it, we resort
to a fixed-point method in suitable functional Banach spaces. It turns out
that the linearisation of our PDE rewrites as the sum of the Lichnerowiz
operator on Mε and an error term. Up to proper estimates of this error
term, we may thus use the nice properties of the Lichnerowicz operators on
the model spaces, namely the orbifold M and the ALE surface X, to study
the linearisation. This last step allows us to find a unique solution through
an analogue of the inverse function theorem.

As far as Theorem 2 is concerned, the key observation is that the zero
section S of T ∗S2 is Lagrangian for the symplectic form ωX ; moreover it
corresponds to the (holomorphic) zero section of T ∗CP 1 for another choice
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of complex structure in the hyperKahler family; it is then a consequence of
Wirtinger’s inequality that S is minimal for Eguchi-Hanson’s metric, which
coincides with Stenzel’s metric as a Riemannian structure.

This property is preserved when constructing the approximate solution:
we obtain a Lagrangian minimal 2-sphere inMε. The idea is then to perturb
S inside its homology class by Hamiltonian transformation, and to use the
implicit function theorem to obtain Hamiltonian-stationary representants
for the nearby metrics ĝε obtained through the gluing process.

1.4. Examples and perspectives

Let us exhibit some classes of singular surfaces to which our construction
may apply.

As was pointed out to us by R. Dervan, this construction applies to
surfaces with A1 singularities and ample canonical class, since such surfaces
have negative first Chern class and thus are guaranteed to have a Kähler-
Einstein metric (see Aubin [5], and Kobayashi [22] for surfaces of general
type) and no nontrivial holomorphic vector fields (see [23], Chapter III,
Theorem 2.1).

In this direction, Miranda, in [33], studies a special case of complex
surfaces with ample canonical bundle, that admit no smoothing. Thus, we
may apply our construction, and these examples are outside the framework
of the smoothing theorem obtained by Biquard and Rollin [8].

Similarly, Catanese, in [9], exhibits a criterion for algebraic varieties with
finite automorphism group, under which they admit no smoothing. His the-
orem encompasses the previously obtained obstructed examples, and the
surfaces satisfying to this criterion have rational double points as singulari-
ties, and so do all of their deformations.

Finally, looking at the assumptions of the main theorem, some questions
arise naturally, that open some perspectives:

• Could we extend this construction to a wider range of singularities,
such as canonical singularities?

• What if the base manifold M admits nontrivial holomorphic vector
fields? For instance, could we obtain a result in the line of [45] in our
context?

Another question that arises is that of higher dimensions. However, in
this case, it has been proven by Hein, Radeasconu and Suvaina in [20] that
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an ALE model asymptotic to a singularity Cm/G has to be isomorphic to a
deformation of a resolution of the quotient singularity Cm/G. However, by
Schlessinger’s rigidity theorem [41], such singularities are actually rigid; as a
consequence, in complex dimension greater than 3, the only available ALE
model, up to biholomorphism, is the resolution of the singularity.

However, the double point in Cm, identified to the cone

C =
{

z ∈ Cm,

m
∑

i=1

z2i = 0

}

still admits smoothings

Sε =
{

z ∈ Cm,

m
∑

i=1

z2i = ε

}

that can be identified to the cotangent of the sphere T ∗Sm. Stenzel’s con-
struction [44] endows such smoothings with an ALE Ricci-flat metric. We
could thus consider a similar construction, where the base M has such con-
ical singularities.

1.5. Organisation of the paper

In Section 2, we begin with recalling the general properties of almost-Kähler
manifolds that are needed in the paper; we discuss especially the space of
amost complex structures compatible with a given symplectic form, as well
as the properties of the Hermitian scalar curvature. In Section 3, we show the
existence of Darboux charts around singularities in M on the one hand, and
outside a compact in X on the other hand, in which the gluing is performed.
Section 4 is devoted to the construction of a compatible almost complex
structure on Mε, as well as estimates on its Nijenhuis tensor. In Section 5,
we tackle the analysis of the equation we want to solve onMε. The idea is to
reduce the problem to a fixed-point problem in suitable Banach spaces, in
the spirit of the Inverse Function Theorem, and to compare the intervening
operators to the well-understood models on M and X. Finally, Section 6 is
concerned with the proof of Theorem 2.

Acknowledgements. I would like to thank my advisors Yann Rollin and
Gilles Carron for their invaluable help and support during the maturation of
this paper. I would also like to thank the CIRGET for their kind welcome and
the stimulating work environment; special thanks to Vestislav Apostolov,
who made this visit possible.
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2. Almost-Kähler preliminaries

Our construction will lead us into the realm of almost-Kähler geometry on
a symplectic manifold. For the sake of completeness, we introduce here all
the notions and identities that will appear in the main construction.

Let (V, ω) be a symplectic manifold. First, we describe the space of al-
most complex structures compatible with ω and how it relates to Kahler
classes in Kahler geometry. Then, we discuss several notion of scalar curva-
ture on the almost Kähler manifold (V, ω, J), and explain why the Hermitian
scalar curvature is most suited to our purposes.

2.1. Almost complex structures compatible with
a symplectic form

First we give some background on which (almost)-complex structures are
compatible with a given symplectic form. Let (V, ω) be a symplectic mani-
fold. We consider the set of all almost complex structures on V compatible
with ω:

ACω = {J section of End(TV ), such that J2 = −Id,
and gJ := ω(·, J ·) is a Riemann metric}.

Its tangent space at a point J ∈ ACω is then given by:

TJACω = {A section of End(TV )

such that AJ = −JA, ω(A·, ·) + ω(·, A·) = 0}.

Let Gω be the space of sections of Aut(TV ) that preserve ω,

Gω = Γ(Aut(TV, ω)) = {γ : V → Aut(TV ), ω(γX, γY ) = ω(X,Y )}.

It can be understood as an infinite-dimensional Lie group, whose Lie algebra
is then :

Lω = Γ(End(TV, ω)) = {a : V → End(TV ), ω(aX, Y ) + ω(X, aY ) = 0}.

Then we have the following proposition, relating any to a.c.s. compatible
with ω:
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Proposition 5. The action of Gω on ACω by conjugation is transitive. In
particular, given J1 and J2 in ACω, there is an a ∈ Lω such that

J2 = exp(a)J1 exp(−a);

moreover, the section A is unique if we assume it anticommutes with J1
and J2.

Conversely, for any J ∈ ACω, any tangent J̇ ∈ TJACω can be written as
the tangent vector to a curve of this form:

J̇ =
d

dt

∣

∣

∣

∣

t=0

exp(ta)J exp(−ta),

where a = −1
2JJ̇ .

Proof. Observe that P = −J1J2 is symmetric positive definite with respect
to both associated metrics g1 = ω(·, J1·) and g2 = ω(·, J2·). Thus we may
write it P = B2 for a symmetric definite positive matrixB. WriteB = exp(b)
and observe that b anticommutes to both J1 and J2 to conclude. □

2.2. Action of Hamiltonian vector fields on ACω

In the original construction proposed by Arezzo and Pacard, the “connected
sum” on which the operation takes place is a complex manifold in a nat-
ural way, and one looks for a canonical metric in a Kähler class naturally
obtained when performing the gluing.

Here we will lose this property on the connected sum. However, we will
see that we can still endow it with a natural (family of) symplectic 2-forms.
As a consequence, it will be more natural to keep this symplectic form fixed
and move the obtained almost complex structure in ACω.

In this section we explain how one might perform this operation on a
symplectic manifold (V, ω), and how, in the integrable case, this relates to
the more traditional use of the ddc-lemma to move around in a given Kähler
class.

Since the natural structure on V is the symplectic form ω, it makes sense
to use Hamiltonian vector fields to move the other structures around. Thus,
to a smooth function f on V , we associate the Hamiltonian vector field Xf
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defined by

df = ω(Xf · , · ).

A Hamiltonian vector field Xf induces a variation a of complex structures
via the Lie derivative:

a =
1

2
LXf

J.

This variation is compatible with ω in the following sense:

Lemma 6. The variation of complex structure a is in Lω. Moreover, a
anticommutes to J .

Proof. We must first check that ω(aX, Y ) + ω(X, aY ) = 0. To do this, we
use that, since Xf is hamiltonian, it preserves ω, i.e.

LXf
ω = 0.

Thus, since g(X,Y ) = ω(X, JY ), we have that

LXf
g(X,Y ) = ω(X,LXf

JY ).

But LXf
g is a symmetric tensor, thus

LXf
g(X,Y ) = LXf

g(Y,X)

= ω(Y,LXf
JX)

= −ω(LXf
JX, Y ).

As for anticommuting with J , we have that

2aJX = (LXf
J)JX

= −LXf
X − JLXf

(JX)

= −J(LXf
J)X

for any X. □
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Thus, from Proposition 5, we see that for any t, the almost complex
structure

Jt = exp(−ta)J exp(ta)

is in ACω. To f ∈ C∞(V ), we may therefore associate

(4) Jf := J1.

As an heuristical aparté, let us now briefly explain how this construction
can be related to the ddc-lemma in Kähler geometry.

The Lie group Ham(V, ω) of Hamiltonian symplectomorphisms on a sym-
plectic manifold (V, ω)1 acts on ACω by pullback. Through the Hamiltonian
construction, we identify the Lie algebra of Ham(V, ω) with the set E0 of
smooth functions on V with zero integral, equipped with the Poisson brack-
ets.

With this identification, the infinitesimal action is

P : f ∈ E0 7→ LXf
J ∈ TJACω.

Observe that if J , J ′ are integrable complex structures, such that J ′ =
ϕ∗J for some diffeomorphism ϕ, then the associated Riemannian metric is
given by:

(5) g(J ′, ω) = ϕ∗g(J, (ϕ−1)∗ω);

so if ϕ ∈ Ham(V, ω), these two metrics are isometric and have the same
scalar curvature. This construction does not help to find constant scalar
curvatures.

However, we may consider the complexified action instead. We may not
be able to complexify the Lie group, but we can consider the complexified
Lie algebra of zero-mean smooth functions with values in C. This yields a
complexified infinitesimal action

P : EC

0 =

{

H ∈ C∞(V,C),

∫

V

Hω2 = 0

}

→ TJACω.

The resulting foliation can be understood as the orbits of a fictitious com-
plexification HamC(V, ω).

The (infinitesimal) action of a purely imaginary
√
−1f is then given by

JP (f) = JLXf
J = LJXf

J . Thanks to (5), we see that, at the riemannian

1Ham(V, ω) can be understood as the set of symplectomorphisms which are time-
one value of the flow of a time-dependent Hamiltonian vector field.
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level, this amounts to fixing J and flowing ω along −JXf . The obtained
variation is then

−LJXf
ω = −dιJXf

ω = 2i∂∂̄f.

so this construction is equivalent to moving ω in its Kähler class. Via pull-
back by a time-one Hamiltonian flow, we have

ϕ∗f
(

ω + dJdf, J
)

=
(

ω, ϕ∗fJ
)

.

It would seem natural to adopt the same construction here; that is de-
tailed in Szekelyhidi’s paper [45]. However, as J is not integrable, we run into
an obstacle: the obtained almost complex structure ϕ∗fJ is not compatible
with ω.

Lemma 7. The almost complex structure J is integrable if, and only if,
dJdf is J-invariant for any function f .

Proof. On the one hand we have, for any X, Y ,

(dJdf)(X,Y ) = X · (Jdf(Y ))− Y · (Jdf(X))− Jdf([X,Y ])

= −X · (JY ) · f + Y · (JX) · f + J [X,Y ] · f.

On the other hand,

(dJdf)(JX, JY ) = JX · df(Y )− JY · df(X)− Jdf([JX, JY ])

= −JX · Y · f + JY ·X · f + J [JX, JY ] · f.

As a consequence, the J-anti-invariant parf of dJdf is

(dJdf)(X,Y )− (dJdf)(JX, JY ) = −4df(JNJ(X,Y )),

where NJ denotes the Nijenhuis tensor of the almost-complex structure J :

NJ(X,Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]) ,

which, by the celebrated Newlander-Niremberg theorem, vanishes iff J is
integrable. □

Thus, in the case where J is not integrable, we rather use the exponential
map construction, which does not move J in the complexified orbits, but
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does retain the complexified action at the infinitesimal level:

d

dt

∣

∣

∣

∣

t=0

Jt =
d

dt

∣

∣

∣

∣

t=0

exp(−tLXf
J)J = JLXf

J,

which coincide JP (f) obtained earlier.

2.3. The Hermitian scalar curvature

There are several competing notions of curvature on the almost-Kähler man-
ifold (V, ω, J). We now discuss them and pick the most natural choice; more
details can be found in Apostolov and Draghici’s survey [1].

First, one can consider the different Riemannian curvature tensors de-
rived from the metric gJ : the Riemannian curvature tensor RmgJ , the Ricci
curvature RicgJ and the scalar curvature sgJ . From these, one can define
the Ricci form ρ := RicgJ (J ·, ·). In the Kähler case, the complex structure
is parallel, which add symmetries to Rm, and one can show that the Ricci
form is closed of type (1, 1), and that its cohomology class, divided by 2π,
is exactly the first Chern class of V . However, since DJ is not assumed to
vanish, where D denotes the Levi-Civita connection of gJ , the Ricci form is
not necessarily closed or J-invariant; in particular, it is not a representant
of the cohomology class 2πc1(V ).

On the other hand, the almost complex structure J allows us to see each
tangent space TpV as a complex vector space. We will denote the resulting
complex bundle by (TV, J). It is identified T 1,0V via

X ∈ (TV, J) 7→ X1,0 :=
1

2
(X − iJX) ∈ T 1,0V ⊂ TV ⊗ C

Z + Z̄ ←[ Z

We endow (TV, J) with a Cauchy-Riemann operator defined by

∂̄
(TV,J)
X Y = 2Re

(

[X0,1, Y 1,0]1,0
)

which, in terms of the Levi-Civita connection of gJ , rewrites

∂̄
(TV,J)
X Y =

1

2
(DXY + JDJXY )− 1

2
J(DXJ)Y.

Together with the Hermitian inner product hJ = 1
2(gJ − iω), this oper-

ator determines a Chern connection ∇J on TV such that ∇J,(0,1) = ∂̄(TV,J).
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Since the almost Kähler structure is not assumed to be integrable, the Chern
connection does not necessarily coincide with the Levi-Civita connection. In-
stead, both are related by

∇XY = DXY −
1

2
J(DXJ)Y.

Remark.The torsion of this Chern connection is given by the Nijenhuis
tensor NJ .

The top exterior power K∗
J := Λm(TV, J), called the anticanonical bun-

dle, inherits a Hermitian product and a Hermitian connection from this
construction. Then, the curvature of the Chern connection on K∗

J is of the
form iρ∇ where ρ∇ is a real, closed 2-form, and moreover, is a representant
of 2πc1(V ). We call it the Hermitian Ricci form.

The Hermitian scalar curvature s∇ is then defined to be its trace with
respect to ω:

s∇ = 2Λρ∇.

On a Kähler manifold, i.e. when the almost complex structure is inte-
grable, all those notions of Ricci and scalar curvature coincide. To express
their relationship in the almost-Kähler setting, we need to introduce yet
another notion of curvature. Observe that the (4,0)-Riemannian curvature
tensor RmgJ can be identified to a symmetric endomorphism Λ2V → Λ2V
via

RmgJ (α ∧ β)(X,Y ) := RmgJ (α
♯, β♯, X, Y ).

The twisted Ricci form, or ✯-Ricci form, is then defined as the image of the
symplectic form by this endomorphism:

ρ∗ = RgJ (ω),

and its trace with respect to ω is the ✯-scalar curvature :

s∗ = 2Λρ∗ = 2(RgJ (ω), ω).

Then we have the following identites, which are proven in [1].
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Proposition 8. The Riemannian, Hermitian and twisted Ricci form are
related as follows:

ρ∇(X,Y ) = ρ∗(X,Y )− 1

4
tr(JDXJ ◦DY J),

ρ∗(X,Y ) =
1

2
(RicgJ (JX, Y )− RicgJ (X, JY )) +

1

2
((DD∗J)X,Y ).

As far as the scalar curvatures are concerned, we have

s∇ = sgJ +
1

2
|DJ |2 = s∗ − 1

2
|DJ |2 = 1

2
(sgJ + s∗).

In this last formula, the norm of DJ is given by |DJ |2 = −1
2

∑

i tr (DeiJ ◦
DeiJ), with {ei}i a local orthonormal frame for gJ .

In the almost Kähler context, the Hermitian Ricci form and the Hermi-
tian scalar curvature are natural substitutes to their Riemannian counter-
parts.

We will thus use s∇ as a generalization to our context of the Riemannian
scalar curvature. Of course, the anticanonical bundle and Chern connection,
hence the Hermitian scalar curvature depends on the almost complex struc-
ture we use on V . Hence, we will be interested in the operator

s∇ : ACω −→ C∞(V )

J 7−→ s∇(J).

First variation of s∇. The first variation of the Hermitian scalar cur-
vature operator with respect to J ∈ ACω is given by the following formula,
proven by Mohsen in his Master thesis [34]:

Proposition 9. Define a curve Jt in ACω by

Jt = exp(−ta)J exp(ta),

for a ∈ Lω anticommuting to J , and set

J̇ =
d

dt

∣

∣

∣

∣

t=0

Jt

the tangent vector at t = 0. Then the first variation of the Hermitian scalar
curvature along the curve Jt is given by:

(6)
d

dt

∣

∣

∣

∣

t=0

s∇(Jt) = Λd(δJ̇)♭ = −δJ(δJ̇)♭,
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where the codifferential δ and the musical operator ♭ are taken with respect
to the metric gJ = ωε(·, J ·).

Remark: Recall that the vector field δJ̇ is given in a local orthonormal
frame (ei)i for g by

δJ̇ = −
∑

(Dg
ei J̇)(ei).

Proof. We follow the proof given in Chapter 9 in [19].
We denote by gt, ht the Riemannian metric and Hermitian inner product

on (TV, Jt). Then the isomorphism

exp(−ta) : (TV, J)→ (TV, Jt)

preserves ω, hence induces an isomorphism of Hermitian line bundles be-
tween (K∗

J , h) and (K∗
Jt
, ht).

The strategy is to first compute the connection 1-form αt of the Chern
connection on (K∗

Jt
, ht). Then the Hermitian Ricci curvature is given by

ρ∇
Jt = −dαt , and taking the trace, we get the Hermitian scalar curvature

s∇
Jt = 2Λtdαt. Thus, we need only compute α̇ :=

d

dt

∣

∣

∣

∣

t=0

αt.

We wish to compute α̇ in terms of J̇ . Let (Z1, . . . , Zm) be a local or-
thonormal frame for (TV, J, hJ). That is,

hJ(Zi, Zj) = δij ⇔
{

gJ(Zi, Zj) = 2δij ,

ω(Zi, Zj) = 0.

Then
{

Ztj := exp(−ta)Zj
}

j=1...m
is an orthonormal frame for (TV, Jt, hJt

).
In this frame, the connection 1-form αt is given by

αt(X) = −i
∑

j

ht(∇Jt

XZ
t
j , Z

t
j).

We split ∇Jt into its (0,1) and (1,0) parts and observe that

ht((∇Jt)(1,0)X,Y ) = −ht(X, (∇Jt)(0,1)Y )

thus

αt(X) = −i
∑

j

ht( (∇Jt

X )(0,1)Ztj , Z
t
j)− ht(Ztj , (∇Jt

X )(0,1)Ztj)
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Recall that the (0,1) part of ∇Jt is ∂̄(TV,Jt). Thus,

αt(X) = −i
∑

j

ht( ∂̄
(TV,Jt)
X Ztj , Z

t
j)− ht(Ztj , ∂̄

(TV,Jt)
X Ztj)

= −
∑

j

ω(∂̄
(TV,Jt)
X Ztj , Z

t
j)

=
∑

j

ω(exp(ta)∂̄
(TV,Jt)
X exp(−ta)Zj , exp(ta)Ztj))

=
∑

j

ω(exp(ta)∂̄
(TV,Jt)
X exp(−ta)Zj , Zj))

Now, the Cauchy-Riemann operator ∂̄(TV,Jt) is given by

∂̄
(TV,Jt)
X Z : = 2Re([X0,1, Z1,0]1,0)

= −1

4
(JtLZJt + LJtZJt)(X).

As a consequence,

αt(X) =
1

4

∑

j

ω(exp(ta)Jt(Lexp(−ta)Zj
Jt)X,Zj)

+ ω(exp(ta)(LJt exp(−ta)Zj
Jt)X,Zj)

=
1

4

∑

j

ω(J exp(ta)J(Lexp(−ta)Zj
Jt)X,Zj)

+ ω(exp(ta)(Lexp(−ta)JZj
Jt)X,Zj).

We will now rewrite this in terms of the metric gJ and its Levi-Civita con-
nection D. We will use the local frame

{e1, . . . , , e2m} :=
1√
2
{Z1, . . . , Zm, JZ1, . . . , JZm};

in this frame, the previous expression rewrites

αt(X) = −1

2

∑

k

gJ(exp(ta)J(Lexp(−ta)ekJt)X, ek).
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We may express the Lie derivative of Jt in terms of D:

(Lexp(−ta)ekJt)X = (Dexp(−ta)ekJt)X +
[

D(exp(−ta)ek), Jt
]

(X)

= (Dexp(−ta)ekJt)X +DJtX(exp(−ta)ek)
− JtDX(exp(−ta)ek).

Hence, using exp(ta)Jt = J exp(ta), we get

αt(X) = −1

2

∑

k

gJ(exp(ta)(Dexp(−ta)ekJt)X, ek)

+
1

2

∑

k

gJ(exp(ta)DJtX(exp(−ta)ek), ek)

− 1

2

∑

k

gJ(J exp(ta)DX(exp(−ta)ek), ek).

Taking the derivative with respect to t yields

α̇(X) =
1

2

∑

k

gJ(a(DekJ)X, ek)− gJ((DaekJ)X, ek) + gJ((Dek J̇)X, ek)

+ gJ(aDJXek, ek) + gJ(DJ̇Xek, ek)− gJ(DJX(aek), ek)

− gJ(JaDXek, ek) + gJ(JDX(aek), ek).

which rewrites

α̇(X) =
1

2
(δJ̇)♭(X)

− 1

2

∑

k

gJ(a(DekJ)X, ek)− gJ((DaekJ)X, ek)

+
1

2

∑

k

gJ((DJXa)ek, ek)

− 1

2

∑

k

gJ(DJ̇Xek, ek)

+
1

2

∑

k

gJ(J(DXa)ek, ek)
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that is

α̇(X) =
1

2
(δJ̇)♭(X)

− 1

2

∑

k

gJ(a(DekJ)X, ek)− gJ((DaekJ)X, ek)− gJ(DX(aek, ek)

+
1

2

∑

k

gJ((DJXa)ek, ek)

− 1

2

∑

k

gJ(DJ̇Xek, ek)

+
1

2

∑

k

gJ((DXJa)ek, ek)

The first term 1
2(δJ̇)

♭(X) is what we expect. The other terms vanish, for
the following reasons:

• Each ek has norme 1, thus gJ(DJ̇Xek, ek) =
1
2(J̇X)(g(ek, ek) = 0.

• Since a and Ja anticommute to J , both these endormorphisms
are trace-free, and so are DJXa and DX(Ja). Thus, the terms
∑

k gJ((DJXa)ek, ek) and
∑

k gJ((DXJa)ek, ek) vanish.

• Finally, for any k, the sum

gJ((DekJ)(aek), X) + gJ((DXJ)ek, aek) + gJ((DaekJ)X, ek)

vanishes, since for any X,Y, Z

gJ((DY J)(Z), X) + gJ((DXJ)Y, Z) + gJ((DZJ)X,Y ) = dω(X,Y, Z) = 0.

Thus we get

d

dt

∣

∣

∣

∣

t=0

ρ∇(Jt) = dα̇ =
1

2
d(δJ̇)♭(X).

To get the variation, we need to take the trace. Howevern we must be
careful: Λt depends on t. However, we have, for any 1-form α,

2Λtdα = −δtJtα,
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and δtJt actually does not depend on t. Indeed,by definition, we have for
any smooth function f and 1-form α,

∫

V

(δtα)fω
m =

∫

V

⟨α, df⟩tωm =

∫

V

α(gradtf)ω
m.

Thus,

∫

V

(δtJtα)fω
m =

∫

V

⟨Jtα, df⟩tωm = −
∫

V

α(Jtgradtf)ω
m =

∫

V

α(Xf )ω
m.

As a consequence, we have the announced result:

d

dt

∣

∣

∣

∣

t=0

s∇(Jt) = Λd(δJ̇)♭ = −δJ(δJ̇)♭.
□

This results has other interesting consequences. For instance, if J1 and
J2 are in ACω, then we get

ρ∇J1 − ρ∇J2 = dαJ1
− dαJ2

= −1

2
d

(∫ 1

0
(δtJ̇)

♭tdt

)

thus belong to the same de Rham class, the first Chern class of the sym-
plectic manifold (V, ω).

Moreover, if one defines the total Hermitian scalar curvature as

S∇ =

∫

V

s∇ volg,

then it is constant on ACω, as

S∇J1 − S∇J2 = −
∫

V

Λd

(∫ 1

0
(δtJ̇)

♭tdt

)

volg = 0.

This goes to say that the Hermitian scalar curvature on ACω is the correct
analogue in our context of the scalar curvature on a fixed Kähler class. As
an aside, note, we may push this analogy further and define a Hermitian
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Calabi functional by

C : ACω → R

J 7→
∫

V

s∇(J)2volg,

whose critical points are called extremal almost-Kähler metric and verify
a similar condition as the extremal Kähler metrics. Such extremal almost
Kähler metrics have been studied by Lejmi in [26].

Relation to the Lichnerowicz operator. Using this formula, we can
now compute the linearisation of the operator that will appear in the gluing
construction, which is the composition of s∇ with the map f 7→ Jf intro-
duced in (4). In particular, we are interested with how it relates to the
linearisation of the (riemannian) scalar curvature on a Kähler manifold.

Recall that, on a Kähler manifold, the following formula holds:

d

dt

∣

∣

∣

∣

t=0

s(ω + i∂∂̄f) = −2δδD−df + (ds, df) =
1

2
∆2f + (2i∂∂̄f, ρ).

On a constant scalar curvature Kähler manifold, this reduces to the Lich-
nerowicz operator

Lf = (D−d)∗D−df = δδD−df =
1

2
∆2f − δ(Ric(df)).

Choose J ∈ ACω so that (V, J, ω) is almost-Kähler. We have

d

dt

∣

∣

∣

∣

t=0

Jtf = JLXf
J,

thus we want to compare

L : f 7→ −δJ(δ(JLXf
J))♭

to L in an attempt to translate its good regularity properties to our context.

The main calculation is the following
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Proposition 10. Let f ∈ C3,α(V ). Then the following holds:

J(δ(JLXf
J))♭ = ∆gdf − 2Ric(gradgf, ·) + Ef,

where the error term E is given, in an orthornormal basis for g of the form
by

(7) Ef(Y ) =
∑

i

df((D2
ei,JY J)ei) + 2Ddf(ei, J(DY J)ei)

in an orthonormal frame {e1, . . . , e2m} =
1√
2
{Z1, . . . , Zm, JZ1, . . . , JZm} on

(TV, g).

Proof. The first thing we use is the following rewriting of J̇ :

(8)

J̇ = JLXf
J

= LJXf
J − 4NJ(Xf , ·)

= LgradgfJ − 4NJ(Xf , ·).

We will compute δ(LgradgfJ) and δNJ(Xf , ·) separately.

For the first, let ψt be the flow of gradgf . Then

LgradgfJ =
d

dt

∣

∣

∣

∣

t=0

ψ∗
t J.

Now, (V, J, ω) is an almost Kähler manifold, thus δJ = 0, which implies

ψ∗
t (δJ) = δψ

∗

t gψ∗
t J = 0.

Differentiating this equation at 0 with respect to t, we get

δLgradgfJ = − d

dt

∣

∣

∣

∣

t=0

(

δψ
∗

t g
)

J.

To rewrite this expression, we use the following, proven by Minerbe in his
thesis [32] (Lemma 3.19):

(9)
d

dt

∣

∣

∣

∣

t=0

D
ψ∗

t g
X Y = Rmg(X, gradgf)Y −D2

X,Y gradgf.
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We choose an orthonormal basis {ei}i=1...2m of (TV, g) of the form

1√
2
{Z1, . . . , Zm, JZ1, . . . , JZm},

with {Zi}i an orthonormal basis for the complex vector bundle (TM, J) (as
in the proof of Proposition 9). In such a basis

δψ
∗

t gJ = −
∑

i,j

(ψ∗
t g)

ijDψ∗

t g
ei J(ej),

where (ψ∗
t g)

ij denotes the (i, j)-coefficient of the inverse of the matrix
(ψ∗

t g(ek, el))k,l. Using (9), we get

d

dt

∣

∣

∣

∣

t=0

Dψ∗

t g
ei J(ej) =

d

dt

∣

∣

∣

∣

t=0

(

Dψ∗

t g
ei (Jej)− JDψ∗

t g
ei ej

)

= Rm(ei, gradgf)Jej −D2
ei,Jejgradgf

− JRm(ei, gradgf)ej + JD2
ei,ejgradgf.

On the other hand, since we have chosen an orthonormal basis for g,
(ψ∗

t g)
ij
|t=0 = δij , thus

d

dt

∣

∣

∣

∣

t=0

(ψ∗
t g)

ij = − d

dt

∣

∣

∣

∣

t=0

(ψ∗
t g)ij = −Lgradgfg(ei, ej) = −2Ddf(ei, ej).

Thus,

−δLgradgfJ = −
∑

i

Rm(ei, gradgf)Jei −D2
ei,Jeigradgf(10)

− JRm(ei, gradgf)ei + JD2
ei,eigradgf

+
∑

i,j

2Ddf(ei, ej)DeiJ(ej).

Now, using Bianchi’s identity,

Rm(ei, gradgf)Jei = −Rm(gradgf, Jei)ei − Rm(Jei, ei)gradgf

= Rm(Jei, gradgf)ei − Rm(Jei, ei)gradgf

Now, our choice of basis gives

∑

i

Rm(ei, gradgf)Jei = −
∑

i

Rm(Jei, gradgf)ei,
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thus
∑

i

Rm(ei, gradgf)Jei =
1

2

∑

i

Rm(ei, Jei)gradgf.

On the other hand, still thanks to the form of the local frame {ei},

∑

i

D2
ei,Jeigradgf =

1

2

∑

i

(

D2
ei,Jeigradgf −D

2
Jei,eigradgf

)

=
1

2

∑

i

Rm(ei, Jei)gradgf.

As a consequence, the first two terms in (10) compensate one another. As
for the remaining terms, we use

∑

i

Rm(ei, gradgf)ei = −Ric(gradgf),

thus (10) rewrites

δLgradgfJ = −JD∗Dgradgf − JRic(gradgf)−
∑

i,j

2Ddf(ei, ej)DeiJ(ej).

Using Bochner’s formula on 1-foms, this rewrites

(δLgradgfJ)
♭ = J∆df − 2Ric(gradgf, J ·)−

∑

i

2Deidf ◦DeiJ.

We still have the second term of (8) to deal with. We need to compute

(δNJ(Xf , ·))♭.

However, the Nijenhuis tensor rewrites as follows in terms of the Levi-Civita
connection

g(NJ(Xf , X), Y ) =
1

2
g(Xf , J(DY J)X).

Thus,

(δNJ(Xf , ·))♭(Y ) = δα(Y )
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where α(X,Y ) := −1

2
g(gradgf, (DY J)X). Hence

(δNJ(Xf , ·))♭(Y ) = −
∑

i

Deiα(ei, Y )

= −
∑

i

ei · (α(ei, Y ))− α(Deiei, Y )− α(ei, DeiY )

=
1

2

∑

i

g(Deigradgf, (DY J)ei) + g(gradgf, (D
2
ei,Y J)ei).

Moreover, observe that since DY J is antisymmetric with respect to the
metric g, while the Hessian Ddf is symmetric, the first term must vanish.
Indeed, in a basis that simultaneously diagonalises Ddf and g, we see that

∑

i

g(Deigradgf, (DY J)ei) =
∑

i

Ddf(ei, (DY J)ei)

=
∑

i

λig(ei, (DY J)ei)

= −
∑

i

λig((DY J)ei, ei)

= −
∑

i

g(Deigradgf, (DY J)ei).

As a consequence, we are left with

Jδ(JLXf
J))♭(Y ) = Jδ(LgradgfJ)

♭(Y )− 4J(δNJ(Xf , ·))♭(Y )

= ∆gdf(Y )− 2Ric(gradgf, Y )

− 2
∑

i

Deidf((DeiJ)Y )− 2
∑

i

df(D2
ei,JY ei),

which is what we set out to demonstrate, provided J act on 1-forms the
usual way:

(Jα)(Y ) = −α(JY ).
□

The error term gives the quantity we will need to estimate when com-
paring the linearisation of our equation to model operators on M and X.
We can see it is directly related to the lack on integrability of J .



✐

✐

“5-Vernier” — 2020/10/27 — 16:28 — page 1346 — #28
✐

✐

✐

✐

✐

✐

1346 Caroline Vernier

Applying the codifferential δ again, we see that

(11) Lf = −∆2
gf + 2δ(Ric(df)) + δEf,

that is, the linearised operator is equal to the Lichnerowicz operator, plus an
error term of order at most 3 in f . The coefficients of this error term depends
on (derivatives of) DJ , which is comparable to the Nijenhuis tensor. As a
consequence, L is an elliptic, 4th-order operator on the potential function f .

3. Darboux charts in the orbifold and the ALE space

When gluing together an orbifold with the resolutions of its singularities,
holomorphic charts are usually used, to obtain a “connected sum” that is
naturally a complex manifold. However, here the construction will not work
in holomorphic charts, as the complex structures do not match on the ALE
space X and the Kähler orbifold M ; the connected sum we will obtain will
have no natural complex structure inherited from that of the orbifold.

To address that issue, we will work in Darboux charts instead, and endow
the connected sum with a symplectic structure.

3.1. On the orbifold

Let (M,JM , ωM ) be a Kähler orbifold of complex dimension 2, with singu-
larities p1, . . . , pℓ of type C

2/Z2. Let pi be a singular point ofM . Then, there
is a neighborhood Ui of 0 in C2 and a map

ϕi : Ui →M,

such that ϕi(0) = pi and ϕi induces an homeomorphism

ϕ̃i : Ui⧸Z2
→ Ũi ⊂M.

In such a chart, the Kähler form ωM pulls back to a Z2 invariant, closed,
nondegenerate 2-form ωi on Ui.

Up to a linear transformation of the coordinates, we may assume that
in this chart, at the point 0 we have

ωi(0) = ω0 :=

√
−1
2

∑

dzk ∧ dz̄k.

Moreover we may arrange that the complex structure JM is also equal to
the standard one J0 at 0.
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Now, since Z2 ⊂ U(2), the standard symplectic structure ω0 on Ui is
also Z2 invariant. Thus we can use the equivariant version of the relative
Darboux theorem, relatively to the point 0 where both 2-forms agree, to find
an equivariant symplectomorphism

ψ : Vi ⊂ Ui → Vi ⊂ Ui,
ψ∗ωi = ω0.

This is proven the usual way, by working Z2-equivariantly; the interested
reader may consult [12].

This symplectomorphism passes to the quotient modulo Z2 and, com-
posed with ϕi, provides an orbifold Darboux chart around pi ∈M .

Moreover, since ω0(0) = ωi(0), working relatively to 0 we may assume
that dψ(0) = I, thus in this Darboux chart, the complex structure JM is
equal to J0 at p.

3.2. On the ALE manifold

The second ingredient of the gluing construction is an ALE Kähler manifold
X, with group at infinity Z2. We consider X = T ∗S2 endowed with the fam-
ily of Ricci-flat Kähler metrics (JX,ε, gX,ε) that are described in the Annex.
They are obtained when considering smoothings instead of the minimal res-
olution of the quotient singularity. In spherical coordinates in R4, we have
the following expression:

(12)

JX,ε
∂

∂s
= − 2s√

s4 − 4
X3, JX,εX1 = −

√

1− 4

s4
X2

1√
2ε
gX,ε =

(

1− 4

s4

)−1

ds2 +
s2

4

(

1− 4

s4

)

α2
1 +

s2

4
(α2

2 + α2
3),

ωX,ε =
√
2ε





s

2
√

1− 4
s4

α3 ∧ ds+
s2

4

√

1− 4

s4
α2 ∧ α1





where s is the radius function of R4, and the αi’s are a basis of invariant
1-forms on S3, verifying dαi = αj ∧ αk for any circular permutation (i, j, k)
of (1,2,3), and the Xi’s are the associated dual basis. Thus, (JX,ε, gX,ε) gives
a Kähler structure on T ∗S2 that is ALE of order 4:
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To endow (X = T ∗S2, ωX) with a Darboux chart outside a compact,
notice that

ωX,ε =
√
2εddcJX,ε

(

s2

4

)

=
√
2ε





s

2
√

1− 4
s4

α3 ∧ ds+
s2

4

√

1− 4

s4
α2 ∧ α1





= f ′ε(s)α3 ∧ ds+ fε(s)α2 ∧ α1.

où

fε(s) =
√
2ε
s2

4

√

1− 4

s4

Thus, setting
r2√
2
= fε(s) gives a radial change of coordinate that pro-

vides a Darboux chart outside a compact set in X. Moreover this change of
variable gives us the same ALE fall-off rate. Indeed, straightforward com-
putation gives, in these new coordinates:

ωX,ε =
r

2
α3 ∧ dr +

r2

4
α2 ∧ α1 = ω0;

gX,ε =

(

1 +
ε2

r4

)− 1

2

dr2 +
r2

4

(

1 +
ε2

r4

)− 1

2

α2
1

+
r2

4

(

1 +
ε2

r4

)
1

2

(α2
1 + α2

3)

JX,ε
∂

∂r
= − 2r

√

r4 + ε2)
X3

JX,εX1 = −
(

1 +
ε2

r4

)− 1

2

X2.

Thus, up to a 2
√
2 factor, we keep the same expression for the metric.

Moreover, we see that the decay rate in this ALE Darboux chart is still 4:

(13)
∂k(J0 − JX,ε) = O(r−4−k)

∂k(g0 − gX,ε) = O(r−4−k).

Remark 11. Moreover, in this chart, we observe that as ε goes to 0, the
Kähler structure on T ∗S2 \ S2 outside the zero section converges to the
orbifold Euclidean structure in C2/Z2, in any Ck norm.
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3.3. Symplectic connected sum

Using these charts on M and X, we obtain a new manifold by a generalized
connected sum construction, and that manifold will naturally be a symplec-
tic one. Since M has isolated singularities, we can assume that the Darboux
charts around each of them are disjoint.

Define a function ρ onM that, in each such chart, is equal to the distance
to the singularity pi and extend it smoothly to 1 on M .

On X, we use the radius function r in our ALE Darboux chart away
from the zero section of T ∗S2. We extend it smoothly to 1 on a compact
neighborhood of the zero section.

Let ε ∈ (0, ε0) be a small gluing parameter, and let rε := εβ for a 0 <

β < 1, Rε =
rε
ε
. We identify the regions {ρ = 2rε} ⊂M and {r = 2Rε} ⊂ X

via the homothety

hε−1 : {ε ≤ ρ ≤ 1} ⊂M → {1 ≤ r ≤ ε−1} ⊂ X
z 7→ w =

z

ε
.

We perform this connected sum construction at each singularity pi to
get a smooth compact manifold Mε, which is naturally endowed with the
symplectic form

ωε =

{

ε2h∗ε−1ωX,ε on {ρ ≤ 2rε},
ωM on {ρ ≥ 2rε}.

The use of Darboux charts ensure that this 2-form is smooth, nondegenerate
and closed.

Remark 12. There is actually another degree of freedom that we do not
use here. Indeed, we could make sense of the construction with a complex
nonzero parameter ε, which would be tantamount to introduce an action of
S1.

All the manifolds Mε are diffeomorphic to the minimal resolution M̂ of
the singularities pi. Moreover, as advertised in the introduction, the region

M \ ∪iB(pi, 4rε)

is naturally included in each Mε, allowing us to define:
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Definition 13. Suppose that we have, for each ε ∈ (0, ε0), a (smooth) func-
tion fε :Mε → R. Let f0 :M → R be a function defined on the orbifold M .
Let K be a compact subset of M∗. There is ε1 > 0 such that for all ε < ε1,
K ⊂M \ ∪iB(pi, 4rε). Then, for all ε < ε1, f|K is defined on Mε. We say

that the sequence (fε)ε converges towards f in Ck norm on the compact K
if

∥fε|K − f|K∥Ck(K)
ε→0−−−→ 0.

This definition extends to tensors onMε. Then, we see that the sequence
of symplectic forms (ωε)ε converges to the orbifold symplectic form ωM , in
any Ck norm, on every compact set of M∗.

Conversely, the compact set {r ≤ Rε} ⊂ X, after rescaling, is naturally
included in a small region of Mε. Thus we may define:

Definition 14. Suppose that we have, for each ε ∈ (0, ε0), a (smooth) func-
tion fε :Mε → R. Let f0 : X → R be a function defined on the ALE mani-
fold X. Let K be a compact subset of X, then there is ε1 > 0 such that for
all ε < ε1, K ⊂ {r ≤ Rε} →֒Mε. Then, for all ε < ε1, h

∗
εfε|K is defined on

X. We say that the sequence (fε)ε converges towards f in Ck norm on the
compact set K if

∥h∗εfε|K − f|K∥Ck(K)
ε→0−−−→ 0.

Moreover,

Lemma 15. The cohomology class [ωε] does not depend on ε.

Proof. Notice that, on the orbifoldM , in a contractile neighborhood of each
pi, the orbifold version of the local ∂∂̄-lemma tells us that ωM is exact.
Thus, there is a 2-form ω̄ ∈ H2(M∗,R), where M∗ :=M \ {p1, . . . , pℓ}, and
functions φi supported in a neighborhood of each pi, such that

ωM = ω̄ + i
∑

j

∂∂̄φj .

On the other hand, since ωX = i∂∂̄u is exact (see Annex), from the definition
of ωε we see that we may write

ωε = ω̄ + ε2
∑

j

∂∂̄(γju)

for suitable cut-off functions γj . □
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Remark 16. A more general, Mayer-Vietoris-type argument, actually al-
lows to identify H2(M,R) to {α ∈ H2(M̂,R), α · S = 0} via H2

c (M
∗,R),

where S corresponds to the zero section in T ∗S2.

From here, using Moser’s stability theorem (see for instance [30], Theo-
rem 3.17), we get

Corollary 17. The symplectic manifolds (Mε, ωε)ε∈(0,ε0) are all symplecti-
cally equivalent.

Remark 18. As a consequence, we could actually work on a fixed symplec-
tic manifold (M̂, ω̂). As a matter of fact, this is what we will do in Section 6.
However, during the gluing construction, it is more practical for the analysis
to keep track of the parameter ε (for instance to use Definitions 13 and 14).

4. Almost complex structures on Mε

The next step is to endow Mε with an almost complex structure that is
compatible with ωε. We achieve this by gluing together the complex struc-
tures JM on M and JX on X. As these manifolds have differing complex
structures, making them compatible will come at the cost of integrability,
thus we will only get an almost-complex structure on Mε.

4.1. On the orbifold M

Recall that we are working in orbifold Darboux charts (Ui, ϕi) centered at
each singularity pi. In such a chart, JM is, of course, compatible with ωM ,
but so is J0, the standard complex structure in C2.

Thus, according to the proposition 5, there is a unique section A of
End(TUi), anticommuting with both JM and J0, such that

JM = exp(A)J0 exp(−A).

Now, multiplying A by a cut-off function onM , we will be able to transi-
tion smoothly from JM to J0 in a neighborhood of the singularities. We will
lose integrability of the resulting almost complex structure in the process.
On the other hand, if we can show that JM approaches J0 close to each pi,
we may hope that the operation is not too drastic.

Thus, we first need an estimate of A:
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Lemma 19. In the orbifold Darboux coordinates x = (xk)k=1,...,4 described
in paragraph 3, JM and J0 coincide to first order:

(14) JM (x) = J0 +O(|x|2).

As a consequence, the endomorphism A satisfies the following estimates:

(15)

A = O(|z|2),
∂A = O(|z|), and

∂kA = O(1) for all k ≥ 2.

Proof. Recall that in the orbifold charts that we are using, we have arranged
that JM (0) = J0. Thus, in these coordinates, a Taylor development of JM
around 0 can be written

JM (x)ji = (J0)
j
i + (J(1))

j
ikxk +O(|x|2).

The tensor J(1), whose coefficients are the first order coefficients in the de-
velopment of JM , is a local section of Λ1Ui ⊗ End(TUi). However, as Z2 acts
as a multiplication by -1 on Λ1Ui ⊗ End(TUi) can only be Z2-invariant if it
is zero. As both JM and J0 are Z2-invariant, we obtain the estimate (14).
Observing that

JM − J0 = exp(A)J0 exp(−A)− J0
= (exp(2A)− I)J0
= O(|x|2),

we get the desired estimate on A. Writing a Taylor development of A and
using again that JM (x)− J0 = O(|x|2) allows to get the estimate on the first
derivative of A near 0.

Since A is defined and smooth onM , we see that higher order derivatives
are at worst bounded. □

Remark: When performing gluing on a Kähler manifold, it is usual to work
in holomorphic coordinates in which ω approaches the standard Kähler form
ω0 on Cm to order 2. The existence of such a charts is actually a characteri-
zation of Kähler metrics. Here, we work in a Darboux chart instead, but we
do retrieve an order two approximation, on the complex structure instead
of the symplectic form.

Now recall that rε = εβ is our chosen gluing radius; for ε small enough,
{ρ ≤ 4rε} is contained in the Darboux chart around each pi.
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Let χ1 : R→ R be a smooth cutoff function, such that

χ1(x) =

{

0 if x ≤ 2 + η,

1 if x ≥ 4

where η is very small; its only purpose is to provide some leeway and ensure
that all derivatives will match when performing the gluing. Set

χrε := χ1

(

ρ

rε

)

.

We define an almost complex structure Jrε on M by

Jrε = exp(χrεA)J0 exp(−χrεA).

In particular,

Jrε =

{

J0 if ρ ≤ 2rε,

JM if ρ ≥ 4rε.

Moreover, using Lemma 19 in the “annulus” {2rε ≤ ρ ≤ 4rε}, we see
that

(16)
Jrε − J0 = O(r2ε),

∂(Jrε − J0) = O(rε).

The first estimate results directly from the lemma. For the second, ob-
serve that

Jrε − J0 =
(

exp
(

2χrεA
)

− I
)

J0

thus first derivatives are of the form

∂(Jrε − J0) = 2(d exp)(2χrεA)(∂χrεA+ χrε∂A)J0.

To conclude, we use that in {2rε ≤ r ≤ 4rε},

∂χrε = O(r−1
ε ).

The endomorphism Jrε onM is an almost complex structure, compatible
with ωM by construction. It is not an integrable complex structure; however,
its Nijenhuis tensor is supported in the cutoff region {2rε ≤ r ≤ 4rε}. We
give an estimate of the Nijenhuis tensor NJrε

, as it will appear in error terms
down the road.
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Lemma 20. The Nijenhuis tensor NJrε
of Jrε verifies

(17) NJrε
=

{

O(rε) in {2rε ≤ r ≤ 4rε},
0 elsewhere.

Moreover, its derivatives are bounded on M .

Proof. Recall that we have the following expression for the Nijenhuis tensor:

(18) NJrε
(X,Y ) =

1

2
Jrε((Drε,Y Jrε)X − (Drε,XJrε)Y ),

whereDrε is the Levi-Civita connection associated to the Riemannian metric
grε := ω(·, Jrε ·). Using this, we compute:

NJrε
(X,Y ) =

1

2
(Jrε − J0)((Drε,Y (Jrε − J0)X − (Drε,X(Jrε − J0)Y )

+
1

2
J0(Drε,Y (Jrε − J0)X −Drε,X(Jrε − J0)Y )

+
1

2
Jrε((Drε,Y J0)X − (Drε,XJ0)Y ),

where Drε is the Levi-Civita connection associated with the metric grε =
ωM (·, Jrε ·). Using the estimate (16), we see that the first term of this sum is
an O(r3ε) and the second one is an O(rε). We need estimate the third term
by comparing it with the Nijenhuis tensor of J0, which vanishes. To do this,
notice that

DrεJ0 = (D0 + Γrε)J0 = ΓrεJ0,

where Γrε is expressed with the Christoffel coefficients of the metric grε ,
thus the first derivatives of the coefficients of grε . As a consequence, ΓrεJ0 =
O(rε). □

4.2. On the ALE space X

We proceed similarly on X. We work in the (family of) Darboux charts at
infinity described in paragraph 3. In this chart, both JX,ε and J0 are compat-
ible with ωX,ε, thus there is a unique section Bε in LωX,ε

, anticommunting
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with both J0 and JX,ε, and such that

JX,ε = exp(Bε)J0 exp(−Bε).

Using our estimate (13), the same calculations that we already performed
on M show that

Bε = O(r−4),

∂kBε = O(r−4−k).

We perform the same kind of cutoff as we did on the orbifold. Let χ2 :
R→ R be a smooth cutoff function, such that

χ2(x) =

{

1 if x ≤ 1

0 if x ≥ 2− η.

Recall that Rε = rε⧸ε = εβ−1 is our gluing radius on the ALE space. We
define a cutoff function on X by

χRε
:= χ2

(

r

Rε

)

.

If ε is small enough, the region {r ≥ Rε} is contained in the Darboux
chart. We define an almost-complex structure on T ∗S2 by

JRε
= exp(χRε

Bε)J0 exp(−χRε
Bε).

By definition,

JRε
=

{

JX,ε on {r ≤ Rε}
J0 on {r ≥ 2Rε}.

As before, our estimate on Bε and choice of cutoff ensures that the
difference between JRε

and J0 becomes small when ε goes to zero. More
precisely:

(19)
JRε
− J0 = O(R−4

ε ),

∂k(JRε
− J0) = O(R−4−k

ε ).

As before, JRε
is a compatible almost complex structure on X, compati-

ble with ωX in the Darboux chart. However, once again, it is not integrable.
Its Nijenhuis tensor is supported in {Rε ≤ ρx ≤ 2Rε}. The computation done
on the orbifold translates directly to this case and we see that NJRε

verifies:
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Lemma 21. The Nijenhuis tensor of JRε
verifies, for any k ≥ 0,

(20) ∂kNJRε
=

{

O(R−5−k
ε ) on {Rε ≤ r ≤ 2Rε}

0 elsewhere.

Proof. The proof is the same as Lemma 20, and relies on the expression (18)
for the Nijenhuis tensor. We apply it this time to the Levi-Civita connection
associated with the metric gRε

= ωX(·, JRε
·). The computation then trans-

lates directly to this case, using (13) for the estimation of the Christoffel
symbols. □

4.3. The approximate solution

The new almost-complex structures on M and X now both coincide with
the standard one J0 in suitables regions of the Darboux charts. Thus, we can
glue them together to obtain an almost complex structure on the “connected
sum” manifold Mε constructed at the end of paragraph 3.

First, we define a function on Mε that will encode both the function ρ
that extends the distance to the singularities on M , and the radius function
r on X. We set

ρε =

{

ρ where ρ ≥ 2rε;

εh∗ε−1r where ρ ≤ 2rε.

We define Ĵε as follows:

Ĵε =

{

h∗ε−1JRε
where ρε < 2rε,

Jrε where ρε ≥ 2rε.

This smooth section of End(TMε) defines an almost complex structure
on Mε that is compatible with ωε by construction. It is not integrable; its
Nijenhuis tensor is supported in a small annulus {rε ≤ ρε ≤ 4rε} around
each singularity.

Lemma 22. The Nijenhuis tensor NĴε
of Ĵε verifies

(21) NĴε
=

{

O(ε4r−5
ε ) on {rε ≤ ρε ≤ 2rε}

O(rε) on {2rε ≤ ρε ≤ 4rε}.
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Moreover, its derivatives verify

(22) ∂kNĴε
=

{

O(ε4r−5−k
ε ) on {rε ≤ ρε ≤ 2rε}

O(1) on {2rε ≤ ρε ≤ 4rε}.

Proof. To deal with the rescaling, observe that

Nh∗

ε−1JRε
(X,Y ) = Nh∗

ε−1JRε
(h∗ε−1X̃, h∗ε−1 Ỹ )

= h∗ε−1NJRε
(X̃, Ỹ ),

where X̃ and Ỹ can be interpreted as vectors on X. Using lemma 21, we
thus get the estimate on {rε ≤ r ≤ 2rε}. The one on {2rε ≤ r ≤ 4rε} comes
directly from lemma 20. □

Remark. Notice that for the exponent in the second line to be positive
(hence for NĴε

to decrease as ε becomes small), we need β < 4
5 .

This construction endowsMε with an almost Kähler structure. The suit-
able Riemannian metric is obtained by setting ĝε := ω(Ĵε·, ·). Equivalently
:

ĝε =

{

ε2h∗ε−1gRε
where ρε ≤ 2rε,

grε where ρε ≥ 2rε.

5. The equation

The goal now is to perturb the almost-Kähler structure onMε into one with
constant Hermitian scalar curvature. More precisely, we want to express the
resulting equation as a partial differential equation on a function f in a suit-
able functional space. To do this, we use the construction presented in 2.2,
to associate a compatible Jf ∈ ACωε

to any f . This would be analogous to
the use of the ∂∂̄-lemma to move the Kähler form ωε in its cohomology class
on a Kähler manifold.

Therefore, the differential operator we are interested in is given by P :
f 7→ s∇(Jf ). More specifically, we want to solve the equation P (f) = sgM + λ
for f in a suitable functional space and for some constant λ.

The strategy is the following. We want to solve this equation using a
suitable version of the Inverse Function Theorem.

As a consequence, we write a Taylor development of the operator P :
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(23) s∇(Jf ) = s∇(Ĵε) + Lεf +Qε(f),

where Lε is the linearisation of the operator at 0 and Qε contains the non-
linear terms. Thus, we want to solve

(24) Lεf + λ = sgM − s∇(Ĵε)−Qε(f).

From there, if we can find a right inverse to the operator

L̃ε : R× E → F

(λ, f) 7→ λ+ Lεf,

for suitable Banach spaces E and F , we are brought back to a fixed-point
problem. To be able to use the fixed point theorem, we need to perform the
following steps:

1) Introduce weighted Hölder spaces on the connected sum Mε;

2) Build a right inverse for L̃ε;

3) Estimate the nonlinear operator Qε;

4) Estimate the difference between the Hermitian scalar curvature of the
approximate solution and the scalar curvature of the orbifold metric
gM .

These steps will be the focus of the next sections.

5.1. Hölder spaces on Mε

To make our implicit function theorem work, we will need to study elliptic
linear differential operators on Mε, as well as on its “components”, namely
the ALE space X and punctured orbifoldM∗ :=M \ {p1 . . . pk}. However X
and M∗ are noncompact manifolds, and elliptic operators like the Laplacian
do not have good properties in “classical” Hölder spaces Ck,α(M∗) (resp.
Ck,α(X)).

As a consequence, we introduce suitable weighted Hölder spaces on X,
M∗ and, from there, on Mε. We will follow the introduction of such spaces
from [8] (see also [2, 46]). For more details on analysis in weighted functional
spaces, see for instance [6, 10, 28].
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On the ALE model. Around each p ∈ X, we have a chart mapping the
unit ball B(0, 1) ⊂ R4 to a geodesic ball of radius ηr0:

ϕ : B(0, 1)→ B(p, ηr0).,

where η > 0 is assumed to be very small and r0 = r(p), where r is a radius
function on X defined outside a compact set (for instance the radius of
C2/Z2 in an ALE chart at infinity)..

Moreover, thanks to the ALE estimates on the fall-off of the metric, we
may assume that

ϕ∗gX − r20g0 = O(r−4
0 ),

and corresponding control on derivatives to order k.

Then, by definition, a function f ∈ Ck,αloc (X) is in Ck,αδ (X) if there is a
C > 0 such that,in each such chart,

∥f ◦ ϕ∥Ck,α ≤ Crδ0.

With this definition, the upshot is that if ∥f∥Ck,α

δ (X) ≤ C, then f ∈
Ck,α(X) and, for i ≤ k,

|∂if | ≤ crδ−i,

where r is the radius function used above.

The weight δ thus describe the behaviour at infinity of the function f .

Example. The function w 7→ |w|γ belongs to Ck,αδ (X) if and only if γ ≤ δ.

On the punctured orbifold. Recall that we have endowed M with a
function ρ that is equal to the distance p 7→ d(p, pi) in disjoint neighborhoods
of each singularities, and smoothly extended to 1 away from the singularities.
As before, around each p ∈M∗, we consider maps to a small geodesic ball

ψ : B(0, 1)→ B(p, η r0)

with r0 = ρ(p) and such that

ψ∗gM − r20g0 = OCk(r20).

A function f ∈ Ck,αloc (M
∗) is in Ck,αδ (M∗) if there is a C > 0 such that, in

each such chart,

∥f ◦ ψ∥Ck,α ≤ Crδ0.
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In this case, δ keeps track the worse possible behaviour for f near the sin-
gularities.

Example. The function z 7→ |z|γ belongs to Ck,αδ (M∗) if and only if γ ≥ δ.

On the connected sum. We define the Ck,αδ (Mε)-norm on Mε by gluing
together the weighted spaces on the two pieces of the gluing. Namely, using
a cut-off function χ that is equal to 1 outside ρε ≥ 2rε and zero in ρε ≤ rε,
we can write any tensor field T as the sum of two pieces TX := (1− χ)T
and TM∗ := χT respectively supported in ρ ≤ 2rε and ρ ≥ 2rε. This two
pieces thus can be identified to tensor fields on X and M∗ respectively.
Then ∥T∥Ck,α

δ
is given by

(25) ε−ℓ−δ∥(hε−1)∗TX∥Ck,α

δ (X) + ∥TM∗∥Ck,α

δ (M∗),

where ℓ is the degree of T . This will allow us to decompose the analysis on
the ALE and orbifold parts of the gluing, which will prove very useful when
constructing a right inverse for the linearised operator.
In terms of the ‘radius’ function ρε on Mε, the fact that ∥f∥Ck,α

δ (Mε)
≤ c

rewrites

|∂jf | ≤ cρδ−iε ,

for any j ≤ k; that is to say,

(26)

|∂jf | ≤ c where ρε ≥ 4rε

|∂jf | ≤ cρδ−i where 2rε ≤ ρε ≤ 4rε

|∂jf | ≤ crδ−i where ρε ≤ 2rε.

We have the following relations for the norms with different weights:

∥f∥Ck,α

δ′
≤

{

∥f∥Ck,α

δ
if δ′ ≤ δ

εδ−δ
′∥f∥Ck,α

δ′
if δ′ > δ.

Moreover, note that the multiplication

Ck,αδ × Ck,αδ′ → C
k,α
δ+δ′

(f, g) 7→ fg

in continuous, with norm bounded independently of ε.
In terms of these weighted Hölder spaces, we get the following estimate

from (21) and (22):
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Lemma 23. The Nijenhuis tensor of Ĵε has coefficients in C3,α0 for 0 <
α < 1, and we have

∥NĴε
∥C3,α

0
=

{

O(ε4r−5
ε ) on {rε ≤ ρε ≤ 2rε}

O(rε) on {2rε ≤ ρε ≤ 4rε}.

5.2. The linearised operator Lε

The next step is to understand the linearised operator Lε. We use the com-
putation of the linearised operator performed in Section 2.3, Proposition 10
:

Ĵεδ(ĴεLXf
Ĵε))

♭ = ∆ĝεdf − 2Ric(gradgεf, ·) + Eεf,

for f ∈ C3,α(Mε), with

(27) Eεf(Y ) =
∑

i

df((D2
ei,ĴεY

Ĵε)ei) + 2Ddf(ei, Ĵε(DY Ĵε)ei)

in an orthonormal frame {e1, . . . , e2m} =
1√
2
{Z1, . . . , Zm, ĴεZ1, . . . , ĴεZm}

on (TMε, ĝε).

Thus

(28) Lεf = ∆2
ĝεf − 2δ(Ric(df)) + δEεf,

As a consequence, the error term in supported in the gluing region
{rε ≤ r ≤ 4rε}, and we expect it to be small in appropriate weighted Hölder
spaces.

We make this hunch precise in the next lemma.

Lemma 24 (Estimate on the error term). Let f ∈ C4,αδ (Mε). Then we
have

(29) ∥δEεf∥C0,α

δ−4

= o(1)∥f∥C4,α

δ
.

Proof. Recall that for any vector fields X,Y and Z, the following holds:

ĝε((DX Ĵε)Y, Z) = 2ĝε(ĴεX,N(Y, Z); )

thus when computing estimates, the Ck,αδ (Mε)-norms of the Nijenhuis tensor

and and DĴε are comparable.
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Applying the codifferential to the error term (27), we see that the terms
that appear are of the form

(30)

2
∑

k=0

∂k(DĴε)∂
3−kf

or

(31) ∂2f(DĴε); ∂
2f(DĴε)

2.

We need to compare these to the C4,α
δ -norm of f . Since all these terms

are supported in {rε ≤ ρε ≤ 4rε}, by definition of the weighted norms, we
have

|∂jf | ≤ Crδ−jε ∥f∥C4,α

δ
,

|∂k(DĴε)| ≤ Cr−kε ∥NĴε
∥C3,α

0

for some positive constant C. Thus we obtain

⋆ |ρ4−δε (DĴε)∂
3f | ≤ Crε∥NĴε

∥C3,α
0
∥f∥C4,α

δ
;

⋆ |ρ4−δε ∂(DĴε)∂
2f | ≤ Crε∥NĴε

∥C3,α
0
∥f∥C4,α

δ
;

⋆ |ρ4−δε ∂2(DĴε)∂f | ≤ Crε∥NĴε
∥C3,α

0
∥f∥C4,α

δ
;

⋆ |ρ4−δε (DĴε)∂
2f | ≤ Cr2ε∥NĴε

∥C3,α
0
∥f∥C4,α

δ
.

Using (29), we see that all the right-hand terms are o(1) times ∥f∥C4,α

δ
,

which is the conclusion we seeked. □

5.2.1. Mapping properties of the Lichnerowicz operator. In this
section we recall some properties of the ”classical” Lichnerowicz operator
on the punctured orbifold (M∗, gM , JM ) and on the ALE space (X, gX , JX);
those will be used as models to which we shall compare Lε.

We are especially interested in mapping and Fredholm properties when
the operator is defined between weighted spaces. We follow the exposition
given in [2]. The analysis can be found in more details in Melrose’s book [31]
(in Sobolev spaces), as well as [39] (in Hölder spaces).

On the punctured orbifold M∗. The weight allows us to take into
account the behavior of functions near the punctures, and it is to be expected
that the properties of L will greatly depend on it. More precisely, it turns out
that we will need to avoid a discrete set of ”bad weights”, the indicial roots.
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Roughly, the indicial roots describe the possible behaviors of a function in
the kernel of L near the singularity. Using our chart near each singularity,
a real, number δ is an indicial root if there is a function v ∈ C∞(B(pj , 1))
such that

L(ρδv) = O(ρδ−3).

Using the fact that, in this chart, the Kähler structure on M∗ differs from
the Euclidean one at order 2, we see that it is equivalent to look for indi-
cial roots of Λ2

0, where Λ0 is the Euclidean laplacian. These are known; the
computation is recalled in [2] and [47] and rely on the eigenfunctions of the
Laplacian on the sphere S3, and are contained in Z.

Choosing δ outside this critical set, we obtain that the operator

Lδ : C
4,α
δ (M∗)→ C0,α

δ−4(M
∗)

f 7→ Lf

is well defined, Fredholm, and has closed range. It also verifies the following
duality property:

(32) dim Ker Lδ = dim Coker L−δ.

To obtain good mapping properties, we need to introduce a modification
of the operator. For each i ∈ {1, . . . , k}, let ξi be a smooth function on M
supported in a small ball B(pj , r0) around pj and identically equal to 1
in B(pj , r0/2). Let V = span(ξ1, . . . , ξℓ); we endow V with the norm |f | =
∑

|f(pi)|. Then we have:

Proposition 25. Assume that δ ∈ (0, 1), α ∈ (0, 1). Then the operator

L′
δ : (C4,αδ ⊕ V)× R→ C

0,α
δ−4

(f, ν) 7→ Lf + ν

is surjective and has one-dimensional kernel constituted of constant func-
tions.

A proof of this can be found in [2] (Proposition 5.2).
The Lichnerowicz operator on (M∗, ωM ) admits a right inverse provided

we add a space of functions constant near the singularities at the source.
This will come at the cost of a less good norm for the right inverse of Lε.
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On the ALE space X. Most of the previous paragraph applies. This
time, an indicial root for Lδ is characterized by the existence of v ∈ C∞({r =
1}) such that

L(rδv) = O(rδ−5),

and indicial roots describe asymptotic behaviors of function in Ker L. Due
to the decay of the Eguchi-Hanson metric and complex structure towards
the Euclidean ones, we may, as before, reduce the problem to seeking indicial
roots of ∆2

0 at infinity. This set is again contained in Z, and, for any δ outside
the critical set,the operator

Lδ : C
4,α
δ (X)→ C0,α

δ−4(X)

f 7→ Lf

is well defined, Fredholm and has closed range. Moreover, the duality prop-
erty (32) still holds.

Since there cannot be a holomorphic vector field on X decaying at in-
finity, observe that for δ < 0, there is no nontrivial solution of Lf = 0 such
that ϕ ∈ C4,αδ (X).

As a consequence, we have

Proposition 26. Assume that δ ∈ (0, 1). Then Lδ is surjective and its ker-
nel is of dimension 1, generated by 1.

Again this proposition is proved in [2].

5.2.2. Construction of a right inverse for Lε. We are now able to
build a right inverse for the operator L̃ε. To do this, we will glue together
right inverses of L on M∗ and X, thus obtaining an ”approximate right
inverse”, from which we can build a proper right inverse to Lε. This proof
is the same as in [46], with the necessary adaptations due to our choice of
weights as in [8], and the presence of an error term. Factoring this in, we
prove

Proposition 27. For a sufficiently small gluing parameter ε > 0, the op-
erator

L̃ε : C4,αδ (Mε)× R→ C0,αδ−4(Mε)

(f, ν) 7→ Lεf + ν

admits a right inverse Gε, with operator norm bounded by ε−δβ
+

, where
β < β+ < 1.
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Proof. This proof follows that of Proposition 20 in [46], which we recall in
details here for the sake of completeness. The idea, explained for instance in
[14], is to glue together right inverses on the model spaces, that have been
obtained in Section 5.2.1, to obtain an approximate right inverse to L̃ε on
the connected sum Mε. Then, we will modify this approximate right inverse
to get a proper right inverse for L̃ε.

We will need two sets of cutoff functions to build the approximate inverse
operator. First, let γ : R→ [0, 1] be a smooth function, equal to 0 on ]−
∞, 1] and equal to 1 in [4,+∞[. On Mϵ we define

γ1 : x ∈Mε 7→ γ

(

ρε(x)

rε

)

.

Then γ1 is supported in the region ρε ≥ rε, which can be identified with a
region of the (punctured) orbifoldM∗. Its derivative ∂γ1 is supported in the
gluing region rε ≤ ρε ≤ 4rε.

We also set γ2 := 1− γ1, supported in ρε ≤ 4rε which can be identified
with 4Rε ≥ r in the ALE space X.

Both γ1 and γ2 are smooth on Mε and are bounded in weighted Hölder
norm:

(33) ∥γi∥C4,α
0
≤ c.

We will need two other cutoff functions ζ1 and ζ2 with a slightly larger
support, and with ζi = 1 in the support of γi. To do this, recall that rε = εβ

with 0 < β < 1. We choose a slightly larger exponent β+ and a slightly
smaller exponent β− so that 0 < β− < β < β+ < 1. Thus the region ε <
ρε < 1 where we perform the gluing is sliced up in regions 1 > 4εβ− > 4rε >
2rε > rε > εβ

+

> ε.

Let now ζ+ : R→ [0, 1] be a smooth function such that ζ+(t) = 1 when
t ≤ β, 0 when t ≥ β+. The smooth cutoff ζ1, defined by

ζ1 : x ∈Mε 7→ ζ+
(

log(ρ(x))

log(ε)

)

,

is supported in ρ ≥ εβ+

and is equal to 1 in supp γ1.
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Similarly, let ζ− : R→ [0, 1] be a smooth function equal to 1 on ]β,+∞[
and zero on ]−∞, β−[ and define a cutoff on Mε by

ζ2 : x ∈Mε 7→ ζ−
(

log(ρ(x)/4)

log(ε)

)

.

Then ζ2 is supported in ρ ≤ 4εβ
−

and is equal to 1 in supp γ2.
As far as estimations in Hölder norms are concerned, we see that

(34) ∥∂ζi∥C3,α
−1
≤ c

| log ε| .

Now let ψ ∈ C0,αδ−4. Notice that γ1ψ can be considered as a function on
the punctured orbifold M∗. Moreover, using (33), we have

∥γ1ψ∥C0,α

δ−4(M
∗) ≤ c∥ψ∥C0,α

δ−4

.

From Proposition 25, there is a function G1(γ1ψ) = G̃1(γ1ψ) +
∑

λiξi ∈
C
0,α
δ−4(M

∗)⊕ V and a constant ν given by

ν =
1

vol(M∗)

∫

M∗

γ1ψvolgM

such that

(35) ∥G̃1(γ1ψ)∥C4,α

δ
+
∑

|λi|+ |ν| ≤ c∥γ1ψ∥C0,α

δ−4(M
∗),

and

(36) LM (G1(γ1ψ)) + ν = γ1ψ.

On the other hand, we may consider γ2ψ as a C0,αδ−4 function onX. Taking
into account the rescaling, we have that

∥γ2ψ∥C0,α

δ−4(X) ≤ cεδ−4∥ψ∥C0,α

δ−4

.

Then from Proposition 26 we see that there is a G2(γ2ψ) such that

∥G2(γ2ψ)∥C4,α

δ
(X) ≤ c∥ε4γ2ψ∥C0,α

δ−4(X) ≤ cεδ∥ψ∥C0,α

δ−4

,

thus

(37) ∥G2(γ2ψ)∥C4,α

δ
≤ c∥ψ∥C0,α

δ−4

,
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and such that

LXG2(γ2ψ) = ε4γ2ψ,

thus, after rescaling,

(38) Lε2XG2(γ2ψ) = γ2ψ.

Now we glue these pieces together to get an approximate right inverse
for L̃ε. More precisely we set

G̃ψ = ζ1G1(γ1ψ) + ζ2G2(γ2ψ)

and we want to show that

ψ ∈ C0,αδ−4 7→ (G̃ψ, ν)

is an approximate right inverse to L̃ε, and that the operator norm of

(39) G̃ : C0,αδ−4 → C
4,α
δ

is bounded by ε−δβ
+

.

We tackle the operator norm first. For ψ ∈ C0,αδ−4 we want to show that

∥ζ1G1(γ1ψ) + ζ2G2(γ2ψ)∥C4,α

δ
≤ ∥ζ1G1(γ1ψ)∥C4,α

δ
+ ∥ζ2G2(γ2ψ)∥C4,α

δ

≤ Cεδβ+∥ψ∥C0,α

δ−4

.

The term ζ2G2(γ2ψ), which can be considered on the ALE space X, will not
be an issue. Indeed, its norm will be sum of terms of the form

(40)

ℓ
∑

j=0

ρj |∂jζ2| ρℓ−j−δ |∂ℓ−j(G2(γ2ψ))|,

for ℓ = 0, . . . , 4.
Using (37) and (34), in addition to the fact that ζ2 is a bounded function

on Mε, we see that those terms behave at worse like O(∥ψ∥C0,α

δ−4

).

The bad estimate comes from the ’orbifold’ term ζ1G1(γ1ψ). Indeed,
G1(γ1ψ) is the sum of a C4,αδ function, to which we may apply the same
reasoning as the other term, and a function in V, which behave like a constant
near each puncture pi in M

∗. Such constants are not bounded in C4,αδ (M∗)-
norm for a positive δ, as is the case here. However what we are interested
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in is ζ1G1(γ1ψ), with ζ1 supported in {ρ ≥ εβ+}, thus we in fact stay at a
‘safe distance’ from the punctures, and the norm of the constants is then
comparable to

sup
ρ≥εβ+

λi|ρ−δ| ≤ cεδβ
+

.

Thus, using (35), in the C4,αδ -norm on Mε we get

∥ζ1G1(γ1ψ)∥C4,α

δ
≤ cεδβ+∥ψ∥C0,α

δ−4

.

To show that G̃ does constitute an approximate inverse to Lε, still fol-
lowing the proof in [46], we prove the following claim:

(41) ∥Lε(G̃ψ) + ν − ψ∥C0,α

δ−4

≤ 1

2
∥ψ∥C0,α

δ−4

.

To do this, we will separate the study on the different ”pieces” of the
connected sum and compare with the model operators on X and M∗. We
write

Lε(G̃ψ) + ν − ψ = Lε(ζ1G1(γ1ψ)) + ν − γ1ψ(42)

+ Lε(ζ2G2(γ2ψ))− γ2ψ.

First we deal with the terms on the first line, which live in {ρε ≥ εβ
+}. In

this region, which can be considered as a subset of M∗, we want to compare
Lε with the model operator LM . We will need the following lemma:

Lemma 28. On the region {ρε ≥ εβ
+} in Mε, the metric ĝε compares to

the orbifold metric gM as follows:

(43) ∥ĝε − gM∥C3,α
0

= O(r2ε + ε4(1−β
+))

Proof. We decompose the study of ĝε − gM in three regions of Mε.

• On {ρ ≥ 4rε}, ĝε − gM = 0 by definition.

• On {2rε ≤ ρ ≤ 4rε}, we have ĝε − gM = ωM (Jrε − JM )·, ·). Using (16)
we see that

∥Jrε − JM∥C3,α
0
≤ cr2ε

.
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• Finally, on the region {εβ+ ≤ ρε ≤ 2rε}, we split in ĝε − gM = ĝε −
g0 + g0 − gM . Using (16) again, we have that ∥g0 − gM∥C3,α

0
= ∥J0 −

JM∥C3,α
0

= O(r2ε).
To estimate ĝε − g0 we identify {εβ+ ≤ ρε ≤ 2rε} with the region

{εβ+−1 ≤ r ≤ 2Rε} in X. There, ĝε = ε2h∗ε−1gRε
, thus our ALE esti-

mate (13) gives ∥ĝε − g0∥C3,α
0

= O(ε4(1−β+)). □

Now, using the same reasoning as in Proposition 18 in [46], we may
estimate the operator norm of Lε − LM . Recall that

LMf = −∆2
Mf + 2δ(RicgM (gradgεf, ·)),

and we have obtained earlier that

Lεf = −∆2
εf + 2δ(Ricĝε(gradgεf, ·)) + E(f).

Since we are not working in normal holomorphic coordinates, we have to
be slightly more careful when comparing the bilaplacians ∆2

M and ∆2
ε; in-

deed, the coefficients of the Laplacian ∆M in our charts are comparable to
∂
(

g−1
M ∂f

)

, and similarly those of ∆ε are of the form ∂
(

ĝ−1
ε ∂f

)

. In particu-
lar, notice that first derivatives of the coefficients of the metric intervene.

The coefficients of ∆2
Mf are of the form ∂g−1

M ∂2(g−1
M ∂f), and that of

∆2
εf are f the form ∂ĝ−1

ε ∂2(ĝ−1
ε ∂f), thus

∆2
Mf −∆2

εf = ∂((g−1
M − ĝ−1

ε )∂2(g−1
M ∂f) + ∂(ĝ−1

ε ∂2((g−1
M − ĝ−1

ε )∂f).

thus

∥∆2
Mf −∆2

εf∥C0,α

δ−4

≤ ∥ĝε − gM∥C3,α
0
∥∂2f∥C2,α

δ−2

≤ ∥ĝε − gM∥C3,α
0
∥f∥C4,α

δ
.

On the other hand, in a similar notation, the Riemannian curvature
tensor is given by the derivatives of the Christoffel symbols Γ = g−1∂g, thus

∥Riem(gM )− Riem(ĝε)∥C0,α
−2
≤ c∥ĝε − gM∥C2,α

0
.

As a consequence, from Lemmas 28 and 24, we see that in operator norm,
on {ρε ≥ εβ

+},
∥Lε − LM∥ = o(1).

In a similar way, we deal with the terms on the second line of (42), which
live in {ρε ≤ 4εβ

−}. This annulus can be identified with {r ≤ 4εβ
−−1} in X.

We compare ĝε with the model ALE metric gX .
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Lemma 29. On the region {ρε ≤ 4εβ
−} in Mε, the metric ĝε compares to

the rescaled ALE metric ε2h∗ε−1gX as follows:

(44) ∥ĝε − ε2h∗ε−1gX∥C3,α
0

= O(ε4r−4
ε + ε2β

−

)

Proof. As before we split the study between the different parts of Mε.

• On {ρε ≤ rε}, ĝε is equal to the rescaled ALE metric.

• On {rε ≤ ρε ≤ 2rε}, ĝε − ε2h∗ε−1gX = ε2ωX(JRε
− JX)·, ·). Using the

estimate (19), we see that on this annulus,

∥ĝε − ε2h∗ε−1gX∥C3,α
0

= O(ε4r−4
ε ).

• Finally, on {2rε ≤ ρε ≤ 4εβ
−} we write ĝε − ε2h∗ε−1gX = ĝε − g0 + g0 −

ε2h∗ε−1gX . From (16) we see that on this region, ∥ĝε−g0∥C3,α
0

= O(ε2β−

),

while the ALE estimate in {2Rε ≤ ρX ≤ 4εβ
−−1} gives

∥g0 − ε2h∗ε−1gX∥C3,α
0

= O(ε4r−4
ε ).

□

From there, the same proof as before shows that in operator norm

∥LX − Lε∥ = o(1).

Thus, to prove (41), it is sufficient to show that for ε small enough, we
have

∥LM (ζ1G1(γ1ψ)) + ν − γ1ψ∥C0,α

δ−4

≤ 1

4
∥ψ∥C0,α

δ−4

as well as

∥LX(ζ2G2(γ2ψ))− γ2ψ∥C0,α

δ−4

≤ 1

4
∥ψ∥C0,α

δ−4

For the first inequality, we have

LM (ζ1G1(γ1ψ)) + ν − γ1ψ = ζ1LMG1γ1ψ +A(gradgεζ1 ⋆ G1γ1ψ) + ν − γ1ψ
= A(gradgεζ1 ⋆ G1γ1ψ)

where A is a third-order operator, whose coefficients are bounded in C0,αδ−4,
and ⋆ denotes a bilinear pairing. In fact, the terms contained in A are similar
to those appearing in (40).
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Thus

∥LM (ζ1G1(γ1ψ)) + ν − γ1ψ∥C0,α

δ−4

= ∥A(gradgεζ1 ⋆ G1γ1ψ)∥C0,α

δ−4

≤ c∥∂ζ1∥C3,α
−1
∥G1γ1ψ∥C3,α

δ

= o(1)∥ψ∥C0,α

δ−4

.

The proof of the second inequality follows broadly the same lines. We
have proven (41), i.e., we have shown that the operator norm of L̃ε ◦ G̃− I
is less than 1/2. Thus, L̃ε ◦ G̃ is invertible and G̃ ◦ (L̃ε ◦ G̃)−1 is a proper
right inverse to L̃ε. □

5.3. Estimation of the Hermitian scalar curvature of Ĵε

We want to measure how good our approximate solution is in terms of
Hermitian scalar curvature, i.e. we want to compare s∇(Ĵε) to the constant
scalar curvature on the orbifold M . We obtain

Proposition 30. Denote by sgM the constant scalar curvature of (M, gM ).
Then, for 0 < δ < 1 and β < 2

3 , we have

(45) ∥s∇(Ĵε)− sgM∥C0,α

δ−4

= O(εβ(4−δ)).

Proof. First recall that

s∇(Ĵε) = sĝε + |DĴε|2,

where D is the Levi-Civita connection associated to ĝε. As we already used
earlier, DĴε has norm comparable to the Nijenhuis tensor, hence

|DĴε|2 =
{

O(r2ε) in {2rε ≤ ρ ≤ 4rε}
O(ε8r−10

ε ) in {2rε ≤ ρ ≤ 4rε}.

This error term will be smaller than what we want, so we only need to
compare the riemannian scalar curvatures on Mε and M . The scalar curva-
ture is a constant where ρ ≥ 4rε and is bounded in {2rε ≤ ρ ≤ 4rε}, as it is
given by second derivatives of the metric grε . On the ”ALE” side, the scalar
curvature is zero where ρ ≤ rε, and is given by second derivatives of gRε

in
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{rε ≤ ρ ≤ 2rε}. Thus, using (19) and factoring in the rescaling, we obtain

sĝε = O(ε4r−6
ε ) in {rε ≤ ρ ≤ 2rε}.

To sum up,

sĝε = O(1) +O(ε4r−6
ε ).

Thus, using that ρ = O(rε) in the region {rε ≤ ρ ≤ 4rε},

ρ4−δ|s∇(Ĵε)− sgM | = ρ4−δ|sĝε + |DĴε|2 − s(M)|
= O(ε4r−2−δ

ε ) +O(r4−δε ) +O(r6−δε ) +O(ε8r−6−δ
ε )

= O(εβ(4−δ)),

as soon as β < 2
3 . □

5.4. Behavior of the nonlinear part

Finally, we need to control the nonlinear part of the equation. Recall the
expansion

s∇(Jf ) = s∇(Ĵε) + Lεf +Qε(f).

We prove the following result, following Lemma 19 in [46].

Lemma 31. There is a constant C such that

∥Qε(f)−Qε(g)∥C0,α

δ−4

≤ C
(

∥f∥C4,α
2

+ ∥g∥C4,α
2

)

∥f − g∥C4,α

δ
.

Proof. We may rewrite

Qε(f)−Qε(g) =
∫ 1

0
dχt

Qε(f − g)dt,

where χt := g + t(f − g). Set h = f − g. From the Tayor development (23),
we see that

d

ds |s=0
Qε(χt + s(f − g)) = dJχt

s∇(Jχt
LXh

Ĵε)− dĴε
s∇(ĴεLXh

Ĵε),

which we rewrite rewrites

dχt
Qε(f − g) = (dJχt

s∇ − dĴε
s∇)(Jχt

LXh
Ĵε)(46)

+ dĴε
s∇

(

(Jχt
− Ĵε)LXh

Ĵε
)

.
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Observe next that

Jχt
− Ĵε =

(

exp(LXχt
Ĵε)− I

)

Ĵε,

thus its coefficients are comparable to ∂2χ. Similarly, the coefficients of
LXh

Ĵε can be expressed in terms of ∂2h.
To deal with the first term of (46), observe that due to the regularity of

J ∈ ACωε
7→ s∇(J), the difference dJχt

s∇ − dĴε
s∇ is controlled by Jχt

− Ĵε.
Thus, the weighted norm

∥(dJχt
s∇ − dĴε

s∇)(Jχt
LXh

Ĵε)∥C0,α

δ−4

≤ c∥Jχt
− Ĵε∥C2,α

0
∥Jχt
LXh

Ĵε∥C2,α

δ−2

≤ c∥χt∥C4,α
2
∥h∥C4,α

δ

≤ c(∥f∥C4,α
2

+ ∥g∥C4,α
2

)∥f − g∥C4,α

δ
.

On the other hand, our computations in Section 5.2 show that the op-
erator

dĴε
s∇ : C2,αδ−2(End(TMε))→ C0,αδ−4

is bounded. Thus,

∥dĴε
s∇

(

(Jχt
− Ĵε)LXh

Ĵε
)

∥C0,α

δ−4

≤ c∥(Jχt
− Ĵε)LXh

Ĵε
)

∥C2,α

δ−2

≤ c∥(Jχt
− Ĵε)∥C2,α

0
∥LXh

Ĵε
)

∥C2,α

δ−2

≤ c∥χt∥C4,α
2
∥h∥C4,α

δ

≤ c(∥f∥C4,α
2

+ ∥g∥C4,α
2

)∥f − g∥C4,α

δ
.

Summing the two final inequalities, we obtain the desired conclusion. □

5.5. The nonlinear equation

We now have all the tools we need to solve our original equation. We follow
closely the proof of Corollary 35 in [8]. Recall that we seek f and λ such
that

Lεf + λ = sgM − s∇(Ĵε)−Qε(f).
We look for (f, λ) under the form Gε(ψ). Thus this rewrites

(47) ψ = sgM − s∇(Ĵε)−Qε(Gε(ψ)) := Bε(ψ).

Thus our problem is reduced to a fixed point problem.
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Proposition 32. There is a positive constant C > 0 such that Bε maps the
ball {∥ψ∥C0,α

δ−4

≤ Cε2} into itself and is 1
2 -Lipschitz on this ball.

Proof. We have

Bε(ψ)−Bε(φ) = Qε(Gε(ψ))−Qε(Gε(φ)).

Using Lemma 31, there is a C1 > 0 such that:

∥Qε(Gε(ψ))−Qε(Gε(φ))∥C0,α

δ−4

≤ C1

(

∥Gε(ψ)∥C4,α
2

+ ∥Gε(φ)∥C4,α
2

)

× ∥Gε(ψ − φ)∥C4,α

δ
.

Now, ∥Gε(ψ − φ)∥C4,α

δ
≤ C2ε

−δβ+∥ψ − φ∥C0,α

δ−4

. On the other hand, since ψ

and ϕ are assumed to be in {∥ψ∥C0,α

δ−4

≤ Cε2}, we get that

∥Gε(ψ)∥C4,α

δ
≤ C2ε

−δβ+∥ψ∥C0,α

δ−4

≤ CC2ε
2−δβ+

,

and the same stands for φ. From this we deduce

∥Gε(ψ)∥C4,α
2 (Mε)

≤ Cεδ−δβ+

= CC2ε
δ(1−β+).

Thus

∥Qε(Gε(ψ))−Qε(Gε(φ))∥C0,α

δ−4

≤ CC1C2ε
δ(1−2β+)∥ψ − φ∥C0,α

δ−4

.

Provided β < 1
2 , this means that for ε small enough, Bε is

1
2 -contractant on

{∥ψ∥C0,α

δ−4

≤ Cε2}.
Moreover, Bε maps {∥ψ∥C0,α

δ−4

≤ Cε2} into itself. Indeed, for such a ψ,

∥Bε(ψ)∥C0,α

δ−4

≤ ∥Bε(ψ)−Bε(0)∥C0,α

δ−4

+ ∥Bε(0)∥C0,α

δ−4

≤ 1

2
∥ψ∥C0,α

δ−4

+ ∥s∇(Ĵε)− λ∥C0,α

δ−4

≤ 1

2
Cε2 + C3ε

β(4−δ)

≤ Cε,

provided we choose β close enough to 2
3 and δ close enough to 0. □

Thus, we may prove the following result, which directly implies our The-
orem 1.
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Theorem 33. For ε > 0 small enough, there is on (Mε, ωε) a smooth com-
patible almost-Kähler structure Jε, of constant Hermitian scalar curvature,
such that

• For any k ≥ 1, Jε converges, in Ck,α-norm, to JM , on every compact
set of M∗ (in the sense of Definition 13);

• For any k ≥ 1, Jε converges, in Ck,α-norm, to JX , on every compact
set of X (in the sense of Definition 14).

Proof. According to Proposition 32, we may apply Banach’s fixed point
theorem to Bε on

{∥ψ∥C0,α

δ−4

≤ Cε2}.

Therefore, there is a unique ψε ∈ C0,αδ−4(Mε), whose norm is comparable to
ε2, and that is solution to the main equation (47).

Then, setting (fε, λε) = Gε(ψ), we see that fε solves (24), and thus, the
almost-complex structure Jε := Jfε endows Mε with a constant Hermitian
curvature almost-Kähler structure. Moreover, by Proposition 27, we have

(48) ∥Jε − Ĵε∥C2,α

δ−2

≤ c∥fε∥C4,α

δ
≤ cε2−δβ+

.

Thus, if K1 is a compact set in M∗, then for ε small enough, K1 ⊂M \
∪iB(pi, 4rε). By definition Ĵε|K1

= JM |K1
.

Moreover, on ⊂M \ ∪iB(pi, 4rε), the weighted Hölder norm C2,αδ−2 coin-
cides with the usual Hölder C2,α norm (according to the definition (26)),
thus (48) implies

∥Jε − JM∥C2,α(K1) ≤ cε2−δβ
+

.

Since we have chosen 0 < δ, β+ < 1, we see that the right hand side goes to
zero when ε goes to zero, thus Jε does converge to JM on K1.

Similarly, on a compact set K2 of X, the pullback h∗εĴε is equal to the
ALE complex structure JX|K2

for ε small enough.
Then, the estimate (48), and the definition of the weighted norms onMε

(25) imply that, on K2, we have

(49) ∥h∗εJε − JX∥C2,α(K2) ≤ cεδ(1−β
+)

for some positive constant c. Since δ ∈ (0, 1) and β+ < 1, the right hand side
goes to zero when ε goes to zero.
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It remains to show that the solution has the required regularity. The
C4,α function fε is solution of

s∇(Jfε) = λ̃ε,

with λ̃ε a constant. As evidenced by the computations of Section 2.3, this
equation is a 4th order elliptic equation. Moreover, the coefficients are ra-
tional functions of x ∈Mε and derivatives of f up to order 4.

Using classical results in elliptic regularity (see for instance Besse [7],
Theorem 41 in the Appendix, or Morrey [36]), and a bootstrapping argu-
ment, we see that the function fε is actually a smooth function on Mε.

As a consequence, the almost-complex structure Jε = Jfε and the asso-
ciated metric gε = ωϵ(Jε·, ·) are also smooth.

Furthermore, we refine the bootstrapping argument to obtain the Ck,α
convergence of the constant hermitian scalar curvature almost-Kähler struc-
tures (Jε) to JM (resp. JX) on every compact set of M∗ =M \ {p1, . . . , pℓ}
(resp. on every compact set of X), for any k ≥ 0.

To obtain this, we need to show that ∥fε∥Ck,α(K)
ε→0−−−→ 0 for every k ≥ 0

and for every compact set K ⊂M∗ (and the same on X). We know that fε
is smooth and that the previous convergence holds in C4,α(K).

We will make use of the elliptic equation verified by fε: there is a constant
λε such that

(50) λε = s∇(Jfε) = s∇(Ĵε) + Lε(f) +Qε(f).

First, we need the following technical lemma to better understand the
non-linear part Qε of the equation.

Lemma 34. The non-linear part of (50) can be decomposed as

Qε(u) = Q(1)
ε (u) +Q(2)

ε (u),

where

• Q(1)
ε is a nonlinear operator or order 3 with smooth coefficients de-

pending on ĝε and its derivatives;

• Q(2)
ε is a nonlinear operator of order 4, that verifies, for u suitably

smooth and k ∈ N,

∥Q(2)
ε (u)∥Ck,α ≤ c∥u∥Ck+3∥u∥Ck+4,α
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Proof. To better understand the nonlinearities of the equation, we turn to
the computation of the connection 1-form α of the Chern connection. Recall
a few notations: the variation of complex structure induced by a function u
was given by

au =
1

2
LXu

Ĵε,

which is linear in u, with derivatives of order at most 2. We set

Ju = exp(−au)Ĵε exp(au).

Then in the proof of the Mohsen formula, we had obtained

α(Ju)(X) =− 1

2

∑

k

ĝε(exp(au)(Dexp(−au)ekJu)X, ek)

+
1

2

∑

k

ĝε(exp(au)DJuX(exp(−au)ek), ek)

− 1

2

∑

k

ĝε(Ĵε exp(au)DX(exp(−au)ek), ek).

From there, we see that αu can be written

α(Ju) = α0 + α̇u + Q̃(1)
ε (u) + Q̃(2)

ε (u)

where α0 is the connection 1-form associated to the approximate solution Ĵε,
α̇u is the linearization. What we are interested in are the remaining terms

Q̃
(1)
ε and Q̃

(2)
ε . The derivatives of u appearing in Q̃

(1)
ε (u) are of order at most

3. In fact, Q̃
(1)
ε (u) is a sum of terms of the form

(∂u)l(∂2u)k(Dek Ĵε), (∂u)
l(∂2u)k(DĴεX

ek) and (∂u)l(∂2u)k(DXek),

with k + l ≥ 2, and coefficients given by coefficients of the metric ĝε. On the

other hand, Q̃
(2)
ε (u) is a sum of terms of the form

(∂u)l(∂2u)k∂3u

for k + l ≥ 1, and as before the coefficients are provided by that of the
metric ĝε.
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Since

s∇(Ju) = 2Λdα(Ju)

we see that

s∇(Ju) = s∇(Ĵε) + Lε(u) +Q(1)
ε (u) +Q(2)

ε (u)

where the terms in Q
(1)
ε are of the form (∂2u)k(∂3u), with k ≥ 0, and the

terms in Q
(2)
ε (u) are of the form (∂2u)k(∂4u) for k ≥ 1. □

Using this, we prove

Claim. For all k ≥ 1, for every compact setK ⊂M∗, we have ∥fε∥C4+k,α(K)
ε→0−−−→ 0

Proof. We prove the claim by induction on k.
For k = 1, we want to obtain an estimate on ∥fε∥C5,α(K). Let K

′ ⊃ K a
slightly larger compact of M∗ and let us consider ε small enough so that
K ′ ⊂M \ ∪i(B(pi, 4rε), so that the approximate solution coincides with the
orbifold structure on K ′. For this choice of ε, the smooth function fε is
solution of the elliptic fourth-order equation

(51) λ̃ε = L(fε) +Q(1)(fε) +Q(2)(fε).

Here we use that there is an εK′ such that for ε < εK′ , on the compact K ′,
the coefficients of the equation do not depend on ε. Moreover, for ε < εK′ ,
s∇(Ĵε) is constant, equal to sgM and λ̃ε = λε − sgM goes to zero when ε goes
to zero. The equation (51) is quasi-linear, elliptic, of order 4 in fε, and its
coefficients do not depend on ε.

As a consequence, according to the technical lemma 34, there is some
positive constant c such that

∥(L+Q(2))(fε)∥C1,α(K′) ≤ ∥λε∥C1,α(K′) + ∥Q(1)(fε)∥C1,α(K′)

≤ ∥λε∥C1,α(K′) + c∥fε∥C4,α(K′).

Now, according to lemma 34, (L+Q(2))fε is a fourth-order elliptic operator,
quasilinear, and the coefficients, which depend on fε, are in C4,α(K ′); since

∥fε∥C4,α(K′)
ε→0−−−→ 0, this operator is really a quasilinear perturbation of the

linear elliptic operator L.



✐

✐

“5-Vernier” — 2020/10/27 — 16:28 — page 1379 — #61
✐

✐

✐

✐

✐

✐

Almost-Kähler smoothings of compact complex surfaces 1379

More precisely, we can rewrite (51) under the form

(52)
∑

|α|=4

aα(x, ∂fε, ∂
2fε, ∂

3fε)∂
4
αfε = G(x, ∂fε, ∂

2fε, ∂
3fε)

where the operator
∑

|α|=4

aα(x, 0, 0, 0)∂
4
αu

is linear elliptic. Thus, for ε small enough, ∥fε∥C4,α(K′) is sufficiently small
for the left-hand side of (52) to still be elliptic, with coefficients bounded in
C1,α. Thus, elliptic regularity results (see Morrey [35]) imply that

∥fε∥|C5,α(K) ≤ c2(∥(L+Q(2))(fε)∥C1,α(K′) + ∥fε∥|C0(K′))

Since we know that ∥fε∥C4,α(K′)
ε→0−−−→ 0, we know, in particular, that

∥fε∥|C0(K))
ε→0−−−→ 0. For ε small enough, the above estimate rewrites

∥fε∥|C5,α(K) ≤ c3(∥λε∥C1,α(K′) + ∥fε∥C4,α(K′)).

Thus, we have obtained that on every compact set K ⊂M∗, ∥fε∥|C5,α(K)
ε→0−−−→ 0.

It remains to show the induction step, which works in the exact same
way. Assume, by induction hypothesis, that for every compact set K ′ ⊂M∗,

∥fε∥Ck,α(K′)
ε→0−−−→ 0. Let K ⊂M∗ a compact subset, we want to show that

∥fε∥|Ck+1,α(K)
ε→0−−−→ 0. Let K ′ be a slightly bigger compact subset of M∗.

Choosing ε small enough, we see that fε is solution of (51) on K ′. We
then go through the same steps to obtain the desired result, in a boostrap-
type reasoning. The coefficients of the operator (L+Q(2))(fε) are then in
Ck,α(K ′) by induction hypothesis, ensuring we may use the elliptic regularity
theorem at each step. □

With the exact same proof, we show that, for any k ≥ 1, for any compact

set K ⊂ X, we have ∥hεJε − JX∥C4+k,α(K)
ε→0−−−→ 0.

This concludes the proof of the main result. □

6. Hamiltonian stationary spheres

Through our construction, we have obtained a family of compatible almost-
complex structures (Jf ) depending on a parameter 0 < ε < ε0 in such a way
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that the almost-Kähler structure (ωε, Jε, gε) on Mε has constant Hermitian
scalar curvature for 0 < ε < ε0.

Moreover, when ε goes to zero, the pullback of Jf on the ALE model X
converges in C2,α-norm to JX in a compact neighborhood of the zero section
of T ∗S2 ≃ X, in the sense defined in 14, according to Theorem 33.

Remark 35. More precisely, in the proof of Theorem 33, we had obtained

∥h∗εJf − JX∥C2,α(X) ≤ cεδ(1−β
+)

which also gives us

(53) ∥ε−2h∗εgf − gX∥C2,α(X) ≤ cεδ(1−β
+).

Besides, according to Corollary 17, the symplectic manifolds (Mε, ωε) can
actually all be identified to the same symplectic manifold that we call (M̂, ω̂)
(for instance by fixing some ε1). For ε ∈ (0, ε0), we denote Jε the pullback
of Jf on M̂ and gε the pullback of gf on M̂ , and (J0, g0) the pullback of
the approximate solution (Jε, gε). Thus, we have a smooth family of almost-
Kähler structures (Jε, gε)0≤ε<ε0 on a fixed symplectic manifold (M̂, ω̂).

Observe that in the ALE model space (X = T ∗S2, ωX = ddcu), the zero
section S0 of T ∗S2 → S2 is a Lagrangian sphere. Moreover, T ∗S2 is an hy-
perKähler manifold, and for a different choice of complex structure in the
hyperKähler family (namely, the choice that yields the minimal resolution
of C2/Z2), the zero section is actually a holomorphic copy of CP 1.

It is a well-known consequence of Wirtinger’s inequality that holomor-
phic surfaces minimize volume in their homology class.

The zero section is not holomorphic for our choice of complex structure
on T ∗S2, but it still is minimal, since we have endowed T ∗S2 with the
Eguchi-Hanson metric. In particular, it is Hamiltonian stationary, which is
to say that it verifies (2).

This implies that, when performing the gluing construction in Darboux
charts, as we did in Section 3, S0 provides a Hamiltonian stationary (actually,
minimal) sphere S in the connected sum manifold (M̂, ω̂, J0, g0).

A natural question, therefore, is the following: For positive, small enough,
ε, is there a representative of the homology class of [S] - more precisely, a
Hamiltonian deformation of S - that is a Hamiltonian stationary sphere for
the metric gε?

We prove that the answer is yes, extending what has been obtained in
[8] to the case of almost-Kähler smoothings.
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We need to find representative of the vanishing cycle [S] that verify the
equation (2) with respect to the metric gε, for ε small enough. It was proven
by Oh [38], Theorem 1, that the corresponding Euler-Lagrange equation is

(54) δεαε = 0,

where δε is the codifferential associated to the metric ĝε, and αε is the Maslov
form:

αε := Hε⌟ω̂,

where Hε is the mean curvature vector.

Consider the embedding

ι0 : S
2 →֒ M̂

of the Lagrangian sphere in (M̂, ω̂) that is minimal for (J0, g0).
By Weinstein’s Lagrangian neighborhood theorem (see [30], Theorem

3.3), we can identify a neighborhood of ι0(S
2) with a neighborhood U of

the zero section in (T ∗S2,−dλ) by a symplectomorphism ψ. Hamiltonian
deformations of ι0 are therefore given by functions u ∈ C∞(S2) such that
∥du∥C0 is small enough that du ∈ U . For such a function u we denote

iu : S2 →֒ U

the associated immersion. We still denote by Jε and gε the almost complex
structure and associated metrics pulled back by ψ on U . Let gε,u be the
restriction of gε to ιu(S

2). Then the immersion ιu is Hamiltonian stationary
for gε if it is a critical point for the volume functional

u 7→
∫

iu(S2)
volgε,u .

Notice that this equation is not linear in u, the induced metric on S2

depends on the embedding encoded by du. The linearisation L at 0, in the
Kähler setting, is given by Oh’s formula ([38], Theorem 3.4). He proves the
following on a Kähler manifold: Let ut be a family of functions on S2, such
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that u0 = 0, giving a Hamiltonian deformation St := ιut
(S2). Then

d2

dt2 |t=0
V ol(St) =

∫

S0

u̇Lu̇ vol0(55)

=

∫

S0

⟨∆0du̇, du̇⟩ − Ric0(J0du̇, J0du̇)

− 2⟨du̇⊗ du̇⊗ α0, S⟩+ ⟨du̇, α0⟩2vol0

where α0 is the Maslov form for ι0, Ric0 is the Ricci curvature of ĝ0 re-
stricted to S0 = i0(S

2), and vol0 is the associated volume. In our setting, the
manifold (M̂, ω̂, J0) is not Kähler; however,up to reducing the Lagrangian
neighborhood, we may assume that the structure (ω̂, J0, g0) is Kähler on
U , since we may thus avoid the region where the Nijenhuis tensor does not
vanish. As a consequence, we may apply Oh’s formula, as in its proof, the
Kähler hypothesis is only used at t = 0.

This allow us to prove:

Proposition 36. For ε small enough, the almost Kähler manifold (M̂, ω̂, Jε)
admits a Lagrangian homology class that is represented by a Hamiltonian
stationary sphere.

Proof. Consider the operator

B : C2,α(ACω̂)× C4,α(S2)→ C0,α(S2)

(J, u) 7→ δJ,uαJ,u.

The operator is well defined on the family (Jε). Indeed, in local coordinates
on L, if

(56)

{

gε,u = gabdxadxb

αε,u = αadxa

then

δε,uαε,u = −∂h
ab

∂xb
αa − hab

∂αa
∂xb
− 1

2
habαa

∂

∂xb
(log(dethcd)).

Thus, the equation invovles first derivatives of the coefficients of αε,u and
gε,u. Now, by definition, gε,u involves second-order derivatives of u, as well
as the coefficients of gε. The mean curvature vector (thus, the Maslow form)
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therefore involves third-order derivatives of u and first-order derivatives of
the coefficients of gε. Finally, as a whole, the equation is of order 4 in u and its
coefficients involve second derivatives of gε; we conclude using estimates (49)
and (48).

It verifies B(JX , 0) = 0, and, by (54), our problem reduces to finding
zeroes of u 7→ B(Jε, u) for ε small enough. We therefore need to apply the
Implicit Function Theorem to B at (JX , 0).

The linearisation of u 7→ B(J, u) at (JX , 0) is given by (55). In our frame-
work, S0 is actually minimal, thus α0 vanishes. Moreover, g0 is given on U
by the Ricci-flat Eguchi-Hanson metric. Thus in our setting, we get

Lu̇ = ∆2u̇.

Thus, since constant functions u result in trivial deformation, we have
that for k > 4, L realizes an isomorphism between the Hölder spaces

L : Ck,α(S2)/R→ Ck−4,α
0 (S2) :=

{

f ∈ Ck−4,α(S2),

∫

S2

fvolg0,0 = 0

}

.

This observation, along with the estimate (49), allows us to apply the inverse
function theorem to

B : C2,α(ACω̂)× C4,α(S2)/R→ C0,α0 (S2)

(J, u) 7→ δJ,uαJ,u

at (JX , 0); in particular for ε small enough, there is a unique uε ∈ C4,α(S2)/R
such that the embedding ιuε

: S2 →֒ U is Hamiltonian stationary for the
metric gε.

Now, uε is solution of the 4th order elliptic equation

B(Jε, uε) = 0.

Since, according to Theorem 1, Jε is actually smooth, and so is the associated
metric whose coefficients appear in the expression of the differential operator
B, we can, once again, use a bootstrapping argument to ensure that each
function uε is actually smooth. □

Remark 37. One may wonder wether we could also retrieve the second
part of the result by Biquard and Rollin [8], Theorem D -namely, the min-
imizing property. To do this, one would need to check that the results ob-
tained by Schoen and Wolfson [42] can be extended to the almost-Kähler
setting.
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Annex: ALE metric on T ∗S2 as a smoothing of the

A1 singularity

We recall some results from the last part of Stenzel’s paper [44].
Consider thea singularity C2/Z2 endowed with the Euclidean Kähler

structure (J0, ω0, g0). We identify C2/Z2 to the cone

C = {z ∈ C3, z21 + z22 + z23 = 0} ⊂ C3.

and we consider smoothings of the form

(57) Cε = {z ∈ C3, z21 + z22 + z23 = ε2},

endowed with the restriction of the natural complex structure on C3. Here
ε2 is a positive real number. The construction would actually make sense
for a complex parameter ε. In that case, we would retrieve the family of hy-
perKähler metrics on O(−2) that were obtained by Kronheimer [24]. How-
ever, this will not intervene in our construction.

We now recall the construction of the Ricci-flat Kähler metric on Cϵ
obtained by Stenzel in [44].

We denote by τ = |z|2|Cϵ
the restriction of the squared norm in C3 to the

quadric Cϵ, and we look for a Kähler potential under the form u = f ◦ τ . To
find a Ricci-flat metric, we wish to solve the Monge-Ampère equation :

(58) Ric(ωu) = −i∂∂̄ log det(uij̄) = 0,

where the subscripts denote derivation with respect to local coordinates on
Cϵ.

Using proper coordinates, a straightforward if somewhat tedious com-
putation, which can be found in Patrizio and Wong ([40]), shows that f ◦ τ
is a solution of the Monge-Ampère equation (58) whenever f satisfies the
following ODE :

(59) τf ′(τ)2 + f ′′(τ)f ′(τ)(τ2 − ε4) = c,

where c is a positive constant.

This EDO, together with sensible initial conditions, admits f(τ) =√
τ + ε2 as the unique solution. The Ricci-flat Kähler metric associated to

this potential will be denoted ωX,ε on Cϵ. The associated Riemannian metric
gX,ε coincides with a rescaling of the Eguchi-Hanson metric; however, the
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complex structure JX,ε differs from the standard one, as explained earlier.

To study the ALE character of this metric, observe that Cϵ can be iden-
tified to T ∗S2. Indeed, separating the real and imaginary parts, we have

Cϵ = {X + iY, (X,Y ) ∈ R3 × R3 | ⟨X,X⟩ − ⟨Y, Y ⟩ = ϵ, ⟨X,Y ⟩ = 0},

whereas

T ∗S2 = {(X, ξ) ∈ R3 × R3 | ∥X∥ = 1, ⟨X, ξ⟩ = 0},
thus the map

Ψε : T
∗S2 → Qε

(x, ξ) 7→ (ε cosh(∥ξ∥)x, εsinh(∥ξ∥)∥ξ∥ ξ.

identifies the smoothing Cε with the cotangent of the sphere.

Remark 38. This maps the zero section S2 = {(x, 0), ∥x∥ = 1} ⊂ T ∗S2 to
the subset {(εx, 0), ∥∥ = 1} ⊂ Qε. When ε goes to 0, the section nulle is
collapses on the singular point (0, 0) ∈ C2/Z2.

Using spherical coordinates on T ∗S2 \ S2 outside the zero section, we
see that the Ricci-flat Kähler structure we have obtained on Cε pulls back
to

JX,ε
∂

∂t
= −X3, JSX1 = − tanh(t)X2

ωX,ε =
√
2ε(cosh(t) α3 ∧ dt+ sinh(t) α2 ∧ α1)

gX,ε =
√
2ε(cosh(t) dt2 + sinh(t) tanh(t) α2

1 + cosh(t)(α2
2 + α2

3)).

To compare to the Euclidean metric, rather than to the conical one, on
C2/Z2, we change variables radially, setting cosh(t) = s2

2 . This gives

JX,ε
∂

∂s
= − 2s√

s4 − 4
X3, JSX1 = −

√

1− 4

s4
X2

1√
2ε
gX,ε =

(

1− 4

s4

)−1

ds2 +
s2

4

(

1− 4

s4

)

α2
1 +

s2

4
(α2

2 + α2
3),

ωX,ε =
√
2ε





s

2
√

1− 4
s4

α3 ∧ ds+
s2

4

√

1− 4

s4
α2 ∧ α1
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Comparing to the Euclidean structure:

J0
∂

∂s
= −2

s
X3, J0X1 = −X2

g0 = ds2 +
s2

4
(α2

1 + α2
2 + α2

3),

we see that the derivatives of the coefficient at any order verify

∂j(JX,ε − J0) = O(s−4−j)

∂j(
√
2εgX,ε − g0) = O(s−4−j);

thus the metric is ALE of order 4.

Remark 39. We recognize a rescaling of the Eguchi-Hanson metric on
T ∗S2, obtained in [15, 16]. However, the complex structure is different from
the one on T ∗CP 1 = O(−2) obtained when blowing up the origin in C2/Z2.
Indeed, instead of an exeptional divisor biholomorphic to CP 1 (correspond-
ing to the zero section), we have a Lagrangian 2-sphere.
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riennes, (2003).

[35] C. Morrey, Jr., Multiple Integrals in the Calculus of Varia-
tions, Classics in Mathematics, Springer-Verlag, Berlin (2008), ISBN
978-3-540-69915-6. Reprint of the 1966 edition.

[36] C. B. Morrey, On the analyticity of the solutions of analytic non-linear
elliptic systems of partial differential equations. I. Analyticity in the
interior, Amer. J. Math. 80 (1958), 198–218.

[37] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian sub-
manifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–
519.

[38] Y.-G. Oh, Volume minimization of Lagrangian submanifolds under
Hamiltonian deformations, Math. Z. 212 (1993), no. 2, 175–192.

[39] R. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices:
The Ginzburg-andau Model, Vol. 39, Springer Science & Business Media
(2012).

[40] G. Patrizio and P.-M. Wong, Stein manifolds with compact symmetric
center, Math. Ann. 289 (1991), no. 3, 355–382.

[41] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14
(1971), no. 1, 17–26.

[42] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces:
the mapping problem, J. Differential Geom. 58 (2001), no. 1, 1–86.

[43] C. Spotti, Deformations of nodal Kähler-Einstein del Pezzo surfaces
with discrete automorphism groups, J. Lond. Math. Soc. (2) 89 (2014),
no. 2, 539–558.

[44] M. Stenzel, Ricci-flat metrics on the complexification of a compact rank
one symmetric space, Manuscripta Math. 80 (1993), no. 2, 151–163.
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