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This paper is concerned with the existence of metrics of constant
Hermitian scalar curvature on almost-Kéhler manifolds obtained
as smoothings of a constant scalar curvature Kédhler orbifold, with
A; singularities. More precisely, given such an orbifold that does
not admit nontrivial holomorphic vector fields, we show that an
almost-Kéahler smoothing (M., w.) admits an almost-Kéhler struc-
ture (J;, Je) of constant Hermitian curvature. Moreover, we show
that for € > 0 small enough, the (M., w.) are all symplectically
equivalent to a fixed symplectic manifold (M ,w) in which there is
a surface S homologous to a 2-sphere, such that [S] is a vanishing
cycle that admits a representant that is Hamiltonian stationary
for g..
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1. Introduction
1.1. Context: gluing methods in Kahler geometry

Let M be a compact complex manifold of Kéahler type. The program of
Calabi is concerned with the existence of canonical metrics in a given Kéhler
class €2 on M. More specifically, Calabi proposed the study of the functional

m
wE Qg / s(w)? w—|;
M m:

here 25 denotes the set of definite positive representants of the cohomol-
ogy class 2, and s(w) is the scalar curvature of the associated metric. The
critical points of this functional are called extremal metrics, and they are
the candidates for canonical metrics in this framework.

Computing the corresponding Euler-Lagrange equation, one obtains that
a Kéhler metric is extremal if and only if the Hamiltonian vector field X,
is real holomorphic. In particular, constant scalar curvature metrics are ex-
tremal, and both notions coincide if M admits no non-trivial holomorphic
vector field.

Non-trivial holomorphic vector fields appear as an obstruction in con-
structions of constant scalar curvature metrics. More precisely, on a Kéahler
manifold (M, J,w), the obstructions on the structure of the Lie algebra
h(M, J) of holomorphic vector fields found by Matsushima [29], or the Futaki
invariant [18], involve the following subset of h(M, J):

hO(Mv‘]) = {X € b(MvJ)7E|p€M ’ X(p) :0}

On a Kéhler manifold (or orbifold), ho(M) form a Lie subalgebra of the
Lie algebra h(M, J) (see for instance [25], Theorem 1). Therefore, it will be
natural to assume that ho(M, J) = {0}, to ensure that said obstructions do
not appear.

This will be the case if the group of automorphisms of the (M, .J) is
discrete. However, it is not a necessary condition; if M is a torus, obtained
as the quotient of C? by a lattice, we do have ho(M) = {0}, as it turns out
in this case that all holomorphic vector fields are parallel.

The existence of canonical metrics on a given Kéahler manifold is an
open problem in general. As a consequence, the construction of classes of
examples through gluing methods has been the focus of many works. For
instance, Arezzo and Pacard [2, 3] have obtained constant scalar curvature
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Kéhler (cscK) metrics on blow-up of cscK manifolds or orbifolds; Arezzo,
Lena and Mazzieri have generalized these methods to resolutions of compact
orbifolds with isolated singularities; Biquard and Rollin [8] have studied
smoothings of canonical singularities, generalizing results by Spotti [43] on
smoothings of A; singularities in the K&hler-Einstein case. In the case of
extremal metrics, one may cite the works of Arezzo, Pacard and Singer [4]
or Szekelyhidi [46, 48].

Another aspect of the existence problem for extremal metrics is its gener-
alisation to almost-K&hler manifolds. These are symplectic manifolds (M, w)
endowed with a compatible almost-complex structure, that is not assumed
to be integrable. The space AC,, of almost complex structures is known to be
a contractible Fréchet space, endowed with a natural Kahler structure. The
action of the group of Hamiltonian symplectomorphisms acts on AC, by
pullback. The key observation, due to Donaldson [13] (generalizing Fujiki’s
work [17] to the non-integrable setting), is that this action is Hamiltonian,
with moment map given by the Hermitian scalar curvature of (M,w,J),
which is to say the trace of the curvature of the Chern connection on the
anticanonical bundle.

Thus, the suitable reframing of the problem is then the study of the
functional

wm
J e ACy / (Y ()2
M m)!

which coincide with the Calabi functional in the Kéahler case. In this direc-
tion, Lejmi [26] has generalised many notions linked to the existence problem
of canonical metrics, and its relation to K-stability, such as the Futaki in-
variant. In another direction, Weinkove et al. [11, 49] study the Calabi-Yau
equation on an almost-Kéahler 4-manifold (M, w, J).

1.2. Statement of results

Let (M*,wyr, Jur) be a compact Kihler orbifold with isolated singularities
of type A1, denoted py ...,,pe. This means that M is endowed with a holo-
morphic atlas that maps neighborhoods of the p; to neighborhoods of 0 in
C?/Zs.

Such orbifold surfaces, and more generally surfaces with canonical sin-
gularities, arise naturally by global quotient constructions, as well as in the
context of pluricanonical Kodaira ‘embeddings’ of surfaces of general type.
Such maps are obtained by contraction of divisors of self-intersection -2 in
a surface of general type, which results in canonical singularities.
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In Section 3, we detail the construction of a family of smooth sym-
plectic manifolds M, indexed by a parameter € € (0,¢p), called a family
of smoothings of the orbifold (M,wys). We will obtain these smoothings
by a symplectic connected sum between M and an ALE Kahler model
(X ~T*S? Jx,wx), Ricci flat, and with exact symplectic form wx. The
construction of this ALE metric is detailed in the Annex.

For now, we simply highlight the fundamental properties of the smooth-
ing.

1) The manifold M. will split into M. = (M \ U;B(p;,7(€))) U K., where
K is diffeomorphic to a compact neighborhoods K. of the zero section
in T*S2. Moreover r(¢) goes to 0 as € goes to 0, and T*S? = U.K..

2) M. is endowed with a symplectic form w. such that, on the one hand,
the injection (M \ U;B(pi, r(g)) <> Mg, sends wys to we, and, on the
other hand, the diffeomorphism 1, : K. — K. sends ¢ 2w, to wx.

From these properties, we will see in Lemma 15 that the manifolds M.
are all diffeomorphic, and actually symplectomorphic. Indeed, there is a
canonical injection

(1) HE M\ Ap1,....pe}) — H*(M.,R)

that sends [wys] to [we]. In this sense, the cohomology classes of [w] all agree.

Furthermore, the identifications of regions of M. with regions of M and
X enable us to make sense of the convergence, when ¢ goes to zero, of
sequences of functions (or tensors) fe : M. — R on compact sets of M* :=
M\ {pi1,...,p¢} on the one hand, and on compact sets of X on the other
hand.

Making this construction precise is the object of Section 3. In this situ-
ation, we obtain the following result.

Theorem 1. Assume that (M, Jy) admits no nontrivial holomorphic vec-
tor fields that vanish somewhere on M, and that (M,war, Jyr) is Kahler,
of constant scalar curvature. For a positive parameter € small enough, we
endow the symplectic manifolds (M, we) with a family of smooth compatible
almost-Kahler structures J., g. of constant Hermitian scalar curvature, such
that, when € goes to zero,

o The sequence of almost complex structures J. converges, in C*“-norm,
to the orbifold complex structure Jys, on every compact set of M*, for
every k € N.
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e The pushed-forward almost complex structures (¢).J: converges, in
any C**-norm, to the ALE complex structure Jx, on every compact
set of X, for every k € N.

Remark 2. In [8], the same result is obtained in the case where J; is
integrable.

However, the methods presented here are new. In usual gluing meth-
ods, the deformation of the approximate solution into a canonical metrics is
obtained by adding a potential function. The d0-lemma makes such an ap-
proach natural in the Kéahler setting. As we will see, this approach does not
work so well in the almost-Kéhler setting. In dimension 4, ‘almost-Kéhler
potentials’ have been used by Weinkove [49] in his study of the Calabi-
Yau equation on almost-Kéhler manifolds, and by Lejmi [27]. However, this
method involves the use of pseudo-differential operators.

To prove our result, we will instead turn to an approach inspired by
Fujiki [17] and Donaldson’s [13] moment map picture for canonical metrics.

Besides the almost-Kéhler setting, an element of novelty here is that the
cohomology class of the w, is different from the one obtained with gluing
techniques like Arezzo and Pacard’s. On blow-ups, constant curvature metric
are usually obtained in a class of the form

Q= [w — ZE%[EZ-],

where the [E;] are Poincaré-dual to the holomorphic exceptional divisor, and
the \; are positive coefficients. Instead, in our construction, the zero section
of T*52 is included in the compact sets K., thus, via the identification
K. K. C M., yields a Lagrangian sphere S,:

[we] - [Se] = 0.

This last observation enables us to extend another part of the results
obtained by Biquard and Rollin in [8], namely the existence of a family of
Hamiltonian stationary spheres corresponding to our family of metrics g..
Let (M,w,J,g) be a Kédhler (or almost-Kéhler) manifold. A Hamiltonian
stationary surface is a Lagrangian surface L which is a critical point of the
area functional under Hamiltonian deformations, which is to say that, for
any smooth function F' € C*°(M), we have

(2) Volg(exp(sXF)(L)) =0,

dS ‘s:[)
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where exp(sXr) denotes the flow of the Hamiltonian vector field Xr. Such
surfaces have been introduced and studied by Oh in [37, 38]; new examples
generalizing Oh’s have been obtained by Joyce, Lee and Schoen in [21].
Schoen and Wolfson [42] have studied the existence of Lagrangian surfaces
that minimize the area.

In this direction, we obtain:

Theorem 3. On (M., w., J:), for e small enough, the Lagrangian sphere S¢
admits o Hamiltonian deformation that is a Hamiltonian stationary 2-sphere
for the metric g..

1.3. Outline of the method

Let us now flesh out some details of the gluing construction. Following the
gluing methods introduced by Arezzo and Pacard in [2], we seek to endow
a smooth manifold M., obtained from M by a connected sum construction
with a suitable asymptotically locally euclidean (ALE) model X, with a
constant Hermitian curvature structure.

For such a construction to work, the ALE surface X needs to be asymp-
totic to C?/Zs, in the sense that the Riemannian metric and complex struc-
ture on X converge to the Euclidean ones Jy, go on C2/Z, fast enough. This
ALE model will be provided by smoothings

(3) Co={2€C3 2 +23+22=¢%
of the quotient singularity C?/Zsy, which we identify to the cone
C={2€C22+2+2 =0}

For € > 0, these are diffeomorphic to 7%S?, which is endowed with Eguchi-
Hanson’s Ricci-flat metric and a complex structure that is a deformation of
the one obtained when blowing up the quotient singularity C2/Zs. We refer
to the Annex for more details about the ALE model.

Remark 4. The minimal resolution of the A; singularity is an hyperKahler
manifold biholomorphic to T*CP1. Our choice here consists of taking a
different complex structure in the hyperKé&hler family. This observation is
the starting point of the construction of Hamiltonian stationary spheres later
on.
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The next step is to glue together M and X in a generalized connected
sum, that is a smooth, compact manifold: we replace a very small neighbor-
hood of each singularity p; of M by a suitably scaled-down ‘ball’ of large
radius in X. Performing this construction in Darboux charts, we ensure that
the obtained smooth manifold M, is naturally endowed with a symplectic
form w.

A~

Then, we endow M. with an almost-Kéahler structure (we,Js, g:) by
patching together the model structures on M and X. This ‘patching’ comes
at the price of the integrability of the obtained almost-complex structure J.
Then, we perturb this approximate solution into an almost-Kéahler structure
of constant Hermitian scalar curvature. This requires to depart from ‘usual’
gluing methods.

Since we are not working on a Kéahler manifold, the Ricci and scalar cur-
vature stemming from the Riemannian metric g. := w.(-, J;) do not retain
the same pleasant properties they have on a Kéhler manifold. As a conse-
quence, we study the Hermitian scalar curvature instead; this is motivated

by the moment-map point of view of Donaldson [13].

Observe, moreover, that we have no appropriate notion of Kahler poten-
tial to perturb the symplectic form. Indeed, symplectic forms of the form

wr = we + djsdf

are not jg—invariant, thus do not provide an almost-Kéahler structure on M.
Instead, we are going to fix the symplectic form w. and modify the almost
complex structure J. along directions orthogonal to the Hamiltonian action,
in a way that preserves compatibility with w,.

This method allows us to rewrite the condition of constant Hermitian
curvature as an elliptic fourth order PDE on M,.. To solve it, we resort
to a fixed-point method in suitable functional Banach spaces. It turns out
that the linearisation of our PDE rewrites as the sum of the Lichnerowiz
operator on M. and an error term. Up to proper estimates of this error
term, we may thus use the nice properties of the Lichnerowicz operators on
the model spaces, namely the orbifold M and the ALE surface X, to study
the linearisation. This last step allows us to find a unique solution through
an analogue of the inverse function theorem.

As far as Theorem 2 is concerned, the key observation is that the zero
section S of T*S? is Lagrangian for the symplectic form wy; moreover it
corresponds to the (holomorphic) zero section of T*CP! for another choice
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of complex structure in the hyperKahler family; it is then a consequence of
Wirtinger’s inequality that .S is minimal for Eguchi-Hanson’s metric, which
coincides with Stenzel’s metric as a Riemannian structure.

This property is preserved when constructing the approximate solution:
we obtain a Lagrangian minimal 2-sphere in M.. The idea is then to perturb
S inside its homology class by Hamiltonian transformation, and to use the
implicit function theorem to obtain Hamiltonian-stationary representants
for the nearby metrics g. obtained through the gluing process.

1.4. Examples and perspectives

Let us exhibit some classes of singular surfaces to which our construction
may apply.

As was pointed out to us by R. Dervan, this construction applies to
surfaces with A; singularities and ample canonical class, since such surfaces
have negative first Chern class and thus are guaranteed to have a Kahler-
Einstein metric (see Aubin [5], and Kobayashi [22] for surfaces of general
type) and no nontrivial holomorphic vector fields (see [23], Chapter III,
Theorem 2.1).

In this direction, Miranda, in [33], studies a special case of complex
surfaces with ample canonical bundle, that admit no smoothing. Thus, we
may apply our construction, and these examples are outside the framework
of the smoothing theorem obtained by Biquard and Rollin [8].

Similarly, Catanese, in [9], exhibits a criterion for algebraic varieties with
finite automorphism group, under which they admit no smoothing. His the-
orem encompasses the previously obtained obstructed examples, and the
surfaces satisfying to this criterion have rational double points as singulari-
ties, and so do all of their deformations.

Finally, looking at the assumptions of the main theorem, some questions
arise naturally, that open some perspectives:

e Could we extend this construction to a wider range of singularities,
such as canonical singularities?

e What if the base manifold M admits nontrivial holomorphic vector
fields? For instance, could we obtain a result in the line of [45] in our
context?

Another question that arises is that of higher dimensions. However, in
this case, it has been proven by Hein, Radeasconu and Suvaina in [20] that
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an ALE model asymptotic to a singularity C™ /G has to be isomorphic to a
deformation of a resolution of the quotient singularity C™/G. However, by
Schlessinger’s rigidity theorem [41], such singularities are actually rigid; as a
consequence, in complex dimension greater than 3, the only available ALE
model, up to biholomorphism, is the resolution of the singularity.

However, the double point in C™, identified to the cone

C = {zG(Cm,Xm:zf:O}
i=1

still admits smoothings

S = {ze@m,izfza}

i=1

that can be identified to the cotangent of the sphere T*5™. Stenzel’s con-
struction [44] endows such smoothings with an ALE Ricci-flat metric. We
could thus consider a similar construction, where the base M has such con-
ical singularities.

1.5. Organisation of the paper

In Section 2, we begin with recalling the general properties of almost-Kéhler
manifolds that are needed in the paper; we discuss especially the space of
amost complex structures compatible with a given symplectic form, as well
as the properties of the Hermitian scalar curvature. In Section 3, we show the
existence of Darboux charts around singularities in M on the one hand, and
outside a compact in X on the other hand, in which the gluing is performed.
Section 4 is devoted to the construction of a compatible almost complex
structure on M,, as well as estimates on its Nijenhuis tensor. In Section 5,
we tackle the analysis of the equation we want to solve on M.. The idea is to
reduce the problem to a fixed-point problem in suitable Banach spaces, in
the spirit of the Inverse Function Theorem, and to compare the intervening
operators to the well-understood models on M and X. Finally, Section 6 is
concerned with the proof of Theorem 2.

Acknowledgements. I would like to thank my advisors Yann Rollin and
Gilles Carron for their invaluable help and support during the maturation of
this paper. I would also like to thank the CIRGET for their kind welcome and
the stimulating work environment; special thanks to Vestislav Apostolov,
who made this visit possible.
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2. Almost-Kahler preliminaries

Our construction will lead us into the realm of almost-Kéahler geometry on
a symplectic manifold. For the sake of completeness, we introduce here all
the notions and identities that will appear in the main construction.

Let (V,w) be a symplectic manifold. First, we describe the space of al-
most complex structures compatible with w and how it relates to Kahler
classes in Kahler geometry. Then, we discuss several notion of scalar curva-
ture on the almost Kéhler manifold (V,w, J), and explain why the Hermitian
scalar curvature is most suited to our purposes.

2.1. Almost complex structures compatible with
a symplectic form

First we give some background on which (almost)-complex structures are
compatible with a given symplectic form. Let (V,w) be a symplectic mani-
fold. We consider the set of all almost complex structures on V' compatible
with w:

AC,, = {J section of End(TV), such that J? = —Id,

and gy :=w(,J-) is a Riemann metric}.
Its tangent space at a point J € AC,, is then given by:

T;AC,, = {A section of End(T'V)
such that AJ = —JA, w(A-,") +w(-, A:) =0}.

Let G, be the space of sections of Aut(7TV') that preserve w,
Go =T(Awt(TV,w)) ={v: V = Awt(TV), w(vX,7Y) = w(X,Y)}.

It can be understood as an infinite-dimensional Lie group, whose Lie algebra
is then :

L, =T(End(TV,w)) ={a:V = End(TV), w(aX,Y)+ w(X,aY) = 0}.

Then we have the following proposition, relating any to a.c.s. compatible
with w:
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Proposition 5. The action of G, on AC, by conjugation is transitive. In
particular, given J1 and Jy in ACy, there is an a € L, such that

J2 = exp(a)J; exp(—a);

moreover, the section A is unique if we assume it anticommutes with Ji
and Js.

Conversely, for any J € AC, any tangent J € T7AC,, can be written as
the tangent vector to a curve of this form:

. d
J=—| exp(ta)Jexp(—ta),
dt|,_g

where a = —%Jj.

Proof. Observe that P = —J;J5 is symmetric positive definite with respect
to both associated metrics g1 = w(-, J1-) and g2 = w(-, Jo-). Thus we may
write it P = B? for a symmetric definite positive matrix B. Write B = exp(b)
and observe that b anticommutes to both J; and Jy to conclude. O

2.2. Action of Hamiltonian vector fields on AC,,

In the original construction proposed by Arezzo and Pacard, the “connected
sum” on which the operation takes place is a complex manifold in a nat-
ural way, and one looks for a canonical metric in a Kéhler class naturally
obtained when performing the gluing.

Here we will lose this property on the connected sum. However, we will
see that we can still endow it with a natural (family of) symplectic 2-forms.
As a consequence, it will be more natural to keep this symplectic form fixed
and move the obtained almost complex structure in AC,,.

In this section we explain how one might perform this operation on a
symplectic manifold (V,w), and how, in the integrable case, this relates to
the more traditional use of the dd®-lemma to move around in a given Kéahler
class.

Since the natural structure on V' is the symplectic form w, it makes sense
to use Hamiltonian vector fields to move the other structures around. Thus,
to a smooth function f on V, we associate the Hamiltonian vector field X
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defined by

A Hamiltonian vector field Xy induces a variation a of complex structures
via the Lie derivative:

1
a = iﬁxfe]

This variation is compatible with w in the following sense:

Lemma 6. The wvariation of complex structure a is in L,. Moreover, a
anticommutes to J.

Proof. We must first check that w(aX,Y) + w(X,aY) = 0. To do this, we
use that, since X is hamiltonian, it preserves w, i.e.

Lx,w=0.
Thus, since ¢(X,Y) = w(X, JY), we have that
Lx,9(X,)Y)=w(X,Lx,JY).
But Ly, g is a symmetric tensor, thus
Lx,9(X,Y) = Lx,g(Y, X)
=w(Y,Lx,JX)
= —w(Lx,JX,Y).
As for anticommuting with J, we have that
20JX = (Lx,J)JX
=—Lx, X —-JLx,(JX)

= —J(Lx,J)X

for any X. O
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Thus, from Proposition 5, we see that for any ¢, the almost complex
structure

Jr = exp(—ta)J exp(ta)
is in AC,,. To f € C*(V'), we may therefore associate

(4) Jf = Jl.

As an heuristical aparté, let us now briefly explain how this construction
can be related to the dd°-lemma in Kahler geometry.

The Lie group Ham(V, w) of Hamiltonian symplectomorphisms on a sym-
plectic manifold (V,w)! acts on AC,, by pullback. Through the Hamiltonian
construction, we identify the Lie algebra of Ham(V,w) with the set Ey of
smooth functions on V' with zero integral, equipped with the Poisson brack-
ets.

With this identification, the infinitesimal action is

P f € Ey— ,CXfJ e T7AC,.

Observe that if J, J' are integrable complex structures, such that J' =
¢*J for some diffeomorphism ¢, then the associated Riemannian metric is
given by:

(5) g(J' W) = ¢*g(J, (¢~ ) w);

so if ¢ € Ham(V,w), these two metrics are isometric and have the same
scalar curvature. This construction does not help to find constant scalar
curvatures.

However, we may consider the complezified action instead. We may not
be able to complexify the Lie group, but we can consider the complexified
Lie algebra of zero-mean smooth functions with values in C. This yields a
complexified infinitesimal action

P:ES = {H €C™(V, @),/ Hw? = 0} — T1AC,.
\%4

The resulting foliation can be understood as the orbits of a fictitious com-
plexification Ham®(V, w).

The (infinitesimal) action of a purely imaginary /—1f is then given by
JP(f)=JLx,J = Lyx,J. Thanks to (5), we see that, at the riemannian

"Ham(V,w) can be understood as the set of symplectomorphisms which are time-
one value of the flow of a time-dependent Hamiltonian vector field.



1332 Caroline Vernier

level, this amounts to fixing J and flowing w along —JX;. The obtained
variation is then

—Ljx,w=—dijx,w= 2i00f.

so this construction is equivalent to moving w in its Kéhler class. Via pull-
back by a time-one Hamiltonian flow, we have

qﬁ}(w + dJdf, J) = (w,qS}J).

It would seem natural to adopt the same construction here; that is de-
tailed in Szekelyhidi’s paper [45]. However, as J is not integrable, we run into
an obstacle: the obtained almost complex structure gb?J is not compatible
with w.

Lemma 7. The almost complex structure J is integrable if, and only if,
dJdf is J-invariant for any function f.

Proof. On the one hand we have, for any X, Y,

(dTdf)(X.Y) = X - (Jdf (V) — Y - (JAf (X)) — Jdf ([ X, Y))
=X -(JY)-f+Y - (JX) - f+J[X,Y] f.

On the other hand,

(dJdf)(JX,JY) = JX -df(Y) = JY - df (X) — Jdf ([JX, JY])
=—JX-Y - f+JY -X-f+JJX, JY] f

As a consequence, the J-anti-invariant parf of dJdf is
(dJdf)(X,Y) = (dJdf)(JX, TY) = —4df (JN;(X,Y)),
where N; denotes the Nijenhuis tensor of the almost-complex structure J:

N;y(X,)Y)=—-([JX,JY]| - JJX,Y]| - JX,JY] - [X,Y]),

1
4
which, by the celebrated Newlander-Niremberg theorem, vanishes iff J is
integrable. ]

Thus, in the case where J is not integrable, we rather use the exponential
map construction, which does not move J in the complexified orbits, but
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does retain the complexified action at the infinitesimal level:

4
dt

A
t=0 dt

eXp(—t,CXfJ)J = JﬁXfJ,
t=0

which coincide JP(f) obtained earlier.
2.3. The Hermitian scalar curvature

There are several competing notions of curvature on the almost-Kéhler man-
ifold (V,w, J). We now discuss them and pick the most natural choice; more
details can be found in Apostolov and Draghici’s survey [1].

First, one can consider the different Riemannian curvature tensors de-
rived from the metric ¢g;: the Riemannian curvature tensor Rmg,, the Ricci
curvature Ricy, and the scalar curvature s;,. From these, one can define
the Ricci form p := Ricg, (J-,-). In the Kahler case, the complex structure
is parallel, which add symmetries to Rm, and one can show that the Ricci
form is closed of type (1,1), and that its cohomology class, divided by 2,
is exactly the first Chern class of V. However, since DJ is not assumed to
vanish, where D denotes the Levi-Civita connection of gz, the Ricci form is
not necessarily closed or J-invariant; in particular, it is not a representant
of the cohomology class 2mc; (V).

On the other hand, the almost complex structure J allows us to see each
tangent space T,V as a complex vector space. We will denote the resulting
complex bundle by (T'V, J). It is identified T1°V via

1
X e(TV,J)— X4 .= 5(X —iJX) eV cTV®C
Z+7Z 7

We endow (T'V, J) with a Cauchy-Riemann operator defined by

O¢Vy = 29 ([XO1, Y 1OJL0)

which, in terms of the Levi-Civita connection of gy, rewrites
_ 1 1
OV y = 5(DxY +JDxY) = S J(Dx J)Y.

Together with the Hermitian inner product hy = %(g J — iw), this oper-
ator determines a Chern connection V7 on TV such that V4 (1) = §(TV.J),
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Since the almost Kéhler structure is not assumed to be integrable, the Chern
connection does not necessarily coincide with the Levi-Civita connection. In-
stead, both are related by

1
VxY = DxY — 5 J(Dx )Y,

Remark.The torsion of this Chern connection is given by the Nijenhuis
tensor V.

The top exterior power K% := A™(T'V,J), called the anticanonical bun-
dle, inherits a Hermitian product and a Hermitian connection from this
construction. Then, the curvature of the Chern connection on K7 is of the
form ipY where pV is a real, closed 2-form, and moreover, is a representant
of 2mey (V). We call it the Hermitian Ricci form.

The Hermitian scalar curvature sV is then defined to be its trace with
respect to w:

sV =2ApY.

On a Kéhler manifold, i.e. when the almost complex structure is inte-
grable, all those notions of Ricci and scalar curvature coincide. To express
their relationship in the almost-Kéahler setting, we need to introduce yet
another notion of curvature. Observe that the (4,0)-Riemannian curvature
tensor Rmg, can be identified to a symmetric endomorphism A2V — A%V
via

ngJ(a A B)<X7 Y) = ngJ(aﬁa Bﬁ7X7 Y)

The twisted Ricci form, or *-Ricci form, is then defined as the image of the
symplectic form by this endomorphism:

P* = RQJ (w)v
and its trace with respect to w is the #-scalar curvature :
s =2Ap" = 2(Ry, (w),w).

Then we have the following identites, which are proven in [1].
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Proposition 8. The Riemannian, Hermitian and twisted Ricci form are
related as follows:

1
pV(X,Y) = p*(X,Y) — L1 DxJ o Dy J),

p*(X,Y) = =(Ricy, (JX,Y) — Ric,,(X,JY)) + =((DD*J)X,Y).

1 1

2 2

As far as the scalar curvatures are concerned, we have
1 1 1

sV =s,, + 5|DJ|2 =5 — 5yDJP = 5 (59, + 7).

In this last formula, the norm of DJ is given by |DJ|?> = =33, tr(De,J o
D..J), with {e;}; a local orthonormal frame for g;.

In the almost Kahler context, the Hermitian Ricci form and the Hermi-
tian scalar curvature are natural substitutes to their Riemannian counter-
parts.

We will thus use s¥ as a generalization to our context of the Riemannian
scalar curvature. Of course, the anticanonical bundle and Chern connection,
hence the Hermitian scalar curvature depends on the almost complex struc-
ture we use on V. Hence, we will be interested in the operator

v

sY 1 AC, — C®(V)
J— sV (J).

First variation of sV. The first variation of the Hermitian scalar cur-
vature operator with respect to J € AC,, is given by the following formula,
proven by Mohsen in his Master thesis [34]:

Proposition 9. Define a curve J; in AC,, by
Ji = exp(—ta)J exp(ta),

for a € L, anticommuting to J, and set

t=0

the tangent vector at t = 0. Then the first variation of the Hermitian scalar
curvature along the curve J; is given by:

d

2 sV () = A8 = =078,

t=0

(6)
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where the codifferential § and the musical operator b are taken with respect
to the metric gy = we(-, J-).

Remark: Recall that the vector field §.J is given in a local orthonormal
frame (e;); for g by

00 == (DI J)(es).

Proof. We follow the proof given in Chapter 9 in [19].
We denote by g;, h; the Riemannian metric and Hermitian inner product
on (TV,J;). Then the isomorphism

exp(—ta) : (TV, J) = (TV, Ji)

preserves w, hence induces an isomorphism of Hermitian line bundles be-
tween (K7, h) and (K7 , ht).

The strategy is to first compute the connection 1-form a; of the Chern
connection on (K}t, ht). Then the Hermitian Ricci curvature is given by

pth = —day , and taking the trace, we get the Hermitian scalar curvature
sV’ = 2A;day. Thus, we need only compute ¢ := 7l o
t=0
We wish to compute & in terms of J. Let (Z1,...,Zm) be a local or-

thonormal frame for (T'V, J, hy). That is,

97(Z;, Z;) = 2035,

h ZZ',Z' :51" =4

Then {Zt = exp(—ta)Z; } . is an orthonormal frame for (T'V, Ji, hy,).
In this frame, the connect10n 1-form ay is given by

= —@th (VRZi,Zb).

We split V7* into its (0,1) and (1,0) parts and observe that
he((V7) IO X Y) = —hy(X, (V) OVY)

thus
:—tht (V) OV ZE Z28) — hy(ZE, (V) D 2
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Recall that the (0,1) part of V7 is 9(TV+/), Thus,
- _Zth ozt zty — (2L, 0V 2t
_ _Z TV Ji) Zt Zt)
= Z w(exp( ta)ﬁ(TV’Jt) exp(—ta)Zj,exp(ta)Z;f))

—Z w(exp(ta)o v )exp( ta)Z;, Z;))

3TV, J:)

Now, the Cauchy-Riemann operator 0 is given by

O 7 - = 2:e(1X01, Z210)10)
1
= *Z(Jtﬁth + Ly,2J1)(X).

As a consequence,

1
at(X) = Z Zw(exp(ta)Jt(ﬁexp(—ta)Zj Jt)Xa ZJ)
J

+ w(exp(ta)(Ly, exp(—ta)Z,; J)X, Z;)
1
- 1 Zw(‘]exp(ta%](ﬁexp(fta)Zj Jt)X7 ZJ)
J

+ w(exp(ta) (Lexp(—ta)JZj Jt)X7 Zj)'

1337

We will now rewrite this in terms of the metric g; and its Levi-Civita con-

nection D. We will use the local frame
1
{61, . . .,,€2m} = ﬁ{Zl, ce ,Zm, JZl, .. .,JZm};
in this frame, the previous expression rewrites

1
X)=—3 > 95(exp(ta)  (Lesp(~taye, J) X, 1)
k



1338 Caroline Vernier

We may express the Lie derivative of J; in terms of D:

(Eexp(—ta)ek. Jt)X = (Dexp(—ta)ek Jt)X + [D(eXp(—ta)ek), Jt] (X)
= (Dexp(fm)e,C Jt)X + Dy, x(exp(—ta)e)
— JiDx (exp(—ta)eg).

Hence, using exp(ta)J; = Jexp(ta), we get

1
X) = _5 Z gJ(eXp(ta)(Dexp(fta)ek Jt)Xa ek)
k
1
+ 5 ; gs(exp(ta)Dj, x (exp(—ta)ek), ex)

1
-5 ZgJ(J exp(ta)Dx (exp(—ta)eg), ex).
k
Taking the derivative with respect to t yields

ZQJ a(De,J) X, ex) — gJ((DaekJ)Xaek)+9J((Dekj)Xaek)

+ gJ(aDJX6k7 er) +97(Djyer,ex) — gr(Dyx(aer), ex)
— gJ(JaDXek, ek) + gJ(JDX(aek), €k).

which rewrites

6(X) = 567 (X)
=53 9s(alDe, )X, ex) ~ 05((Daei 1) X, )
k
£33 gr((Daxaen,en)
k
- %ZQJ(Dlekyek)

+35 ZQJ (Dxa)ex, ex)
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that is
&(X) = 5 (67 ()
- ;g 05(a(De, )X 1) — 9((Doey )X ex) — g(Dix (acp, )
+ ;; 9s((Dyxa)ex ex)
- ;zk:gJ(Dlek,ek)
+ ;;gJ((DXJa)ek, ex)

The first term %((U )?(X) is what we expect. The other terms vanish, for
the following reasons:

e Each e, has norme 1, thus g;(Djyex, ex) = 2(JX)(g(ex, ex) = 0.

e Since a and Ja anticommute to J, both these endormorphisms
are trace-free, and so are Djxa and Dx(Ja). Thus, the terms

Y or97((Dyxa)eg, ex) and >, g5((DxJa)ey, ex) vanish.

e Finally, for any k, the sum
97 ((De,J)(aex), X) + gs((Dx J)ex, aex) + g5 ((Dae, J) X, €x)
vanishes, since for any X,Y, Z
9:((Dy J)(Z),X) + 9,(Dx J)Y, Z) + g, ((DzJ)X,Y) = dw(X,Y, Z) = 0.

Thus we get

d

.1 .
yr tZOpV(Jt) =da = 5d((SJ)b(X).

To get the variation, we need to take the trace. Howevern we must be
careful: A; depends on t. However, we have, for any 1-form «,

2Atda = —5tJtC¥,
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and d&;J; actually does not depend on t. Indeed,by definition, we have for
any smooth function f and 1-form «,

/‘/(5t0¢)fwm—/v(a,df)twm—/ a(grad, f)w™.

|4

Thus,

/V((StJta)fwm—/V<Jt04,df>twm— —/Va(thradtf)wm—/Va(Xf)wm.

As a consequence, we have the announced result:

d

yr sV(Jy) = Ad(6J) = —6J(8J).

t=0 O

This results has other interesting consequences. For instance, if J; and
Jo are in AC,, then we get

pVJl _ pVJ2 — dOljl _ don2

- —%d (/01(5tj)btdt>

thus belong to the same de Rham class, the first Chern class of the sym-
plectic manifold (V,w).
Moreover, if one defines the total Hermitian scalar curvature as

SV:/ svvolg,
1%

then it is constant on AC,,, as

1
SV — gV — / Ad ( / ((5tj)"fdt> voly = 0.
|4 0

This goes to say that the Hermitian scalar curvature on AC,, is the correct
analogue in our context of the scalar curvature on a fixed Kéahler class. As
an aside, note, we may push this analogy further and define a Hermitian
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Calabi functional by

C:AC, — R
J = / sV (J)voly,
\%4

whose critical points are called extremal almost-Kahler metric and verify
a similar condition as the extremal Kéahler metrics. Such extremal almost
Kéhler metrics have been studied by Lejmi in [26].

Relation to the Lichnerowicz operator. Using this formula, we can
now compute the linearisation of the operator that will appear in the gluing
construction, which is the composition of sV with the map f — J ¢ intro-
duced in (4). In particular, we are interested with how it relates to the
linearisation of the (riemannian) scalar curvature on a Kéhler manifold.

Recall that, on a Kéhler manifold, the following formula holds:

% 5(w + i0Bf) = —260D~df + (ds, df) = %AQ [+ (2057, p).
t=0

On a constant scalar curvature Kahler manifold, this reduces to the Lich-
nerowicz operator

Lf = (D d)*D df = 66D df = %AQf — &(Ric(df)).

Choose J € AC,, so that (V, J,w) is almost-Kéhler. We have

d
—|  Jiyy=JLx,J
dt —o tf Xy

thus we want to compare
L:fe—6J0(JLx,J))

to L in an attempt to translate its good regularity properties to our context.

The main calculation is the following
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Proposition 10. Let f € C3%(V). Then the following holds:
J(6(JLx,J)) = Aydf — 2Ric(grad, f,-) + Ef,

where the error term E is given, in an orthornormal basis for g of the form
by

(7) de e JYJ ei) +2Ddf (e;, J(Dy J)e;)

1
in an orthonormal frame {e1, ..., e,} = E{Zh o Ty I 20y I 2} on
(TV,g).

Proof. The first thing we use is the following rewriting of .J:

J=JLx,J
(8) =Lyx,J —4N;(Xy,-)
= Lorad, 1J — AN (X, ).

We will compute §(Lgrad, fJ) and 6N (Xy,-) separately.
For the first, let ¢ be the flow of grad, f. Then

d

Loy J=—
grad f dt|,_g

v
Now, (V, J,w) is an almost Kéhler manifold, thus 6.J = 0, which implies
Wi (8J) = 8Vi94prT = 0.

Differentiating this equation at 0 with respect to t, we get

d
OLgrad, 1) = —

Pig
o1 (Vi)

t=0

To rewrite this expression, we use the following, proven by Minerbe in his
thesis [32] (Lemma 3.19):

d -
() : DYIY = Rm?(X, grad, f)Y — D% ygrad,f.
t=0
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We choose an orthonormal basis {e;}i=1..2m of (T'V, g) of the form

1
E{Zl, s T TZ0, o T 2},
with {Z;}; an orthonormal basis for the complex vector bundle (T'M, J) (as
in the proof of Proposition 9). In such a basis

§Vi9T == (¥;g) DY I(e;),
i7j
where (¢7g)” denotes the (i,j)-coefficient of the inverse of the matrix
(Y7 g(ex,er))k,- Using (9), we get

d

L (pgisrey) — gpgive)
at|,_, : :

dt|,_,
= Rm(e;, grad, f)Je; — DgiJejgradgf
— JRm(e;, grad, f)e; + JDgivejgradgf.

DY (ej) =

On the other hand, since we have chosen an orthonormal basis for g,
(d]:g)ﬁ:o = 52']'7 thus

| WigY=——l (Ui9)ij = ~Lyma,r9(eirej) = —2Ddf (i, ¢)).
t=0 t=0
Thus,
(10) —0Lgraq, fJ = — Z Rm(e;, grad, f)Je; — Dgi,Jeigradgf

— JRm(e;, grad, f)e; + JDgheigradgf

+ Z 2Ddf(e,;, ej)DeiJ(ej).
i,J

Now, using Bianchi’s identity,

Rm(e;, grad, f)Je; = —Rm(grad, f, Je;)e; — Rm(Je;, e;)grad, f
= Rm(Je;, grad, f)e; — Rm(Je;, e;)grad, f

Now, our choice of basis gives

Z Rm(e;, grad, f)Je; = — Z Rm(Je;, grad, f)e;,
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thus
1
Z Rm(e;, grad, f)Je; = 3 Z Rm(e;, Je;)grad, f.

On the other hand, still thanks to the form of the local frame {e;},

1
Z Dzujeigradgf = 3 Z (D;Jeigradgf — D%ei’eigradgf)
i i

1
=3 Z Rm(e;, Je;)grad, f.

As a consequence, the first two terms in (10) compensate one another. As
for the remaining terms, we use

Z Rm(e;, grad, f)e; = —Ric(grad, f),

thus (10) rewrites

0Lgrad, fJ = —JD*Dgrad, f — JRic(grad, f) — > 2Ddf (es, ¢;)De, J (e)).

2%
Using Bochner’s formula on 1-foms, this rewrites

(6Lgraa,rJ)” = JAdf — 2Ric(grad, f, J-) = Y 2D, df o D, J.

We still have the second term of (8) to deal with. We need to compute
(SN (Xp,)-

However, the Nijenhuis tensor rewrites as follows in terms of the Levi-Civita
connection
9(NS (X}, X),Y) = Lo(X;, J(DyJ)X).
Thus,
(6N (Xy,-) (V) = da(Y)
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‘ 1
where a(X,Y) := —ig(gradgf, (Dy J)X). Hence

(6Ns(Xf,-)(Y) = = De,ale,Y)
== e (afe;,Y)) — a(De,es,Y) — a(ei, DY)

1
= 5 D 9(De.grady f, (Dy J)e:) + g(grady f, (D7, y J)e:).

Moreover, observe that since Dy J is antisymmetric with respect to the
metric g, while the Hessian Ddf is symmetric, the first term must vanish.
Indeed, in a basis that simultaneously diagonalises Ddf and g, we see that

> " g(De,grad, f,(DyJ)e;) = > Ddf (e;, (DyJ)e;)

7

= ig(ei, (Dy J)e;)

i

S Z Xig((Dy J)ei, e;)

= Zg(Deigradgf, (Dy J)e;).

As a consequence, we are left with

TO(TLx, I))'(Y) = J0(Lggaa, 11 (V) = 4T (BN (Xp,)) (V)
= Aydf (Y) — 2Ric(grad, f,Y)

—221) df((De,J)Y —2de 2 vei)

which is what we set out to demonstrate, provided J act on 1-forms the
usual way:

(Ja)(Y) = —a(JY). -

The error term gives the quantity we will need to estimate when com-
paring the linearisation of our equation to model operators on M and X.
We can see it is directly related to the lack on integrability of J.
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Applying the codifferential § again, we see that
(11) Lf = —AXf + 25(Ric(df)) + SEF,

that is, the linearised operator is equal to the Lichnerowicz operator, plus an
error term of order at most 3 in f. The coefficients of this error term depends
on (derivatives of) D.J, which is comparable to the Nijenhuis tensor. As a
consequence, L is an elliptic, 4th-order operator on the potential function f.

3. Darboux charts in the orbifold and the ALE space

When gluing together an orbifold with the resolutions of its singularities,
holomorphic charts are usually used, to obtain a “connected sum” that is
naturally a complex manifold. However, here the construction will not work
in holomorphic charts, as the complex structures do not match on the ALE
space X and the Kahler orbifold M; the connected sum we will obtain will
have no natural complex structure inherited from that of the orbifold.

To address that issue, we will work in Darboux charts instead, and endow
the connected sum with a symplectic structure.

3.1. On the orbifold

Let (M, Jar,war) be a Kahler orbifold of complex dimension 2, with singu-
larities p1, . .., pe of type C2/Zs. Let p; be a singular point of M. Then, there
is a neighborhood U; of 0 in C? and a map

(Z)Z' : UZ' — M s
such that ¢;(0) = p; and ¢; induces an homeomorphism
7. U; 7.
6i: Uiy, Ui c M.

In such a chart, the Kahler form wj; pulls back to a Zs invariant, closed,
nondegenerate 2-form w; on Uj.

Up to a linear transformation of the coordinates, we may assume that
in this chart, at the point 0 we have

v—1
w;(0) = wp := N Zdzk A dz.

Moreover we may arrange that the complex structure Jy; is also equal to
the standard one Jy at 0.
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Now, since Zy C U(2), the standard symplectic structure wg on U; is
also Zs invariant. Thus we can use the equivariant version of the relative
Darboux theorem, relatively to the point 0 where both 2-forms agree, to find
an equivariant symplectomorphism

vV, U — V; CU,

V¥ w; = wy.

This is proven the usual way, by working Zs-equivariantly; the interested
reader may consult [12].
This symplectomorphism passes to the quotient modulo Z, and, com-
posed with ¢;, provides an orbifold Darboux chart around p; € M.
Moreover, since wp(0) = w;(0), working relatively to 0 we may assume
that dy(0) = I, thus in this Darboux chart, the complex structure Jys is
equal to Jy at p.

3.2. On the ALE manifold

The second ingredient of the gluing construction is an ALE Ké&hler manifold
X, with group at infinity Zs. We consider X = T*5? endowed with the fam-
ily of Ricci-flat Kéhler metrics (Jx ¢, gx ) that are described in the Annex.
They are obtained when considering smoothings instead of the minimal res-
olution of the quotient singularity. In spherical coordinates in R*, we have
the following expression:

0 2s 4
e = e Xy, Jx X1 = /1 = X
TXegs = T A d o TXeh1 s
- 2 52

1 AN, s 4\ 5 o
(12) EQX’E = <1 — 34> ds + Z (1 — S4> a7 + Z(Oé2 + 043)7
2
4
Oég/\dS-i—i 1—— oo Aoy

S5
4 4 s4
2,/1— 4

where s is the radius function of R*, and the «;’s are a basis of invariant
1-forms on S3, verifying do; = aj A ay, for any circular permutation (4, j, k)
of (1,2,3), and the X;’s are the associated dual basis. Thus, (Jx, gx ) gives
a Kihler structure on 7*S? that is ALE of order 4:

Wx,e = V2e
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To endow (X = T*S?%,wx) with a Darboux chart outside a compact,
notice that

c 52 S 82 4
an:\/ifde ) =2 ———a3 ANds+ — 1—7a2/\al
7 AN 20/1- & 4 s
84
= fl(s)az Ads+ f-(s) ag A ay.

ou

2

S 4
fe(s) = \/551 ==

st

2
r
Thus, setting 7 = fe(s) gives a radial change of coordinate that pro-

vides a Darboux chart outside a compact set in X. Moreover this change of
variable gives us the same ALE fall-off rate. Indeed, straightforward com-
putation gives, in these new coordinates:

2
r r
WX’5:§OL3/\CZ'I"+ZOQ/\O£1:W0;

2\ ~3 2 2\ ~3
. 13 2 T g 2
9Xe = (1+74> dr +Z <1+7’4> a7
2 2\ s
r g
0 2r

Jxel ="y
X< or V4 e2)

2\ 72
JX75X1 = — (1 + 4> Xo.
T

Thus, up to a 2v/2 factor, we keep the same expression for the metric.
Moreover, we see that the decay rate in this ALE Darboux chart is still 4:

O (Jo— JIxe) =O(r*F)

(13) 4
0" (g0 — gx) = O(r™").

Remark 11. Moreover, in this chart, we observe that as € goes to 0, the
Kihler structure on 7%S5%\ S? outside the zero section converges to the
orbifold Euclidean structure in C?/Zs,, in any C¥ norm.
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3.3. Symplectic connected sum

Using these charts on M and X, we obtain a new manifold by a generalized
connected sum construction, and that manifold will naturally be a symplec-
tic one. Since M has isolated singularities, we can assume that the Darboux
charts around each of them are disjoint.

Define a function p on M that, in each such chart, is equal to the distance
to the singularity p; and extend it smoothly to 1 on M.

On X, we use the radius function r in our ALE Darboux chart away
from the zero section of T%52. We extend it smoothly to 1 on a compact
neighborhood of the zero section.

Let € € (0,e9) be a small gluing parameter, and let r. := ef fora 0 <
T
B <1, R. = —=. We identify the regions {p = 2.} C M and {r =2R.} C X
€
via the homothety

hsfl:{6§p§1}CM—>{1§r§5_1}CX

ZH=w =

(LI IR

We perform this connected sum construction at each singularity p; to
get a smooth compact manifold M., which is naturally endowed with the
symplectic form

ehiwxe  on {p < 2r},
we =
W on {p > 2r.}.

The use of Darboux charts ensure that this 2-form is smooth, nondegenerate
and closed.

Remark 12. There is actually another degree of freedom that we do not
use here. Indeed, we could make sense of the construction with a complex

nonzero parameter €, which would be tantamount to introduce an action of
St

All the manifolds M, are diffeomorphic to the minimal resolution M of
the singularities p;. Moreover, as advertised in the introduction, the region

M \ UiB(pia 47"5)

is naturally included in each M., allowing us to define:
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Definition 13. Suppose that we have, for each e € (0,¢¢), a (smooth) func-
tion f. : M. — R. Let fy: M — R be a function defined on the orbifold M.
Let K be a compact subset of M*. There is €1 > 0 such that for all € < &1,
K C M\ U;B(p;,4re). Then, for all € < ey, fi is defined on M.. We say
that the sequence (f.). converges towards f in C* norm on the compact K
if

0
I feire — Fircller () —— 0.

This definition extends to tensors on M.. Then, we see that the sequence
of symplectic forms (we)e converges to the orbifold symplectic form wyy, in
any C* norm, on every compact set of M*.

Conversely, the compact set {r < R.} C X, after rescaling, is naturally
included in a small region of M.. Thus we may define:

Definition 14. Suppose that we have, for each e € (0, (), a (smooth) func-
tion f.: M. — R. Let fp: X — R be a function defined on the ALE mani-
fold X. Let K be a compact subset of X, then there is e1 > 0 such that for
all e <e1, K C{r < Re} = M. Then, for all € < &1, hif,k is defined on
X. We say that the sequence (f.). converges towards f in C¥ norm on the

compact set K if

) 0
182 foyxc = fircller () —— 0.

Moreover,
Lemma 15. The cohomology class [we| does not depend on €.

Proof. Notice that, on the orbifold M, in a contractile neighborhood of each
pi, the orbifold version of the local 90-lemma tells us that wys is exact.
Thus, there is a 2-form © € H?(M*,R), where M* := M \ {p1,...,pe}, and
functions ; supported in a neighborhood of each p;, such that

W :(I)—i—izaégoj.
J

On the other hand, since wx = i0du is exact (see Annex), from the definition
of w. we see that we may write

we =@ + € Z d0(vju)
J

for suitable cut-off functions ;. O
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Remark 16. A more general, Mayer-Vietoris-type argument, actually al-
lows to identify H?(M,R) to {a € H*(MR),a-S =0} via H>(M* R),
where S corresponds to the zero section in 7*52.

From here, using Moser’s stability theorem (see for instance [30], Theo-
rem 3.17), we get

Corollary 17. The symplectic manifolds (Mc, we)oc(0,c) are all symplecti-
cally equivalent.

Remark 18. As a consequence, we could actually work on a fixed symplec-
tic manifold (M,&). As a matter of fact, this is what we will do in Section 6.
However, during the gluing construction, it is more practical for the analysis
to keep track of the parameter & (for instance to use Definitions 13 and 14).

4. Almost complex structures on M,

The next step is to endow M. with an almost complex structure that is
compatible with w.. We achieve this by gluing together the complex struc-
tures Jyy on M and Jx on X. As these manifolds have differing complex
structures, making them compatible will come at the cost of integrability,
thus we will only get an almost-complex structure on M;.

4.1. On the orbifold M

Recall that we are working in orbifold Darboux charts (U;, ¢;) centered at
each singularity p;. In such a chart, Jys is, of course, compatible with wyy,
but so is Jy, the standard complex structure in C2.

Thus, according to the proposition 5, there is a unique section A of
End(TU;), anticommuting with both Jj; and Jy, such that

Jur = exp(A)Joexp(—A).

Now, multiplying A by a cut-off function on M, we will be able to transi-
tion smoothly from Jjs to Jy in a neighborhood of the singularities. We will
lose integrability of the resulting almost complex structure in the process.
On the other hand, if we can show that Jy; approaches Jy close to each p;,
we may hope that the operation is not too drastic.

Thus, we first need an estimate of A:
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Lemma 19. In the orbifold Darbouz coordinates x = (x)k=1,. 4 described
in paragraph 3, Jyr and Jy coincide to first order:

(14) Ju(z) = Jo + O(|z)?).
As a consequence, the endomorphism A satisfies the following estimates:

A= 0(l2P),
(15) 0A = O(]z]), and
A =0(1) for all k> 2.

Proof. Recall that in the orbifold charts that we are using, we have arranged
that Jys(0) = Jp. Thus, in these coordinates, a Taylor development of Jys
around 0 can be written

Ju(@)] = (Jo)] + (JayVhzw + O(|2]?).

The tensor J(;), whose coefficients are the first order coefficients in the de-
velopment of Jyy, is a local section of A'U; ® End(TU;). However, as Zs acts
as a multiplication by -1 on A'U; ® End(TU;) can only be Za-invariant if it
is zero. As both Jy; and Jy are Zo-invariant, we obtain the estimate (14).
Observing that
JIu — Jo = exp(A)Joexp(—A) — Jo
= (exp(24) — I)Jy
- O(’x‘z)v

we get the desired estimate on A. Writing a Taylor development of A and
using again that Jy;(z) — Jo = O(|z|?) allows to get the estimate on the first
derivative of A near 0.

Since A is defined and smooth on M, we see that higher order derivatives
are at worst bounded. (]

Remark: When performing gluing on a Kéhler manifold, it is usual to work
in holomorphic coordinates in which w approaches the standard Kéahler form
wp on C™ to order 2. The existence of such a charts is actually a characteri-
zation of Kéhler metrics. Here, we work in a Darboux chart instead, but we
do retrieve an order two approximation, on the complex structure instead
of the symplectic form.

Now recall that 7. = ¢” is our chosen gluing radius; for € small enough,
{p < 4r.} is contained in the Darboux chart around each p;.
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Let x1 : R — R be a smooth cutoff function, such that

(z) = Oifx <2+,
X = i e >4

where 7 is very small; its only purpose is to provide some leeway and ensure
that all derivatives will match when performing the gluing. Set

-(2)
Xre = X1\ —— ]+
Te

We define an almost complex structure J,., on M by

Jr. = exp(xr.A)Joexp(—x,r. A).

In particular,

J. = JO 1f/) < 2T57
T Ty if p > 4

Moreover, using Lemma 19 in the “annulus” {2r. < p < 4r.}, we see
that
Jr. = Jo = O(r?),

(16) O(Jr. — Jo) = O(re).

The first estimate results directly from the lemma. For the second, ob-
serve that

Tr. = Jo = (exp (2xr. A) — I)Jy

thus first derivatives are of the form
I(Jr. — Jo) = 2(dexp)(2xr. A) (Oxr. A + Xr.0A) Jo.
To conclude, we use that in {2r. < r <4r.},
oxr. = O(r:1).

The endomorphism J,_ on M is an almost complex structure, compatible
with wjys by construction. It is not an integrable complex structure; however,
its Nijenhuis tensor is supported in the cutoff region {2r. <r < 4r.}. We
give an estimate of the Nijenhuis tensor Ny, , as it will appear in error terms
down the road.
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Lemma 20. The Nijenhuis tensor Ny, _ of J,_ verifies

(17) - {O(re) in {2r: <r <dr.},

0 elsewhere.

Moreover, its derivatives are bounded on M.

Proof. Recall that we have the following expression for the Nijenhuis tensor:
1

(15) Ny, (X,Y) = 310 (De.y 1e)X = (Dr x T )Y),

where D,_ is the Levi-Civita connection associated to the Riemannian metric
gr. = w(+, Jr_-). Using this, we compute:

1

Ny, (X,Y) = 5. = Jo)(Dr.y (Jr. = Jo)X = (Dr, x (Jr. = J0)Y)
1
+5J0(Dr.y (Jr. = J0)X = Dy, x(Jr, = Jo)Y)
1

+ 5 (Dry Jo)X = (Dr. x Jo)Y),

where D,_ is the Levi-Civita connection associated with the metric g,, =
wpr(+, Jr.-). Using the estimate (16), we see that the first term of this sum is
an O(r2) and the second one is an O(r.). We need estimate the third term
by comparing it with the Nijenhuis tensor of Jy, which vanishes. To do this,
notice that

D, Jy= (Do +T1,.)Jo=T,_Jo,

where I',_ is expressed with the Christoffel coefficients of the metric g,_,
thus the first derivatives of the coefficients of g,.. As a consequence, I';_Jy =
O(re). O

4.2. On the ALE space X

We proceed similarly on X. We work in the (family of) Darboux charts at
infinity described in paragraph 3. In this chart, both Jx . and Jy are compat-
ible with wy ., thus there is a unique section B. in L, _, anticommunting
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with both Jy and Jx ., and such that
JX,a = eXp(Ba)JO eXp(—Bg).

Using our estimate (13), the same calculations that we already performed
on M show that

B. =0(r %),
0*B. = O(r—*7h).

We perform the same kind of cutoff as we did on the orbifold. Let x2 :
R — R be a smooth cutoff function, such that

(2) = lifz <1
X2 = Oifx>2—n.

Recall that R, = "s/z = €5~ is our gluing radius on the ALE space. We
define a cutoff function on X by

— -
XR. ‘= X2 R. .

If € is small enough, the region {r > R.} is contained in the Darboux
chart. We define an almost-complex structure on 7%S? by

Jr. = exp(xr.B:)Jo exp(—xr.Be).

By definition,

Jx. on {r <R.}
Jr. =
Jo on {r >2R.}.

As before, our estimate on B. and choice of cutoff ensures that the
difference between Jgr, and Jy becomes small when ¢ goes to zero. More
precisely:

Jr. — Jo = O(R™),

(19) O*(Jr. — Jo) = O(RZ*F).

As before, Jp_ is a compatible almost complex structure on X, compati-
ble with wx in the Darboux chart. However, once again, it is not integrable.
Its Nijenhuis tensor is supported in { R. < p, < 2R.}. The computation done
on the orbifold translates directly to this case and we see that N, verifies:
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Lemma 21. The Nijenhuis tensor of Jr. verifies, for any k > 0,
—5—k
(20) Ny, = {O(RE ) on {R. <r < 2R.}

0 elsewhere.

Proof. The proof is the same as Lemma 20, and relies on the expression (18)
for the Nijenhuis tensor. We apply it this time to the Levi-Civita connection
associated with the metric gg. = wx (-, Jg.-). The computation then trans-
lates directly to this case, using (13) for the estimation of the Christoffel
symbols. O

4.3. The approximate solution

The new almost-complex structures on M and X now both coincide with
the standard one Jy in suitables regions of the Darboux charts. Thus, we can
glue them together to obtain an almost complex structure on the “connected
sum” manifold M. constructed at the end of paragraph 3.

First, we define a function on M, that will encode both the function p
that extends the distance to the singularities on M, and the radius function
r on X. We set

) p where p > 2r¢;
Pe= eh’_ir where p < 2r..

We define J. as follows:

e —

R hi_Jr. where p. < 2re,
JIr. where p. > 2r..

This smooth section of End(7T'M.) defines an almost complex structure
on M, that is compatible with w. by construction. It is not integrable; its
Nijenhuis tensor is supported in a small annulus {r. < p. <4r.} around
each singularity.

Lemma 22. The Nijenhuis tensor N; of J. verifies

(21) NA — 0(547"5_5) on {TE S 106 S 27"5}
O(re) on {2r. < p. < dr.}.
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Moreover, its derivatives verify
O(etr757F on {r. < p. < 2r
(22) akNj _ ( € ) { e > Pe > s}
: O(1) on {2r. < p. < d4r.}.

Proof. To deal with the rescaling, observe that

th,l Jr, (Xa Y) = Nh:,

1 JRs

where X and Y can be interpreted as vectors on X. Using lemma 21, we
thus get the estimate on {r. <r < 2r.}. The one on {2r. <r < 4r.} comes
directly from lemma 20. O

Remark. Notice that for the exponent in the second line to be positive
(hence for N; to decrease as ¢ becomes small), we need 3 < %.

This construction endows M, with an almost Kéahler structure. The suit-
able Riemannian metric is obtained by setting g. := w(J.-, ). Equivalently

) e*h’_1gr., where p. < 2r.,
Je = Jr. where p. > 2r..

5. The equation

The goal now is to perturb the almost-Kéahler structure on M, into one with
constant Hermitian scalar curvature. More precisely, we want to express the
resulting equation as a partial differential equation on a function f in a suit-
able functional space. To do this, we use the construction presented in 2.2,
to associate a compatible J; € AC,, to any f. This would be analogous to
the use of the d0-lemma to move the Kihler form w, in its cohomology class
on a Kéahler manifold.

Therefore, the differential operator we are interested in is given by P :
f sV (Jy). More specifically, we want to solve the equation P(f) = s,,, + A
for f in a suitable functional space and for some constant .

The strategy is the following. We want to solve this equation using a
suitable version of the Inverse Function Theorem.

As a consequence, we write a Taylor development of the operator P:
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(23) Sv(Jf) :sv(j€)+L€f+Q5(f),

where L. is the linearisation of the operator at 0 and ). contains the non-
linear terms. Thus, we want to solve

(24) Lof + X =54, — sV (J.) — Q(f).

From there, if we can find a right inverse to the operator

L.:RxE—F
()\Jf)'_>)\+LEf7

for suitable Banach spaces E and F', we are brought back to a fixed-point
problem. To be able to use the fixed point theorem, we need to perform the
following steps:

1) Introduce weighted Holder spaces on the connected sum M,;
2) Build a right inverse for L.;

4) Estimate the difference between the Hermitian scalar curvature of the

approximate solution and the scalar curvature of the orbifold metric
e

)
3) Estimate the nonlinear operator Q.;
)

These steps will be the focus of the next sections.
5.1. Holder spaces on M,

To make our implicit function theorem work, we will need to study elliptic
linear differential operators on M., as well as on its “components”, namely
the ALE space X and punctured orbifold M* := M \ {p; ...pr}. However X
and M™* are noncompact manifolds, and elliptic operators like the Laplacian
do not have good properties in “classical” Holder spaces C*(M*) (resp.
che(X)).

As a consequence, we introduce suitable weighted Holder spaces on X,
M* and, from there, on M.. We will follow the introduction of such spaces
from [8] (see also [2, 46]). For more details on analysis in weighted functional
spaces, see for instance [6, 10, 28].
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On the ALE model. Around each p € X, we have a chart mapping the
unit ball B(0,1) C R* to a geodesic ball of radius nro:

¢ : B(07 1) — B(pv 177"0).,

where 1 > 0 is assumed to be very small and ro = r(p), where r is a radius
function on X defined outside a compact set (for instance the radius of
C?/Zy in an ALE chart at infinity)..

Moreover, thanks to the ALE estimates on the fall-off of the metric, we
may assume that

¢*gx —rgg0 = Ory™),
and corresponding control on derivatives to order k.
Then, by definition, a function f € C{Z?(X) is in C(I;’O‘(X) if there is a
C > 0 such that,in each such chart,
6
1f o ¢llero < Crp.

With this definition, the upshot is that if Hf||c§,a(X) <(C, then f €
CH(X) and, for i < k,

0'f| < e’

where 7 is the radius function used above.
The weight § thus describe the behaviour at infinity of the function f.

Example. The function w — |w|” belongs to C(’;’O‘(X) if and only if v < é.

On the punctured orbifold. Recall that we have endowed M with a
function p that is equal to the distance p — d(p, p;) in disjoint neighborhoods
of each singularities, and smoothly extended to 1 away from the singularities.
As before, around each p € M*, we consider maps to a small geodesic ball

w : B(Ovl) — B(pa"77"0)
with 79 = p(p) and such that
WV gn — 1590 = Ocr ().

A function f € C*(M*) is in Cy'*(M*) if there is a C' > 0 such that, in
each such chart,

1f o 4ller < O
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In this case, ¢ keeps track the worse possible behaviour for f near the sin-
gularities.

Ezample. The function z — |z|7 belongs to Cg’a(M*) if and only if v > .

On the connected sum. We define the C(’;’a(ME)-norm on M, by gluing
together the weighted spaces on the two pieces of the gluing. Namely, using
a cut-off function y that is equal to 1 outside p. > 2r. and zero in p. < 7,
we can write any tensor field T as the sum of two pieces T'x := (1 — x)T
and Ty~ := xT respectively supported in p < 2r. and p > 2r.. This two
pieces thus can be identified to tensor fields on X and M™* respectively.
Then HTHC?,Cx is given by

(25) (e ) Tx gt x) + 1T

Cho (M)

where £ is the degree of T'. This will allow us to decompose the analysis on
the ALE and orbifold parts of the gluing, which will prove very useful when
constructing a right inverse for the linearised operator.

In terms of the ‘radius’ function pe on M., the fact that |[fllgre ) <c
rewrites

|07 fl < ep2
for any j < k; that is to say,
|07 f| < ¢ where p. > 4r,
(26) |07 f| < cp’~" where 2r. < pe < 4r.
107 f] < e where p. < 2r..

We have the following relations for the norms with different weights:

1£llcyo if " < 8
k,rx< ’6
fllge = § Lo-s Fllgre if & > 6.

Moreover, note that the multiplication

k,a k,a k,a
Cs™ = Co = Csly

(f,9) = fg

in continuous, with norm bounded independently of .
In terms of these weighted Holder spaces, we get the following estimate
from (21) and (22):
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Lemma 23. The Nijenhuis tensor of J. has coefficients in Cg’a for 0 <
a < 1, and we have

[

_ 0(547“55) on {re < p. < 2r:}
Co™ ™ O(re) on {2r: < p: < 4r}.

5.2. The linearised operator L.

The next step is to understand the linearised operator L.. We use the com-
putation of the linearised operator performed in Section 2.3, Proposition 10

Jed(JLx,J.)) = Ag.df — 2Ric(grad,,_f,) + E-f,
for f € C3*(M.), with

(27) E.f(Y)= Z df((Dzi7jEYj5)ei> + 2Ddf (e, ja(DYjs)ei>

1 N N
in an orthonormal frame {ey,... e} = E{Zl, coirs Ty Je 2y e D }
on (T'Mz, ge).
Thus
(28) L. f = A2 f —25(Ric(df)) + 0E. f,

As a consequence, the error term in supported in the gluing region
{r: <r <4r.}, and we expect it to be small in appropriate weighted Holder
spaces.

We make this hunch precise in the next lemma.

Lemma 24 (Estimate on the error term). Let f € C?’O‘(ME). Then we
have

(29) 1= fllgne. = o(D)lIf e
Proof. Recall that for any vector fields X,Y and Z, the following holds:
3e((Dx J2)Y, Z) = 2§ (J-X, N(Y, Z);)

thus when computing estimates, the C’Z;’a(MS)—norms of the Nijenhuis tensor
and and DJ. are comparable.
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Applying the codifferential to the error term (27), we see that the terms
that appear are of the form

2

(30) > (DI)o*
k=0

or

(31) O*f(DJ.); 0*f(DJ.)2

We need to compare these to the Cgl’a—norm of f. Since all these terms
are supported in {r. < p. < 4r.}, by definition of the weighted norms, we
have

|07 f1 < Cr27|| fll g

O (DJ)] < Cr¥ N [lgae
for some positive constant C'. Thus we obtain
* |pE (D) f| < Crel[Nj [lese | fll e

« |pi-00(D I3 f| < Cro||N

CS’“HfHC;"‘*;

x |[pd00%(DJ)DS) < Cre|Nj llgoe |l fll gne

3,
Co

* |pi(DJ)9 f| < Cr2||N;

el fllgaa:

Using (29), we see that all the right-hand terms are o(1) times || f{|lc.,
which is the conclusion we seeked. O

5.2.1. Mapping properties of the Lichnerowicz operator. In this
section we recall some properties of the ”classical” Lichnerowicz operator
on the punctured orbifold (M*, gas, Jar) and on the ALE space (X, gx, Jx);
those will be used as models to which we shall compare L.

We are especially interested in mapping and Fredholm properties when
the operator is defined between weighted spaces. We follow the exposition
given in [2]. The analysis can be found in more details in Melrose’s book [31]
(in Sobolev spaces), as well as [39] (in Holder spaces).

On the punctured orbifold M*. The weight allows us to take into
account the behavior of functions near the punctures, and it is to be expected
that the properties of I will greatly depend on it. More precisely, it turns out
that we will need to avoid a discrete set of ”bad weights”, the indicial roots.
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Roughly, the indicial roots describe the possible behaviors of a function in
the kernel of L near the singularity. Using our chart near each singularity,
a real, number 0 is an indicial root if there is a function v € C*°(B(p;,1))
such that

L(p’v) = O(p*?).

Using the fact that, in this chart, the Kéahler structure on M* differs from
the Euclidean one at order 2, we see that it is equivalent to look for indi-
cial roots of A3, where Ag is the Euclidean laplacian. These are known; the
computation is recalled in [2] and [47] and rely on the eigenfunctions of the
Laplacian on the sphere S2, and are contained in Z.

Choosing § outside this critical set, we obtain that the operator

Ls : C3*(M*) — CY° (M)
f=Lf

is well defined, Fredholm, and has closed range. It also verifies the following
duality property:

(32) dim Ker Ls = dim Coker L_s.

To obtain good mapping properties, we need to introduce a modification
of the operator. For each i € {1,...,k}, let & be a smooth function on M
supported in a small ball B(pj,r9) around p; and identically equal to 1
in B(pj,70/2). Let V =span(&1,...,&); we endow V with the norm |f| =
> |f(p:i)|.- Then we have:

Proposition 25. Assume that 6 € (0,1), « € (0,1). Then the operator

Ls: (C5*®V) xR — Cy,
(f;v) = Lf+v

1s surjective and has one-dimensional kernel constituted of constant func-
tions.

A proof of this can be found in [2] (Proposition 5.2).

The Lichnerowicz operator on (M*, wys) admits a right inverse provided
we add a space of functions constant near the singularities at the source.
This will come at the cost of a less good norm for the right inverse of L..
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On the ALE space X. Most of the previous paragraph applies. This
time, an indicial root for Ls is characterized by the existence of v € C*°({r =
1}) such that

L(r%v) = O(r°~?),

and indicial roots describe asymptotic behaviors of function in Ker IL. Due
to the decay of the Eguchi-Hanson metric and complex structure towards
the Euclidean ones, we may, as before, reduce the problem to seeking indicial
roots of A2 at infinity. This set is again contained in Z, and, for any § outside
the critical set,the operator

Ls : C3*(X) — CF%,(X)
f—=Lf

is well defined, Fredholm and has closed range. Moreover, the duality prop-
erty (32) still holds.

Since there cannot be a holomorphic vector field on X decaying at in-
finity, observe that for é < 0, there is no nontrivial solution of L f = 0 such
that ¢ € C3*(X).

As a consequence, we have

Proposition 26. Assume that § € (0,1). Then Ls is surjective and its ker-
nel is of dimension 1, generated by 1.

Again this proposition is proved in [2].

5.2.2. Construction of a right inverse for L.. We are now able to
build a right inverse for the operator L.. To do this, we will glue together
right inverses of . on M* and X, thus obtaining an ”approximate right
inverse”, from which we can build a proper right inverse to L.. This proof
is the same as in [46], with the necessary adaptations due to our choice of
weights as in [8], and the presence of an error term. Factoring this in, we
prove

Proposition 27. For a sufficiently small gluing parameter € > 0, the op-
erator

Lo : (M) x R — CY°, (M)
(f7 V) = Lef +v

admits a right inverse G, with operator norm bounded by 5*55+, where
B < Bt <1.



Almost-Kéahler smoothings of compact complex surfaces 1365

Proof. This proof follows that of Proposition 20 in [46], which we recall in
details here for the sake of completeness. The idea, explained for instance in
[14], is to glue together right inverses on the model spaces, that have been
obtained in Section 5.2.1, to obtain an approximate right inverse to L. on
the connected sum M. Then, we will modify this approximate right inverse
to get a proper right inverse for L.

We will need two sets of cutoff functions to build the approximate inverse
operator. First, let v: R — [0,1] be a smooth function, equal to 0 on | —
00, 1] and equal to 1 in [4, +o0[. On M, we define

fyl:xeMg»—>7<pE(x)>.

Te

Then ~y; is supported in the region p. > r., which can be identified with a

region of the (punctured) orbifold M*. Its derivative 07 is supported in the
gluing region r. < p. < 4r..

We also set 9 := 1 — =1, supported in p. < 4r. which can be identified
with 4R. > r in the ALE space X.

Both ~; and ~» are smooth on M. and are bounded in weighted Holder
norm:

(33) Iillos < e

We will need two other cutoff functions (; and (3 with a slightly larger
support, and with ¢; = 1 in the support of ;. To do this, recall that r, = &”
with 0 < 8 < 1. We choose a slightly larger exponent 8% and a slightly
smaller exponent 3~ so that 0 < 3~ < 3 < 8% < 1. Thus the region ¢ <
pe < 1 where we perform the gluing is sliced up in regions 1 > 4~ > 4r, >
2. >r. > el >

Let now ¢* : R — [0, 1] be a smooth function such that ¢(*(¢) = 1 when
t < 3, 0 when t > BT, The smooth cutoff (;, defined by

C1:xeM€Hg+<10g(P(1‘))>’

log(e)

is supported in p > £ and is equal to 1 in supp Y.
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Similarly, let (- : R — [0, 1] be a smooth function equal to 1 on |3, +00|

and zero on | — oo, 87| and define a cutoff on M, by
1 4
Goiw e M. os ¢~ [08@/1)
log(e)

Then (, is supported in p < 4e®” and is equal to 1 in supp e.
As far as estimations in Holder norms are concerned, we see that

c

34 a 7 3, < .
( ) H <H071 — |10g E|

Now let ¢ € Cgﬁl. Notice that v11 can be considered as a function on
the punctured orbifold M*. Moreover, using (33), we have

19l coe (arey < cllllcos -

From Proposition 25, there is a function Gi(y19) = G, (M) + >N €
(Cgfil(M*) @V and a constant v given by

such that

(35) G ()llere + Y 1Nl + [v] < ellmblleoe, (ares
and

(36) Ly (Gi(n)) +v =m¢.

On the other hand, we may consider 21 as a Cgfil function on X. Taking
into account the rescaling, we have that

0—4
Iawlleoe ) < e bllgo -
Then from Proposition 26 we see that there is a G2(y2%) such that
6
1Ga(2)llese (X) < ellevatdlleoe (xy < ce®[[¢lcoe
thus

(37) 1G2(v2) s < ellbllcos,
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and such that
LxGa(721) = e*ya10,

thus, after rescaling,

(38) Le2x Ga(y2v)) = 721,

Now we glue these pieces together to get an approximate right inverse
for L.. More precisely we set

Gy = (G (mY) + Ga(12v)

and we want to show that

v ey = (Go)
is an approximate right inverse to fLE, and that the operator norm of
(39) G:Ce =

is bounded by e9".

We tackle the operator norm first. For ¢ € Cg’_a4 we want to show that

GG (YY) + RG2(12)|cie < [[QG1(MY)]ere + [|GG2(v20) |
< O [ llo.

The term (2G2(721), which can be considered on the ALE space X, will not
be an issue. Indeed, its norm will be sum of terms of the form

4
(40) S P 107Gl 9179010 (G,

J=0

for £=0,...,4.

Using (37) and (34), in addition to the fact that (2 is a bounded function
on M., we see that those terms behave at worse like O([|1)]|¢o. ).

The bad estimate comes from the ’orbifold’ term (;G1(719). Indeed,
G1(71%) is the sum of a Cgl’a function, to which we may apply the same
reasoning as the other term, and a function in V, which behave like a constant
near each puncture p; in M™*. Such constants are not bounded in C?’a( M*)-
norm for a positive J, as is the case here. However what we are interested
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in is (1G1(17), with ¢; supported in {p > €5+}, thus we in fact stay at a
‘safe distance’ from the punctures, and the norm of the constants is then
comparable to

sup )\i|p_6| < 987,
p>eft

Thus, using (35), in the C?’O‘—norm on M, we get
+
GG () llese < e [l gone,

To show that G does constitute an approximate inverse to L, still fol-
lowing the proof in [46], we prove the following claim:

- 1
(41) [Le(GY) +v = llgoe < §||¢||c§f4-

To do this, we will separate the study on the different ”pieces” of the
connected sum and compare with the model operators on X and M*. We
write

(42) L(GY) +v— = L (GG (YY) + v — e
+ Le(C2Ga(y2)) — y2tb.

First we deal with the terms on the first line, which live in {p, > ¢?"}. In
this region, which can be considered as a subset of M*, we want to compare
L. with the model operator ;. We will need the following lemma:

Lemma 28. On the region {p: > 55+} i M, the metric ge compares to
the orbifold metric gyr as follows:

(43) 19 = garllgs. = O(r2 + £10-5))

Proof. We decompose the study of §. — gas in three regions of M..
e On {p > 4r.}, g — g = 0 by definition.

e On {2r. < p <4r.}, we have . — gnr = wrr(Jr. — Jnr)-, -). Using (16)
we see that

1y, = Ity < er?



Almost-Kéahler smoothings of compact complex surfaces 1369

e Finally, on the region {e°" < p. < 2r.}, we split in g — gar = e —

90 + go — gu. Using (16) again, we have that [|go — garllgz.e = [|Jo —
JM”CS’"’ = 0(r2).

To estimate g. — go we identify {z-:m < pe < 2r.} with the region

{7771 <r <2R.} in X. There, . = c2h? ,gp., thus our ALE esti-

mate (13) gives [|g: — gol|¢z.o = O(e*1-FM). O

Now, using the same reasoning as in Proposition 18 in [46], we may

estimate the operator norm of L. — IL;. Recall that

Ly f = =A% f + 25(Ricy,, (grad,_f,-)),

and we have obtained earlier that
Lef = —AZf + 25(Ricy_(grad,_f,-)) + E(f).

Since we are not working in normal holomorphic coordinates, we have to
be slightly more careful when comparing the bilaplacians A?M and AZ?; in-
deed, the coefficients of the Laplacian Aj,; in our charts are comparable to
0 (g;/[la f ), and similarly those of A, are of the form 0 (g; 19 f) In particu-
lar, notice that first derivatives of the coefficients of the metric intervene.

The coefficients of A2, f are of the form 895/[182(9;418 f), and that of
A2f are f the form 9g-10%(g-10f), thus

AR = A2f = (gxf — 92 )0 (o ) + 00 0% ((or — 5:1)01):
thus
AR f = A2Fllcoe < Mlge — gnallese | fllgze,
< 11g: = gurllcze I fllcpe-

On the other hand, in a similar notation, the Riemannian curvature
tensor is given by the derivatives of the Christoffel symbols I' = g~'0g, thus

|Riem(gar) — Riem(3:)lcos < el — garlgae-
As a consequence, from Lemmas 28 and 24, we see that in operator norm,
on {p. > %"},
[ Le — Lyl = o(1).
In a similar way, we deal with the terms on the second line of (42), which

live in {p. < 4¢””}. This annulus can be identified with {r < 4e” 1} in X.
We compare §. with the model ALE metric gx.
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Lemma 29. On the region {p. < 4%} in M., the metric §. compares to
the rescaled ALE metric €2h:_1gx as follows:

(44) 1g: — €2h21gxllene = O(e*rz +27)

Proof. As before we split the study between the different parts of M..

e On {p. <7}, ge is equal to the rescaled ALE metric.

e On {r: <p. <2r.}, g- — 52h:,lgx = c2wx(Jr. — Jx)-,-). Using the
estimate (19), we see that on this annulus,

19 — €z gx gz = O ).

e Finally, on {2r. < p. < 4¢P } we write . — £2h* _1gx = G- — go + go —
e2h?_, gx. From (16) we see that on this region, 19:—goll¢zo = 0(e?),
while the ALE estimate in {2R. < px < 4% ~!} gives

lgo — €2hi-1gx|cse = O ).

From there, the same proof as before shows that in operator norm
[ILx — Le|| = o(1).

Thus, to prove (41), it is sufficient to show that for & small enough, we
have

1
s (G1G1(m¥)) +v = mlleos, < Sl lleoe,
as well as

L (GGa(1) ~ lens, < 310l

For the first inequality, we have

Ly (GGi(m)) +v — v = GLuGimy + A(grad, G« Gimy) +v — 1y

= A(gradgsgl * Gl’ylw)
where A is a third-order operator, whose coefficients are bounded in Cg’_a4,
and * denotes a bilinear pairing. In fact, the terms contained in A are similar
to those appearing in (40).
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Thus

ILar(GGr(my) + v = ndfcoe = [|A(grady, ¢+ Giyih)|lco,
< c|0C[le.o |Gimd | oo
= o(D)[[¥|go-e -

The proof of the second inequality follows broadly the same lines. We
have proven (41), i.e., we have shown that the operator norm of L.oG-1
is less than 1/2. Thus, L. o G is invertible and G o (L. o G)~' is a proper
right inverse to L. g

5.3. Estimation of the Hermitian scalar curvature of je

We want to measure how good our approximate solution is in terms of
Hermitian scalar curvature, i.e. we want to compare sV (J.) to the constant
scalar curvature on the orbifold M. We obtain

Proposition 30. Denote by s4,, the constant scalar curvature of (M, gar).
Then, for0 < §d <1 and B < %, we have

(45) sV (J.) — Soull o, = O(P14-9).
Proof. First recall that
sV(Jo) = g + [DJP,

where D is the Levi-Civita connection associated to g.. As we already used
earlier, DJ. has norm comparable to the Nijenhuis tensor, hence

\Dj ‘2 _ O(r?) in {2r. < p<dr}
1 OER T in {20 < p < 4r.).

This error term will be smaller than what we want, so we only need to
compare the riemannian scalar curvatures on M. and M. The scalar curva-
ture is a constant where p > 4r. and is bounded in {2r. < p < 4r.}, as it is
given by second derivatives of the metric g,.. On the "ALE” side, the scalar
curvature is zero where p < r., and is given by second derivatives of gr_ in
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{re < p <2r.}. Thus, using (19) and factoring in the rescaling, we obtain
s5. = O(e*r7%) in {re < p < 2r.}).

To sum up,
s5. = O(1) + O(e*r;®).
Thus, using that p = O(r.) in the region {r. < p < 4r.},
'8V (J2) = sgu| = 'l + DI — s(M)]
=0+ O(E™) + O(rE™") + O(*r7°")
= 0("),

as soon as,8<§. ([
5.4. Behavior of the nonlinear part

Finally, we need to control the nonlinear part of the equation. Recall the
expansion

sV(Jf) =8V (Je) + Lef + Qc(f).

We prove the following result, following Lemma 19 in [46].

Lemma 31. There is a constant C such that

1Q=(f) = Q=(9)lleg, < C (Ifllege + lgllege ) 1 = gllep-

Proof. We may rewrite

1
Q-(f) — Qo(g) = /0 Ay, Qo(f — g)dt,

where x¢ := g+ t(f — g). Set h = f — g. From the Tayor development (23),
we see that

ds| _OQs(Xt +s(f—9) =ds, s (S Lx,Je) - djssv(jgﬁxh,je),

which we rewrite rewrites

(46) dy,Q=(f — g) = (dy,,s¥ —dj sV)(Jy,Lx,J:)
+ djgsv((fo, - js)Eané)'
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Observe next that

~ A

Sy — jz—: = (exp(ﬁXXth-:) - I)Jsa

thus its coefficients are comparable to 9%y. Similarly, the coefficients of
Lx, J. can be expressed in terms of 9%h.

To deal with the first term of (46), observe that due to the regularity of
J € AC,,. — sV (J), the difference d; sV —d; sV is controlled by Jy, — J.
Thus, the weighted norm ’

1(d,, sV — djgsv>(JXt‘CXhJ€)HCgf4 < ||y, = Je”cgva HJXt‘CXthfHC?f;
< clixellgs= IRl

< el flles= +Mgllez)Ilf = gllere-

On the other hand, our computations in Section 5.2 show that the op-
erator

d s

5.8Y 1 €% (End(TM.)) — €,

is bounded. Thus,
;5% ((J = J)Lx, ) oo < ell(T = J)Lx, o) e,
< el (Jy, = Iz 1L, 52) gz

A

clixellggellllese

<
< e[ flleg= + llgllez)llf = gliese-

Summing the two final inequalities, we obtain the desired conclusion. [

5.5. The nonlinear equation

We now have all the tools we need to solve our original equation. We follow
closely the proof of Corollary 35 in [8]. Recall that we seek f and A such
that

Leof + A = g, — 87 (J) = Q=(f).
We look for (f, A) under the form G¢(v). Thus this rewrites
(47) =59, — 5" (Je) = Qe(G=(¥)) 1= Be(v).

Thus our problem is reduced to a fixed point problem.
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Proposition 32. There is a positive constant C' > 0 such that B. maps the
ball {[[¢[lco < Ce?} into itself and is §-Lipschitz on this ball.

Proof. We have

Be(¢) = Be(¢) = Qe(Ge(v)) — Qe(Ge())-

Using Lemma 31, there is a 'y > 0 such that:

1Q:(G=(¥)) — Qe(Ge())[coe. < C1 (HGMHC;& + HGa(w)Hc;a)
X [|Ge(¥ — @)l

Now, [|G<(¢ = ¢)|l¢re < Ce =B ||y — ¢l|co.e. . On the other hand, since ¢
and ¢ are assumed to be in {[|¢[|go. < Ce?}, we get that

583+ 583+
IG= (@) s < Coe™P" [l o < CCoE™0,

and the same stands for (. From this we deduce

HG&‘(w)HCg'Q(Ma) S CaéiaﬁJr = 00286(175+)_
Thus
Q:(G:(v¥)) — QE(GE(('O))HCS*_‘Z < 0010286(172,3+)H¢ B ‘PHCQQ-
Provided g < %, this means that for € small enough, B; is %-COHtl"actant on

{lllene, < Ce2).
Moreover, B. maps {|[¢)[|co. < Ce?} into itself. Indeed, for such a 1,

1B () llgo, < I1B() = Bo(O)ll o + | B-(0) o

1 A
< S1llege, + 1157 (1) = Mo,
< %CEZ + CyeP4-9)
< Ce
provided we choose 3 close enough to % and ¢ close enough to 0. U

Thus, we may prove the following result, which directly implies our The-
orem 1.
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Theorem 33. Fore > 0 small enough, there is on (M., w:) a smooth com-
patible almost-Kahler structure J., of constant Hermitian scalar curvature,
such that

e For any k > 1, J. converges, in C**-norm, to Jys, on every compact
set of M* (in the sense of Definition 13);

e For any k > 1, J. converges, in C*%-norm, to Jx, on every compact
set of X (in the sense of Definition 14).

Proof. According to Proposition 32, we may apply Banach’s fixed point
theorem to B, on

{[Wllgoe, < Ce?}.

Therefore, there is a unique v, € Cg’_cz(ME), whose norm is comparable to
2, and that is solution to the main equation (47).

Then, setting (f:, Ae) = Ge(¥), we see that f. solves (24), and thus, the
almost-complex structure J. := J; endows M. with a constant Hermitian
curvature almost-Kahler structure. Moreover, by Proposition 27, we have

(48) 17 = Jellgzs, < ellfelleg < e

Thus, if K7 is a compact set in M*, then for e small enough, K; C M\
U;B(p;,4re). By definition J€|K1 = JM|K1'

Moreover, on C M \ U; B(p;, 4r¢), the weighted Hoélder norm Cgf‘z coin-
cides with the usual Hélder C*>® norm (according to the definition (26)),
thus (48) implies

e — Jntlleze (i) < ce?708"
Since we have chosen 0 < §, 87 < 1, we see that the right hand side goes to
zero when € goes to zero, thus J. does converge to Jy; on Kj.

Similarly, on a compact set Ko of X, the pullback A} J. is equal to the
ALE complex structure Jx|g, for € small enough.

Then, the estimate (48), and the definition of the weighted norms on M,
(25) imply that, on Kj, we have

(49) 1R Te — Tx llea(rey) < ce®07F7)

for some positive constant c. Since ¢ € (0,1) and 31 < 1, the right hand side
goes to zero when ¢ goes to zero.
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It remains to show that the solution has the required regularity. The
C** function f. is solution of

SV(JfE) = 5\57

with A. a constant. As evidenced by the computations of Section 2.3, this
equation is a 4th order elliptic equation. Moreover, the coefficients are ra-
tional functions of x € M. and derivatives of f up to order 4.

Using classical results in elliptic regularity (see for instance Besse [7],
Theorem 41 in the Appendix, or Morrey [36]), and a bootstrapping argu-
ment, we see that the function f. is actually a smooth function on M..

As a consequence, the almost-complex structure J. = J;. and the asso-
ciated metric g. = we(Je+,) are also smooth.

Furthermore, we refine the bootstrapping argument to obtain the C*
convergence of the constant hermitian scalar curvature almost-Kéahler struc-
tures (J;) to Jys (resp. Jx) on every compact set of M* = M\ {p1,...,ps}
(resp. on every compact set of X)), for any k£ > 0.

To obtain this, we need to show that || fel[cr.« () =290 for every k >0
and for every compact set K C M* (and the same on X). We know that f.
is smooth and that the previous convergence holds in C*%(K).

We will make use of the elliptic equation verified by f.: there is a constant
Ae such that

(50) Ae = sV (Jp) = sV (Je) + Le(f) + Q= ().

First, we need the following technical lemma to better understand the
non-linear part Q). of the equation.

Lemma 34. The non-linear part of (50) can be decomposed as

Q-(u) = QM (u) + QP (w),
where

° Qél) is a nonlinear operator or order 8 with smooth coefficients de-
pending on g and its derivatives;

° Qg) is a nonlinear operator of order 4, that verifies, for u suitably
smooth and k € N,

1QP (W) llere < cllullerss]lullgrss
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Proof. To better understand the nonlinearities of the equation, we turn to
the computation of the connection 1-form « of the Chern connection. Recall
a few notations: the variation of complex structure induced by a function u
was given by

1 ~
Aoy = §£Xu J€7
which is linear in u, with derivatives of order at most 2. We set
Ju = eXp(_au)js exp(au).

Then in the proof of the Mohsen formula, we had obtained
1 R
a(Ju)(X) == 5 Z ge(eXp(au)(Dexp(fau)ek JU)X7 6k>
k
1 .
+5 Zk; ge(exp(ay) Dy, x (exp(—au)er), ex)

B % Z gs(js exp(au)DX (eXp(_QU)ek)v ek)'
k

From there, we see that «, can be written
o(14) = a0 + i+ QD () + QP (w)
where o is the connection 1-form associated to the approximate solution J;,
Q, is the linearization. What we are interested in are the remaining terms

le) and ng). The derivatives of v appearing in le) (u) are of order at most
3. In fact, le)(u) is a sum of terms of the form

(0w)! (0%u)*(De, J2), (0u) (0°u)" (D cer) and  (9u)'(9%u)*(Dxer),

with k 4+ 1 > 2, and coeflicients given by coefficients of the metric g.. On the
other hand, Qg) (u) is a sum of terms of the form

(Ou) (8%u)kdu

for k41> 1, and as before the coefficients are provided by that of the
metric ge.
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Since

sV (Ju) = 2Ada(J,)

we see that
sV(Ju) = 5V (J2) + Le(u) + QU (u) + QP (u)

where the terms in le) are of the form (0%u)*(03u), with k& > 0, and the
terms in Qg)(u) are of the form (0%u)*(0*u) for k > 1. O

Using this, we prove

Claim. Forallk > 1, for every compact set K C M*, we have || fe[|ca+r.o ()
e—0
—0

Proof. We prove the claim by induction on k.

For k = 1, we want to obtain an estimate on || fz||¢s.e (k). Let K' D K a
slightly larger compact of M* and let us consider £ small enough so that
K' € M\ U;(B(p;, 4r.), so that the approximate solution coincides with the
orbifold structure on K’. For this choice of &, the smooth function f. is
solution of the elliptic fourth-order equation

(51) Ao = L(f) + QW(f) + QP ().

Here we use that there is an g+ such that for € < e, on the compact K’,
the coeflicients of the equation do not depend on . Moreover, for € < ek,
sv(jg) is constant, equal to sg,, and Ae = Ao — 54, gOes to zero when € goes
to zero. The equation (51) is quasi-linear, elliptic, of order 4 in f., and its
coefficients do not depend on .

As a consequence, according to the technical lemma 34, there is some
positive constant ¢ such that

1L+ QP (f) vy < Iellerarery + QW (fo)lleraaer
< Aelleraqrry + el fellese xery-

Now, according to lemma 34, (L + Q(2)) f< is a fourth-order elliptic operator,
quasilinear, and the coefficients, which depend on f., are in C**(K"); since
| felles.o(xy =29 0, this operator is really a quasilinear perturbation of the
linear elliptic operator L.
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More precisely, we can rewrite (51) under the form

(52) S aal@, 0fe, 021, 00 f)0L ). = G(x,0f-, 0 f-, *2)

=4

where the operator
Z aa(2,0,0,0)0u
|a|=4

is linear elliptic. Thus, for ¢ small enough, || fel|¢s.e (k) is sufficiently small
for the left-hand side of (52) to still be elliptic, with coefficients bounded in
Cl@. Thus, elliptic regularity results (see Morrey [35]) imply that

I f=llese ey < c2(I(L+ QP (fo)llera(rery + I f=llleogrr))

Since we know that ||felcse(x) =% 0, we know, in particular, that

| fellleo(x)) =29 0. For ¢ small enough, the above estimate rewrites

[ fellles.a(ry < es(Aellera(ry + [ fellesa(xry)-
Thus, we have obtained that on every compact set K C M*, || fz|l[¢s.o ()
e—0
— 0.

It remains to show the induction step, which works in the exact same
way. Assume, by induction hypothesis, that for every compact set K/ C M*,
| feller.e(xry 200, Let K € M* a compact subset, we want to show that

Hfa‘HCkH,a(K) =200, Let K’ be a slightly bigger compact subset of M*.
Choosing ¢ small enough, we see that f. is solution of (51) on K’. We
then go through the same steps to obtain the desired result, in a boostrap-
type reasoning. The coefficients of the operator (L + Q®)(f.) are then in
C*(K") by induction hypothesis, ensuring we may use the elliptic regularity
theorem at each step. O

With the exact same proof, we show that, for any k£ > 1, for any compact

set K C X, we have ||heJe — Jx|lcasna (k) 200

This concludes the proof of the main result. O

6. Hamiltonian stationary spheres

Through our construction, we have obtained a family of compatible almost-
complex structures (J;) depending on a parameter 0 < ¢ < ¢ in such a way
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that the almost-Kéhler structure (we, Je, g-) on M. has constant Hermitian
scalar curvature for 0 < € < gg.

Moreover, when € goes to zero, the pullback of J; on the ALE model X
converges in C>*norm to Jx in a compact neighborhood of the zero section
of T*S? ~ X, in the sense defined in 14, according to Theorem 33.

Remark 35. More precisely, in the proof of Theorem 33, we had obtained
B2 Tf = Jx|lcza(xy < ce®1F7)

which also gives us

(53) le™?hzgs — gxlleze(x) < ™71

Besides, according to Corollary 17, the symplectic manifolds (M, w.) can
actually all be identified to the same symplectic manifold that we call (M , @)
(for instance by fixing some ¢;). For ¢ € (0,¢p), we denote J. the pullback
of Jy on M and g. the pullback of gy on M, and (Jo, go) the pullback of
the approximate solution (J;, g-). Thus, we have a smooth family of almost-

Kéhler structures (Jz, g:)o<e<e, on a fixed symplectic manifold (M,&).

Observe that in the ALE model space (X = T*S?,wx = ddu), the zero
section Sy of T%S? — S? is a Lagrangian sphere. Moreover, 7%5? is an hy-
perKéhler manifold, and for a different choice of complex structure in the
hyperKéhler family (namely, the choice that yields the minimal resolution
of C2?/7Zs), the zero section is actually a holomorphic copy of CP!.

It is a well-known consequence of Wirtinger’s inequality that holomor-
phic surfaces minimize volume in their homology class.

The zero section is not holomorphic for our choice of complex structure
on T*S?, but it still is minimal, since we have endowed T*S? with the
Eguchi-Hanson metric. In particular, it is Hamiltonian stationary, which is
to say that it verifies (2).

This implies that, when performing the gluing construction in Darboux
charts, as we did in Section 3, Sy provides a Hamiltonian stationary (actually,
minimal) sphere S in the connected sum manifold (M, ®, Jy, go).

A natural question, therefore, is the following: For positive, small enough,
g, is there a representative of the homology class of [S] - more precisely, a
Hamiltonian deformation of S - that is a Hamiltonian stationary sphere for
the metric g7

We prove that the answer is yes, extending what has been obtained in
[8] to the case of almost-Kéhler smoothings.
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We need to find representative of the vanishing cycle [S] that verify the
equation (2) with respect to the metric g, for € small enough. It was proven
by Oh [38], Theorem 1, that the corresponding Euler-Lagrange equation is

(54) d.a: = 0,

where J. is the codifferential associated to the metric g., and a. is the Maslov
form:

o = H. oW,
where H. is the mean curvature vector.

Consider the embedding
Lo : 52 — M

of the Lagrangian sphere in (M, @) that is minimal for (Jy, go).

By Weinstein’s Lagrangian neighborhood theorem (see [30], Theorem
3.3), we can identify a neighborhood of 1o(S?) with a neighborhood U of
the zero section in (T*S2%, —d\) by a symplectomorphism 1. Hamiltonian
deformations of o are therefore given by functions u € C*°(S?) such that
||du||co is small enough that du € U. For such a function u we denote

iy S2 U

the associated immersion. We still denote by J. and g. the almost complex
structure and associated metrics pulled back by 1 on U. Let g., be the
restriction of g. to LU(S2). Then the immersion ¢, is Hamiltonian stationary
for g. if it is a critical point for the volume functional

U / volg, .
1, (S?)

Notice that this equation is not linear in u, the induced metric on S?
depends on the embedding encoded by du. The linearisation £ at 0, in the
Kahler setting, is given by Oh’s formula ([38], Theorem 3.4). He proves the
following on a Kihler manifold: Let u; be a family of functions on S?, such



1382 Caroline Vernier

that ug = 0, giving a Hamiltonian deformation S; := ¢,,(S?). Then
2

55 —
(55) dit? t=0

Vol(Sy) :/ wL voly
So

= / <Aod7l, du) - RiCO(Jodll, J()d’[l,)
So
—2(di ® dit ® o, S) + (dit, ) *voly

where aq is the Maslov form for ¢g, Ricy is the Ricci curvature of gy re-
stricted to S = i9(S?), and voly is the associated volume. In our setting, the
manifold (M , W, Jo) is not Kéhler; however,up to reducing the Lagrangian
neighborhood, we may assume that the structure (@, Jy, go) is Kédhler on
U, since we may thus avoid the region where the Nijenhuis tensor does not
vanish. As a consequence, we may apply Oh’s formula, as in its proof, the
Kahler hypothesis is only used at ¢t = 0.

This allow us to prove:

Proposition 36. Fore small enough, the almost Kdahler manifold (M, W, Je)
admits a Lagrangian homology class that is represented by a Hamiltonian
stationary sphere.

Proof. Consider the operator

B : C**(ACy) x CH*(S5%) — € (5?)
(J, u) — 5J7uOéJ7u.

The operator is well defined on the family (J;). Indeed, in local coordinates
on L, if

w = Gapdrodr
(56) {gs, Gab b
Qe = 0dTq
then
Ohab oo 1
e Qey = ———ag — h™=—% — Zh®q, —(log(det heg)).
£, aE, 81’[; « axb 2 « 8xb(0g( € d))

Thus, the equation invovles first derivatives of the coefficients of o, and
ge,u- Now, by definition, g., involves second-order derivatives of u, as well
as the coefficients of g.. The mean curvature vector (thus, the Maslow form)
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therefore involves third-order derivatives of v and first-order derivatives of
the coefficients of g.. Finally, as a whole, the equation is of order 4 in u and its
coefficients involve second derivatives of g.; we conclude using estimates (49)
and (48).

It verifies B(Jx,0) =0, and, by (54), our problem reduces to finding
zeroes of u — B(J.,u) for € small enough. We therefore need to apply the
Implicit Function Theorem to B at (Jx,0).

The linearisation of u — B(J,u) at (Jx, 0) is given by (55). In our frame-
work, Sy is actually minimal, thus «g vanishes. Moreover, gy is given on U/
by the Ricci-flat Eguchi-Hanson metric. Thus in our setting, we get

L = A%

Thus, since constant functions u result in trivial deformation, we have
that for k£ > 4, £ realizes an isomorphism between the Holder spaces

L CFo(S2) /R — CEb(52) = {f e e (9?), / fvolg,, = 0}-
S2

This observation, along with the estimate (49), allows us to apply the inverse
function theorem to

B : C*Y(ACy) x CH(S?) /R — C*(S?)
(J, u) — (5J,ual],u

at (Jx,0); in particular for & small enough, there is a unique u. € C+*(5?%)/R
such that the embedding ¢, : S? < U is Hamiltonian stationary for the
metric g..

Now, u,. is solution of the 4th order elliptic equation

B(J.,u.) = 0.

Since, according to Theorem 1, J; is actually smooth, and so is the associated
metric whose coeflicients appear in the expression of the differential operator
B, we can, once again, use a bootstrapping argument to ensure that each
function u,. is actually smooth. O

Remark 37. One may wonder wether we could also retrieve the second
part of the result by Biquard and Rollin [8], Theorem D -namely, the min-
imizing property. To do this, one would need to check that the results ob-
tained by Schoen and Wolfson [42] can be extended to the almost-Ké&hler
setting.



1384 Caroline Vernier

Annex: ALE metric on T*S? as a smoothing of the
A; singularity

We recall some results from the last part of Stenzel’s paper [44].
Consider thea singularity C?/Zs endowed with the Euclidean Kihler
structure (Jo, wo, go). We identify C2/Zs to the cone

C={2€C?2{+2+2; =0} cC’
and we consider smoothings of the form
(57) Ce={2€C3 22+ 22+ 2% =¢%,

endowed with the restriction of the natural complex structure on C3. Here
€2 is a positive real number. The construction would actually make sense
for a complex parameter €. In that case, we would retrieve the family of hy-
perKéhler metrics on O(—2) that were obtained by Kronheimer [24]. How-
ever, this will not intervene in our construction.

We now recall the construction of the Ricci-flat Kéhler metric on C¢
obtained by Stenzel in [44].

We denote by 7 = |z|2c the restriction of the squared norm in C? to the
quadric C¢, and we look %of a Kahler potential under the form v = f o 7. To
find a Ricci-flat metric, we wish to solve the Monge-Ampeére equation :

(58) Ric(wy,) = —iddlog det(u;;) =0,

where the subscripts denote derivation with respect to local coordinates on
Ce.

Using proper coordinates, a straightforward if somewhat tedious com-
putation, which can be found in Patrizio and Wong ([40]), shows that f o7
is a solution of the Monge-Ampere equation (58) whenever f satisfies the
following ODE :

(59) T ()2 + () f ()~ et =,

where c is a positive constant.

This EDO, together with sensible initial conditions, admits f(7) =
VT + &2 as the unique solution. The Ricci-flat Kahler metric associated to
this potential will be denoted wx . on C.. The associated Riemannian metric
gx,e coincides with a rescaling of the Eguchi-Hanson metric; however, the
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complex structure Jx . differs from the standard one, as explained earlier.

To study the ALE character of this metric, observe that C¢ can be iden-
tified to 7*S2. Indeed, separating the real and imaginary parts, we have

Co={X+iV,(X,Y) e R*xR? | (X, X) — (Y,Y) =¢, (X,Y) =0},

whereas
T*5% = {(X,€) € R® x R* | | X|| = 1, (X, ) = 0},
thus the map
v, . T*5% — Q-

(2,€) o (e cosh(¢]) )z, e SR UEN)

€]
identifies the smoothing C; with the cotangent of the sphere.

&.

Remark 38. This maps the zero section S? = {(z,0), ||z|| = 1} C T*5? to
the subset {(ez,0),|||| =1} C Q.. When £ goes to 0, the section nulle is
collapses on the singular point (0,0) € C?/Zo.

Using spherical coordinates on T*S?\ S? outside the zero section, we
see that the Ricci-flat Kéahler structure we have obtained on C. pulls back
to

0
Jxﬁa = — X3, JgX1 = —tanh(t)X.
wx.e = V2e(cosh(t) ag A dt + sinh(t) ag A ay)
gx.e = V2e(cosh(t) dt? + sinh(t) tanh(t) o? + cosh(t)(a3 + a3)).
To compare to the Euclidean metric, rather than to the conical one, on
C?/Zs, we change variables radially, setting cosh(t) = % This gives

0 25 4
— =X X 1-— —X
JX,sas RN 3, JsX1 = 2
4)

1
EgX,E = (

2
/ 4
ng—\[z’f a;;/\ds—i— 1——4042/\041
/ S

4 2 5° 2 2
ds* +* i 0414'1(0424‘043),
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Comparing to the Euclidean structure:

0 2
Jom— = ——X3, JoX1 = —-X>o
0s s
2 s° 2 2 2
go = ds” + —(aj + a3 + a3),

4

we see that the derivatives of the coefficient at any order verify

8j(JX,5 — Jo) = 0(8747]')
& (V2egx,. — go) = O(s™*79);

thus the metric is ALE of order 4.

Remark 39. We recognize a rescaling of the Eguchi-Hanson metric on
T*S?, obtained in [15, 16]. However, the complex structure is different from

the

one on T*CP! = O(—2) obtained when blowing up the origin in C?/Z,.

Indeed, instead of an exeptional divisor biholomorphic to CP! (correspond-
ing to the zero section), we have a Lagrangian 2-sphere.

1]

References

V. Apostolov and T. Draghici, The curvature and the integrability of
almost-Kdhler manifolds: a survey, Symplectic and Contact Topology:
Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001) 35
(2003), 25-53.

C. Arezzo and F. Pacard, Blowing up and desingularizing constant
scalar curvature Kdhler manifolds, Acta Math. 196 (2006), no. 2, 179
228.

C. Arezzo and F. Pacard, Blowing up Kdhler manifolds with constant
scalar curvature. II, Ann. of Math. (2) 170 (2009), no. 2, 685-738.

C. Arezzo, F. Pacard, and M. Singer, Extremal metrics on blowups,
Duke Math. J. 157 (2011), no. 1, 1-51.

T. Aubin, Equatz’ons du type Monge-Ampére sur les wariétés
kdhlériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95.

R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure
Appl. Math. 39 (1986), no. 5, 661-693.



Almost-Kéahler smoothings of compact complex surfaces 1387

[7] A. Besse, Einstein manifolds, Vol. 10 of Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
Springer-Verlag, Berlin (1987), ISBN 3-540-15279-2.

[8] O. Biquard and Y. Rollin, Smoothing singular constant scalar curvature
Kiahler surfaces and minimal Lagrangians, Adv. Math. 285 (2015), 980—
1024.

[9] F. Catanese, Everywhere nonreduced moduli spaces, Invent. Math. 98
(1989), no. 2, 293-310.

[10] Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in Hgs
spaces on manifolds which are Euclidean at infinity, Acta Math. 146
(1981), no. 1-2, 129-150.

[11] J. Chu, V. Tosatti, and B. Weinkove, The Monge-Ampére equation for
non-integrable almost complez structures, arXiv:1603.00706, (2016).

[12] M. Dellnitz and I. Melbourne, The equivariant Darbouz theorem, in:
Exploiting Symmetry in Applied and Numerical Analysis (Fort Collins,
CO, 1992), Vol. 29 of Lectures in Appl. Math., pp. 163-169, Amer.
Math. Soc., Providence, RI (1993).

[13] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-
manifold topology, in: Fields Medallists’ Lectures, Vol. 5 of World Sci.
Ser. 20th Century Math., pp. 384—403, World Sci. Publ., River Edge,
NJ (1997).

[14] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-
Manifolds, Oxford Mathematical Monographs, The Clarendon Press,
Oxford University Press, New York (1990), ISBN 0-19-853553-8. Ox-
ford Science Publications.

[15] T. Eguchi and A. Hanson, Asymptotically flat self-dual solutions to eu-
clidean gravity, Phys. Lett. B 74 (1978), no. 3, 249-251.

[16] T. Eguchi and A. Hanson, Self-dual solutions to euclidean gravity, Ann.
Phys. 120 (1979), no. 1, 82-106.

[17] A. Fujiki, Moduli space of polarized algebraic manifolds and Kdhler met-
rics [translation of Stigaku 42 (1990), no. 3, 231-243], Sugaku Exposi-
tions 5 (1992), no. 2, 173-191. Sugaku Expositions.

[18] A. Futaki, An obstruction to the existence of Einstein Kdhler metrics,
Invent. Math. 73 (1983), no. 3, 437-443.



1388 Caroline Vernier

[19] P. Gauduchon, Calabi’s extremal Kdhler metrics: An elementary intro-
duction, preprint (2010).

[20] H.-J. Hein, R. Rasdeaconu, and I. Suvaina, On the classification of ALE
Kdhler manifolds, arXiv:1610.05239, (2016).

[21] D. Joyce, Y.-I. Lee, and R. Schoen, On the existence of Hamiltonian
stationary Lagrangian submanifolds in symplectic manifolds, Amer. J.
Math. 133 (2011), no. 4, 1067-1092.

[22] R. Kobayashi, A remark on the Ricci curvature of algebraic surfaces of
general type, Tohoku Math. J. (2) 36 (1984), no. 3, 385-399.

[23] S. Kobayashi, Transformation Groups in Differential Geometry,
Springer Science & Business Media (2012).

[24] P. Kronheimer, The construction of ALE spaces as hyper-Kdahler quo-
tients, J. Differential Geom. 29 (1989), no. 3, 665-683.

[25] C. LeBrun and S. R. Simanca, Extremal Kdhler metrics and complex
deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298-336.

[26] M. Lejmi, Extremal almost-Kdahler metrics, Internat. J. Math. 21
(2010), no. 12, 1639-1662.

[27] M. Lejmi, Stability under deformations of Hermite-Einstein almost
Kdhler metrics, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 6, 2251
2263.

[28] R. Lockhart and R. Mc Owen, Elliptic differential operators on noncom-
pact manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (1985), no. 3,
409-447.

[29] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analy-
tiques d’une certaine variété kdahlérienne, Nagoya Math. J. 11 (1957)
145-150.

[30] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Ox-
ford Mathematical Monographs, The Clarendon Press, Oxford Univer-
sity Press, New York, second edition (1998), ISBN 0-19-850451-9.

[31] R. Melrose, The Atiyah-Patodi-Singer Index Theorem, Vol. 4 of Re-
search Notes in Mathematics, A K Peters, Ltd., Wellesley, MA (1993),
ISBN 1-56881-002-4.

[32] V. Minerbe, On the asymptotic geometry of gravitational instantons,
Ann. Sci. Ec. Norm. Supér. (4) 43 (2010), no. 6, 883-924.



Almost-Kéahler smoothings of compact complex surfaces 1389

[33] R. Miranda, On canonical surfaces of general type with K? = 3y — 10,
Math. Z. 198 (1988), no. 1, 83-93.

[34] O. Mohsen, Symplectomorphismes hamiltoniens et métriques kahlé-
riennes, (2003).

[35] C. Morrey, Jr., Multiple Integrals in the Calculus of Varia-
tions, Classics in Mathematics, Springer-Verlag, Berlin (2008), ISBN
978-3-540-69915-6. Reprint of the 1966 edition.

[36] C. B. Morrey, On the analyticity of the solutions of analytic non-linear
elliptic systems of partial differential equations. 1. Analyticity in the
interior, Amer. J. Math. 80 (1958), 198-218.

[37] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian sub-
manifolds in Kdhler manifolds, Invent. Math. 101 (1990), no. 2, 501—
519.

[38] Y.-G. Oh, Volume minimization of Lagrangian submanifolds under
Hamiltonian deformations, Math. Z. 212 (1993), no. 2, 175-192.

[39] R. Pacard and T. Riviére, Linear and Nonlinear Aspects of Vortices:
The Ginzgburg-andau Model, Vol. 39, Springer Science & Business Media
(2012).

[40] G. Patrizio and P.-M. Wong, Stein manifolds with compact symmetric
center, Math. Ann. 289 (1991), no. 3, 355-382.

[41] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14
(1971), no. 1, 17-26.

[42] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces:
the mapping problem, J. Differential Geom. 58 (2001), no. 1, 1-86.

[43] C. Spotti, Deformations of nodal Kdihler-Einstein del Pezzo surfaces
with discrete automorphism groups, J. Lond. Math. Soc. (2) 89 (2014),
no. 2, 539-558.

[44] M. Stenzel, Ricci-flat metrics on the complezification of a compact rank
one symmetric space, Manuscripta Math. 80 (1993), no. 2, 151-163.

[45] G. Székelyhidi, The Kdhler-Ricci flow and K-polystability, Amer. J.
Math. 132 (2010), no. 4, 1077-1090.

[46] G. Székelyhidi, On blowing up extremal Kdhler manifolds, Duke Math.
J. 161 (2012), no. 8, 1411-1453.



1390 Caroline Vernier

[47] G. Székelyhidi, An Introduction to Extremal Kéhler Metrics, Vol. 152,
American Mathematical Soc. (2014).

[48] G. Székelyhidi, Blowing up extremal Kdahler manifolds II, Invent. Math.
200 (2015), no. 3, 925-977.

[49] B. Weinkove,  The Calabi-Yau equation on almost-Kdihler four-
manifolds, J. Differential Geom. 76 (2007), no. 2, 317-349.

UNIVERSITE PARIS 1 — SAMM
75013 PARIS, FRANCE
E-mail address: caroline.vernier@univ-parisl.fr

RECEIVED NOVEMBER 6, 2018
AcCCEPTED OCTOBER 11, 2019



	Introduction
	Almost-Kähler preliminaries
	Darboux charts in the orbifold and the ALE space
	Almost complex structures on the gluing
	The equation
	Hamiltonian stationary spheres
	Annex: ALE metric on the cotangent of the sphere as a smoothing of the A1 singularity
	References

