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We introduce new symplectic cut-and-paste operations that
generalize the rational blowdown. In particular, we will define k-
replaceable plumbings to be those that, heuristically, can be sym-
plectically replaced by Euler characteristic k 4-manifolds. We will
then classify 2-replaceable linear plumbings, construct 2-replaceable
plumbing trees, and use one such tree to construct a symplectic ex-
otic CP 2#6CP 2.
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1. Introduction

In recent years, symplectic cut-and-paste operations have been used to con-
struct (symplectic) exotic 4-manifolds with “small” b2. To perform such an
operation, one must:

• find a symplectic 4-manifold (P, ω1) with strongly convex boundary
embedded in an ambient symplectic 4-manifold (X,ω);

• construct a 4-manifold B such that ∂B = ∂P and such that B admits
a symplectic structure ω2 with strongly convex boundary; and
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• ensure that the induced contact structures on ∂P and ∂B are contac-
tomorphic.

If these conditions are met, then by a result of Etnyre [4], Z = (X − int(P )) ∪
B inherits a symplectic structure from ω and ω2. Note that as a smooth
4-manifold, Z may depend on the choice of contactomorphism. If the in-
duced contact structures happen to be isotopic, however, then by choosing
a contactomorphism isotopic to the identity, Z is well-defined as a smooth
4-manifold.

Definition 1.1. Suppose P and B are 4-manifolds with ∂P = ∂B. If P and
B admit symplectic structures with strongly convex boundary that induce
isotopic contact structures, and if P is embedded in an ambient symplectic
4-manifold X, then we say that P can be symplectically replaced by B and
we call B a symplectic replacement of P .

An oft-used symplectic cut-and-paste operation is the rational blow-
down, in which a negative-definite plumbing of D2-bundles over S2 is excised
from a 4-manifold and a rational homology ball is glued in its place. This
operation has been used to construct (symplectic) exotic 4-manifolds with
small b2. For example, in [18], Park constructed an exotic CP 2#7CP 2 and
in [20], Stipsicz and Szabó constructed exotic CP 2#6CP 2s.

The rational blowdown was introduced for linear plumbings by Fintushel
and Stern [5], generalized by Park [17], and shown to be symplectic by
Symington [22]. In [21], Stipsicz-Szabó-Wahl generalized the operation to
plumbing trees. Combining Park’s definition of the rational blowdown with
a result of Lisca [12], the linear plumbings that can be rationally blown down
are precisely those that can be symplectically replaced by rational balls.
Moreover, these are precisely the plumbings whose lens space boundaries
L(p, q) satisfy p = m2 and q = mn− 1, where m > n > 0 are coprime inte-
gers. Note that these lens spaces were already known to (smoothly) bound
rational balls by Casson and Harer [1].

Equivalently, the plumbings that can be rationally blown down are those
that can be obtained by the following inductive procedure: if the linear
plumbing with framings (−b1, . . . ,−bk) can be rationally blown down, then
the plumbings with framings (−b1 − 1, . . . ,−bk,−2) and (−2,−b1, . . . ,−bk −
1) can also be rationally blown down. The first such plumbing is the −4-disk
bundle over S2. This operation will arise many times throughout the paper,
so we give it a name.
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Definition 1.2. Let P be a linear plumbing with weights (−b1, . . . ,−bk),
where bi ≥ 2 for all i. The buddings of P are the linear plumbings with
weights (−2,−b1, . . . ,−bk−1,−bk − 1) and (−b1 − 1,−b2, . . . ,−bk,−2).

Since rational homology balls have Euler characteristic 1, a natural gen-
eralization of the rational blowdown is the following.

Definition 1.3. A negative-definite plumbing P is called k-replaceable if
it can be symplectically replaced by a negative-definite, minimal symplectic
4-manifold B satisfying χ(B) = k and b3(B) = 0. We say that P can be
k-replaced by B and we call B a k-replacement of P .

Notice that 1-replaceable plumbings are precisely those that can be ra-
tionally blown down. Our goal is to use k-replaceable plumbings to construct
closed, simply connected, symplectic, exotic 4-manifolds with small b2. Thus
we would like B to be an Euler characteristic k manifold with the smallest
possible second Betti number. This is why we require that B is minimal and
that b3(B) = 0. We further require B to be negative-definite so that Michalo-
giorgaki’s gluing formula in [13] for Seiberg-Witten invariants is applicable.
Moreover, by considering the long exact sequences of the pairs (B, ∂B) and
(P, ∂P ), since B and P are negative-definite and b3(P ) = b3(B) = 0, it fol-
lows that b1(P ) = b1(B).

In this paper, we will be mainly concerned with 2-replaceable plumb-
ings. The first result is a classification of 2-replaceable linear plumbings.
Note that there are infinitely many linear plumbings that have Euler char-
acteristic 2, namely the disk bundles over S2. We call such plumbings triv-
ially 2-replaceable. Starting with one of these disk bundles we can easily
construct infinitely many 2-replaceable linear plumbings by plumbing these
disk bundles with 1-replaceable linear plumbings (since the latter can be
rationally blown down, reducing the Euler characteristic to 2). These are
the plumbings shown in Theorem 1.4(a). Since these are easy to construct,
we are more interested in families of 2-replaceable linear plumbings that are
not of this form, such as those in Theorem 1.4(b)− (d).

Theorem 1.4. Let (−b1, . . . ,−bk) and (−c1, . . . ,−cl) be obtained by se-
quences of buddings of (−4) and let z ≥ 2 be any integer. Then a minimal
linear plumbing is 2-replaceable if and only if it is either of the form:

(a) for k, l ≥ 0
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or can be obtained by a sequence of buddings of one of the linear plumbings
of the form:

(b) (or ) for k ≥ 0.

(c)

(d) for k, l ≥ 1

Remark 1.5. The proof of Theorem 1.4 relies on Lisca’s classification (in
[12]) of symplectic fillings of lens spaces equipped with the canonical contact
structure inherited from the unique tight contact structure on S3. Thus, in
principle, the theorem answers the question “Which lens spaces (equipped
with the standard contact structure) have strong symplectic fillings of Euler
characteristic 2?” Moreover, the proof can be adapted to find (and classify)
families of k-replaceable linear plumbings for k ≥ 3.

Theorem 1.6. For any integers n,m ≥ 3, the following are families of 2-
replaceable trees:

Remark 1.7. The families of plumbing trees in Theorem 1.6 will be con-
structed from the (2-replaceable) linear plumbing with weights (−2,−4,
−4,−2). In the proof of the theorem, we will show that this linear plumb-
ing is indeed 2-replaceable without relying on Theorem 1.4. Instead, we will
apply the theory of Lefschetz fibrations. It turns out that the families of
plumbing trees of Theorem 1.6 are interesting in the sense that they can-
not all be built trivially by plumbing the 1-replaceable trees of [21] to a
disk bundle over S2 (c.f. the plumbings in Theorem 1.4a). Moreover, the



✐

✐

“4-Simone” — 2020/10/27 — 16:27 — page 1289 — #5
✐

✐

✐

✐

✐

✐

Symplectically replacing plumbings 1289

technique used in the proof of Theorem 1.6 can be applied to obtain more
families of 2-replaceable trees. For example, instead of starting with the lin-
ear plumbing with weights (−2,−4,−4,−2), one could start with a different
2-replaceable linear plumbing.

Finally, using the the 2-replaceable tree of Theorem 1.6(a) with n = 9
and m = 3 we perform symplectic cut-and-paste to construct the following.

Theorem 1.8. The 2-replaceable tree of Theorem 1.6(a) with n = 9 and
m = 3 can be embedded in CP 2#16CP 2. Call this tree P and let B denote its
Euler characteristic 2 replacement. Then X = (CP 2#16CP 2 \ int(P )) ∪∂P

B is homeomorphic but not diffeomorphic to CP 2#6CP 2. Furthermore, X
admits a symplectic structure.

This paper is organized as follows. In Section 2 we will use Lefschetz
fibrations and a lemma due to Endo-Mark-Van-Horn Morris [2] to prove
Theorem 1.6. In Section 3 we will use symplectic cut-and-paste to construct
the exotic CP 2#6CP 2 of Theorem 1.8. In Section 4, we will prove some facts
about Hirzenbruch-Jung continued fractions that are needed for the proof
of Theorem 1.4, which can be found in Section 5.

Acknowledgements

I am very grateful to my advisor Thomas E. Mark for providing me with the
initial question that led to this work and for his help, support, and patience
along the way.

2. Proof of Theorem 1.6

2.1. Lefschetz fibrations and the Key Lemma

In this section, we will highlight the strategy used to prove Theorem 1.6. We
assume the reader is familiar with Lefschetz fibrations and open book decom-
positions. Let P be a symplectic negative-definite plumbing with strongly
convex boundary that admits a symplectic Lefschetz fibration over D2 with
monodromy τ that can be written down in an explicit factorization. This
monodromy naturally describes an open book decomposition of Y that sup-
ports the contact structure ξ induced by the symplectic structure. Suppose
there is a different factorization of τ into right Dehn twists about homo-
logically essential curves such that the total space B of the corresponding



✐

✐

“4-Simone” — 2020/10/27 — 16:27 — page 1290 — #6
✐

✐

✐

✐

✐

✐

1290 Jonathan Simone

Lefschetz fibration has Euler characteristic 2. Then, B is a symplectic re-
placement of P . Since the obvious handlebody diagram of B obtained from
the monodromy has no 3-handles, we have that b3(B) = 0. Finally, in [3],
Etnyre showed that any strong symplectic filling of a contact manifold sup-
ported by a planar open book is negative-definite. Thus B is a 2-replacement
of P .

We will apply the following Key Lemma due to Endo, Mark, and Van
Horn-Morris in [2] to the monodromy factorizations associated to P and B.

Lemma 2.1. (Key Lemma [2]) Let F be a planar surface containing as a
subsurface a pair of pants, S3. Let z and d be the boundary parallel curves
marked in Figure 1 and let the boundary component of S3 corresponding to z
coincide with a component of ∂F . Let F ′ be the planar surface obtained from
F by gluing a disk with two holes into the hole enclosed by z. Suppose that in
the planar mapping class group Mod(F, ∂F ), the relation w1zw2 = w′

1dw
′

2

holds for some w1, w2, w
′

1, w
′

2 ∈ Mod(F, ∂F ). If a commutes with either w1

and w′

1 or w2 and w′

2, then in Mod(F ′, ∂F ′) we have the relation w1abcw2 =
w′

1xyw
′

2.

Figure 1. The Key Lemma.

Assume the Key Lemma applies to the monodromies of P and B and
suppose P contains the curve z and B contains the curve d, as depicted
in Figure 1. Let P ′ and B′ denote the total spaces the the Lefschetz fi-
brations associated to the two new equivalent monodromy factorizations
obtained from the Key Lemma. Then Y ′ = ∂P ′ = ∂B′ has an open book de-
composition that can be described by these two factorizations. By Giroux’s
correspondence ([8]), Y = ∂P ′ = ∂B′ admits a contact structure ξ′ that is
supported by both open books. By [7] and [19], P ′ and B′ both admit sym-
plectic structures that are (strong) symplectic fillings of (Y ′, ξ′). Thus B′ is
a symplectic replacement of P ′.
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We now claim that χ(B′) = 2, b3(B
′) = 0, and that B′ is negative-

definite. Since the obvious handlebody diagram of B′ obtained from its
monodromy has one more 1-handle and one more 2-handle than the obvious
handlebody diagram of B, it follows that χ(B′) = χ(B) = 2. Since there are
no 3-handles in this diagram, we have that b3(B

′) = 0. Once again, by a
result of Etnyre in [3], since B′ is a strong symplectic filling of a contact
manifold supported by a planar open book, B′ is negative-definite.

Finally, for B′ to be a 2-replacement of P ′, B′ must be minimal. We
restrict our attention to the plumbings of Theorem 1.6. Using the above
arguments, we will construct these plumbings and Euler characteristic 2
symplectic replacements in the next section. Suppose P ′ is such a plumbing
and let B′ be its Euler characteristic 2 symplectic replacement. If B′ is
not minimal, then we can symplectically blow down a symplectic −1-sphere
to obtain a 1-replacement of P ′. In other words, P ′ can be symplectically
rationally blown down. All such plumbing trees are classified by Stipsicz-
Szabó-Wahl in [21]. Since P ′ is not among those trees, B′ must be minimal
and so P ′ is 2-replaceable.

2.2. Proof of Theorem 1.6

To construct the families of plumbing trees of Theorem 1.6, we will itera-
tively apply the Key Lemma. By the remarks above, these trees will auto-
matically be 2-replaceable. All monodromy factorizations will be products
of right Dehn twists around simple closed curves. For simplicity, a curve and
a right Dehn twist about the curve will have the same label.

Let P be the linear plumbing with framings (−2,−4,−4,−2). P can be
viewed as a Lefschetz fibration with the monodromy factorization drawn
on the left side of Figure 2. It is given by x20x1x2x3yx4x

2
5. Using a lantern

relation applied to x3yx4x5, we obtain the middle factorization in Figure 2,
x20x1x2zefx5 = x20x1x2zx5ef . Finally, using the more general daisy relation
(defined in [2]), applied to x20x1x2zx5, we obtain the factorization abcdef
pictured on the right side of Figure 2. By drawing a handlebody diagram
of the total space of the Lefschetz fibration described by the monodromy
factorization abcdef , easy homology calculations show that this 4-manifold
is a 2-replacement of P (see, for example, [2]).

Now we will repeatedly apply the Key Lemma to the relation
x20x1x2x3x4x

2
5y = abcdef to build a family of 2-replaceable trees. Notice that

the curve labeled z in the right side of Figure 3a commutes with the curves
labeled a and b in the left side of Figure 3a. Thus the Dehn twist z commutes
with the Dehn twist ab and so we can apply the Key Lemma to x0 and c,
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Figure 2. x20x1x2x3x4x
2
5y = x20x1x2zx5ef = abcdef .

which are shown in bold in the left of Figure 3a. Thus the hole encircled
by x0 splits and we obtain the relation zx1x0wx2x3x4x5x

2
6y = abc1c2def , or

x0x1x2x3x4x5x
2
6wyz = abc1c2def , depicted on the right side of Figure 3a.

Notice that in the new relation, we relabeled the boundary parallel curves
for convenience and one of the curves that was labeled x0 is now labeled
w. This relabelling will be done throughout. Once again, it is easy to see
that the total space of the Lefschetz fibration described by the monodromy
abc1c2def is a 2-replacement of the plumbing tree associated to the mon-
odromy x0x1x2x3x4x5x

2
6wyz, which is depicted in Figure 4a. Now, induc-

tively assume that the relation x0 · · · x
2
n+3wyz

n−3 = abc1 · · · cn−1def holds,
as in the left side of Figure 3b. Then since z commutes with ab, we can ap-
ply the Key Lemma to x0 and c1 to obtain the relation x0 · · · x

2
n+3wyz

n−2 =
abc1 · · · cn−1def . As before, the total space of the Leftschetz fibration de-
scribed by the monodromy abc1 · · · cn−1def is a 2-replacement of the plumb-
ing tree shown in Figure 4b.

Next, we apply the Key Lemma to xn+2 and e. To do this, view the
n+ 3 punctured disk as an n+ 4 punctured sphere so that the outermost
boundary of the disk is just another puncture. In this way, we can view
xn+3 as a curve around a puncture and e as a curve around the two punc-
tures with boundary parallel curves xn+2 and xn+3. These are shown in
bold on the left side of Figure 3c. Since xn+4 (as labeled on the right side
of Figure 3c) commutes with everything, the Key Lemma applies, yielding
the relation x0 · · · xn+1xn+4xn+2xn+3x

2
n+4wyz

n−2 = abc1 · · · cn−1de2e1f , or
x0 · · · xn+3x

3
n+4wyz

n−2 = abc1 · · · cn−1de2e1f . This relation proves that the
linear plumbing depicted in Figure 4c is 2-replaceable. Now, inductively as-
sume that the relation x0 · · · xn+m−2x

m−2
n+m−1wyz

n−2 = abc1 · · · cn−1dem−2 ·
· · e1f holds, as in the left side of Figure 3d. Notice that each curve ei
encircles all the punctures except the one labeled i for 1 ≤ i ≤ m− 2, as de-
picted in Figure 3d. Also note that, with this labelling, we can write f = e0.
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(a) x2
0x1x2x3x4x

2
5y = abcdef implies x0x1x2x3x4x5x

2
6wyz = abc1c2def .

(b) x0 · · · x
2
n+2wyzn−3 = abc1 · · · cn−2def implies x0 · · · x

2
n+3wyzn−2 = abc1 · · · cn−1def .

(c) x0 · · · x
2
n+3wyzn−2 = abc1 · · · cn−1def implies

x0 · · · xn+3x
3
n+4wyzn−2 = abc1 · · · cn−1de2e1f .

(d) x0 · · · xn+m−2x
m−2

n+m−1wyzn−2 = abc1 · · · cn−1dem−2 · · · e1f implies
x0 · · · xn+m−1x

m−1

n+m
wyzn−2 = abc1 · · · cn−1dem−1 · · · e1f .

Figure 3. Repeated applications of the Key Lemma to the bold circles.

We now apply the Key Lemma as we did previously to the bold curves la-
beled xn+m−2 and em−2 to obtain the relation x0 · · · xn+m−1x

m−1
n+mwyzn−2 =

abc1 · · · cn−1dem−1 · · · e1f . This relation proves that the plumbing tree de-
picted in Figure 4d is 2-replaceable for all m ≥ 3. Thus we have proved that
the plumbing trees of Theorem 1.6a are indeed 2-replaceable.
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(a) Plumbing associated to Figure 3a.

(b) Plumbing associated to Figure 3b.

(c) Plumbing associated to Figure 3c.
(d) Plumbing associated to Figure 3d.

Figure 4. 2-replaceable plumbings associated to the
monodromies in Figure 3.

To obtain the family in Theorem 1.6b, we go back to the the relation
depicted in Figure 2, namely x20x1x2x3x4x

2
5y = abcdef . We will apply the

Key Lemma to the bold circles x0 and a shown in Figure 5a. Since x2,
as labeled in the third surface in Figure 5a commutes with everything,
the Key Lemma applies and we obtain the relation wx2x0x1x2x3x4x5x

2
6y =

a1a2bcdef , or x0x1x
2
2x3x4x5x

2
6wy = a1a2bcdef , as shown in Figure 5a. Thus,

the plumbing tree shown in Figure 6a is 2-replaceable. Inductively assume
that x0 · · · xm−3x

m−2
m−2xm−1xmxm+1x

2
m+2wy = a1 · · · am−2bcdef , as in Fig-

ure 5b. Again, since xm−1, as labeled in the third monodromy in Figure 5b,
commutes with everything, we can apply the Key Lemma to obtain the re-
lation x0 · · · xm−2x

m−1
m−1xmxm+1xm+2x

2
m+3wy = a1 · · · am−1bcdef . Thus, the

plumbing tree in Figure 6b is 2-replaceable.
Now view the leftmost punctured disk in Figure 2 as a sphere with six

punctures. Then we can arrange the sphere so that the curve labeled y is the
equator and the northern and southern hemispheres both have 3 punctures,
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two of which have one parallel curve and one of which has two parallel curves.
In the previous paragraph, we repeatedly applied the Key Lemma to curves
in only one of the hemispheres (without involving the equator y). Thus we
can also apply it to the other hemisphere in the exact same way. We now do

(a) x2
0x1x2x3x4x

2
5y = abcdef implies x0x1x

2
2x3x4x5x

2
6wy = a1a2bcdef .

(b) x0 · · · xm−3x
m−2

m−2xm−1xmxm+1x
2
m+2wy = a1 · · · am−2bcdef implies

x0 · · · xm−2x
m−1

m−1xmxm+1xm+2x
2
m+3wy = a1 · · · am−1bcdef .

(c) x0 · · · xm−2x
m−1

m−1xmxm+1xm+2x
2
m+3wy = a1 · · · am−1bcdef implies

x0 · · · xm−2x
m−1

m−1xmxm+1x
2
m+2xm+3xm+4wyz = a1 · · · am−1bcde1e2f .

(d) x0 · · · xm−2x
m−1

m−1xmxm+1x
n−2

m+2xm+3xm+4wyz = a1 · · · am−1bcde1e2f implies
x0 · · · xm−2x

m−1

m−1xmxm+1x
n−1

m+2xm+3 · · · xm+n+2wyz = a1 · · · am−1bcde1 · · · en−1f .

Figure 5. Repeated applications of the Key Lemma to the bold circles.
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(a) Plumbing associated to Figure 5a.
(b) Plumbing associated to Figure 5b.

(c) Plumbing associated to Figure 5c. (d) Plumbing associated to Figure 5d.

Figure 6. 2-replaceable plumbings associated to the
monodromies in Figure 5.

this explicitly. In the relation x0 · · · xm−2x
m−1
m−1xmxm+1xm+2x

2
m+3wy = a1 ·

· · am−1bcdef , consider the bold curves xm+3 and am−1 shown in Figure 5b.
We view the latter as a curve containing the two punctures with boundary
parallel curves xm+2 and xm+3. Since xm+2 commutes with all other Dehn
twists, we can apply the Key Lemma to obtain

x0 · · · xm−2x
m−1
m−1xmxm+1xm+2xm+2xm+3xm+4zwy = a1 · · · am−1bcde1e2f,

or

x0 · · · xm−2x
m−1
m−1xmxm+1x

2
m+2xm+3xm+4zwy = a1 · · · am−1bcde1e2f.

Thus the plumbing tree in Figure 6c is 2-replaceable. Inductively assume
the relation

x0 · · · xm−2x
m−1
m−1xmxm+1x

n−2
m+2xm+3 · · · xm+n+1zwy

= a1 · · · am−1bcde1 · · · en−2f,

as in Figure 5d, holds. Again, since xm+2 commutes with everything, we can
apply the Key Lemma to obtain the relation

x0 · · · xm−2x
m−1
m−1xmxm+1x

n−1
m+2xm+3 · · · xm+n+2zwy

= a1 · · · am−1bcde1 · · · e1 · · · en−1f.
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Thus the plumbing tree in Figure 6d is 2-replaceable and so the family of
trees in Theorem 1.6b are indeed 2-replaceable.

3. A symplectic exotic CP 2#6CP 2

In this section we will find the 2-replaceable plumbing tree of Theorem 1.6(a)
with n = 9 and m = 3 embedded in CP 2#16CP 2, excise it, and replace it
with the 2-replacement constructed in the proof of Theorem 1.6. We will then
show that the resulting 4-manifold X is a symplectic exotic CP 2#6CP 2. We
assume the reader is familiar with elliptic fibrations and blowups. See [9] for
details.

In [20], Stipsicz and Szabó showed that there is an elliptic fibration
CP 2#9CP 2 → CP 1, called E(1), with three fishtail fibers, two sections, and
a singular fiber of type III∗ (i.e. an Ẽ7 singular fiber) which intersect as in
Figure 7a.

(a) A configuration in E(1). (b) Configuration after seven blowups.

Figure 7. Blowing up E(1) seven times.

Starting with this configuration, perform the following moves:

• blow up the three double points in the fishtail fibers and call the ex-
ceptional spheres e10, e11, and e12;

• blow up the points P1, P2, and P3 and call the exceptional spheres e13,
e14, and e15, respectively;

• blow up the intersection between e15 and image of the adjacent fishtail
fiber and call the new exceptional sphere e16;

• and smooth the intersection points P4 and P5.
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The resulting configuration is shown in Figure 7b.
Since we performed seven blowups on CP 2#9CP 2, this configuration of

spheres is embedded in CP 2#16CP 2. Furthermore, notice that the plumb-
ing P depicted in Figure 8 is embedded in this configuration. By Theorem
1.6a, this plumbing is 2-replaceable. Let B denote the 2-replacement of P
constructed in the proof of Theorem 1.6, let Z = CP 2#16CP 2 − int(P ) and
let X = Z ∪∂P B, where the gluing is by a contactomorphism isotopic to the
identity.

Figure 8. The configuration P .

Proposition 3.1. X is homeomorphic to CP 2#6CP 2.

Proof. We first prove that X is simply connected. Since CP 2#16CP 2 is
simply connected, the inclusion ∂P →֒ Z induces a surjection π1(∂P ) →
π1(Z). Furthermore, since B is built out of 0-, 1-, and 2-handles, the inclusion
∂B = ∂P →֒ B also induces a surjection π1(∂P ) → π1(B). By the Seifert
Van-Kampen theorem, we have π1(X) = π1(Z) ∗π1(∂P ) π1(B). Thus, in the
amalgamation, the generators of π1(Z) can be expressed in terms of the
generators of π1(B). Therefore, if the generators of π1(B) bound disks in
X, then π1(X) is trivial. We first prove that π1(B) is cyclic of order 17 and
then show that a particular generator of π1(B) bounds a disk in X.

In the proof of Theorem 1.6a, we explicitly described the monodromy
of the Lefschetz fibration associated to B (see Figure 3b). Figure 9a depicts
a handlebody diagram of B obtained from this monodromy. For details on
how to construct such a diagram, see, for example, [2]. Each blue unknot has
framing −1 and, from bottom to top, these unknots correspond to the curves
a, b, c1, . . . , c8, d, e, f in the monodromy factorization shown in Figure 3b.
The dotted lines are identified in the trivial way to form an unlink of dotted
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circles. Let mi be a meridian around the ith 1-handle of the handlebody
diagram of B (shown in Figure 9a), counting left to right. Then π1(B) is
generated by {mi} and subject to the following relations (which are given
by the 2-handles):

m1 · · ·m9 = 1, m1 · · ·m8m10 = 1,

m1 · · ·m11 = 1, m1 · · ·m10m12 = 1,

m9 · · ·m12 = 1, and mim11m12 = 1 for i = 1, . . . , 8.

The last relation shows that m1 = · · · = m8. Call this element m. Further-
more, we havem9 = m10 = m−8 andm11 = m12 = m8. Thus, 1 = m1m11m12

= m17 and so π1(B) ∼= Z17.
We now use Kirby calculus to move from a handlebody diagram of B

to a handlebody diagram of P . Start with the handlebody diagram for B
depicted in Figure 9a and change the dotted circles to 0-framed unknots to
obtain the surgery diagram for ∂B depicted in Figure 9b. Then:

• blow down all of the blue −1 framed unknots to obtain Figure 9c;

• isotope the vertical red strand under the strand immediately to its left
and pull it leftward;

• pull the blue and green strands leftward to obtain Figure 9d;

• introduce a positive twist at the top of the blue and green strands and
a negative twist at the bottom of the same strands (these twists undo
each other) to obtain Figure 9e;

• rearrange the strands to appear as in Figure 9f;

• and perform 23 blowups to obtain Figure 9g.

Finally, change the 0-framed unknots to dotted circles to obtain the han-
dlebody diagram depicted in Figure 9h. Notice that this is a handlebody
diagram for P , namely the diagram obtained from the monodromy associ-
ated to P in Figure 3b.

Now consider the obvious handlebody diagram for P depicted in Fig-
ure 10 (without the red meridian labeled γ). We can explicitly show that
the handlebody diagram in Figure 9h is indeed a handlebody diagram for
P via the following moves.

• Starting with Figure 9h, slide a over b, followed by b over c, and fol-
lowed by c over d.
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(a) A Kirby diagram
for B.

(b) A surgery de-
scription for ∂B.

(c) Blow down the
blue unknots in (B).

(d) Result after iso-
toping the red, green,
and blue strands.

(e) Isotope the blue
and green strands.

(f) Rearrangement of
the twists.

(g) Perform blowups.
(h) A Kirby diagram
for P .

Figure 9. Using Kirby calculus to show B and P have the same boundary.

• Slide d over each of the 8 blue unknots at the top of the 1-handles
labeled 1-8.

• Slide c over the blue unknots at the top of the 1-handles labeled 9 and
10.

• Slide b over e, e over f , f over g, g over h, h over i, i over j, and j
over k.
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Figure 10. Handlebody diagram of P with a meridian γ.

• Slide k over the blue unknots at the top of the 1-handles labeled 11
and 12.

• Cancel the 1-2 handle pairs to obtain the handlebody diagram in Fig-
ure 10.

Now consider the red meridian labeled γ in Figure 10. By reversing the
moves outlined above, in the handlebody diagram in Figure 9h, γ links each
of the curves labeled a, b, e, f, g, and h exactly once. Changing the dotted
circles to 0-framed unknots, we can see γ in a surgery diagram of ∂P as
in Figure 11a (imagining that the base point is above the diagram). After
blowing down all of the −1-framed blue unknots and isotoping γ, we obtain
Figure 11b. Tracing through the Kirby calculus to obtain the handlebody
diagram of B depicted in Figure 9a, it is easy to see that γ remains at the
bottom of the diagram in the same position as in Figure 11b. Thus, in π1(B),
γ = m2

1 · · ·m
2
10m

6
11m

6
12 = m12, which is a generator of π1(B) ∼= Z17.

Notice, in the original configuration of spheres found in CP 2#16CP 2

(Figure 7b), γ can be identified with the equator of the −2-sphere colored in
blue that is “dangling off” the singular fiber of type III*. Thus this meridian
bounds a disk (a hemisphere of the blue −2-sphere) in Z and thus bounds
a disk in X. Since γ generates π1(B), X is simply connected.

Next, notice that χ(X) = χ(CP 2#16CP 2)− χ(P ) + χ(B) = 19− 12 +
2 = 9 = χ(CP 2#6CP 2). Since χ(B) = 2 and b1(B) = b3(B) = b4(B) = 0, we
must have b2(B) = 1. Since B is negative-definite, the signature of B is
−b2(B) = −1 and so σ(X) = σ(CP 2#16CP 2)− σ(P ) + σ(B) = −15−
(−11) + (−1) = −5 = σ(CP 2#6CP 2). Finally, since −5 is not divisible by
16, the intersection forms of X and CP 2#6CP 2 are both odd. Thus, by
Freedman’s theorem, X is homeomorphic to CP 2#6CP 2. □

Proposition 3.2. X is admits a symplectic structure.
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(a) γ in ∂P . (b) γ after blowing down.

Figure 11. Keeping track of γ.

Proof. Since the spheres of P are complex submanifolds of CP 2#16CP 2,
they are symplectic and intersect positively (c.f. [20]). By [10], these spheres
can be made ω-orthogonal by an isotopy through symplectic spheres. By [7],
X admits a symplectic structure. □

Proposition 3.3. X is not diffeomorphic to CP 2#6CP 2.

Proof. Let h denote the canonical generator of H2(CP
2;Z) in

H2(CP
2#16CP 2;Z) = H2(CP

2;Z)
⊕

16H2(CP 2;Z)

and, with abuse of notation, let ei, for 1 ≤ i ≤ 16, denote the homology
class of the ith exceptional sphere of the ith blowup, which generates the
ith copy of H2(CP 2;Z). Consider the configuration of spheres depicted in
Figure 7a. Then, as shown in [20], the bottom horizontal section has homol-
ogy class e1, the top horizontal section has homology class e9, each fishtail

fiber has homology 3h−

9∑

i=1

ei, the vertical chain of −2-spheres have homol-

ogy classes (working bottom to top) h− e1 − e2 − e3, e3 − e4, e4 − e5, e5 −
e6, e6 − e7, e7 − e8, e8 − e9, and the blue −2-sphere has homology class h−
e3 − e4 − e5. After performing the seven blowups to obtain the configuration
of Figure 7b described earlier, the spheres in our configuration P , labeled as
in Figure 8, have homology classes
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u1 = 6h− e1 −

9∑

i=2

2ei − 2e11 − 2e12 −

16∑

i=13

ei, u2 = 3h−

9∑

i=1

ei − 2e10,

u3 = e9 − e14 − e15 − e16, u4 = e15 − e16, u5 = e8 − e9,
u6 = e7 − e8, u7 = e6 − e7, u8 = e5 − e6, u9 = e4 − e5
u10 = e3 − e4, and u11 = h− e1 − e2 − e3 − e13.

For quick expositions of Seiberg-Witten invariants when b+ = 1, see
[6] and [20]. It is known that the small perturbation Seiberg-Witten in-
variant SW ◦

CP 2#6CP 2
is identically 0 because CP 2#6CP 2 admits a metric

of positive scalar curvature. Thus, we must find K̃ ∈ H2(X;Z) such that
SW ◦

X(K̃) ̸= 0. Let K be the canonical class of CP 2#16CP 2 associated to

the canonical symplectic form ω on CP 2#16CP 2. Then K is of the form

K = PD(−3h+

16∑

i=1

ei) Let K̃ be the canonical class of X, induced by the

symplectic structure ω̃ onX. Since, by construction, ω|Z = ω̃|Z , we necessar-
ily have thatK|Z = K̃|Z . Furthermore, the dimensions of the Seiberg-Witten
moduli spaces associated to K and K̃ are both 0.

By the proof of Corollary 9.4 in [11], ∂P is an L-space. Since P and
B are both negative-definite, by Michalogiorgaki’s gluing formula in [13],
SW ◦

X,PD(a2)
(K̃) = SW ◦

CP 2#16CP 2,PD(a1)
(K), where a1 ∈ H2(CP

2#16CP 2;Z)

and a2 ∈ H2(X;Z) such that a1|Z = a2|Z and a1|P = a2|B = 0. Let

a = 10h− 3e1 − 2e2 −

9∑

i=3

3ei − 2e10 − e11 − 2e12 − 2e13 − 3e14.

Then a · ui = 0 for all 1 ≤ i ≤ 11 and so a|P = 0. Thus a is represented in
Z and can also be thought of as a homology class in H2(X;Z) such that
a|B = 0. Thus we have

SW ◦

X,PD(a)(K̃) = SW ◦

CP 2#16CP 2,PD(a)
(K).

Since the cohomology class PD(h) gives the chamber that contains the
point of positive scalar curvature, SW ◦

CP 2#16CP 2,PD(h)
= 0 (see, e.g. [6]).

Since a · a > 0, h · h > 0, K · PD(h) = −3 < 0, K · PD(a) = 6 > 0 and h ·
a = 10 > 0, by the wall crossing formula, we have

SW ◦

CP 2#16CP 2,PD(h)
(K)− SW ◦

CP 2#16CP 2,α
(K) = (−1)1+d(k)/2

and so SW ◦

X,α(K̃) = SW ◦

CP 2#16CP 2,α
(K) ̸= 0. □
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4. Continued fractions

In this section we outline and prove useful facts about Hirzebruch-Jung
continued fractions that will be needed for the proof of Theorem 1.4. Given
a sequence of integers (a1, . . . , an) the (Hirzebruch-Jung) continued fraction
expansion is given by

[a1, . . . , an] = a1 −
1

a2 −
1

· · · −
1

an

If ai ≥ 2 for all 1 ≤ i ≤ n, then this fraction is well-defined and the numer-
ator is greater than the denominator. In fact, for coprime p > q > 0 ∈ Z,
there exists a unique continued fraction expansion [a1, . . . , an] =

p
q , where

ai ≥ 2 for all 1 ≤ i ≤ n. To simplify notation, we write [. . . , 2[k], . . .] instead

of [. . . ,

k
︷ ︸︸ ︷

2, . . . , 2, . . .]. Moreover, we will often refer to continued fractions as
fractions.

We call the continued fraction expansions of p
q and p

p−q dual to each
other. The following relationship between these two continued fractions is
well-known (see, for example, Theorem 7.1 and Lemma 7.2 of [14]).

Theorem 4.1. Let ni ≥ 0 for all 1 ≤ i ≤ s+ 1 and mj ≥ 0 for all 1 ≤ j ≤
s. If

p

q
= [2[n1],m1 + 3, 2[n2],m2 + 3, . . . ,ms + 3, 2[ns+1]]

then

p

p− q
= [n1 + 2, 2[m1], n2 + 3, 2[m2], . . . , ns + 3, 2[ms], ns+1 + 2]

The following corollary follows from Theorem 4.1. It will be used throughout
the proof of Theorem 1.4 in Section 5.

Corollary 4.2. If [m1, . . . ,mr] has dual [a1, . . . , an] and [s1, . . . , sl] has
dual [b1, . . . , bk], then [m1, . . . ,mr, s1, . . . , sl] has dual [a1, . . . , an−1, an + b1 −
1, b2, . . . , bk]. Conversely, suppose that [m1, . . . ,mr, s1, . . . , sl] has dual
[a1, . . . , an]. Then [m1, . . . ,mk] and [s1, . . . , sl] have duals of the form
[a1, . . . , ai−1, a

′

i] and [a′′i , ai+1, . . . , an], where a
′

i + a′′i − 1 = ai and 1 ≤ i ≤ n.
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Definition 4.3. The buddings of the fraction [a1, . . . , an] are the frac-
tions [a1 + 1, a2, . . . , an, 2] and [2, a1, . . . , an−1, an + 1]. The debudding of
[a1, . . . , an] is the reverse operation. (Note: to be able to perform a de-
budding, we must have either a1 = 2 and an > 2 or a1 > 2 and an = 2. For
example, the debudding of [2, a2, . . . , an], where an > 2, is [a2, . . . , an − 1].)
Furthermore, by saying [a1, . . . , an] is a budding of [a′1, . . . , a

′

l], we mean that
[a1, . . . , an] can be obtained by a finite sequence of buddings of [a′1, . . . , a

′

l]
and by saying [a1, . . . , an] is a debudding of [a′1, . . . , a

′

l], we mean that
[a1, . . . , an] can be obtained by a finite sequence of debuddings of [a′1, . . . , a

′

l].

Equipped with this definition, the following is a direct consequence of
Theorem 4.1.

Corollary 4.4. If [a1, . . . , an] has dual [m1, . . . ,mr], then the dual of a bud-
ding of [a1, . . . , an] is a budding of [m1, . . . ,mr]. For example, [2, a1, . . . , an +
1] has dual [1 +m1,m2, . . . ,mr, 2].

4.1. Admissible fractions

In this section, we will consider continued fractions in which all entries are
positive and in which each denominator appearing in the fraction is nonzero.
Such a fraction is called admissible. Note that admissible fractions yield well-
defined rational numbers (see, for example, [16]). In this section, we will
consider continued fractions with entries greater than or equal to 1 and so
requiring admissibility is important; for example, [2, 1, 1] is not admissible
and is undefined. Moreover, we will consider admissible fractions [a1, . . . , an]
that are equal to 0. The only such continued fraction of length 1 is [0] and if
n ≥ 2, then there must exist an index i such that ai = 1 (see, for example,
[16]).

Definition 4.5. Let [a1, . . . , an] = 0 be admissible. Then the blowup before
ai is the fraction [a1, . . . , ai−1 + 1, 1, ai + 1, . . . , an] and the blowup after ai is
the fraction [a1, . . . , ai + 1, 1, ai+1 + 1, . . . , an]. If ai = 1, then the blowdown
at ai is [a1, . . . , ai−1 − 1, ai+1 − 1, . . . , an]. By saying [a1, . . . , an] is a blowup
of [a′1, . . . , a

′

l], we mean that [a1, . . . , an] can be obtained by a finite sequence
of blow ups of [a′1, . . . , a

′

l]. Similarly, [a′1, . . . , a
′

l] is a blowdown of [a1, . . . , an]
if it can be obtained by a finite sequence of blow downs of [a1, . . . , an].

The facts collected in the following proposition are well-known. See, for
example, the Appendix of [16] and Section 2 of [12].
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Proposition 4.6. If [a1, . . . , an] is admissible, then:

1) any blowup or blowdown of [a1, . . . , an] is also admissible;

2) [an, . . . , a1] is admissible;

3) [ai, ai+1, . . . , aj ] is admissible for all 1 ≤ i ≤ j ≤ n;

4) if [a1, . . . , an] = 0, then [an, . . . , a1] = 0;

5) if [a1, . . . , an] = 0, then any blowup or blowdown is also equal to 0; and

6) if [a1, . . . , an] = 0, then it can be obtained by a sequence of blowups of
[0].

Note that the only blowup of [0] is [1, 1] and the only two blowups of [1, 1]
are [1, 2, 1] and [2, 1, 2]. We will consider fractions obtained by sequences of
blowups of these two fractions.

Lemma 4.7. If [a1, . . . , an] = 0 and a1 = 1 or an = 1, then it is a blowup
of [1, 2, 1].

Proof. We proceed by induction. Let n = 4. Then the only continued frac-
tions satisfying [1, a2, a3, a4] = 0 are [1, 3, 1, 2] and [1, 2, 2, 1]. By blowing
down these continued fractions at the third and fourth entries, respectively,
we obtain [1, 2, 1]. Inductively assume that all length n− 1 (where n > 5)
fractions with a1 = 1 are blowups of [1, 2, 1]. Let [a1, . . . , an] = 0 be a blowup
of [1, 2, 1] and without loss of generality assume a1 = 1. Then there exists
an index i ̸= 1 such that ai = 1. If i = 2, then since [1, 1, a3, . . . , an] is ad-
missible, so is [an, . . . , a3, 1, 1], by Proposition 4.6. But [1, 1] = 0, which con-
tradicts admissibility. Thus we may assume 2 < i ≤ n. By blowing down at
ai, we obtain [1, a2, . . . , ai−1 − 1, ai+1 − 1, . . . , an], which equals 0 and is ad-
missible, by Proposition 4.6. By the inductive hypothesis, this fraction is a
blowup of [1, 2, 1]. Thus [a1, a2, . . . , an] is a blowup of [1, 2, 1]. □

Lemma 4.8. Let [a1, . . . , an] = 0 be a blowup of [2, 1, 2] that is not a blowup
of [1, 2, 1]. Then the buddings of [a1, . . . , an] are also blowups of [2, 1, 2] and
not of [1, 2, 1]. By Proposition 4.6, the buddings are admissible and equal to
0.

Proof. Let [a1, . . . , an] be as in the statement of the lemma. Then there is
a sequence of blowdowns that yields [2, 1, 2]. Performing this sequence of
blowdowns to the budding [2, a1, . . . , an + 1], we obtain [2, 2, 1, 3], which is
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a blowup of [2, 1, 2]. Similarly, [a1 + 1, . . . , an, 2] is a blowup of [3, 1, 2, 2],
which is a blowup of [2, 1, 2]. □

Lemma 4.9. Let [a1, . . . , an] = 0 be a blowup of [2, 1, 2] that is not a blowup
of [1, 2, 1] and suppose a1 = 2 and an ≥ 3 (or vice versa). Then the debud-
ding of [a1, . . . , an] is a blowup of [2, 1, 2] and not a blowup of [1, 2, 1]. By
Proposition 4.6, this debudding is admissible and equal to 0.

Proof. We proceed by induction on n. First notice that the only blowups
of [2, 1, 2] that are not blowups of [1, 2, 1] are the fractions [2, 2, 1, 3] and
[3, 1, 2, 2]. These have one possible debudding each, namely [2, 1, 2], which is
not a blowup of [1, 2, 1]. Inductively assume that the lemma is true for all
length n− 1 continued fractions satisfying the hypotheses. Let [a1, . . . , an] =
0 be a blowup of [2, 1, 2] that is not a blowup of [1, 2, 1] and suppose without
loss of generality that a1 = 2 and an > 2. Then a2 ̸= 1, since otherwise, the
blowdown at a2 would have first entry equal to 1, which would imply that
[a1, . . . , an] is a blowup of [1, 2, 1], by Lemma 4.7. Let ai = 1, where 2 < i <
n. By blowing down [a1, . . . , an] at ai, we obtain the length n− 1 fraction
[a1, . . . , ai−1 − 1, ai+1 − 1, . . . , an] = 0, which is not a blowup of [1, 2, 1]. By
the inductive hypothesis, the debudding [a2, . . . , ai−1 − 1, ai+1 − 1, . . . , an −
1] is a blowup of [2, 1, 2] and not a blowup of [1, 2, 1]. Now, by performing a
blowup before ai+1 − 1, we obtain [a2, . . . , an − 1], which is the debudding
of [a1, . . . , an]. Thus the debudding of [a1, . . . , an] is a blowup of [2, 1, 2] and
not a blowup of [1, 2, 1]. □

By Proposition 4.6, Lemma 4.8, and Lemma 4.9, we will not have to
check for the admissibility of any continued fractions throughout the re-
mainder of this article. The final two results are corollaries of the above
lemmas. They will be used throughout Section 5.

Corollary 4.10. [a1, . . . , an] is a budding of [2, 1, 2] if and only if it is a
blowup of [2, 1, 2] that has exactly one entry that is equal to 1.

Proof. If [a1, . . . , an] is a budding of [2, 1, 2], then it necessarily has ex-
actly one entry equal to 1 and by Lemma 4.8, it is a blowup of [2, 1, 2].
If [a1, . . . , an] is a blowup of [2, 1, 2] with exactly one entry equal to 1, then
either a1 = 2 and an ≥ 3 or vice versa. Thus by repeated applications of
Lemma 4.9, it is clear that [a1, . . . , an] is a budding of [2, 1, 2]. □

Corollary 4.11. [b1, . . . , bk] is a budding of [4] if and only if [b1, . . . , bk]
has dual of the form [a1, . . . , ai + 1, . . . , an], where ai = 1, 1 < i < n, and
[a1, . . . , ai, . . . , an] is a blowup of [2, 1, 2] with exactly one entry that is 1.
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Proof. Since the dual of [4] is [2, 2, 2], this follows from Corollaries 4.4
and 4.10. □

5. Proof of Theorem 1.4

5.1. Lisca’s classification of symplectic fillings of (L(p, q), ξst)

Let p > q > 0 ∈ Z be coprime. In [12], Lisca classified all minimal weak sym-
plectic fillings of (L(p, q), ξst), where ξst is the standard tight contact struc-
ture on L(p, q) inherited from the unique tight contact structure on S3. It is
known that every weak symplectic filling of a rational homology sphere can
be modified into a strong symplectic filling ([15]). Thus Lisca’s classification
is of strong symplectic fillings of (L(p, q), ξst).

In particular, Lisca proved that any weak (or strong) symplectic fill-
ing of (L(p, q), ξst), where

p
p−q = [a′1, . . . , a

′

n], is orientation preserving dif-

feomorphic to a 4-manifold of the form (S1 ×D3) ∪W , where W is the
2-handle cobordism from S1 × S2 to L(p, q) depicted in Figure 12. In the
figure, [a1, . . . , an] = 0 is an admissible fraction with ai ≤ a′i for all 1 ≤ i ≤ n
and the horizontal chain of framed unknots is a surgery diagram of S1 × S2.
After thickening S1 × S2 to S1 × S2 × I, we can attach 2-handles along the
−1-framed red unknots shown in the diagram to obtain W . The angular
brackets around the surgery coefficients are simply meant to distinguish the
surgery description of S1 × S2 from the 4-dimensional 2-handles. By glu-
ing W to S1 ×D3, we obtain a filling of L(p, q) with Euler characteristic
∑n

i=1(a
′

i − ai).

Figure 12. A cobordismW from S1 × S2 to L(p, q), where p
p−q = [a′1, . . . , a

′

n]
and [a1, . . . , an] = 0 is admissible. Any weak (or strong) symplectic filling of
(L(p, q), ξst) is obtained by gluing such a cobordism to S1 ×D3.

From this description, it is easy to see that the first and third Betti
numbers of these fillings are 0. Moreover, since (L(p, q), ξst) is supported



✐

✐

“4-Simone” — 2020/10/27 — 16:27 — page 1309 — #25
✐

✐

✐

✐

✐

✐

Symplectically replacing plumbings 1309

by a planar open book, every filling is negative-definite ([3]). Now suppose
p

p−q = [a′1, . . . , a
′

n] has dual
p
q = [m1, . . . ,mr]. Then L(p, q) can be obtained

by performing Dehn surgery along a chain of unlinks with surgery coefficients
(−m1, . . . ,−mr). It follows that L(p, q) bounds the negative-definite linear
plumbing P with weights (−m1, . . . ,−mr) depicted in Figure 13, which is
known to be a strong symplectic filling of (L(p, q), ξst). Thus P is

∑n
i=1(a

′

i −
ai)-replaceable.

Figure 13. Linear plumbing bounded by L(p, q), where p
q = [m1, . . . ,mr].

Remark 5.1. Since [a1, . . . , an] = 0 is admissible, we can perform a se-
quence of blow downs to obtain the continued fraction [0]. To see an explicit
handlebody diagram of the filling, we can perform the same sequence of blow
downs to the horizontal chain of unknots in Figure 12 to obtain an unknot
with framing ⟨0⟩. In this new diagram, the ⟨0⟩-framed unknot represents
S1 × S2, which still bounds S1 ×D3 in the filling. Thus by changing the
⟨0⟩-framed unknot to a dotted circle, we obtain an honest handlebody dia-
gram of the filling. Under these moves, the −1-framed red unknots become
a complicated link with very negative framings.

Lisca’s classification shows that there is a one-to-one correspondence
between continued fractions of the form p

p−q = [a1 + k1, . . . , an + kn], where

[a1, . . . , an] = 0 is admissible, and (Euler characteristic
∑n

i=1 ki) symplec-
tic fillings of (L(p, q), ξst). For example, continued fractions of the form
[a1, . . . , ai + 1, . . . , an] =

p
p−q , where [a1, . . . , ai, . . . , an] = 0 is admissible and

ai = 1 is the only entry equal to 1, correspond to Euler characteristic 1
symplectic fillings of (L(p, q), ξst). By Corollary 4.11, the classification of 1-
replaceable linear plumbings (in terms of the weights of the plumbing graph)
is immediate.

Corollary 5.2. A linear plumbing with weights (−m1, . . . ,−mr) is 1-
replaceable if and only if [m1, . . . ,mr] is a budding of [4].

To prove Theorem 1.4, we will classify the continued fractions p
q whose

dual continued fractions correspond to Euler characteristic 2 symplectic fill-
ings. To this end, we now assume that every continued fraction [a1, . . . , an] =
0 is admissible with at most two entries that are equal to 1. Suppose ai =
aj = 1. If i ̸= j, then [a1, . . . , ai + 1, . . . , aj + 1, . . . , an] =

p
p−q corresponds
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to an Euler characteristic 2 symplectic filling of (L(p, q), ξst) and if i = j,
then [a1, . . . , ai + 2, . . . , an] =

pi

pi−qi
and [a1, . . . , ai + 1, . . . , at + 1, . . . , an] =

pt

pt−qt
, where t ̸= i, correspond to Euler characteristic 2 symplectic fillings

of (L(pt, qt), ξst) for all 1 ≤ t ≤ n. The following corollary summarizes this
discussion.

Corollary 5.3. The linear plumbing with weights (−m1, . . . ,−mr) is 2-
replaceable if and only if the dual of [m1, . . . ,mr] is of the form:

• [a1, . . . , ai + 1, . . . , aj + 1, . . . , an], where [a1, . . . , ai, . . . , aj , . . . , an] = 0
has exactly two entries equal to 1, namely ai and aj;

• [a1, . . . , ai + 1, . . . , at + 1, . . . , an], where t ̸= i and [a1, . . . , ai, . . . , aj ,
. . . , an] = 0 has exactly one entry equal to 1, namely ai; or

• [a1, . . . , ai + 2, . . . , an], where [a1, . . . , ai, . . . , an] = 0 has exactly one
entry equal to 1, namely ai.

To prove Theorem 1.4, we will explore the continued fractions listed in Corol-
lary 5.3.

5.2. Proof of Theorem 1.4

For convenience, we recall Theorem 1.4.

Theorem 1.4: Let (−b1, . . . ,−bk) and (−c1, . . . ,−cl) be obtained by se-
quences of buddings of (−4) and let z ≥ 2 be any integer. Then a linear
plumbing is 2-replaceable if and only if it is either of the form:

(a) for k, l ≥ 0

or is obtained by a sequence of buddings of one of the linear plumbings of
the form:

(b) (or ) for k ≥ 0.

(c)

(d) for k, l ≥ 1
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First, we first show that all plumbings listed in the theorem are in-
deed 2-replaceable. This is clear for the linear plumbings of type (a), since
the “subplumbings” on either side of the −z-disk bundle can be symplecti-
cally rationally blown down, revealing an Euler characteristic 2 symplectic
4-manifold. Buddings of plumbings of type (b), (c), and (d) can also be seen
to be 2-replaceable via Kirby calculus, blowups, and rational blowdowns. In-
stead of working through these details, however, we will apply Corollary 5.3.

Type (b): Suppose [b1, . . . , bk] is a budding of [4]. By Corollary 4.11,
[b1, . . . , bk] has dual of the form [a1, . . . , ai + 1, . . . , an], where [a1, . . . , ai,
. . . , an] = 0 has exactly one entry that is equal to 1, namely ai, where
i ̸= 1, n. By Theorem 4.1, [b1, . . . , bk, 2] has dual [a1, . . . , ai + 1, . . . , an + 1]
and so by Corollary 5.3 the plumbing with weights (−b1, . . . ,−bk,−2) is
2-replaceable. Now let [m1, . . . ,mr] be a budding of [b1, . . . , bk, 2]. Then, by
Corollary 4.4, it has dual that is a budding of [a1, . . . , ai + 1, . . . , an + 1]
and is of the form [. . . , a1 + t, a2, . . . , ai + 1, . . . , an + 1 + s, . . .], for some
s, t ≥ 0. By Corollary 4.10, [. . . , a1 + t, a2, . . . , ai, . . . , an + s, . . .] = 0 and it
is a blowup of [2, 1, 2] with exactly one entry equal to 1, namely ai. Thus by
Corollary 5.3, the plumbing with weights (−m1, . . . ,−mr) is 2-replaceable.
Similarly, any budding of the linear plumbing with weights (−2,−b1, . . . ,
−bk) is 2-replaceable. □

Type (c): [3, 3] has dual [2, 3, 2]. Since [2, 1, 2] = 0, by Corollary 5.3, the
plumbing with weights (−3,−3) is 2-replaceable. Let [m1, . . . ,mr] be a bud-
ding of [3, 3]. By applying Corollary 4.4, Corollary 4.10, and Corollary 5.3
as in the proof of “Type (b),” it is clear that the plumbing with weights
(−m1, . . . ,−mr) is 2-replaceable. □

Type (d): Let [b1, . . . , bk] and [c1, . . . , cl] be buddings of [4]. Then they
have respective duals of the form [a1, . . . , ai + 1, . . . , an] and [a′1, . . . , a

′

j +
1, . . . , a′m], where [a1, . . . , ai, . . . , an] = [a′1, . . . , a

′

j , . . . , a
′

m] = 0 and ai = a′j =
1 are the only entries equal to 1. By Corollary 4.2, [b1, . . . , bk, c1, . . . , cl] has
dual [a1, . . . , ai + 1, . . . , an−1, an + a′1 − 1, a′2, . . . , a

′

j + 1, . . . , a′m] and so, by
Theorem 4.1, [2, b1, . . . , bk, c1, . . . , cl, 2] has dual [a1 + 1, . . . , ai + 1, . . . , an−1,
an + a′1 − 1, a′2, . . . , a

′

j + 1, . . . , a′m + 1]. We now claim that [a1 + 1, . . . , ai,
. . . , an−1, an + a′1 − 1, a′2, . . . , a

′

j , . . . , a
′

m + 1] = 0. By Lemma 4.8, [2, a′1, . . . ,

a′j , . . . , a
′

m + 1] = 0. It follows that [a′1, . . . , a
′

j , . . . , a
′

m + 1] = 1
2 and so [an +

a′1 − 1, a′2, . . . , a
′

j , . . . , a
′

m + 1] = an − 1 + [a′1, . . . , a
′

j , . . . , a
′

m] = an−
1
2 . Once

again, by Lemma 4.8, [a1 + 1, . . . , ai, . . . , an−1, an − 1
2 ] = [a1 + 1, . . . , ai, . . . ,

an−1, an, 2] = 0, which implies that [a1 + 1, . . . , ai, . . . , an−1, an + a′1 − 1,
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a′2, . . . , a
′

j , . . . , a
′

m + 1] = [a1 + 1, . . . , ai, . . . , an−1, an − 1
2 ] = 0. Therefore, by

Corollary 5.3, the plumbing with weights (−2,−b1, . . . ,−bk,−c1, . . . ,−cl,−2)
is 2-replaceable. Finally suppose [m1, . . . ,mr] is a budding of [2, b1, . . . , bk,
c1, . . . , cl, 2]. By applying Corollary 4.4, Corollary 4.10, and Corollary 5.3
as in the proof of “Type (b),” it is clear that the plumbing with weights
(−m1, . . . ,−mr) is 2-replaceable. □

We have shown that all of the linear plumbings listed in Theorem 1.4
are indeed 2-replaceable. Next we show that these are the only 2-replaceable
linear plumbings. To do this, we consider the continued fractions listed in
Corollary 5.3 and show that their dual continued fractions correspond to
the linear plumbings listed in Theorem 1.4. That is, we will show that
if such a dual is given by [m1, . . . ,mr], then the plumbing with weights
(−m1, . . . ,−mr) is one of the plumbings listed in Theorem 1.4.

The first two cases are the continued fractions [0] and [1, 1]. Adding 2
to the only entry of [0] yields the fraction [2] = 2

1 , which has dual fraction
[2] = 2

1 . This corresponds to the −2-disk bundle over S2. Similarly, adding
1 to each entry in [1, 1] yields the fraction [2, 2] = 3

2 , which has dual fraction
[3] = 3

1 . This corresponds to the −3-disk bundle over S2. These two plumb-
ings are trivially 2-replaceable and fall under Theorem 1.4(a). Now, there
are two blowups of [1, 1], namely [1, 2, 1] and [2, 1, 2]. Since any admissible
fraction [a1, . . . , an] = 0 with n ≥ 3 is necessarily a blowup of one of these
two fractions (by Proposition 4.6), we will consider the following types of
continued fractions.

1. Blowups of [1, 2, 1] with two entries equal to 1 and with either:
(i) a1 = an = 1;
(ii) a1 = 1 and an ̸= 1 (or vice versa); or
(iii) a1, an ̸= 1;

2. Blowups of [2, 1, 2] that are not blowups of [1, 2, 1] and with either:
(i) exactly one entry that is equal to 1; or
(ii) exactly two entries that are equal to 1.

For these five types of continued fractions, we can proceed as in the cases of
the continued fractions [0] and [1, 1]. That is, for continued fractions of type
2(i), we can add 2 to the only entry that is equal to 1 (e.g. [3, 1, 2, 2] becomes
[3, 3, 2, 2]), and for continued fractions of type 1(i),1(ii),1(iii), or 2(ii), we can
add 1 to each entry that is equal to 1 (e.g. [1, 3, 1, 2] becomes [2, 3, 2, 2]). We
claim that the resulting continued fractions have dual continued fractions
corresponding to the plumbings listed in Theorem 1.4. We will prove this
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claim case by case in the following five lemmas. Once completed, we will
have finished the proof of Theorem 1.4.

Lemma 5.4 (Type 1(i)). Suppose [a1, . . . , an] = 0 is a blowup of [1, 2, 1]
with a1 = an = 1. Then [a1 + 1, a2, . . . , an−1, an + 1] has dual of the form
[n+ 1], which corresponds to a plumbing in Theorem 1.4(a).

Proof. We first claim that [a1, . . . , an] is of the form [1, 2[n−2], 1]. Otherwise,
if there exists an index t such that at ≥ 3, then we can repeatedly blow
down the first and last entries until we obtain a continued fraction that is
not equal to 0, which contradicts Proposition 4.6. Thus [a1, . . . , an] is of the
form [1, 2[n−2], 1]. Adding 1 to the first and last entries yields [2[n]] = n+1

n ,
which has dual [n+ 1] = n+1

1 . □

Lemma 5.5 (Type 1(ii)). Suppose [a1, . . . , an] = 0 is a blowup of [1, 2, 1]
with ai = 1, where 1 < i < n and either a1 = 1 or an = 1. If a1 = 1, then
[a1+1, . . . , ai+1, . . . , an] has dual of the form [z, c1, . . . , cl], where [c1, . . . , cl]
is a budding of [4] and z ≥ 3. If an = 1 then [a1, . . . , ai + 1, . . . , an + 1] has
dual of the form [b1, . . . , bk, z], where [b1, . . . , bk] is a budding of [4] and z ≥ 3.
Moreover, these duals correspond to plumbings in Theorem 1.4(a).

Proof. Let [a1, . . . , ai, . . . , an] = 0 be a blowup of [1, 2, 1] with a1 = ai = 1,
where i ̸= n. First notice that there exists 2 ≤ t < i such that at ≥ 3. Oth-
erwise, [a1, . . . , an] = [1, 2, . . . , 2, 1, ai+1, . . . , an] = 0 and so [an, . . . , ai+1, 1,
2, . . . , 2, 1] = 0, by Proposition 4.6. But [1, 2, . . . , 2, 1] = 0, which implies that
[an, . . . , ai+1, 1, 2, . . . , 2, 1] is undefined. Thus a2 = a3 = . . . = at−1 = 2 and
at ≥ 3, where t < i. Blow down the fraction repeatedly at the first entry
until we obtain [at − 1, . . . , ai, . . . , an] = 0. This fraction has exactly one en-
try that is equal to 1, namely ai. Thus it is a blowup of [2, 1, 2] and so
by Corollary 4.11, the dual of [at − 1, . . . , ai + 1, . . . , an] is a budding of
[4]. Denote this dual by [c1, . . . , cl]. By Theorem 4.1, [at, . . . , ai + 1, . . . , an]
has dual [2, c1, . . . , cl]. By applying Theorem 4.1 again, we have that [a1 +
1, . . . , at, . . . , ai + 1, . . . , an] = [2[t−1], at, . . . , ai + 1, . . . , an] has dual [t+ 1,
c1, . . . , cl], where t+ 1 ≥ 3. Setting z = t+ 1, we have the result.

Now suppose [a1, . . . , an] = 0 is a blowup of [1, 2, 1] with ai = an = 1,
where i ̸= 1. Then by Proposition 4.6, [an, . . . , a1] = 0 and so, by the first
part of the lemma, [an + 1, . . . , ai + 1, . . . , a1] has dual of the form [z, bk, . . . ,
b1], where [bk, . . . , b1] is a budding of [4]. Thus, by Theorem 4.1, the dual of
[a1, . . . , ai + 1, . . . , an + 1] is [b1, . . . , bk, z]. Since [b1, . . . , bk] is a budding of
[4] and z ≥ 3, we have the result. □
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Lemma 5.6 (Type 1(iii)). Let [a1, . . . , an] = 0 be a blowup of [1, 2, 1]
such that ai = aj = 1, where 1 < i < j < n. Then [a1, . . . , ai + 1, . . . , aj +
1, . . . , an] has dual [b1, . . . , bk, z, c1, . . . , cl], where [b1, . . . , bk] and [c1, . . . , cl]
are buddings of [4] and z ≥ 2. Moreover, this dual corresponds to a plumbing
in Theorem 1.4(a).

Proof. Let [a1, . . . , an] = 0 be as in the statement of the lemma. Since
[a1, . . . , an] is a blowup of [1, 2, 1], we can repeatedly blow down at the
first occurrence of 1 until the first entry is equal to 1. This blowdown is of
the form [1, ar −m, . . . , aj , . . . , an] = 0, where r < j and m ≤ ar − 2. More-
over, assume that we performed the minimal number of blowdowns to obtain
such a fraction. By Lemma 5.5, [2, ar −m, . . . , aj + 1, . . . , an] has dual of the
form [y, c1, . . . , cl], where y ≥ 3 and [c1, . . . , cl] is a budding of [4]. To recover
the original fraction, we now perform blowups. The first blowup must occur
after the first entry, since otherwise, we would obtain [1, 2, ar −m, . . . , an],
which contradicts the minimality assumption. Thus the first blowup yields
[2, 1, ar −m+ 1, . . . , an] = 0. By Theorem 4.1, [ar −m, . . . , aj + 1, . . . , an]
has dual [y − 1, c1, . . . , cl]. Thus [ar −m+ 1, . . . , aj + 1, . . . , an] has dual
[2, y − 1, c1, . . . , cl] and so [2, 2, ar −m+ 1, . . . , aj + 1, . . . , an] has dual
[4, y − 1, c1, . . . , cl]. Writing [2, 2, ar −m+ 1, . . . , aj + 1, . . . , an] as [2, 2, 2 +
(ar −m− 1), . . . , aj + 1, . . . , an], we can view the underlined portion [2, 2, 2]
as a “subfraction” of [2, 2, ar −m+ 1, . . . , aj + 1, . . . , an]. Recall that [2, 2, 2]
has dual [4].

Now blow up [2, 1, 2 + ar −m− 1, . . . , an] = 0 repeatedly before or after
the first occurrence of 1 to recover the original fraction [a1, . . . , ai, . . . , ar, . . . ,
aj , . . . , an] = [a1, . . . , ai, . . . ,m+ 1 + (ar −m− 1), . . . , aj , . . . , an] = 0. By
doing this, we also end up blowing up the subfraction [2, 1, 2] before or
after the only entry that is 1 to obtain [a1, . . . , ai, . . . , ar−1,m+ 1], which is
a subfraction of [a1, . . . , ai, . . . , ar, . . . , aj , . . . , an]. Thus by Corollary 4.11,
[a1, . . . , ai + 1, . . . , ar−1,m+ 1] has dual that is a budding of [4]; denote
this budding by [b1, . . . , bk]. Since [ar −m, . . . , aj + 1, . . . , an] has dual [y −
1, c1, . . . , cl], by Lemma 4.2, [a1, . . . , ai + 1, . . . , ar, . . . , aj + 1, . . . , an] has
dual [b1, . . . , bk, y − 1, c1, . . . , cl], where y − 1 ≥ 2. Setting z = y − 1, we have
obtained the result. □

Lemma 5.7 (Type 2(i)). Let [a1, . . . , an] = 0 be a blowup of [2, 1, 2], where
ai = 1 is the only entry that is equal to 1 (where 1 < i < n). If t ̸= i, then
the dual fraction of [a1, . . . , ai + 1, . . . , at + 1, . . . , an] is a budding of either
[2, b1, . . . , bk] or [b1, . . . , bk, 2], where [b1, . . . , bk] is a budding of [4]. More-
over, these buddings correspond to plumbings in Theorem 1.4(b). If t = i,
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then the dual fraction of [a1, . . . , ai + 2, . . . , an] is a budding of [3, 3], which
corresponds to a plumbing in Theorem 1.4(c).

Proof. Suppose t < i. Since [a1, . . . , an] = 0 is a blowup of [2, 1, 2] and ai is
the only entry that is 1, it is a budding of [2, 1, 2], by Corollary 4.10. Further-
more, we can view ai as the image of 1 after performing the sequence of bud-
dings of [2, 1, 2] to obtain [a1, . . . , an]. Thus we can perform debuddings until
we obtain [at, . . . , ai, . . . , a

′

l], where i < l ≤ n and a′l ≤ al. By Corollary 4.10,
[at, . . . , ai, . . . , a

′

l] is a blowup of [2, 1, 2] with exactly one entry equal to 1 and
by Corollary 4.11, [at, . . . , ai + 1, . . . , a′l] has dual that is a budding of [4]; de-
note this budding by [b1, . . . , bk]. By Theorem 4.1, [at + 1, . . . , ai + 1, . . . , a′l]
has dual [2, b1, . . . , bk]. By performing buddings to recover the original frac-
tion, we have that the dual of [a1, . . . , at + 1, . . . , ai + 1, . . . , an] is a budding
of [2, b1, . . . , bk], by Corollary 4.4. If t > i, then a similar argument shows that
the dual of [a1, . . . , ai + 1, . . . , at + 1, . . . , an] is a budding of [b1, . . . , bk, 2],
where [b1, . . . , bk] is a budding of [4].

Now suppose t = i. The only such fraction of length 3 is [2, 3, 2], which
has dual [3, 3]. Let [a1, . . . , an] = 0 be a blowup of [2, 1, 2] with exactly one
entry equal to 1, namely ai. By Corollary 4.10, [a1, . . . , an] is a budding of
[2, 1, 2]. Thus [a1, . . . , ai + 2, . . . , an] is a budding of [2, 3, 2]. By Corollary 4.4,
the dual of [a1, . . . , ai + 2, . . . , an] must be a budding of the dual of [2, 3, 2];
that is, the dual is a budding of [3, 3]. □

Lemma 5.8 (Type 2(ii)). Let [a1, . . . , an] = 0 be a blowup of [2, 1, 2] that
is not a blowup of [1, 2, 1] and suppose there are exactly two entries that
are equal to 1, namely ai and aj (note, i, j /∈ {1, n} by Lemma 4.7). Then
[a1, . . . , ai + 1, . . . , aj + 1, . . . , an] has dual that is a budding of [2, b1, . . . , bk,
c1, . . . , cl, 2], where [b1, . . . , bk] and [c1, . . . , cl] are buddings of [4]. Moreover,
this budding corresponds to a plumbing in Theorem 1.4(d)

Proof. Note that the minimal length of such a continued fraction is 5 and the
only such fraction of length 5 is [3, 1, 3, 1, 3] = 0. Moreover, [3, 2, 3, 2, 3] has
dual [2, 4, 4, 2], which is the minimal length dual fraction of the desired form.
We start by considering blowups of [3, 1, 3, 1, 3]. Notice that we can order
the blowups so that we first perform all blowups before or after the first oc-
currence of 1 and then all blowups before or after the second occurrence of 1.
By rewriting [3, 1, 3, 1, 3] as [1 + 2, 1, 2 + (−1) + 2, 1, 2 + 1], we can view the
two underlined portions as subfractions [2, 1, 2] of [3, 1, 3, 1, 3]. By repeatedly
blowing up [3, 1, 3, 1, 3] before or after the first occurrence of 1, we also blow
up the first subfraction before or after 1. Thus we end up with a fraction of
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the form [1 + x1, . . . , xi, . . . , xp + (−1) + 2, 1, 3], where [x1, . . . , xp] = 0 is a
blowup of [2, 1, 2] with exactly one entry equal to 1, denoted by xi. Now blow
up before or after the second occurrence of 1 to obtain a fraction of the form
[1 + x1, . . . , xi, . . . , xp + (−1) + y1, . . . , yj , . . . , yq + 1], where [y1, . . . , yq] = 0
is a blowup of [2, 1, 2] with exactly one entry equal to 1, denoted by yj .
Thus by Corollary 4.11, [x1, . . . , xi + 1, . . . , xp] and [y1, . . . , yj + 1, . . . , yq]
have duals that are blowups of [4], which we denote by [b1, . . . , bk] and
[c1, . . . , cl], respectively. By Corollaries 4.2 and 4.4, [1 + x1, . . . , xi, . . . , xp +
(−1) + y1, . . . , yj , . . . , yq + 1] has dual [2, b1, . . . , bk, c1, . . . , cl, 2]. Thus any
blowup of [3, 1, 3, 1, 3] with exactly two entries equal to 1 has dual of the
desired form.

Now let [a1, . . . , an] be as in the statement of the lemma. Since
[a1, . . . , an] is not a blowup of [1, 2, 1], the only way to obtain [a1, . . . , an] is to
first blow up [2, 1, 2] before or after the middle entry. This yields [3, 1, 2, 2]
or [2, 2, 1, 3]. Furthermore, at each step, we cannot blow up at the begin-
ning or end of the fraction. Otherwise, we would obtain a fraction with
first or last entry equal to 1, which contradicts Lemma 4.7. Thus either
a1 ≥ 3, an ≥ 3, or a1, an ≥ 3. If a1, an ≥ 3, then we claim that [a1, . . . , an] is
a blowup of [3, 1, 3, 1, 3]. Notice that the only way to obtain such a fraction
is by first blowing up a fraction of the form [2[n−1], 1, n] (or [n, 1, 2[n−1]]) be-
tween the first two entries (or last two entries) to obtain [3, 1, 3, 2[n−3], 1, n]
(or [n, 1, 2[n−3], 3, 1, 3]). We can then blow up before or after either occur-
rence of 1. Thus such continued fractions are clearly blowups of [3, 1, 3, 1, 3],
which we already handled in the previous paragraph.

Now suppose a1 = 2 and an ≥ 3 (or similarly, a1 ≥ 3 and an = 2) and let
ai = aj = 1, where 1 < i, j < n. We claim that by a sequence of debuddings,
we can obtain a fraction that is a blowup of [3, 1, 3, 1, 3]. By Lemma 4.9, the
first debudding [a2, . . . , an − 1] is a blowup of [2, 1, 2] and not a blowup of
[1, 2, 1]. Moreover, it still has two entries equal to 1 and a2, an − 1 ≥ 2. If
a2, an − 1 ≥ 3, then by the previous paragraph, we are done. If a2 = 2 and
an − 1 ≥ 3 (or vice versa), then we can perform another debudding. Since
the fraction has finite length, this process terminates, yielding a fraction
with first and last entry greater than 2 (they cannot both be equal to 2
by the remarks above). Thus the result is a blowup [3, 1, 3, 1, 3]. Call this
fraction [a′1, . . . , a

′

m], where a′i = a′j = 1, i ̸= j, and i, j ̸= 1, n. By the cal-
culation in the first paragraph, [a′1, . . . , a

′

i + 1, . . . , a′j + 1, . . . , a′m] has dual
of the form [2, b1, . . . , bk, c1, . . . , cl, 2], where [b1, . . . , bk] and [c1, . . . , cl] are
buddings of [4]. Now we can perform buddings to [a′1, . . . , a

′

i + 1, . . . , a′j +
1, . . . , a′m] to recover the original fraction [a1, . . . , ai + 1, . . . , aj + 1, . . . , an].
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Thus by Corollary 4.4, its dual fraction can obtained by a sequence of bud-
dings of [2, b1, . . . , bk, c1, . . . , cl, 2]. □
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