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For a compact Poisson-Lie group K, the homogeneous space K/T
carries a family of symplectic forms ωs

ξ , where ξ ∈ t∗+ is in the posi-
tive Weyl chamber and s ∈ R. The symplectic form ω0

ξ is identified
with the natural K-invariant symplectic form on the K coadjoint
orbit corresponding to ξ. The cohomology class of ωs

ξ is indepen-
dent of s for a fixed value of ξ.

In this paper, we show that as s→ −∞, the symplectic volume
of ωs

ξ concentrates in arbitrarily small neighborhoods of the small-
est Schubert cell in K/T ∼= G/B. This strengthens an earlier result
of [10] and is a step towards a conjectured construction of global
action-angle coordinates on Lie(K)∗ [4, Conjecture 1.1].

1. Introduction

Let K be a compact connected Lie group with maximal torus T and let
G = KC denote its complexification. Let t denote the Lie algebra of T . As
our results concern the homogeneous space K/T , we may assume without
loss of generality that K is semisimple and simply connected.

The homogeneous space K/T carries an interesting family of symplec-
tic structures ωsξ parameterized by s ∈ R and elements of a positive Weyl
chamber, ξ ∈ t∗+. Following [13], the Iwasawa decomposition G = AN−K
defines dual Poisson-Lie groups (K,πK) and (AN−, πAN−

). The symplec-
tic leaves of πAN−

are the orbits of the so-called dressing action of K on
AN−. Let Dξ ⊂ AN− denote the dressing orbit through exp(

√
−1ξ), where

ξ ∈ t∗ is identified with an element of t via the Killing form. For all s ̸= 0
and ξ ∈ t∗+, fix the K-equivariant identification of K/T with Dsξ such that
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eT 7→ exp(s
√
−1ξ) and define1

(1) πsξ := sπAN−
|Dsξ

, ωsξ := (πsξ)
−1.

For s = 0 and ξ ∈ t∗+, fix the K-equivariant identification of K/T with the
coadjoint orbit Oξ such that eT 7→ ξ and define ω0

ξ to be the Kostant-
Kirillov-Souriau symplectic form.

The family ωsξ was studied in [1, 11] and has several nice properties.
First, the action of K on K/T is Poisson: the action map K ×K/T → K/T
is a Poisson map with respect to sπK and πsξ for all s and ξ. In other words,
(K/T, πsξ) is a Poisson homogeneous space for (K, sπK). Poisson homoge-
neous spaces for (K,πK) were classified in [9]. Second, for a fixed value of
ξ the forms ωsξ are isotopic for all s ∈ R [1]. It follows that for fixed ξ and
arbitrary s the forms ωsξ are cohomologous. In particular, their symplectic
(Liouville) volumes are the same:

(2) Vol(K/T, ωsξ) = Vol(K/T, ω0
ξ ).

Let B ⊂ G be the positive Borel subgroup (corresponding to t∗+). The
flag variety G/B is isomorphic to K/T and admits a stratification into Schu-
bert cells BwB/B, indexed by elements w of the Weyl group. The smallest
Schubert cell is the point eB ∈ G/B and the biggest Schubert cell, Bw0B/B,
corresponding to the longest element w0 ∈W , is dense in G/B.

It follows from [11, Proposition 5.12] that the rescaled family of Poisson
structures s−1πsξ admits, for all ξ, a common limit π∞ when s→ −∞. The
Poisson structure π∞ coincides with the pushforward under K → K/T of
−πK , and the symplectic leaves of π∞ are exactly the Schubert cells; see
also Remark 2.1. Then Theorem 2.2 in [10] implies the following:

Theorem 1.1. Let U be a compact subset of the big Schubert cell Bw0B/B.
Then, for any ξ ∈ t∗+ and ε > 0, there exists s0 ∈ R such that for s ⩽ s0,

Vol
(

U, ωsξ
)

< ε.

Proof. Fix ξ ∈ t∗+ and identify K/T with the dressing orbit Dsξ as above,
equipped with sπAN−

. Let prA : G→ A denote projection with respect to

1For s < 0, ωs
ξ is the symplectic structure onK/T defined by −sπλ, λ = −s

√
−1ξ,

where πλ is the Poisson structure defined by Lu in [11, Notation 5.11]. See also
Remark 2.1.
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the Iwasawa decomposition G = AN−K. Identify t ∼= t∗ via the Killing form.
With these identifications,

Ψs : K/T → t∗, kT 7→ 1

s
√
−1

log prA(k exp(s
√
−1ξ)),

is a moment map for the action of T on (K/T, ωsξ) by left multiplication,
for all s ̸= 0 [12, Theorem 4.13]. The T -fixed points, their weights, and their
images under the moment map do not depend on s. Thus the Duistermaat-
Heckman measure on the moment polytope (the pushforward under Ψs of
the Liouville measure of ωsξ) is independent of s.

Fix a compact subset U ⊂ Bw0B/B. By [10, Theorem 2.2], there exists
r > 0 such that

|| log prA(k exp(s
√
−1ξ))− sw0

√
−1ξ|| < r

for all ξ ∈ t+, s < 0, and k ∈ U . The norm || · || is taken with respect to the
Killing form. It follows that for fixed ξ ∈ t+ and all s < 0,

||Ψs(kT )− w0ξ|| =
∣

∣

∣

∣

∣

∣

∣

∣

1

s
√
−1

log prA(k exp(s
√
−1ξ))− w0ξ

∣

∣

∣

∣

∣

∣

∣

∣

<
r

|s|

for all k ∈ U . Since the Duistermaat-Heckman measure is independent of s,
this implies that Vol(U, ωsξ) < ε for all s < 0 sufficiently large. □

In other words, any compact subset of the big Schubert cell is depleted
of symplectic volume as s→ −∞. Since total volume is constant for fixed
ξ, this implies that the volume concentrates in a small neighborhood of the
other Schubert cells.

Example 1.2. As an illustration of this phenomenon, consider the exam-
ple of K = SU(2). Identify t∗ = R and ξ ∈ t∗+ = R>0. Let (z, ϕ) ∈ (−1, 1)×
(0, 2π) be cylindrical coordinates on the unit-sphere S2 ⊂ R3 and fix the
K-equivariant identification of K/T with S2 such that eT is identified with
the pole z = 1. The family of symplectic forms is

ωsξ =



















sinh(2sξ)

2s(cosh(2sξ) + z sinh(2sξ))
dz ∧ dϕ, s ̸= 0;

ξdz ∧ dϕ, s = 0.

One can derive this formula, for instance, from [11, Example 5.4]. Note that
ω0
ξ = ξdz ∧ dϕ are the rotation-invariant area forms on S2. We leave it as
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an exercise to the reader to show that the cohomology class of ωsξ is indeed
independent of s and that for s≪ 0 the volume concentrates near the pole
z = 1, which was identified with the smallest Schubert cell, eB.

In general, there are many Schubert cells in G/B of positive codimension
and the question of how volume arranges itself on a neighborhood of those
Schubert cells when s≪ 0 remains. The main result of this paper is an
answer to this question (and a strengthening of Theorem 1.1):

Theorem 1.3 (Main Theorem). Let U be an open neighborhood of the
smallest Schubert cell eB. Then for any ξ ∈ t∗+ and ε > 0, there exists s0 ∈ R

such that for s ⩽ s0,

Vol
(

U, ωsξ
)

> (1− ε)Vol(K/T, ωsξ).

In other words, any compact subset of G/B not containing eB eventually
gets depleted of symplectic volume as s→ −∞.

The remainder of the paper is devoted to setting up the proof of The-
orem 1.3, which is given below. Section 2 describes the dual Poisson-Lie
group (K∗, πK∗) := (AN−, πAN−

). There are two important maps defined
for s ̸= 0,

Es : k
∗ → K∗

Ls : R
r+m × T

m → K∗

which are defined in Equations (5) and (9), respectively. Here r = dim(T ),
2m = dim(K/T ), and Tm is a compact torus of dimension m. The map
Es is a diffeomorphism. It is K-equivariant with respect to the coadjoint
and dressing actions and has the property that Es(ξ) = exp(s

√
−1ξ) for all

ξ ∈ t∗. The map Ls is a diffeomorphism onto its image and the image of Ls
is an open dense subset of K∗ that is independent of s. The intersection
Ls(R

r+m × Tm) ∩ Es(Oξ) is an open dense subset of Es(Oξ) for all ξ ∈ t∗+.
Moreover, all the maps in the following diagram are Poisson:

(3) (Oξ, π
s
ξ) (k∗, πs = E∗

s(sπK∗)) (K∗, sπK∗) (Rr+m × Tm,L∗
s(sπK∗)).

Es Ls

There is a distinguished open subset PT (K∗) ⊂ Rr+m × Tm called the
partial tropicalization of K∗, introduced in [2], equipped with a constant
Poisson structure πPT . As s→ −∞, the Poisson structure L∗

s(sπK∗) con-
verges to πPT uniformly on certain subsets that exhaust PT (K∗) (Sec-
tion 2.3). Section 3 shows that the symplectic volume of the leaves of L∗

s(sπK∗)



✐

✐

“1-Hoffman” — 2020/10/27 — 16:20 — page 1201 — #5
✐

✐

✐

✐

✐

✐

Concentration of symplectic volumes 1201

concentrates in PT (K∗) as s→ −∞ (Proposition 3.5). Section 4 contains
the proof of Proposition 4.3, which says that, under the maps in (3), points
of PT (K∗) correspond to points near t∗+ ⊂ k∗ when s≪ 0. This allows us to
translate Proposition 3.5 into a statement about the symplectic volume of
(K/T, ωsξ).

Proof of Theorem 1.3. Let Nsξ ⊂ Rr+m × Tm denote the preimage (E−1
s ◦

Ls)
−1(Oξ), which is a symplectic leaf of L∗

s(sπK∗), and denote its symplectic
form ηsξ = (E−1

s ◦ Ls)∗ωsξ . In Proposition 3.5, we prove that for all ε > 0,
there is a compact subset Dε ⊂ PT (K∗) such that

lim
s→−∞

Vol (Nsξ ∩Dε, ηsξ) ⩾ (1− ε)Vol(Nsξ, ηsξ) = (1− ε)Vol(K/T, ωsξ).

In Proposition 4.3, we show there exists s0 < 0 such that for all s ⩽ s0,

E−1
s ◦ Ls(Nsξ ∩Dε) ⊆ U.

Since E−1
s ◦ Ls is a Poisson isomorphism, it preserves volumes of the sym-

plectic leaves. Thus

Vol
(

U, ωsξ
)

⩾ Vol
(

E−1
s ◦ Ls(Nsξ ∩Dε), ω

s
ξ

)

= Vol (Nsξ ∩Dε, ηsξ) .

Combining with the limit above completes the proof. □

ξ

Oξ

E−1
s ◦ Ls

PT (K∗)

Nsξ

Figure 1. As s→ −∞, volume of the symplectic leaves Nsξ = (E−1
s ◦

Ls)
−1(Oξ) concentrates on subsets of Nsξ ∩ PT (K∗), illustrated in red. For

s sufficiently large, the image of the red subset is contained in an arbitrarily
small neighborhood of ξ, illustrated in blue.

A motivation for our study is provided by the following idea. There
exist Poisson isomorphisms between k∗ and K∗ called Ginzburg-Weinstein
isomorphisms after the authors of [8]. Given a Ginzburg-Weinstein isomor-
phism γ : k∗ → K∗, its scaling γs(x) := γ(sx) is a Poisson isomorphism with
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respect to πk∗ and sπK∗ . Composing γs with L−1
s defines coordinates on

every regular coadjoint orbit which are almost global action-angle coordi-
nates for s≪ 0. Conjecturally, the s→ −∞ limit of this composition defines
global action-angle coordinates on the regular coadjoint orbits. This has al-
ready been shown to be true for K = U(n), where for a certain choice of
Ginzburg-Weinstein diffeomorphism and cluster seed, the limit is the classi-
cal Gelfand-Zeitlin system [4].
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2. Background

Fix the following notation. Let G be a connected simply-connected semisim-
ple complex Lie group of rank r. Fix a compact real form K ⊂ G and a
Cartan subgroup H ⊂ G, and let (·)∗ : G→ G be the anti-involution of G
under which elements k ∈ K satisfy k−1 = k∗. Denote the Lie algebras of G,
K, and H by g, k, and h respectively. Fix a choice of positive roots of g with
respect to h. Denote the lattice of integral weights by P , and the semigroup
of dominant integral weights by P+. We write h 7→ hµ ∈ C× for the multi-
plicative character H → C× determined by µ ∈ P . Let I = {1, . . . , r} index
the simple roots, αi ∈ h∗, the simple coroots, α∨

i ∈ h, and the fundamental
weights, ωi, which by definition satisfy ωi(α

∨
j ) = δij . Denote the Weyl group

of G by W . Let si ∈W be the simple reflection generated by αi and let w0

be the longest element of W , with length denoted by m.
Let T be the maximal torus ofK which has Lie algebra t = h ∩ k. Let a =√

−1t and denote the corresponding subgroup of G by A. Corresponding to
the choice of positive roots, we have opposite maximal unipotent subgroups
N and N− with Lie algebras n and n−, as well as opposite Borel subgroups
B = HN and B− = HN− with Lie algebras h⊕ n and h⊕ n−. Fix a set
of Chevalley generators Fi ∈ n−, α

∨
i ∈ h, Ei ∈ n, i ∈ I. Recall the Iwasawa

decompositions G = AN−K and g = n− ⊕ a⊕ k.
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Fix an invariant non-degenerate bilinear form (·, ·) on g. The isomor-
phism k ∼= k∗ determined by (·, ·) embeds t∗ ⊆ k∗, as the image of t. Let
t∗+ ⊆ t∗ be the open cone such that

√
−1t∗+ ⊆ h∗ is the interior of the real

cone spanned by P+. We refer to both t∗+ and
√
−1t∗+ as the positive Weyl

chamber.

2.1. Dressing orbits and compact Poisson-Lie groups

Recall that a Poisson-Lie group (K,π) is a Lie group K equipped with a
Poisson structure π such that the multiplication mapK ×K → K is Poisson
(with respect to the product Poisson structure on K ×K). For example, the
canonical Lie-Poisson structure πk∗ on the dual k∗ of a Lie algebra k is linear,
so (k∗, πk∗) is a Poisson-Lie group with respect to vector addition.

For G as above, both K and AN− have natural Poisson-Lie group struc-
tures defined as follows (see [13] for details). Let ℑ(·, ·) be the imaginary part
of the fixed G-invariant non-degenerate bilinear form (·, ·) on g. Then k and
n− ⊕ a are isotropic subspaces with respect to 2ℑ(·, ·), and 2ℑ(·, ·) defines
an isomorphism n− ⊕ a ∼= k∗. This identification endows k and k∗ with the
structure of dual Lie bialgebras. Since K and AN− are simply connected,
the Lie bialgebra structures on k and k∗ integrate to define Poisson-Lie group
structures πK on K and πK∗ on AN−, respectively. These Poisson-Lie group
structures are dual, since they arise by integrating dual Lie bialgebras, thus
one denotes K∗ = AN−, and refers to (K∗, πK∗) as the dual Poisson-Lie
group of (K,πK).

Both k∗ and K∗ have naturally defined K actions. The coadjoint action
of K on k∗ is defined in terms of the adjoint action by the equation

⟨Ad∗k ξ, x⟩ = ⟨ξ,Adk−1 x⟩, k ∈ K, ξ ∈ k∗, and x ∈ k.

The coadjoint action preserves πk∗ , and the symplectic leaves of πk∗ are
the coadjoint orbits. The dressing action of K action on K∗ is defined by
re-factorizing kb ∈ G according to the Iwasawa decomposition. If

kb = b′k′ ∈ AN−K, k, k′ ∈ K, b, b′ ∈ K∗,

then the dressing action of k on b is defined as kb = b′. The symplectic leaves
of πK∗ are the dressing orbits. In other words, they are the joint level sets
of the Casimir functions [13],

(4) Ci(b)
2 := Tr (ρωi (bb∗)) , b ∈ K∗,
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where ρωi is the fundamental irreducible G-representation with highest
weight ωi ∈ P+. The map ϕ : b 7→ bb∗ is a diffeomorphism of K∗ onto the
set S = {g ∈ G | g∗ = g}.

There is a family of diffeomorphisms Es : k
∗ → K∗ parameterized by s ̸=

0 [7]. Let ψ : k∗ → k be the K-equivariant isomorphism given by the fixed
bilinear form on g. Then, define

(5) Es : k
∗ ψ−−−→ k

exp(2s
√
−1·)−−−−−−−−→ S

ϕ−1

−−→ K∗ = AN−.

The map Es is equivariant with respect to the coadjoint and dressing ac-
tions of K. Let Oξ be the coadjoint orbit through ξ ∈ t∗+. Denote by Dsξ the
dressing orbit through Es(ξ) = exp

(

s
√
−1ψ(ξ)

)

. Since Es is K-equivariant,
Es(Oξ) = Dsξ.

Remark 2.1. Most references, such as [13], prefer to use the triple (g, k, n⊕
a) together with the form 2ℑ(·, ·) in their definition of the Lie bialgebra
structures on k and k∗. The linearization at the identity of the map G→
G, g 7→ (g∗)−1 takes the triple (g, k, n− ⊕ a) together with the form 2ℑ(·, ·),
to the triple (g, k, n⊕ a) together with the form −2ℑ(·, ·). Therefore our
Poisson structure πK on K agrees with the one in [13], up to sign.

2.2. Cluster coordinates on double Bruhat cells

The double Bruhat cell determined by a pair of elements u, v ∈W , is the
intersection

Gu,v := BuB ∩B−vB− ⊂ G.

In particular, we will consider Gw0,e = Bw0B ∩B−, which is an open dense
subset of B−.

Let G0 = N−HN be the open dense subset of elements in G that admit a
Gaussian decomposition. For a dominant weight µ ∈ P+, the principal minor
∆µ,µ is a regular function G→ C uniquely determined by its value on G0:

∆µ,µ(n−hn) = hµ, for any n− ∈ N−, h ∈ H,n ∈ N.

For any two weights γ and δ of the form γ = wµ, δ = vµ, for some w, v ∈W ,
the generalized minor ∆wµ,vµ is the regular function on G given by

∆γ,δ(g) = ∆wµ,vµ(g) = ∆µ,µ(w
−1gv), for g ∈ G,

where w is a specific lift of w ∈W to G as in [6, Equation 1.5].
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Fix a reduced word i = (i1, . . . , im), ij ∈ I, for w0 = si1 · · · sim . Let R =
R

− ∪R
+, where R

− = [−r,−1] and R
+ = [1,m]. For 1 < k < m, let vk =

sim · · · sik+1
and let vm = e. For k ∈ R

−, let ik = −k and vk = w0. Consider
the functions

∆k := ∆vkωik
,ωik

, k ∈ R.

The functions ∆k form a seed for the upper cluster algebra structure on
C[Gw0,e] described in [5].

Being an upper cluster algebra implies that any f ∈ C[Gw0,e] is a Laurent
polynomial in the functions ∆k. The functions ∆k then determine an open
embedding

(6) σ(i) : (C×)m+r → Gw0,e,

which is a (birational) inverse to

Gw0,e → C
m+r; g 7→ (∆−r(g), . . . ,∆m(g)).

Note that there is no term ∆k with index k = 0.
We conclude this section by recalling how generalized minors appear in

matrix entries of representations of G. A dominant integral weight µ ∈ P+

can be written uniquely as

µ =
∑

i∈I

ci(µ)ωi, ci(µ) ∈ Z⩾0.

Then the function ∆w0µ,µ can be written as

(7) ∆w0µ,µ =
∏

i∈I

∆ci(µ)
w0ωi,ωi

.

One can check that

h ·∆w0µ,µ · h′ = h−w0µh′
µ
∆w0µ,µ,

Ei ·∆w0µ,µ = ∆w0µ,µ · Ei = 0 for i ∈ I,

where h, h′ ∈ H, and G acts on C[G] in the standard way

(g · f · h)(x) = f(g−1xh) g, h, x ∈ G, f ∈ C[G].

For a sequence of indices j = (j1, . . . , jn) in I, write Fj = Fj1Fj2 · · ·Fjn ∈
U(g). Recall that the functions Fj ·∆w0µ,µ · Fk arise from representations
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of G as follows. Let (V, ρ : G→ GL(V )) be the irreducible G-module with
highest weight µ. Let v1, . . . , vn be a weight basis of V , where H acts on
vj with weight wt(vj) ∈ h∗, and assume wt(v1) = µ and wt(vn) = w0µ. Let
ρj,k(g) be the (j, k)-entry of the matrix for ρ(g) with respect to the basis
{vj}. Then ρn,1 = c∆w0µ,µ, for some c ∈ C×. We may choose the weight
basis such that c = 1. Each ρj,k is a linear combination of terms of the form
Fj ·∆w0µ,µ · Fk, where j and k are such that

(8) h · (Fj ·∆w0µ,µ · Fk) · h′ = h−wt(vj)(h′)wt(vk)(Fj ·∆w0µ,µ · Fk)

for all h, h′ ∈ H.

2.3. The partial tropicalization and its symplectic leaves

Recall from Section 2.1 that K∗ = AN−. Let S = {k ∈ R | vkωik ̸= ωik}.
Then |R\S| = r, and ∆k(K

∗) ⊂ R+ if and only if k ∈ R\S. The collection
of functions

{∆k | k ∈ R} ∪ {∆k | k ∈ S}

define a real coordinate system on an open dense subset of K∗. Equip
Rr+m × Tm with coordinates (λR, ϕS), where λR = (λk)k∈R and ϕS =
(ϕk)k∈S .

There is a Poisson manifold (PT (K∗), πPT ), called the partial tropical-
ization of K∗, which was introduced in [2]. As a manifold, PT (K∗) is defined
as

PT (K∗) := C × T
m ⊂ R

r+m × T
m,

where C is an open convex polyhedral cone of dimension r +m defined
by inequalities described in [6] and [2, Theorem 6.24]. The definition of C
depends on the choice of reduced word i fixed in Section 2.2. More pre-
cisely, C is the set of points x ∈ Rm+r satisfying an inequality Φt(x) > 0,
where Φt : Rm+r → R is a certain piecewise-linear function called the trop-
ical Berenstein-Kazhdan potential. The Poisson structure πPT is constant
in the coordinates (λR, ϕS). The symplectic leaves of PT (K∗) are the joint
level sets of the coordinates λR− = (λ−r, . . . , λ−1) [3, Theorem 6.5].

There is a correspondence between symplectic leaves of PT (K∗) and
regular coadjoint orbits of K, which we now describe. To each ξ ∈ t∗+ we
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associate λR− ∈ Rr with coordinates

λ−i = (w0ωi,
√
−1ξ) for i = −r, . . . ,−1.

Denote the symplectic leaf of PT (K∗) that is the fiber of λR− by Pξ. The
corresponding coadjoint orbit is Oξ. For each fixed value of s ̸= 0, the leaf
Pξ also corresponds to the dressing orbit Dsξ, defined in Section 2.1,

Each symplectic leaf Pξ ⊂ PT (K∗) inherits a symplectic form from πPT
denoted by νξ.

Theorem 2.2. [3, Theorem 6.11] The symplectic volume of (Pξ, νξ)
equals the symplectic volume of the coadjoint orbit Oξ ⊂ k∗ equipped with
the Kirillov-Kostant-Souriau symplectic form:

Vol (Pξ, νξ) = Vol(Oξ, ωξ).

Remark 2.3. Although [3, Theorem 6.11] is only stated for leaves param-
eterized by regular dominant integral weights, the theorem here follows by
scaling and continuity.

In order to compare the Poisson structures of PT (K∗) and K∗, we define
the detropicalization map Ls : PT (K

∗) → K∗ as follows. For s < 0, let

(9) Ls(λR, ϕS) = σ(i)
(

esλ−r−
√
−1ϕ−r , . . . , esλm−

√
−1ϕm

)

,

where we understand ϕk = 0 on the right hand side if k /∈ S. Denote bs =
Ls(λR, ϕS).

Remark 2.4 (Conventions). We follow the conventions of [3, 6] for (par-
tial) tropicalization, which are opposite to those of [2]. We consider K∗ ⊂
B−, as in [3], rather than K∗ ⊂ B, as in [2], and take the limit s→ −∞.
This accounts for the minus signs in (9).

The Casimir functions for K∗ are related to the coordinates λR, ϕS by
the detropicalization map via r equations (one for each Casimir function):
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Ci(bs)
2 = Tr(ρωi(bsb

∗
s)) =

∑

j

ρωi

j,j(bsb
∗
s) =

∑

j,k

|ρωi

j,k(bs)|2(10)

=
∑

j,k

∣

∣

∣

∣

∣

∑

i,j

ci,j(Fi∆w0ωi,ωi
Fj)(bs)

∣

∣

∣

∣

∣

2

= |∆w0ωi,ωi
(bs)|2



1 +
∑

j,k

∣

∣

∣

∣

∣

∑

i,j

ci,j
(Fi∆w0ωi,ωi

Fj)(bs)

∆w0ωi,ωi
(bs)

∣

∣

∣

∣

∣

2


 .

Since bs = Ls(λR, ϕS), the last line on the right side can be rewritten as a
Laurent polynomial in the functions esλk−

√
−1ϕk . The term |∆w0ωi,ωi

(bs)|2 =
e2sλ−i dominates the expression for s≪ 0, and the exponents in the other
terms are controlled by their distance from the boundary of C, as follows.

Recall that C is the set of points x ∈ Rm+r satisfying the inequality
Φt(x) > 0. For δ > 0, let Cδ ⊂ C be the set of points x ∈ Rm+r which satisfy
the inequality Φt > δ. Then,

Proposition 2.5. [2, Theorem 4.13 and Lemma 6.17] For (λR, ϕS) ∈ C
δ ×

Tm, each term
∣

∣

∣

∣

∣

∑

i,j

ci,j
(Fi∆w0ωi,ωi

Fj)(bs)

∆w0ωi,ωi
(bs)

∣

∣

∣

∣

∣

= O(esδ).

Here and throughout, a function f(s) is in O(g(s)), g(s) ⩾ 0, if there
exists c > 0 such that

−cg(s) ⩽ f(s) ⩽ cg(s).

As a direct consequence of Proposition 2.5 and Equations (10), we have:

Corollary 2.6. [3, Remark 6.6] For all ξ ∈ t∗+ and (λR, ϕS) ∈ Pξ, and for
each i = 1, . . . , r,

lim
s→−∞

1

s
log ◦Ci ◦ Ls(λR, ϕS) = λ−i = (w0ωi,

√
−1ξ).

Remark 2.7. Corollary 2.6 says that points Ls(Pξ) in the image of a trop-
ical leaf under the detropicalization map approach the corresponding scaled
dressing orbit Dsξ in the limit s→ −∞. It is useful to note that points in
Ls(Pξ) will concentrate near a certain region of Dsξ, not the entire orbit:
there are points in the preimages of the scaled dressing orbits L−1

s (Dsξ) that
remain far away from PT (K∗), even as s→ −∞ (see Figure 2).
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3. Symplectic volumes of the leaves of πs

In this section we study volumes of the symplectic leaves of the Poisson
bivector

πs := (Ls)
∗(sπK∗).

Note that the pullback of a bivector under a diffeomorphism is by definition
the pushforward under the inverse diffeomorphism. The symplectic leaves in
question are submanifolds of Rr+m × Tm. Roughly, for s≪ 0 each of these
leaves has a piece which lies inside PT (K∗) = C × Tm, close to the corre-
sponding leaf of πPT (Section 3.1). For s≪ 0, the volume of the symplectic
leaves concentrate there (Proposition 3.5). This is illustrated in Figure 2.

Let us first establish some notation. Each symplectic leaf of πs is the
preimage under Ls of a dressing orbit. We denote the leaf and its symplectic
form by

Nsξ := L−1
s (Dsξ), ηsξ := (πs)

−1.

There is a corresponding symplectic leaf Pξ of PT (K∗) equipped with νξ,
as described in Section 2.3. Recall, for ξ ∈ t∗+,

Pξ :=
{

(λR, ϕS) ∈ PT (K∗) | λ−i = (w0ωi,
√
−1ξ), i = −r, . . . ,−1

}

,

which is a product of an open polytope (a fiber in C of projection to the
first r coordinates) times a torus. We will often reference the open subset

P
δ
ξ := Pξ ∩ (Cδ × Tm) and its closure P

δ
ξ.

Nsξ

Pξ C × Tm

(a) s = −1

Nsξ

Pξ C × Tm

(b) s = −2

Figure 2. Volume of the symplectic leaves Nsξ of πs concentrates on the part
of Nsξ that is close to the corresponding tropical leaf, Pξ.
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3.1. The implicit function theorem argument

Consider the map

(11) Fsξ = (f−r, . . . , f−1) : R
r × R

m × T
m → R

r

with coordinates f−i defined by composing the detropicalization map (9)
with the Casimir functions (4) on K∗,

(12) f−i(λR, ϕS) =
1

s
log ◦Ci ◦ Ls(λR, ϕS).

The fiber F−1
sξ (λR−) is the symplectic leaf Nsξ. The following lemma will

allow us to apply the implicit function theorem at certain points in Nsξ.

Lemma 3.1. For all (λR, ϕS) ∈ C
δ × Tm, the derivatives

Dλ
R−
Fsξ = Ir +O(e2sδ);

Dλ
R+
Fsξ = O(e2sδ);

DϕS
Fsξ = O(e2sδ).

(13)

(Here Ir is the r × r identity matrix and O(esδ) denotes a matrix of the
appropriate dimensions whose entries are O(e2sδ) as functions of s.)

Proof. By the formula for f−i, Equations (10), and the comment directly
following Equations (10),

e2sf−i(λR,ϕS) = e2sλ−i



1 +
∑

j,k

cj,ke
2sLj,k(λR,ϕS)



 .

for−i=−r, . . . ,−1, constants cj,k, and some linear combinations Lj,k(λR, ϕS).
Differentiating these equations gives

∂f−i
∂λk

= e2s(λ−i−f−i(λR,ϕS))



δ−i,k +
∑

j,k

(

∂Lj,k
∂λk

+ δ−i,k

)

cj,ke
2sLj,k(λR,ϕS)



 ;

∂f−i
∂ϕk

= e2s(λ−i−f−i(λR,ϕS))
∑

j,k

∂Lj,k
∂ϕk

cj,ke
2sLj,k(λR,ϕS).
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Here δ−i,k is the Kronecker-delta function. By Proposition 2.5, for (λR, ϕS) ∈
C
δ × Tm,

e2s(λ−i−f−i(λR,ϕS)) = 1 +O(e2sδ);

e2sLj,k(λR,ϕS) = O(e2sδ),

which completes the proof. □

Fix an arbitrary element p = (λR− , λR+ , ϕS) ∈ Pξ and consider the sub-
space

Sp := R
r × {λR+} × {ϕS} ⊆ R

r × R
m × T

m.

By an intermediate value theorem argument, we can show that for s≪ 0,
Nsξ intersects Sp near p:

Lemma 3.2. For all ξ ∈ t∗+ and for all δ, υ > 0 sufficiently small, there
exists s0 < 0 such that for all s ⩽ s0 and p ∈ P

δ
ξ , the intersection Sp ∩ Nsξ ∩

Bυ(Pξ) is non-empty (see Figure 3).

C × Tm

C
δ/2 × TmBυ(Pξ)

Sp p

Pξ

Nsξ

Figure 3. The intersection described in Lemma 3.2. The intersection of Nsξ
with the shaded region is locally the graph of a function defined on P

δ
ξ

(Proposition 3.3). In the figure, Pδ
ξ is the thick part of Pξ.
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Proof. Consider the equivalent problem of showing there is a s0 such that
for all s ⩽ s0 and p ∈ P

δ
ξ , the submanifold Ls(Sp ∩Bυ(Pξ)) intersects the

dressing orbit Dsξ. Since dressing orbits are joint level sets of the Casimir
functions Ci, showing this intersection is non-empty is equivalent to showing
that λR− is contained in the image of Sp ∩Bυ(Pξ) under the map Fsξ defined
in Equations (11) and (12).

Fix δ > 0 (small enough that P
δ
ξ is nonempty). By Corollary 2.6, for

ε > 0 sufficiently small,

lim
s→−∞

f−i(λ−r, . . . , λ−i ± ε, . . . , λ−1, λR+ , ϕS) = λ−i ± ε.

Thus, for all p ∈ P
δ
ξ, there is a sp such that for s ⩽ sp, the map Fsξ satisfies

the assumptions of the Poincaré-Miranda Theorem on the box

[λ−r − ε, λ−r + ε]× · · · × [λ−1 − ε, λ−1 + ε]× {λR+} × {ϕS} ⊂ Sp.

Take ε > 0 sufficiently small so that the box is contained in Sp ∩Bυ(Pξ)
and, without loss of generality (making υ smaller if necessary), assume that

Sp ∩Bυ(Pξ) ⊂ C
δ/2 × Tm for all p ∈ P

δ
ξ. It follows by the Poincaré-Miranda

theorem that λR− is contained in the image of the box under the map Fsξ
for s ⩽ sp.

By transversality of the intersection of Sp and Nsξ at points in C
δ/2 × Tm,

for s less than some s′ (Lemma 3.1), each p ∈ P
δ
ξ has a neighborhood Up such

that for p′ ∈ Up and s ⩽ sp, the intersection Sp′ ∩ Nsξ ∩Bυ(Pξ) is non-empty.
Passing to a finite subcover Upk , k = 1, . . . , n and letting s0 = min{s′, spk}
completes the proof. □

Define

Uξ,δ :=
⋃

p∈Pδ
ξ

Sp.

From this point forward, take υ > 0 sufficiently small so thatUξ,δ ∩Bυ(Pξ) ⊂
C
δ/2 × Tm. The region Uξ,δ ∩Bυ(Pξ) is shaded blue in Figure 3.

Proposition 3.3. For all δ > 0 and s ⩽ s0 as in Lemma 3.2, the intersec-
tion Nsξ ∩Uξ,δ ∩Bυ(Pξ) is locally the graph of a function

gs : P
δ
ξ → R

r.

Proof. Combine Lemmas 3.1, 3.2, and the implicit function theorem. □
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3.2. Comparing symplectic volumes on the leaves of πs

In this subsection, we compare the symplectic volumes of (Pξ, νξ) and
(Nsξ, ηsξ). By Proposition 3.3, the intersection of Nsξ with Uξ,δ ∩Bυ(Pξ)
is locally the graph of a function gs. i.e. locally there is a diffeomorphism

Gs : P
δ
ξ → Nsξ, (λR, ϕS) 7→ (gs(λR+ , ϕS), λR+ , ϕS)

Lemma 3.4. For s ⩽ s0 as in Lemma 3.2, at points in Nsξ ∩Uξ,δ ∩Bυ(Pξ)
⊂ C

δ/2 × Tm,

(Gs)∗νξ = ηsξ +O(esδ)

(here O(esδ) denotes a 2-form whose coefficients in coordinates (λR, ϕS) are
O(esδ) as functions of s).

Proof. Fix p = (λR, ϕS) ∈ P
δ
ξ . By the implicit function theorem, for all

(X,Y ) ∈ TpP
δ
ξ = Rm × Rm,

DpGs(X,Y ) =
(

−(Dλ
R−
Fsξ)

−1(Dλ
R+
FsξX +DϕS

FsξY ), X, Y
)

The constant bivector πPT has the form

πPT =
∑

k

Xk ∧ Yk

for some Xk, Yk ∈ TpP
δ
ξ . By Lemma 3.1 and the formula for DpGs above,

we find (Gs)∗πPT = πPT +O(esδ), where O(esδ) denotes a bivector whose
coefficients in coordinates (λR, ϕS) are O(esδ) as functions of s. The 2-form

(Gs)∗νξ = ((Gs)∗πPT )
−1 = π−1

PT +O(esδ).

On the other hand, by the proof of [2, Theorem 6.18], at Gs(p) ∈ C
δ/2 × Tm,

ηsξ = (πs)
−1 =

(

πPT +O(esδ)
)−1

= π−1
PT +O(esδ).

□

Finally, we show that for s≪ 0, the symplectic volume of Nsξ is concen-
trated on the piece that lies in C

δ/2 × Tm.
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Proposition 3.5. For ξ, δ ,υ, and s ⩽ s0 as in Lemma 3.2, the symplectic
volume of Nsξ ∩Uξ,δ ∩Bυ(Pξ) ⊂ C

δ/2 × Tm satisfies the inequalities

Vol(Nsξ, ηsξ) ⩾ Vol(Nsξ ∩Uξ,δ ∩Bυ(Pξ), ηsξ)
⩾ Vol(Nsξ, ηsξ)−Vol(Pξ \Pδ

ξ , νξ) +O(eδs).

Note that Vol(Pξ \Pδ
ξ , νξ) → 0 as δ → 0.

Remark 3.6. In the proof of Theorem 1.3, we choose δ, υ > 0 sufficiently
small and let Dε be the closure of Uξ,δ ∩Bυ(Pξ) ⊆ C

δ/2 × Tm.

Proof. The first inequality follows since volume is monotonic. By Propo-
sition 3.3 and Lemma 3.4, Nsξ ∩Uξ,δ ∩Bυ(Pξ) is locally the image of a
diffeomorphism Gs with domain in P

δ
ξ and (Gs)∗νξ = ηsξ +O(esδ), so

Vol(Nsξ ∩Uξ,δ ∩Bυ(Pξ), ηsξ) ⩾ Vol(Pδ
ξ , νξ) +O(esδ).

By definition of Pδ
ξ = Pξ ∩ (Cδ × Tm),

Vol(Pδ
ξ , νξ) = Vol(Pξ, νξ)−Vol(Pξ \Pδ

ξ , νξ).

Finally, by Theorem 2.2,

Vol(Pξ, νξ)−Vol(Pξ \Pδ
ξ , νξ) +O(esδ/2)

= Vol(Nsξ, ηξ)−Vol(Pξ \Pδ
ξ , νξ) +O(esδ).

□

4. Preimages of points in PT (K∗)

The goal of this section is to show that for a fixed value of ξ ∈ t∗+ and s≪ 0,
if Es(Ad

∗
k ξ) ∈ Ls(PT (K

∗)), then Ad∗k ξ must be close to ξ in the coadjoint
orbit Oξ.

Fix a faithful irreducible representation (ρ, V ) of G. Let n = dim(V ),
and fix a Hermitian inner product on V which is preserved by ρ(K). For the
representation V , fix a unitary weight basis v1, . . . , vn. Consider the wedge
product (ρl,∧lV ) of the representation (ρ, V ). Note that ∧lV has basis

{vI := vi1 ∧ · · · ∧ vil | I = (i1, . . . , il) and i1 < · · · < il}.

We can reorder the unitary weight basis {vi} so that, for all l ∈ [n], the
vector v[l] = v1 ∧ · · · ∧ vl is a minimal weight vector of ∧lV . For I,J ⊂ [n]
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with |I| = |J| = l denote by ∆I,J the l × l minor of elements of GL(V ) in
the basis vi, with rows I and columns J. Define the map

prt∗ : PT (K
∗) → t∗; x ∈ Pξ 7→ ξ.

Lemma 4.1. Let l ∈ [n], and let J ⊂ [n] with |J| = l and [l] ̸= J. For all
δ > 0 and s < 0, define

Us = {k ∈ K | Es(Ad∗k ξ) = Ls(p) for some p ∈ C
δ×T

m, ξ ∈ prt∗(C
δ×T

m)}.

Then there exists a > 0 such that for all k ∈ Us,

|∆[l],J(ρ(k))| ⩽ aesδ,

in the unitary weight basis {vi}.

Proof. Let wt(v[l]) = w0ζ, where ζ ∈ P+ is a dominant weight, and consider

the irreducible subrepresentation G · v[l] of ∧lV which is generated by v[l].
Then in this subrepresentation, v[l] will be of lowest weight. Let L denote the
index of the highest weight vector of this subrepresentation. It follows that
wt(vL) = ζ. Write the matrix entries of ρl(g) in the basis {vI} as ρlI,J(g).

Note that ρlI,J(g) = ∆I,J(ρ(g)). Because v[l] is of lowest weight in the sub-
representation G · v[l], we have

(14) ρl(g)v[l] =
∑

w0ζ<wt(vJ)
or J=[l]

ρlJ,[l](g)vJ,

where the sum on the right hand side is over weight vectors vJ such that
w0ζ − wt(vJ) is a negative weight or J = [l]. In other words, ρl

J,[l](g) = 0

unless w0ζ < wt(vJ) or J = [l].
Using the definition of the dressing action and the fact that the map Es

is K-equivariant, we have

(15) k · (Es(ξ))2 · k∗ = Es(Ad
∗
k ξ) · Es(Ad∗k ξ)∗.

Rewrite (15) as

(16) k · d2s · k∗ = bs · b∗s

where ds = exp
(

s
√
−1ψ(ξ)

)

and bs = Ls(p).
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Let us apply the representation ρl to both sides of (16), and consider the
([l], [l])-entry of these matrices. Using the fact that {vI} is a unitary basis
for ∧lV , matrix multiplication and (14) gives us:

(17)
∑

w0ζ<wt(vJ)
or J=[l]

∣

∣ρlJ,[l](k
∗)
∣

∣

2 ·
∣

∣ρlJ,J(ds)
∣

∣

2
=

∑

w0ζ<wt(vJ)
or J=[l]

∣

∣ρlJ,[l](b
∗
s)
∣

∣

2
.

Since ρl(k) · ρl(k∗) = ρl(kk∗) = 1, we have

(18)
∑

w0ζ<wt(vJ)
or J=[l]

∣

∣ρlJ,[l](k
∗)
∣

∣

2
= 1.

Rewrite (18) as

∣

∣ρl[l],[l](k
∗)
∣

∣

2
= 1−

∑

w0ζ<wt(vJ)

∣

∣ρlJ,[l](k
∗)
∣

∣

2

and plug it into (17). After rearranging, we get

∣

∣ρl[l],[l](ds)
∣

∣

2
=

∑

w0ζ<wt(vJ)
or J=[l]

∣

∣ρlJ,[l](b
∗
s)
∣

∣

2
(19)

+
∑

w0ζ<wt(vJ)

∣

∣ρlJ,[l](k
∗)
∣

∣

2 ·
(

∣

∣ρl[l],[l](ds)
∣

∣

2 −
∣

∣ρlJ,J(ds)
∣

∣

2
)

.

Since w0ζ < wt(vL) and the terms
∣

∣ρl[l],[l](ds)
∣

∣

2 −
∣

∣ρlJ,J(ds)
∣

∣

2
are positive, by

discarding terms on the right hand side of (19), one has for any J with
w0ζ < wt(vJ),

∣

∣ρl[l],[l](ds)
∣

∣

2
>

∣

∣ρlL,[l](b
∗
s)
∣

∣

2
+
∣

∣ρlJ,[l](k
∗)
∣

∣

2 ·
(

∣

∣ρl[l],[l](ds)
∣

∣

2 −
∣

∣ρlJ,J(ds)
∣

∣

2
)

.

Hence
(20)

∣

∣ρlJ,[l](k
∗)
∣

∣

2
<

∣

∣ρl[l],[l](ds)
∣

∣

2 −
∣

∣ρl
L,[l](b

∗
s)
∣

∣

2

∣

∣ρl[l],[l](ds)
∣

∣

2 −
∣

∣ρlJ,J(ds)
∣

∣

2 =
1−

∣

∣ρl[l],L(bs)
∣

∣

2
/
∣

∣ρl[l],[l](ds)
∣

∣

2

1−
∣

∣ρlJ,J(ds)
∣

∣

2
/
∣

∣ρl[l],[l](ds)
∣

∣

2 .

From Proposition 2.5, because p ∈ C
δ × Tm, we have

Ci(bs)
2 = |∆w0ωi,ωi

(bs)|2
(

1 +O(e2sδ)
)

.
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On the other hand, from (15), for s < 0,

Ci(bs)
2 = Tr(ρωi(d2s)) =

∑

j

cje
2s(γj ,

√
−1ξ) = e2s(w0ωi,

√
−1ξ)

(

1 +O(e2sδ)
)

.

Here, the weights γj are those which appear in the representation ρωi , and
cj = 1 when γj is the extremal weight w0ωi. The last equality holds be-
cause, by assumption, ξ ∈ prt∗(C

δ × Tm), which in turn guarantees that
(αi,

√
−1ξ) > δ for all i ∈ I.

Combining the previous two equations, since

es(w0ωi,
√
−1ξ) = ∆w0ωi,w0ωi

(ds),

we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∆w0ωi,ωi
(bs)

∆w0ωi,w0ωi
(ds)

∣

∣

∣

∣

2

− 1

∣

∣

∣

∣

∣

= O(e2sδ), for all i ∈ I.

For ζ ∈ P+, by using (7) we get

(21)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆w0ζ,ζ(bs)

∆w0ζ,w0ζ(ds)

∣

∣

∣

∣

2

− 1

∣

∣

∣

∣

∣

= O(e2sδ),

for s≪ 0. By the discussion at the end of Section 2, we know

ρl[l],[l] = c∆w0ζ,w0ζ and ρl[l],L = c∆w0ζ,ζ

for some c ∈ C×. By (21) and (20), we find |∆[l],J(ρ(k))| = |∆J,[l](ρ(k
∗))| =

O(esδ). □

Lemma 4.2. Let g : (−∞, 0) → U(n) be an element of U(n) depending on
a parameter s. Assume there exists δ > 0 such that

|∆[l],J(g(s))| = O(esδ)

for all l ∈ [n] and all J ⊂ [n] with |J| = l and [l] ̸= J.

Then, the matrix entries satisfy |gi,j(s)| = O(esδ) for all i ̸= j.

Proof. We proceed by induction on i. When i = 1, we have |g1,j | = O(esδ)
for j ̸= 1. Assume the statement is known for 1, . . . , i− 1. By induction
hypothesis and the fact that g is unitary, we have 1− |gj,j | = O(esδ) for
j < i. By taking inner product of the ith row with the previous rows and
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again using the fact that g is unitary, we have |gi,j | = O(esδ) for j < i. For
j > i, consider the minor ∆[i],J(g), where J = {1, . . . , i− 1, j}. By assump-

tion, |∆[i],J(g)| = O(esδ). Expanding this minor along the jth column and

applying the induction hypothesis, we have that |gi,j | = O(esδ). □

Recall that Nsξ is the preimage (E−1
s ◦ Ls)−1(Oξ).

Proposition 4.3. For all ξ ∈ t∗+, if U ⊂ Oξ is an open subset with ξ ∈ U ,
then for all sufficiently small δ > 0, there exists s0 ∈ R so that, for all s ⩽ s0,

E−1
s ◦ Ls

(

Nsξ ∩ (Cδ × T
m)

)

⊆ U.

Proof. Fix ξ ∈ t∗+, U ⊆ Oξ open with ξ ∈ U , and δ > 0 sufficiently small so
that ξ ∈ prt∗(C

δ × Tm). Observe that for all s < 0,

U ′
s = {k ∈ K | Es(Ad∗k ξ) ∈ Ls(Nsξ ∩ (Cδ × T

m))} ⊆ Us.

By Lemma 4.1, there exists a > 0 such that for all k ∈ U ′
s,

|∆[l],J(ρ(k))| ⩽ aesδ.

By Lemma 4.2 and since ρ faithful, there exists s0 < 0 such that for all
s ⩽ s0,

E−1
s ◦ Ls

(

Nsξ ∩ (Cδ × T
m)

)

⊆ U.
□
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E-mail address: lane203j@gmail.com

Section of Mathematics, University of Geneva

2-4 rue du Lièvre, c.p. 64, 1211 Genève 4, Switzerland
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