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Noncontractible loops of symplectic

embeddings between convex toric domains
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Given two 4–dimensional ellipsoids whose symplectic sizes satisfy a
specified inequality, we prove that a certain loop of symplectic em-
beddings between the two ellipsoids is noncontractible. The state-
ment about symplectic ellipsoids is a particular case of a more gen-
eral result. Given two convex toric domains whose first and second
ECH capacities satisfy a specified inequality, we prove that a cer-
tain loop of symplectic embeddings between the two convex toric
domains is noncontractible. We show how the constructed loops
become contractible if the target domain becomes large enough.
The proof involves studying certain moduli spaces of holomorphic
cylinders in families of symplectic cobordisms arising from families
of symplectic embeddings.

1. Introduction

1.1. Previous results and a new result about ellipsoids

Questions about symplectic embeddings of one symplectic manifold into
another have always been one of the main study directions in symplectic
geometry. The pioneering work of Gromov in [12] introduced new meth-
ods that made it possible to answer many open questions about symplectic
embeddings that had been until then unanswered. The survey by Schlenk,
[26], presents in detail the type of results one can prove about symplectic
embeddings together with the tools used to prove such results.

Most of the questions that have been answered (in the positive or the
negative) concern the existence of symplectic embeddings of one symplectic
manifold into another. For example, see [20], [21], [22], and [24] for symplec-
tic embeddings involving 4–dimensional ellipsoids, see [4], [5], [6], and [16]
for symplectic embeddings involving more general 4–dimensional symplectic
manifolds, and also see [9], [10], and [13] for results in higher dimensions.
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Another direction where significant progress has been made is the study
of the connectivity of certain spaces of symplectic embeddings. In [21], Mc-
Duff shows the connectivity of spaces of symplectic embeddings between
4–dimensional ellipsoids, while in [5], Cristofaro–Gardiner extends this re-
sult to symplectic embeddings from concave toric domains to convex toric
domains, both of which are subdomains of R4 whose definition we recall
below in ➜1.2. In [13], Hind proves the non–triviality of π0 for spaces of sym-
plectic embeddings involving certain 4–dimensional polydisks, extending a
result that was initially proved in [8]. In [11], the authors prove that cer-
tain spaces of symplectic embeddings involving more general 4–dimensional
symplectic manifolds are disconnected, while in [25], the authors study the
connectivity of symplectic embeddings into generalized “camel” spaces in
higher dimensions, extending results in [7].

Following yet another direction, in this paper we study the fundamental
group of certain spaces of symplectic embeddings in 4 dimensions. Let us
first clarify the notation we will be using. For real numbers a and b with
0 < a ≤ b, the set

E(a, b) :=

{
(z1, z2) ∈ C2

∣∣∣∣
π|z1|

2

a
+
π|z2|

2

b
≤ 1

}

together with the restriction of the standard symplectic form from R4 is
called a closed symplectic ellipsoid, or more simply an ellipsoid. Moreover, we
define the symplectic ball B4(a) := E(a, a). Also, ifM and N are symplectic
manifolds, let SympEmb(M,N) denote the space of symplectic embeddings
of M into N .

Here are a few results about the fundamental group of spaces of symplec-
tic embeddings that motivated our work. The first result in this direction is
an immediate consequence of the methods that Gromov introduced in [12]
in order to prove the nonsqueezing theorem.

Theorem 1.1 ([7]). Let S be an embedded unknotted 2–sphere in (R4, ωstd).
Write XS = R4 \ S and let e : SympEmb(B4(r), XS) → XS be the evalua-
tion map f 7→ f(0). Then the induced homomorphism

e∗ : π1(SympEmb(B4(r), XS)) → π1(XS)

is surjective for 2πr2 < Area(S) and trivial otherwise.

Another situation where the fundamental group of a space of symplectic
embeddings can be computed is the following.
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Theorem 1.2 ([14]). If ϵ < 1 the space SympEmb(B4(ϵ), B4(1)) deforma-
tion retracts to U(2).

A more recent result that is closer in spirit to the results of this pa-
per can be found in [2], where the author constructs a loop {ϕµ}µ∈[0,1]
in SympEmb(E(a, b) ⊔ E(a, b), B4(R)) and shows that if the positive real
numbers a, b, and R satisfy a

b
/∈ Q, 2a < R < a+ b, and b < 2a, then the

constructed loop is noncontractible in SympEmb(E(a, b) ⊔ E(a, b), B4(R)).
Moreover, the loop becomes contractible if R > a+ b.

By contrast to [2], we study symplectic embeddings whose domain is
connected. More specifically, this paper is concerned with the study of re-
strictions of the loop of symplectic linear maps defined in (1.1) below to
certain domains in R4.

Definition 1.3. Let {Φt}t∈[0,1] ⊂ Sp(4,R) denote the loop of symplectic
linear maps

(1.1) Φt(z1, z2) =

{
(e4πitz1, z2), t ∈

[
0, 12

]

(z1, e
−4πitz2), t ∈

(
1
2 , 1

]
.

The loop Φt is a concatenation of the 2π counterclockwise rotation in
the z1–plane followed by the 2π clockwise rotation in the z2–plane. The loop
{Φt}t∈[0,1] is contractible in Sp(4,R), but it restricts to give some noncon-
tractible loops of symplectic embeddings. For example:

Theorem 1.4. Assume that a < c < b < d and c < 2a. Then, for Φt de-
fined as in (1.1), the loop of symplectic embeddings {φt = Φt|E(a,b)}t∈[0,1] is
noncontractible in SympEmb(E(a, b), E(c, d)).

π|z1|
2

π|z2|
2

a

b

c

d
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If max(a, b) ≤ min(c, d), then one can fit a ball between E(a, b) and
E(c, d), meaning there exists r > 0 such that E(a, b) ⊂ B(r) ⊂ E(c, d), see
Figure 1. Under this assumption, the loop {φt}t∈[0,1] is contractible. For a
more general statement, see Proposition 1.10 below.

π|z1|
2

π|z2|
2

a

b

c

d

r

r

Figure 1. The loop {φt}t∈[0,1] is contractible if max(a, b) ≤ min(c, d).

The method of proof we present in ➜4 does not answer whether the loop
{φt}t∈[0,1] is contractible or not under the following assumption.

Open question 1.5. Assume 2a < c < b < d. Is the loop

{φt = Φt|E(a,b)}t∈[0,1]

contractible in SympEmb(E(a, b), E(c, d))?

1.2. Main theorem

We begin by recalling an important example of 4–dimensional symplectic
manifolds with boundary, in order to prepare for the statement of the main
theorem. Given a domain Ω ⊂ R2

≥0, we define the toric domain

(1.2) XΩ :=
{
(z1, z2) ∈ C2

∣∣ π(|z1|2, |z2|2) ∈ Ω
}

which, together with the restriction of the standard symplectic form ωstd =
dx1 ∧ dy1 + dx2 ∧ dy2 on C2, is a symplectic manifold with boundary. For ex-
ample, if Ω is the triangle with vertices (0, 0), (a, 0) and (0, b), then XΩ is the
ellipsoid E(a, b) defined above, while if Ω is the rectangle with vertices (0, 0),
(a, 0), (0, b), and (a, b), then XΩ is the polydisk P (a, b) = B2(a)×B2(b).
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Note that we allow domains that have non–smooth boundary. The toric
domains we work with in this paper have the following particular property.

Definition 1.6. A convex toric domain is a toric domain XΩ defined by

(1.3) Ω :=
{
(x, y) ∈ R2

≥0

∣∣ 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)
}

such that its defining function f : [0, a] → R≥0 is nonincreasing and concave.

Even though we will not work with this type of domains in this paper,
let us also recall that a concave toric domain is a toric domain defined also
by (1.3) such that its defining function f : [0, a] → R≥0 is nonincreasing,
convex, and f(a) = 0. For example, ellipsoids are the only toric domains
that are both convex and concave, and polydisks are convex toric domains.
We next explain how to compute the first few embedded contact homology
(ECH) capacities of convex toric domains in order to state the main result
of this paper.

Given a 4–dimensional symplectic manifold (X,ω) with contact bound-
ary ∂X = Y , its ECH capacities are a sequence of real numbers

0 = cECH
0 (X,ω) < cECH

1 (X,ω) ≤ · · · ≤ ∞

constructed using a filtration by action of the ECH chain complex. The
ECH capacities obstruct symplectic embeddings, meaning that if there exists
a symplectic embedding (X,ω) → (X ′, ω′) then ck(X,ω) ≤ ck(X

′, ω′) for all
k ≥ 0. In particular, for the first and second ECH capacities of a convex toric
domain, we can use the following explicit formulas, see [16, Proposition 5.6]
for details.

Proposition 1.7. For a convex toric domain XΩ with nice defining func-
tion f : [0, a] → R≥0,

cECH
1 (XΩ) = min(a, f(0)) and

cECH
2 (XΩ) = min(2a, x+ f(x), 2f(0)),

where x ∈ (0, a) is the unique point where f ′(x) = −1.

For the definition of a nice defining function, see ➜2.4. Having introduced
all the ingredients, we are ready to state the main result of this paper.
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Theorem 1.8. Let XΩ1
and XΩ2

be convex toric domains with defining
functions f1 : [0, a] → R≥0 and f2 : [0, c] → R≥0, respectively. Assume that
XΩ1

⊂ XΩ2
, a < c < f1(0) < f2(0), and c

ECH
1 (XΩ2

) < cECH
2 (XΩ1

). Then, for
Φt defined as in (1.1), the loop of symplectic embeddings {φt = Φt|XΩ1

}t∈[0,1]
is noncontractible in SympEmb(XΩ1

, XΩ2
).

π|z1|
2

π|z2|
2

a

f1(0)

c

f2(0)

Figure 2. The loop {φt}t∈[0,1] is noncontractible if XΩ1
⊂ XΩ2

,
a < c < f1(0) < f2(0), and c

ECH
1 (XΩ2

) < cECH
2 (XΩ1

).

Remark 1.9.

i. By symmetry, Theorem 1.8 also holds if we assume f1(0) < f2(0) <
a < c instead of a < c < f1(0) < f2(0). See Figure 2 for an example
where the bounds in the hypothesis of Theorem 1.8 hold.

ii. For XΩ1
= E(a, b) and XΩ2

= E(c, d) satisfying a < c < b < d, as in
the hypothesis of Theorem 1.4, we compute cECH

1 (E(c, d))=min(c, d)=
c and cECH

2 (E(a, b)) = min(2a, b). Hence, Theorem 1.4 is a special case
of Theorem 1.8.

If we make target XΩ2
large enough, the loop {φt}t∈[0,1] becomes con-

tractible, see Figure 3.

Proposition 1.10. Assume there exists r>0 such that XΩ1
⊂B4(r)⊂XΩ2

.
Then the loop {φt = Φt|XΩ1

}t∈[0,1] is contractible in SympEmb(XΩ1
, XΩ2

) .

Proof. Since the loop {Φt}t∈[0,1] is contractible in U(2), there exists a ho-
motopy of unitary maps {Φz}z∈D contracting it, where D denotes the closed
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π|z1|
2

π|z2|
2

a

f1(0)

c

f2(0)

r

r

Figure 3. If XΩ1
⊂ B(r) ⊂ XΩ2

, the loop {φt}t∈[0,1] is contractible.

unit disk. For each z ∈ D, the operator norm of Φz ∈ U(2) is ||Φz|| = 1, and
hence im

(
Φz|XΩ1

)
⊂ B(r) ⊂ XΩ2

. So the 2–parameter family of restrictions
{Φz|XΩ1

}z∈D is contained in SympEmb(XΩ1
, XΩ2

) and provides a homotopy
from {φt}t∈[0,1] to the constant loop. □

1.3. Strategy of proof and the organization of the paper

We use the following strategy to prove Theorem 1.8. For each symplectic
embedding φ : XΩ1

→ XΩ2
, we add to the compact symplectic cobordism

(XΩ2
\ int(φ(XΩ1

)), ωstd), a positive cylindrical end at ∂XΩ2
and a negative

cylindrical end at φ(∂XΩ1
), in order to construct the completed symplectic

cobordism

Ŵφ = (−∞, 0]× φ(∂XΩ1
) ∪ (XΩ2

\ int φ(XΩ1
)) ∪ [0,∞)× ∂XΩ2

.

After choosing an almost complex structure J that is compatible with the
cobordism structure on Ŵφ, we define the moduli space MJ(φ) which con-

sists of J–holomorphic cylinders in Ŵφ that have a positive end at the
shortest Reeb orbit on ∂XΩ2

and a negative end at the shortest Reeb orbit
on φ(∂XΩ1

).
Using automatic transversality together with a compactness argument

which works under the hypothesis of Theorem 1.8, we show that for each
φ ∈ SympEmb(XΩ1

, XΩ2
) and for each compatible almost complex struc-

ture J , the moduli space MJ(φ) is a finite set. We directly construct an
almost complex structure Ĵ and a Ĵ–holomorphic cylinder with the right
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asymptotics, to show that M
Ĵ
(φ0) is nonempty for the restriction of the in-

clusion map φ0 and the particular choice of Ĵ . We describe the cylinders near
their asymptotic ends to prove that, whenever nonempty, MJ(φ) contains a
unique J–holomorphic cylinder.

We complete the proof using an argument by contradiction. We as-
sume the loop {φt}t∈[0,1] is contractible by the homotopy {φz}z∈D, φz ∈
SympEmb(XΩ1

, XΩ2
) for each z ∈ D. We choose a 2–parameter family of

almost complex structures J = {Jz}z∈D so that Jz is compatible with the

cobordism structure on Ŵφz
and Jz = Ĵ for all z ∈ ∂D. We define the moduli

space MJ = ⊔z∈DMJz
(φz) and, using parametric transversality for generic

families of almost complex structures, we show that, for a generic choice of
J as above, the moduli space MJ is a 2–dimensional manifold. Assuming the
bounds in the hypothesis of Theorem 1.8, we conclude using SFT compact-
ness and the description of each MJz

(φz) that MJ is homeomorphic to the
closed disk D.

For the final details, we fix a parametrization of the shortest Reeb orbit
on ∂XΩ2

together with a point p on the same Reeb orbit. For each φz, we
trace, on the unique cylinder [uz] ∈ MJz

(φ), the vertical ray that is asymp-
totic to p at ∞ and record the point where it lands at −∞ on the shortest
Reeb orbit on φ(∂XΩ1

) to then pull it back using φz to a unique point pz
on ∂XΩ1

. We then study the composition of maps

S1 → SympEmb(XΩ1
, XΩ2

) → MJ → S1

t 7→ φt = φz 7→ (z, [uz]) 7→ pz.

and show that this circle map has degree −1. This provides the contradiction
we are looking for, since we previously showed that MJ is homeomorphic to
the closed disk D.

The paper is divided in sections as follows. In ➜2, we classify the embed-
ded Reeb orbits on the boundary of a convex toric domain. We make use
of this classification, together with an automatic transversality argument,
to prove the compactness of the moduli space MJ(φ) in ➜3. We also use
the classification in ➜2 to show the compactness of the moduli space MJ in
➜4.3. Finally, ➜4.1 contains the argument for the existence of J–holomorphic
cylinders with the right asymptotics, ➜4.2 contains the argument for the
uniqueness of J–holomorphic cylinders in MJ(φ), and ➜4.3 presents the de-
tails behind the construction of the circle map above, in order to complete
the proof.

Acknowledgements. I would like to thank my advisor, Michael Hutch-
ings, for all the help and ideas he shared with me. I would also like to thank
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visit at Humboldt–Universität zu Berlin and Felix Schlenk for the helpful
comments on the first draft. Finally, I would like to thank my friends, Julian
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2. Reeb dynamics and the ECH index

2.1. Geometric setup

Let (Y, ξ) be a closed 3–dimensional contact manifold with contact form λ,
i.e. ξ = kerλ. The Reeb vector field R corresponding to λ is uniquely defined
as the vector field satisfying dλ(R, ·) = 0 and λ(R) = 0. A Reeb orbit is a map
γ : R/TZ → Y for some T > 0, modulo translations of the domain, such that
γ′(t) = R(γ(t)). The action of a Reeb orbit γ is defined by A(γ) =

∫
S1 γ

∗λ
and is also equal to the period of γ.

For a fixed Reeb orbit γ, the linearization of the Reeb flow of R induces
a symplectic linear map Pγ : (ξγ(0), dλ) → (ξγ(0), dλ), called the linearized
return map. A Reeb orbit γ : R/TZ is called nondegenerate if its linearized
return map Pγ does not have 1 as an eigenvalue. We call γ elliptic if the
eigenvalues of Pγ are complex conjugate on the unit circle, positive hyper-
bolic if the eigenvalues of Pγ are real and positive, and negative hyperbolic
if the eigenvalues of Pγ are real and negative. A contact form λ is called
nondegenerate if all its Reeb orbits are nondegenerate.

2.2. Reeb dynamics on ∂XΩ

In this section we compute the Reeb dynamics on the boundary of convex
toric domains. Recall that a convex toric domainXΩ ⊂ R4 is defined by (1.2),
with defining set Ω given by (1.3). Similarly to the computations in [17, ➜4.3],
we choose scaled polar coordinates (z1, z2) = (

√
r1/πe

iθ1 ,
√
r2/πe

iθ2) on C2

to obtain

ωstd =
1

2π
(dr1 ∧ dθ1 + dr2 ∧ dθ2) .

The radial vector field

ρ = r1
∂

∂r1
+ r2

∂

∂r2
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is a Liouville vector field for ωstd defined on all R4. The boundary of the
toric domain ∂XΩ is transverse to ρ and so

λstd = ιρωstd =
1

2π
(r1dθ1 + r2dθ2)

restricts to a contact form on ∂XΩ. The Reeb vector field R corresponding
to λstd has the following expression. In the two coordinate planes, R is given
by

R =

{
2π
a

∂
∂θ1

if z2 = 0
2π
f(0)

∂
∂θ2

if z1 = 0.

While if π(|z1|
2, |z2|

2) = (r1, r2) = (x, f(x)) for some x ∈ (0, a) with f ′(x) =
tanϕ, ϕ ∈ [−π/2, 0], then

R =
2π

−x sinϕ+ f(x) cosϕ

(
− sinϕ

∂

∂θ1
+ cosϕ

∂

∂θ2

)
.

The embedded Reeb orbits of λstd|∂XΩ
are classified as follows:

• The circle e0,1 = ∂XΩ ∩ {z2 = 0} is an embedded elliptic Reeb orbit
with action A(e0,1) = a.

• The circle e1,0 = ∂XΩ ∩ {z1 = 0} is an embedded elliptic Reeb orbit
with action A(e1,0) = f(0).

• For each x ∈ (0, a) with f ′(x) ∈ Q and f ′′(x) ̸= 0, the torus

{z ∈ ∂XΩ|π(|z1|
2, |z2|

2) = (x, f(x))}

is foliated by a Morse–Bott circle of Reeb orbits. If f ′(x) = −p
q
with

p, q relatively prime positive integers, then we call this torus Tp,q and
we compute that each orbit in this family has action A = qx+ pf(x).

Remark 2.1. The existence of Morse–Bott circles of Reeb orbits implies
that the contact form λstd|∂XΩ

is degenerate. We need to perturb it in order
to make it nondegenerate since the nondegeneracy allows the study of J–
holomorphic curves with cylindrical ends asymptotic to Reeb orbits.

For each ϵ > 0, we can perturb λstd|∂XΩ
to a nondegenerate λ = hλstd|∂XΩ

,
where ||h− 1||C0 < ϵ, so that each Morse-Bott family Tp,q that has action
A < 1/ϵ becomes two embedded Reeb orbits of approximately the same
action, more specifically an elliptic orbit ep,q and a hyperbolic orbit hp,q.
Moreover, no Reeb orbits of action A < 1/ϵ are created and the Reeb orbits
e0,1 and e1,0 are unaffected.



✐

✐

“8-Munteanu” — 2020/10/27 — 16:01 — page 1179 — #11
✐

✐

✐

✐

✐

✐

Noncontractible loops of symplectic embeddings 1179

Such a perturbation of the contact form is equivalent to a perturbation
of the hypersurface ∂XΩ on which the restriction of λstd becomes nondegen-
erate.

2.3. ECH index

Embedded contact homology (ECH) is an invariant for 3–dimensional con-
tact manifolds due to Hutchings. See [17] for a detailed account of history,
motivation, construction, and applications of ECH. We give a brief overview
of the definition of ECH following the notation from [18].

Let (Y, λ) be a contact 3–dimensional manifold with nondegenerate con-
tact form λ. Given a convex toric domain XΩ, the boundary ∂XΩ together
with a perturbation of λstd|∂XΩ

, as in Remark 2.1, is such a contact manifold.
An orbit set is a finite set of pairs α = {(αi,mi)}, where αi are dis-

tinct embedded Reeb orbits and mi are positive integers. We will also
use the multiplicative notation α =

∏
αmi

i for an orbit set α = {(αi,mi)}.
Denote by [α] the sum

∑
imi[αi] ∈ H1(Y ) and define the action of α by

A(α) =
∑

imiA(αi). If α = {(αi,mi)} and β = {(βj , nj)} are two orbit sets
with [α] = [β] ∈ H1(Y ), then define H2(Y, α, β) to be the set of relative ho-
mology classes of 2–chains A such that ∂A =

∑
miαi −

∑
njβj . Note that

H2(Y, α, β) is an affine space over H2(Y ).
Given a Z ∈ H2(Y, α, β), define the ECH index of Z by the formula

(2.1) I(α, β, Z) = cτ (Z) +Qτ (Z) + CZI
τ (α)− CZI

τ (β)

where τ is a choice of symplectic trivializations of ξ over the Reeb orbits
αi and βj , cτ (Z) = c1(ξ|Z , τ) denotes the relative first Chern class (see [18,
➜2.5]), Qτ (Z) denotes the relative self–intersection number (see [18, ➜2.7]),
and

CZI
τ (α) =

∑

i

mi∑

k=1

CZτ (α
k
i ),

where CZτ (γ) is the Conley–Zehnder index with respect to τ of the orbit γ
(see [18, ➜2.3]).

The ECH index does not depend on the choice of symplectic trivial-
ization. The definition of the ECH index I can be extended to symplectic
cobordisms by generalizing the definitions of the relative first Chern class
and of the self intersection number (see [18, ➜4.2]).

If Z ∈ H2(Y, α, β) andW ∈ H2(Y, β, γ), then I(Z +W ) = I(Z) + I(W ).
In the particular case of starshaped hypersurfaces in R4, this implies there is
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an absolute Z grading on orbit sets as follows. Since H2(Y ) = H2(S
3) = 0,

for every pair of orbit sets α and β there is an unique class Z ∈ H2(Y, α, β).
Define I(∅) = 0 for the empty orbit set and set

I(α) := I(α, ∅, Z) ∈ Z,

where Z is the unique element of H2(Y, α, ∅). Also, let cτ (α) := cτ (Z) and
Qτ (α) := Qτ (Z).

2.4. Absolute grading on ∂XΩ

Following the details in [16, ➜5], we recall the classification of the orbit sets
on the boundary of a convex toric domain XΩ that have ECH index I ≤ 4.

Similarly to [16, Lemma 5.4], we first perform a perturbation of the
geometry of ∂XΩ (see Figure 4). This means we can assume, without loss
of generality, that the function f : [0, a] → R≥0 defining Ω is nice, meaning
that f satisfies the following properties:

• f is smooth,

• f ′(0) is irrational and is approximately 0,

• f ′(a) is irrational and is very large, close to −∞,

• f ′′(x) < 0 except for x in small connected neighborhoods of 0 and a.

π|z1|
2

π|z2|
2

a

f(0)

(a) Original toric domain.

−→

π|z1|
2

π|z2|
2

a

f(0)

(b) Defining function perturbed to
be nice.

Figure 4. Perturbating XΩ to a nice position.
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Note that every defining function can be perturbed to be nice. In ➜4.3, we
begin the proof of Theorem 1.8 by perturbing both of the defining functions
f1 and f2 to be nice in order to apply the generic classification of Reeb orbits
in the following lemma.

Lemma 2.2 ([16, Example 1.12]). Let XΩ be a convex toric domain
defined by a nice function f . Let λ be a nondegenerate contact structure
obtained by perturbing λstd|∂XΩ

up to sufficiently large action. Then the orbit
sets with ECH index I ≤ 4 are classified as follows.

• I = 0: ∅.

• I = 1: no orbit sets.

• I = 2: e0,1 and e1,0.

• I = 3: h1,1.

• I = 4: e20,1, e1,1, and e
2
1,0.

In general, the classification of orbit set generators, up to larger ECH
index and action, provides a combinatorial model to compute the sequence
of ECH capacities of a convex toric domain using the following formula.

Lemma 2.3 ([16, Lemmas 5.6 & 5.7]). For a convex toric domain XΩ

and a nonnegative integer k,

cECH
k (XΩ) = min{A(α) | I(α) = 2k}.

In particular, the equalities claimed in Proposition 1.7 hold. Moreover,
since all the orbit sets α with I(α) ≥ 5 have action

A(α) ≥ min(A(e20,1),A(e1,1),A(e21,0)),

we deduce the following lemma which we use later to rule out breaking.

Lemma 2.4. For a convex toric domain XΩ, orbit sets α with ECH index
I(α) ≥ 5 have action A(α) ≥ cECH

2 (XΩ).
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3. Ruling out breaking

3.1. Completed symplectic cobordisms

Let (Y±, λ±) be closed contact 3–dimensional manifolds. A compact symplec-
tic cobordism from (Y+, λ+) to (Y−, λ−) is a compact symplectic manifold
(W,ω) with boundary ∂W = −Y− ⊔ Y+ such that ω|Y±

= dλ±.
Given a compact symplectic cobordism (W,ω), one can find neighbor-

hoods N− of Y− and N+ of Y+ in W , and symplectomorphisms

(N−, ω) → ([0, ϵ)× Y−, d(e
sλ−))

and

(N+, ω) → ((−ϵ, 0]× Y+, d(e
sλ+)),

where s denotes the coordinate on [0, ϵ) and (−ϵ, 0]. Using these identifica-
tions, we can complete the compact symplectic cobordism (W,ω) by adding
cylindrical ends (−∞, 0]× Y− and [0,∞)× Y+ to obtain the completed sym-
plectic cobordism

Ŵ = [0,∞)× Y+ ∪Y+
W ∪Y−

(−∞, 0]× Y−.

In accordance with [1], we restrict the class of almost complex structures

on a completed cobordism Ŵ as follows. An almost complex structure J on
a completed symplectic cobordism Ŵ as above is called compatible (in [1],
the authors use the term adjusted) if:

· On [0,∞)× Y+ and (−∞, 0]× Y−, the almost complex structure J is
R–invariant, maps ∂s (the R direction) to Rλ±

, and maps ξ± to itself
compatibly with dλ±.

· On the compact symplectic cobordism W , the almost complex struc-
ture J is tamed by ω.

Call J(Ŵ ) the set of all such compatible almost complex structures on Ŵ .

Choose a compatible almost complex structure J ∈ J(Ŵ ) on Ŵ and let
(Σ, j) be a compact Riemann surface. We will consider curves

u : (Σ̇ = Σ \ {x1, . . . , xk, y1, . . . , yl}, j) → (Ŵ , J)

that are J–holomorphic, i.e. du ◦ j = J ◦ du, and have k positive ends at
Γ+ = (γ+1 , . . . , γ

+
k ) corresponding to the punctures (x1, . . . , xk), and l nega-

tive ends at Γ− = (γ−1 , . . . , γ
−
l ) corresponding to the punctures (y1, . . . , yl).
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Denote by MJ(Γ
+,Γ−) the space of such J–holomorphic curves u modulo

reparametrizations of the domain Σ̇.
Recall that a positive end of u at γ means a puncture, near which u

is asymptotic to R× γ. More specifically, that means there is a choice of
coordinates (s, t) ∈ [0,∞)× R/TZ on a neighborhood of the puncture, with
j(∂s) = ∂t and such that

lim
s→∞

πR(u(s, t)) = ∞ and lim
s→∞

πY+
(u(s, ·)) = γ.

Similarly, at a negative end there is a choice of coordinates (s, t) ∈ (−∞, 0]×
R/TZ on a neighborhood of the puncture, with j(∂s) = ∂t and such that
lims→−∞ πR(u(s, t)) = ∞ and lims→−∞ πY−

(u(s, ·)) = γ.
Given a J–holomorphic curve u as above, define the Fredholm index of

u by

(3.1) ind(u) = −χ(u) + 2cτ (u) +

k∑

i=1

CZτ (γ
+
i )−

l∑

j=1

CZτ (γ
−
j ),

where τ is a trivialization of ξ over γ±i that is symplectic with respect to dλ,
χ(u) is the Euler characteristic of Σ̇, cτ (u) := c1(u

∗ξ, τ) denotes the relative
first Chern class, and CZτ (γ

±
i ) is the Conley–Zehnder index with respect to

τ , as before. The significance of the Fredholm index is that for a generic
choice of compatible almost complex structure J and for a somewhere–
injective J–holomorphic curve u, the moduli spaceMJ(Γ

+,Γ−) is a manifold
of dimension ind(u) near u. See [28, ➜6] for more details.

3.2. Moduli spaces

Let XΩ1
and XΩ2

be two convex toric domains defined by nice functions f1 :
[0, a] → R≥0 and f2 : [0, c] → R≥0, respectively. Also, let φ : XΩ1

→ int(XΩ2
)

be a symplectic embedding. The manifold Wφ := XΩ2
\ int(φ(XΩ1

)) is a
compact symplectic cobordism from (∂XΩ2

, λstd|∂XΩ2
) to (φ(∂XΩ1

), λ′),
where λstd denotes the standard Liouville form on R4 and λ′ is such that
dλ′ = ωstd and (φ|∂XΩ1

)∗λ′ = λstd|∂XΩ1
. With this choice, the Reeb orbits on

(φ(∂XΩ1
), λ′) are the images under φ of the Reeb orbits on (∂XΩ1

, λstd|∂XΩ1
).

Following the explanation in Remark 2.1, perturb the boundary compo-
nents φ(∂XΩ1

) and ∂XΩ2
of Wφ in such a way that the forms λstd and λ′

restrict to nondegenerate contact forms λ1 and λ2 on ∂XΩ1
and ∂XΩ2

, re-

spectively. Add cylindrical ends toWφ and call Ŵφ the completed symplectic
cobordism.
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To clean up notation, call γa the e0,1 embedded Reeb orbit on φ(∂XΩ1
),

and call γc the e0,1 embedded Reeb orbit on ∂XΩ2
. Recall that A(γa) = a

and A(γc) = c.

For a given almost complex structure J ∈ J(Ŵφ), define MJ(φ) to be

the moduli space of J–holomorphic cylinders u : (R× S1, j) → (Ŵφ, J) such
that u has a positive end at γc and a negative end at γa, modulo translation
and rotations of the domain R× S1.

All such J–holomorphic cylinders have Fredholm index ind(u) = 0 and
the automatic transversality result in Lemma 3.1 below implies that MJ(φ)
is a 0–dimensional manifold for any choice of J . Moreover, MJ(φ) can be
compactified with broken holomorphic curves using the SFT compactness
theorem, [1, Theorem 10.2], since all the J–holomorphic cylinders in MJ(φ)
have the same asymptotics.

3.3. Automatic transversality

A much more general automatic transversality result than the one we need
to use is proven by Wendl in [27]. In the language employed in this paper, the
particular case that we need to use is stated as follows. See also [19, Lemma
4.1] for a very similar statement and proof in the case of symplectizations.

Lemma 3.1. Let Ŵ be a completed symplectic cobordism and let u : Σ̇ →
Ŵ be an immersed J–holomorphic curve that has asymptotic ends to Reeb
orbits. Let N denote the normal bundle to u in Ŵ and

Du : L2
1(Σ, N) → L2(Σ, T 0,1C⊗N)

denote the normal linearized operator of u. Also let h+(u) denote the number
of ends of u at positive hyperbolic orbits. If

2g(Σ)− 2 + h+(u) < ind(u),

then Du is surjective, i.e. the moduli space of J–holomorphic curves near u
is a manifold that is cut out transversely and has dimension ind(u).

Note that there are no genericity assumptions on the almost complex
structure J in Lemma 3.1. Also, the result applies to the J–holomorphic
cylinders in MJ(φ) since they have ends only at elliptic Reeb orbits and we
will see how the adjunction formula introduced below in (4.3) implies that
they are embedded. Hence MJ(φ) is cut out transversely, for any choice of
compatible almost complex structure J .
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3.4. Ruling out breaking

In this section, we study the possible boundary of the union ⊔J∈JMJ(φ),
where J is a smooth parametrized family of compatible almost complex
structures. We prove that, assuming the bounds in the hypothesis of Theo-
rem 1.8, a sequence of cylinders in ⊔J∈JMJ(φ) cannot converge to a broken
holomorphic building with multiple levels.

Proposition 3.2. Assume XΩ1
and XΩ2

are convex toric domains satisfy-
ing the bounds in the hypothesis of Theorem 1.8. Let

{φi ∈ SympEmb(XΩ1
, XΩ2

)}i≥1

be a sequence of symplectic embeddings, C0–converging to

φ0 ∈ SympEmb(XΩ1
, XΩ2

)}.

Let {Ji ∈ J(Ŵφi
)}i≥1 be a sequence of compatible almost complex structures

converging to J0 ∈ J(Ŵφ0
). Let ui ∈ MJi

(φi). Then the sequence {ui}i≥1

cannot converge in the sense of [1] to a J0–holomorphic building with more
than one level.

Proof. In general, if there exists a J–holomorphic curve from the orbit set
α to the orbit set β, then A(α) ≥ A(β). Assume that, in the limit, the
cylinders ui break into a J0–holomorphic building u0 = (v1, v2, . . . , vl), where
v1 denotes the top level. Assume that αj is the orbit set at which the level vj
has negative ends. Then A(αj) ∈ [a, c]. Note first that c is the lowest action
of an orbit set in ∂XΩ2

. This means that v1 lives in the cobordism level. The
assumption c < f1(0) translates to

c < A(e1,0),

while the assumption cECH
1 (XΩ2

) < cECH
2 (XΩ1

) translates to

c < min(2a,A(e1,1), 2f1(0)) = min(A(γ2a),A(e1,1),A(e21,0)),

where γa = e0,1, e1,1, and e1,0 are the Reeb orbits on φ0(∂XΩ1
). Moreover,

for a small enough perturbation of ∂XΩ1
, we also have

c < A(h1,1),
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since A(h1,1) is approximately A(e1,1). Lastly, Lemma 2.4 implies that all
orbit sets α on φ0(∂XΩ1

) with I(α) ≥ 5 satisfy

c < A(α).

Using the classification by ECH index in Lemma 2.2, together with the
action inequalities above, we conclude that there are no orbit sets α satis-
fying A(αj) ∈ [a, c] and hence we can rule out breaking. □

Proposition 3.2 together with the automatic transversality from Lemma
3.1, and SFT compactness, [1, Theorem 10.2], imply that MJ(φ) is a com-
pact 0–dimensional manifold, i.e. a finite set of points.

4. Proof of main theorem

4.1. Non-emptiness of moduli spaces

First, we prove the nonemptiness of M
Ĵ
(φ0) for the inclusion map φ0 :

XΩ1
→ XΩ2

and a certain compatible almost complex structure Ĵ .

Proposition 4.1. There exists Ĵ ∈ J(Ŵφ0
) such that the moduli space

M
Ĵ
(φ0) is nonempty.

Proof. We will construct a compatible almost complex structure Ĵ that is
invariant under the S1–action by rotations in the z2–plane and prove that
an appropriate restriction of the z1–plane is the Ĵ–holomorphic cylinder we
are looking for. Our construction is similar to [2, ➜5.2]. Whenever we say
“S1–equivariant”, we mean invariant under the S1–action by rotations in
the z2–plane.

Recall that ∂XΩ1
and ∂XΩ2

are contact hypersurfaces in the compact
symplectic cobordism (Wφ0

, ωstd = dλstd). Moreover, notice that they are
S1–equivariant. Using an S1–equivariant version of the Moser trick, one can
prove that there exist S1–equivariant neighborhoods N1 of ∂XΩ1

and N2 of
∂XΩ2

in Wφ0
, and S1–equivariant symplectomorphisms

ψ1 : (N1, ω) → ([0, ϵ)× ∂XΩ1
, d(esλ1))

and

ψ2 : (N2, ω) → ((−ϵ, 0]× ∂XΩ2
, d(esλ2)),

where λi = λstd|∂XΩi
, and s denotes the coordinate on [0, ϵ) and (−ϵ, 0].
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Choose almost complex structures J1 on ((0, ϵ3) ∪ (2ϵ3 , ϵ))× ∂XΩ1
and J2

on ((−ϵ,−2ϵ
3 ) ∪ (− ϵ

3 , 0))× ∂XΩ2
, that are S1–equivariant and compatible

with the cylindrical ends near the boundary of Wφ0
, and that pull back

under ψi to the standard complex structure on C2 near the interior of Wφ0
,

i.e. ψ∗
1(J1|( 2ϵ

3
,ϵ)×∂XΩ1

) = i and ψ∗
2(J2|(−ϵ,− 2ϵ

3
)×∂XΩ2

) = i. Define

(4.1) Ĵ(p) :=





ψ∗
1(J1(ψ1(p))), p ∈ ψ−1

1 ((0, ϵ3) ∪ (2ϵ3 , ϵ))× ∂XΩ1
)

i, p ∈Wφ0
\ (N1 ∪N2)

ψ∗
2(J2(ψ2(p))), p ∈ ψ−1

2 ((−ϵ,−2ϵ
3 ) ∪ (− ϵ

3 , 0)× ∂XΩ2
).

The compatibility of Ĵ with the cylindrical ends near the boundary of the
compact symplectic cobordism Wφ0

makes it possible to extend Ĵ to a com-
patible S1–equivariant almost complex structure on the cylindrical ends of
the completed symplectic cobordism Ŵφ0

. We still need to interpolate be-
tween the standard complex structure in the interior of Wφ0

and the almost
complex structure on the cylindrical ends.

Let g(·, ·) := ω(·, Ĵ ·) be the positive definite Riemannian metric defined
by the compatibility of ω and Ĵ and note that g is S1–equivariant. Extend
the Riemannian metric g to Ŵφ0

and average the obtained extension over

the S1–action to obtain an S1–equivariant Riemannian metric ĝ on Ŵφ0
.

Note that ĝ = g wherever g is defined since g is S1–equivariant.
Define Ĵ to be the unique compatible almost complex structure on Ŵφ0

given by the polar decomposition procedure applied to (ĝ, ω) as explained
in the proof of [23, Proposition 2.5.6]. Note that this definition extends the
definition in (4.1), since ĝ(·, ·) = g(·, ·) = ω(·, Ĵ ·) wherever g is defined and
the polar decomposition procedure recovers J when applied to pairs form
(g := ω(·, J ·), ω). Note that since ĝ and ω are S1–equivariant, then Ĵ is also
S1–equivariant.

Let S :=Wφ0
∩ {z2 = 0}. Note that S is a closed annulus which we can

complete by adding cylindrical ends to get

Ŝ := (−∞, 0]× γa ∪ S ∪ [0,∞)× γc.

We will now show that Ĵ being invariant under the S1–action in the
z2–plane implies that Ĵ preserves the tangent space of Ŝ. Let hθ(z1, z2) :=
(z1, e

iθz2), for θ ∈ [0, 2π]. Knowing Ĵ is invariant under the S1–action in the
z2–plane implies that

Ĵhθ(p) ◦ dphθ = dphθ ◦ Ĵp,
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for any p ∈Wφ0
and any θ ∈ [0, 2π]. In the basis

{
∂

∂x1
, ∂
∂y1
, ∂
∂x2

, ∂
∂y2

}
, this

equality can be written in 2× 2 block matrix notation as,

(4.2)

(
A B
C D

)

hθ(p)

(
I 0
0 Rθ

)
=

(
I 0
0 Rθ

)(
A B
C D

)

p

,

for any p ∈Wφ0
and any θ ∈ [0, 2π], and where Ĵp =

(
A B
C D

)

p

is the

almost complex structure in coordinates and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is a

rotation matrix. After carrying out the multiplications in (4.2), we see that

(
Ahθ(p) Bhθ(p)Rθ

Chθ(p) Dhθ(p)Rθ

)
=

(
Ap Bp

RθCp RθDp

)
.

Note that for p = (z1, 0), we have hθ(p) = p, and so the above equality
implies RθCp = Cp for any p ∈ S and θ ∈ [0, 2π]. This implies Cp = 0 and

hence, Ĵ preserves the tangent bundle of S. Moreover, by construction, Ĵ
preserves the tangent spaces on the cylindrical ends of Ŝ and so Ĵ preserves
the tangent bundle of Ŝ.

Hence, (Ŝ, Ĵ) is a Riemann surface which is diffeomorphic to a punctured
plane. By the Uniformization theorem, (Ŝ, Ĵ) is biholomorphically equivalent
to either the punctured plane, the punctured disk, or an open annulus.
Since Ĵ is compatible with the infinite cylindrical ends of Ŵφ0

, (Ŝ, Ĵ) must
be biholomorphic to a punctured plane, and hence also biholomorphic to
a cylinder. We conclude that there exists a Ĵ–holomorphic map u : (R×
S1, j) → (Ŵφ0

, Ĵ) with image Ŝ, and hence, [u] ∈ M
Ĵ
(φ0).

Finally, note that the perturbation of the hypersurfaces ∂XΩi
, for i =

1, 2, needed to make λstd|∂XΩi
nondegenerate, happens away from the z1–

plane and so the curve [u] persists after the perturbation. □

Remark 4.2. All the symplectic embeddings that form the loop considered
in Theorem 1.8 have the same image inXΩ2

, so Ŵφt
= Ŵφ0

, for any t ∈ [0, 1].

Hence the moduli space M
Ĵ
(φt) contains the same Ĵ–holomorphic cylinders

as M
Ĵ
(φ0).

4.2. Counting the cylinders

We next prove the uniqueness of the J–holomorphic cylinders using asymp-
totic analysis estimates. Let us begin by recalling the adjunction formula:
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Lemma 4.3. Let u : Σ̇→X be a somewhere–injective J–holomorphic curve.
Then u has finitely many singularities, and

(4.3) cτ (u) = χ(u) +Qτ (u) + wτ (u)− 2δ(u)

where cτ (u) is the relative first Chern class as before (see [18, ➜4.2]), χ(u)
is the Euler characteristic of the domain of u, Qτ (u) is the relative self
intersection number as before (see [18, ➜4.2]), wτ (u) is the asymptotic writhe
defined in [18, ➜2.6], and δ(u) is a count of singularities of u with positive
integer weights.

For a proof of this statement, see [15, ➜3]. Following the details in [18,
➜2.6], we give an overview of the definition of writhe, linking number, and
winding number in this context, as they will become useful in the proof of
Proposition 4.6 below.

Let γ be a simple Reeb orbit and let k be a positive integer. A braid
with k strands around γ is an oriented link ζ contained in a tubular neigh-
borhood N of γ, such that the tubular neighborhood projection ζ → γ is an
orientation–preserving degree k submersion.

Choose a symplectic trivialization τ over γ and extend it to the tubular
neighborhood N of γ to identify N with S1 × D, such that the projection
of ζ ⊂ N to the S1 factor is a submersion. Identify further S1 × D with a
solid torus in R3 by applying an orientation preserving diffeomorphism. We
thus obtain an embedding ϕτ : N → R3. We set up the identifications in
such a way that ϕτ (ζ) is an oriented link in R3 with no vertical tangents.
Hence, it has a well defined writhe by counting signed self–crossings in the
projection to R2 × {0}. We use the sign convention where counterclockwise
twists contribute positively to the writhe.

We define the writhe of a braid ζ around γ, wτ (ζ) ∈ Z, to be the writhe of
the oriented link ϕτ (ζ) in R3. Also if ζ and ζ ′ are two disjoint braids around
γ, define the linking number of ζ and ζ ′, lτ (ζ, ζ

′) ∈ Z, to be the linking
number of the oriented links ϕτ (ζ) and ϕτ (ζ

′) in R3. This latter quantity is
defined as one half the signed count of crossings of the projections of the
two links to R2 × {0}. Note that, if ζ and ζ ′ are two disjoint braids around
γ then

wτ (ζ ∪ ζ
′) = wτ (ζ) + wτ (ζ

′) + 2lτ (ζ, ζ
′).

For a braid ζ around γ that is disjoint from γ we define the winding
number of ζ around γ to be windτ (ζ) := lτ (ζ, γ).
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The following two lemmas explain how to bound the writhe and the
winding number in terms of the Conley–Zehnder index. The formulation is
adapted from [19]. For more details, see also [15].

Lemma 4.4 ([19, Lemma 3.2]). Let γ be an embedded Reeb orbit and let
N be a tubular neighborhood around γ. Let u : Σ̇→R×Y be a J–holomorphic
curve with a positive end at γd which is not part of a trivial cylinder or a
multiply covered component and let ζ denote the intersection of this end with
{s} × Y . If s >> 0, then the following hold:

a. ζ is the graph in N of a nonvanishing section of ξγd and has well
defined winding number windτ (ζ).

b. windτ (ζ) ≤
⌊
CZτ (γd)

2

⌋
.

c. If J is generic, CZτ (γ
d) is odd, and if ind(u) ≤ 2 then equality holds

in (b).

d. wτ (ζ) ≤ (d− 1)windτ (ζ).

An equivalent statement holds for the asymptotic winding number and
writhe at a negative cylindrical end of a J–holomorphic curve.

Lemma 4.5 ([19, Lemma 3.4]). Let γ be an embedded Reeb orbit and let
N be a tubular neighborhood around γ. Let u : Σ̇→R×Y be a J–holomorphic
curve with a negative end at γd which is not part of a trivial cylinder or a
multiply covered component and let ζ denote the intersection of this end with
{s} × Y . If s << 0, then the following hold:

a. ζ is the graph in N of a nonvanishing section of ξγd and has well
defined winding number windτ (ζ).

b. windτ (ζ) ≥
⌈
CZτ (γd)

2

⌉
.

c. If J is generic, CZτ (γ
d) is odd, and if ind(u) ≤ 2 then equality holds

in (b).

d. wτ (ζ) ≥ (d− 1)windτ (ζ).

Fix a symplectic embedding φ ∈ SympEmb(XΩ1
, XΩ2

) and fix an almost

complex structure J ∈ J(Ŵφ).

Proposition 4.6. If the moduli space MJ(φ) is nonempty, then it contains
exactly one index zero cylinder.
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Proof. Assume there are two different cylinders, u1 and u2, in MJ(φ). For
s << 0, ζa = (u1 ∪ u2) ∩ ({s} × ∂XΩ1

) is a braid around γa with two com-
ponents, ζa1 and ζa2 , each having one strand. For s >> 0, ζc = (u1 ∪ u2) ∩
({s} × ∂XΩ2

) is a braid around γc with two components, ζc1 and ζc2, each
with one strand.

Under the identification TR4 = C⊕ C, the restriction of the contact
structure ξ to γc ⊂ ∂XΩ2

coincides with the second C summand. Similarly
the restriction of the standard contact structure ξ to φ−1(γa) ⊂ ∂XΩ1

also
coincides with the second summand. Use this identification to define a triv-
ialization τ for ξ|γc

, and use φ to push forward this identification and define
τ for ξ|γa

.
Lemma 4.4 b), implies

windτ (ζ
c
i ) ≤

⌊
CZτ (γc)

2

⌋
=

⌊
1

2

⌋
= 0.

Similarly, Lemma 4.5 b), implies

windτ (ζ
a
i ) ≥

⌈
CZτ (γa)

2

⌉
=

⌈
1

2

⌉
= 1.

Following the computational details from [17, Lemma 5.5], the linking num-
bers of the different strands of the two braids are given by lτ (ζ

a
1 , ζ

a
2 ) =

windτ (ζ
a
2 ) and lτ (ζ

c
1, ζ

c
2) = windτ (ζ

c
2). This means

wτ (ζa) = wτ (ζ
a
1 ∪ ζa2 ) = wτ (ζ

a
1 ) + wτ (ζ

a
2 ) + 2 · lτ (ζ

a
1 , ζ

a
2 )

≥ 0 + 0 + 2 · windτ (ζ
a
2 ) ≥ 2

and

wτ (ζc) = wτ (ζ
c
1 ∪ ζ

c
2) = wτ (ζ

c
1) + wτ (ζ

c
2) + 2 · lτ (ζ

c
1, ζ

c
2)

≤ 0 + 0 + 2 · windτ (ζ
c
2) ≤ 0.

Hence

wτ (u1 ∪ u2) = wτ (ζc)− wτ (ζa) ≤ −2.

Moreover, the trivialization τ extends over u1 and u2 in a trivial fashion
and so we have cτ (u1 ∪ u2) = 0. Also, since 0 = I(u1 ∪ u2) = cτ (u1 ∪ u2) +
Qτ (u1 ∪ u2) + CZI

τ (γ
2
c )− CZI

τ (γ
2
a), we get that Qτ (u1 ∪ u2) = 0. Finally,
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the relative adjunction formula recalled in (4.3) applied to u1 ∪ u2 gives

0 = 0 + 0 + wτ (u1 ∪ u2)− 2δ(u1 ∪ u2).

This provides a contradiction since wτ (u1 ∪ u2) ≤ −2 and δ(u1 ∪ u2) ≥ 0.
□

4.3. Final steps of the proof

We have all the details needed to complete the proof of Theorem 1.8. To be-
gin with, we explain why we can assume the defining functions f1 and f2 to
be nice. Note that we can perturbXΩ1

toX ′
Ω1

andXΩ2
toX ′

Ω2
such that both

X ′
Ω1

and X ′
Ω2

are toric domains defined by nice defining functions and, more-
over, such that X ′

Ω1
⊂ XΩ1

and XΩ2
⊂ X ′

Ω2
. The existence of a nullhomo-

topy {φz}z∈D of the loop of embeddings {φt}t∈[0,1] ⊂ SympEmb(XΩ1
, XΩ2

)
implies the existence of the nullhomotopy {φz|X′

Ω1
}z∈D of the loop of em-

beddings {φt|X′
Ω1
}t∈[0,1] ⊂ SympEmb(X ′

Ω1
, X ′

Ω2
). Hence proving the nonex-

istence of the latter would imply the nonexistence of the former and so we
can assume without loss of generality that XΩ1

to XΩ2
have nice defining

functions.
Assume that the loop {φt}t∈[0,1] is contractible in SympEmb(XΩ1

, XΩ2
).

This means there exists a 2–parameter family

{φz}z∈D ⊂ SympEmb(XΩ1
, XΩ2

),

parametrized by the unit disk D, such that {φz}z∈∂D = {φt}t∈[0,1]. The fam-
ily of embeddings {φz}z∈D generates a 2–parameter family of completed

symplectic cobordisms {Ŵφz
}z∈D. Let J = {Jz}z∈D be a generic 2–parameter

family of compatible almost complex structures such that Jz ∈ J(Ŵφz
) for

every z ∈ D and Jz = Ĵ for every z ∈ ∂D, where Ĵ is the almost complex
structure constructed in Proposition 4.1. Remark 4.2 provides an explana-
tion as to why we can choose the same almost complex structure Ĵ for all
z ∈ ∂D.

Consider the moduli space

MJ := {(z, uz) | z ∈ D, uz ∈ MJz
(φz)} .

Claim 4.7. MJ is homeomorphic to the closed disk D.

Proof. By the parametric regularity theorem, [28, Theorem 7.2 and Re-
mark 7.4], for a generic choice of 2–parameter family of compatible almost
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complex structures J, the moduli space MJ is a 2–dimensional manifold that
is cut out transversely.

The holomorphic curves in MJ have fixed asymptotics and so, by the
SFT compactness result presented in [1, Theorem 10.2], there exists a com-
pactification of MJ with broken holomorphic buildings. Proposition 3.2 im-
plies that, under the assumptions made in the hypothesis of Theorem 1.8,
no such breaking is possible and so, MJ is already compact.

Fix z ∈ D and let u ∈ MJz
(φz). Note that cτ (u) = 0, because as we have

seen previously, the trivialization τ extends in a trivial fashion over u. More-
over, since I(u) = 0 and CZτ (γa) = CZτ (γc) = 1, we get Qτ (u) = 0. Finally,
the computation in [17, Lemma 5.5] shows that wτ (u) = 0. Applying now
the adjunction formula (4.3) to the Jz–holomorphic cylinder u we obtain
0 = 0 + 0 + 0− 2δ(u) and hence δ(u) = 0. This means that u is embedded
as δ(u) is a count of singularities where u is not embedded.

Thus the automatic transversality result of Wendl presented in Lemma
3.1 applies to the holomorphic cylinders in the moduli space MJz

(φz) for
each z ∈ D. Hence MJz

(φz) is cut out transversely for all z ∈ D and the
obvious projection of MJ to D is open. Moreover, the uniqueness result
proved in Proposition 4.6 shows that MJz

(φz) is a finite set which contains
at most one element for each z ∈ D.

Putting together the above details about transversality, compactness,
and uniqueness, we see that MJ must be either empty or homeomorphic to
the disk D. The nonemptiness result proved in Proposition 4.1 concludes the
proof of the claim and shows that MJ is homeomorphic to the disk D. □

Let γc : R/cZ → ∂XΩ2
be the parametrization of γc such that p = γc(0) =(√

c
π
, 0
)
∈ C2. There exists a unique representative uz : R× S1 → Ŵφz

of
the unique class in MJz

(φz) such that lims→∞ uz(s, 0) = p. Define pz :=
φ−1
z (lims→−∞ uz(s, 0)). This construction induces a well defined composi-

tion of maps

S1 → SympEmb(XΩ1
, XΩ2

) → MJ → γa ≃ S1

t 7→ φt = φz 7→ (z, [uz]) 7→ pz.

Claim 4.8. The above composition is a degree −1 circle map.

Proof. Remark 4.2 explains why for any two parameters z, w ∈ ∂D, the mod-
uli spaces MJz

(φz) and MJw
(φw) are the same. Moreover, note that the

choice of fixed asymptotics, lims→∞ uz(s, 0) = p = lims→∞ uw(s, 0), implies
that the representatives uz and uw are also the same. Hence, we can easily
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trace the movement of the point pz on the orbit γa as z goes around the
boundary of the parameter space.

Recall that the image of XΩ1
under the loop of symplectic embeddings

{φt}t∈[0,1] does a counterclockwise 2π rotation in the z1–plane, which rotates
the orbit γa, followed by a clockwise 2π rotation in the z2–plane, which does
not rotate the orbit γa. Let q := p1 be the point on γa corresponding to the
parameter 1 ∈ D. Then

pe2πit =

{
e−4πitq, t ∈

[
0, 12

]

q, t ∈
(
1
2 , 1

]
,

and so the above composition is a degree −1 circle map. □

This last claim provides us with a contradiction, given that a degree −1
circle map cannot factor through the disk MJ ≃ D.
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