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Lagrangian submanifolds
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In this article we study complex properties of minimal Lagrangian
submanifolds in Kähler ambient spaces, and how they depend on
the ambient curvature. In particular, we prove that, in the nega-
tive curvature case, minimal Lagrangians do not admit fillings by
holomorphic discs. The proof relies on a mix of holomorphic curve
techniques and on recent convexity results for a perturbed volume
functional.

1. Introduction

An immersed submanifold ι : Ln →֒M2n in a Kähler manifold (M,J, g, ω)
is said to be minimal if the mean curvature vector field H is zero; equiva-
lently, if it is a critical point of the Riemannian volume. The submanifold is
Lagrangian if the induced Kähler form on L is zero, i.e. ι∗ω ≡ 0. From now
on we will identify L with its image ι (L).

Thanks to the compatibility condition g (·, ·) = ω (·, J ·), L is Lagrangian
if and only if

TpM = TpL
⊥
⊕ J (TpL) .

It follows that a Lagrangian submanifold has a special linear-algebraic prop-
erty with respect to J : it is totally real, i.e. TpL ∩ J (TpL) = {0} .

We are interested in the geometric properties of compact submanifolds
that are simultaneously minimal and Lagrangian. Notice that these con-
ditions involve only the Riemannian and symplectic ambient structures,
and indeed up to now minimal Lagrangian submanifolds have been stud-
ied mainly from the Riemannian point of view, such as the second variation
formula and stability under the mean curvature flow. However, the above
compatibility condition suggests that these submanifolds should also have
interesting complex analytic properties.

Specifically, we will investigate the existence of holomorphic discs with
boundary on a fixed minimal Lagrangian, and the existence of fillings by
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holomorphic discs. Holomorphic discs and disc fillings are a classical prob-
lem, cf. [1],[5],[7], [6], [18], but the literature generally focuses on symplectic
or complex assumptions on the submanifold, such as the existence of com-
plex points or being contained in the boundary of a pseudo-convex domain.
By substituting those assumptions with the Riemannian condition of being
minimal we are taking a novel direction, cf. also [4], which we expect may
have developments beyond those studied here. We remark that the mini-
mal Lagrangian condition is typically over-constrained, cf. [8], unless one
restricts to Kähler-Einstein ambient spaces. Accordingly, this will be our
main focus.

In order to put the problem into context, consider the situation in di-
mension 1. In this caseM is a Riemann surface with constant curvature and
the compact minimal Lagrangians are exactly the closed geodesics. We then
observe that the topological and complex analytic properties of L depend
on the sign of the curvature, as follows.

• If M has positive curvature, i.e. M is the sphere S2, geodesics are
maximal radius circles. In this case they are homotopically trivial (see
Figure 1), thus bound a holomorphic disc.

• If M has zero curvature, i.e. M is the torus T 2, geodesics are not
homologically trivial, so they do not bound discs.

• If M has negative curvature, there exist examples of homologically
trivial geodesics. The closed geodesic on the genus 2 surface Σ2 in
Figure 1, for example, is the boundary of a handle N . The Gauss-
Bonnet theorem shows however that such curves cannot bound a disc.

Figure 1: Minimal Lagrangians on surfaces

To understand the appropriate analogue of these properties in higher di-
mensions, consider the Kähler-Einstein manifold P1 (C)× P1 (C), with pos-
itive scalar curvature. The product γ × γ of maximal circles is a minimal
Lagrangian L. Each γ × {∗} is the boundary of a holomorphic disc; the
product is homologically trivial, and in fact L admits a filling by holomor-
phic discs.
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On the other hand, in the Ricci-flat (more precisely, Calabi-Yau) case,
the theory of calibrations shows that minimal Lagrangians minimize volume
in their homology class. They are thus never homologically trivial, and in
particular they cannot be filled by holomorphic discs.

We are thus led to trying to understand whether the negative curva-
ture case has a distinctive behaviour in regards to these properties, as in
dimension 1.

In Section 2 we focus on non existence results for holomorphic discs,
using standard techniques based on subharmonic functions. Thanks to these
results we can examine the simplest class of examples: product spaces. In
this very special situation, we show that minimal Lagrangians do not admit
even a single holomorphic disc, so they clearly do not admit holomorphic
disc fillings even though, in contrast with the Ricci-flat case, they may be
homologically trivial.

In Section 3 we focus on rigidity results for holomorphic discs, using
standard techniques from the theory of J-holomorphic curves. This leads to
the following non existence result for holomorphic disc fillings, in marked
contrast with the case of positive curvature seen above.

Theorem 1.1. Let M be a 4-dimensional Kähler-Einstein manifold with
Ric ≤ 0 and let ι : S1 × S1 →֒M be a minimal Lagrangian immersed torus.
Then it does not admit any filling by holomorphic discs, i.e. there is no
smooth map F : S1 × D −→M such that

(i) F |S1×∂D = ι (up to reparametrization);

(ii) F |{ψ}×D : {ψ} × D −→M is a holomorphic immersion, ∀ψ ∈ S1.

It does not seem possible to obtain an analogous result in higher dimen-
sions using these techniques. To generalize Theorem 1.1 we thus go back to
dimension 1 to prove a new convexity result for the length functional, cf.
Section 4. In order to illustrate its use, we give an alternative proof of the
non existence of holomorphic discs bounded by a closed geodesic on a non
positively curved Riemann surface. Our main interest in the convexity result
however is that it admits a generalization to higher dimensions, explained in
Section 5. This is based on the theory of a perturbed volume functional: the
J-volume, introduced in [2] and further studied in [14] and in [13]. Thanks to
those results, in Section 6 we prove our main result which roughly speaking
states:
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Theorem 1.2. Minimal Lagrangians in non-positive Kähler-Einstein man-
ifolds do not admit fillings by holomorphic discs in any dimension.

We refer to Theorem 6.3 for the precise statement, which requires a few
preliminary definitions (cf. Definition 6.1 and Definition 6.2). More generally,
the same is true for the class of totally real J-minimal submanifolds, which
generalize minimal Lagrangians to ambient spaces which are not necessarily
Kähler-Einstein.

In Section 7, following a technique used in [3], we exhibit two exam-
ples of totally geodesic (thus minimal) Lagrangian tori in a (non-product)
2-dimensional negative Kähler-Einstein manifold. Using the perturbation
techniques of [15] these generate many more examples of minimal Lagrangian
and J-minimal tori (not necessarily totally geodesic) to which one can apply
our results.

Acknowledgements. This work is part of my PhD thesis at the Univer-
sity of Parma. I am grateful to my advisor Tommaso Pacini for encouraging
me to study the problem of filling minimal Lagrangians and for invaluable
discussions and suggestions. I would like to thank also Jonny Evans, Jason
Lotay, Luciano Mari and Kai Zehmisch for useful discussions, as well as
Robert Bryant and Claude LeBrun who indirectly helped me via conversa-
tions with Tommaso Pacini. Finally I would like to thank the anonymous
referee for interesting suggestions and several improvements, especially in
Section 2.

2. Non existence of holomorphic discs

In this section we present some non-existence results for holomorphic discs
in Kähler manifolds with non-positive sectional curvature. These techniques
apply in two situations, depending on the specific boundary condition for
the holomorphic disc.

2.1. Totally geodesic submanifolds

The first case involves totally geodesic submanifolds; from now on we will
denote with D the open unit disc.

Theorem 2.1. Let M be a Kähler manifold with non-positive sectional
curvature and let L be a totally geodesic Lagrangian submanifold. Then
there is no non-constant smooth disc u : D →M , holomorphic on D and
with u (∂D) ⊆ L.



✐

✐

“6-Maccheroni” — 2020/10/27 — 15:58 — page 1131 — #5
✐

✐

✐

✐

✐

✐

Minimal Lagrangian submanifolds 1131

Proof. Assume such u does exist. Using variables (s, t) ∈ D, set ζ = ∂su and
η = ∂tu. Since M has an integrable structure, equation (4.3.7) in [16] gives
that

∆
(

|du|2
)

= 4
(

|∇sζ|
2 + |∇tζ|

2 − ⟨R (ζ, η) η, ζ⟩
)

≥ 0,

thus |du|2 is subharmonic, because M has non-positive sectional curvature.
Let Ψ(z) = z−i

z+i denote the standard biholomorphism between the upper
half plane H and the disc D, and set v := u ◦Ψ : H −→M . The function
|dv|2 is again subharmonic and non-constant.

By Lemma 4.3.1 in [16] (which relies on reflection arguments for totally
geodesic Lagrangian submanifolds) it holds that, if r > 0,

sup
H∩Br

|dv|2 ≤
8

πr2
·

∫

H∩B2r

|dv|2 dx dy.

Moreover, by the change of variables formula,

∫

H

|dv|2 dx dy =

∫

H

|d (u ◦Ψ)|2 dx dy =

∫

D

|du|2 ds dt < +∞,

because u extends up to the boundary of the disc D.
We thus have that

∫

H∩B2r

|dv|2 is uniformly bounded for any r > 0, so

sup
H

|dv|2 ≤ lim
r→+∞

sup
H∩Br

|dv|2 = 0,

hence dv = 0, giving a contradiction. □

2.2. Geodesic boundary

In the second case we impose a geodesic boundary condition.

Theorem 2.2. LetM be a Kähler manifold with non-positive sectional cur-
vature and let γ : S1 →M a closed geodesic. Then there is no non-constant
smooth disc u : D →M , holomorphic on D, with u |∂D = γ.

Proof. Suppose by contradiction that such a disc u : D →M does exist.
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Since the function |du|2 is subharmonic as seen above, harmonic function
theory shows that there exists a harmonic function h on D such that

{

|du|2 ≤ h on D,

|du|2 = h on ∂D.

Let us consider the energy functional

E(r) :=

∫ 2π

0

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

reiθ

dθ.

Since

|du|2 =
2

r2

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2

,

by the mean value inequality we have that

E(r) =
r2

2
·

∫ 2π

0
|du|2

(

reiθ
)

dθ ≤
r2

2
·

∫ 2π

0
h
(

reiθ
)

dθ = h(0) · πr3.

Since geodesics are critical points of the energy functional, we would have
that the energy functional E : [0, 1] −→ R has a critical point in r = 1. How-
ever, we have shown that E(r) ≤ C · r3, with equality for r = 1: this gives a
contradiction. □

2.3. A special case: products

The simplest setting in which we can study minimal Lagrangian submani-
folds is that of products. Let Σ1, . . . ,Σn be Riemann surfaces endowed with
Kähler metrics and let γi : S

1 → Σi be closed geodesics, with i = 1, . . . , n.
Then the product manifold M = Σ1 × · · · × Σn inherits a Kähler structure
with respect to which the submanifold L = γ1 × · · · × γn is minimal La-
grangian. The ambient structure is Kähler–Einstein if the curvature is uni-
formly constant, for all surfaces. For example, let Σ2 be the genus 2 surface
with its standard hyperbolic structure and let γ : S1 → Σ2 be the closed
geodesic of Figure 1. Then the submanifold L := γ × γ : S1 × S1 −→M :=
Σ2 × Σ2 is a homologically trivial minimal Lagrangian torus, since it is the
boundary of the 3-manifold N × γ, where N is the handle bounded by γ.

We want to show that in this case such minimal Lagrangians do not
bound holomorphic discs.
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Corollary 2.3. Let Σ1, . . . ,Σn be Riemann surfaces with nonpositive scalar
curvature and let γj : S

1 → Σj be closed geodesics, for j = 1, . . . , n. De-
noting with M the product space Σ1 × . . .× Σn and with L the subman-
ifold γ1 × · · · × γn, there does not exist any nonconstant continuous map
f : D −→M , holomorphic on D, such that f (∂D) ⊆ L.

Since γ1 × · · · × γn is a totally geodesic submanifold inM , Corollary 2.3
is a particular case of Theorem 2.1.

3. Rigidity of holomorphic discs in dimension 2

We now want to show that, in complex dimension 2, minimal Lagrangians
never admit holomorphic fillings. In this dimension we can achieve this using
standard results from the theory of J-holomorphic curves.

Let us consider an almost-complex manifold M , a totally real subman-
ifold L and an immersed holomorphic disc u : D →M with u (∂D) ⊆ L. In
this section we will assume that all the holomorphic discs are smooth up to
the boundary.

Let us identify D with its image u (D) and consider the normal bundle
V := u∗ (TM/TD) over D and the totally real subbundle V0 := u∗ (TL/T∂D)
over ∂D. We will denote by W k,q

V0

(D, V ) the closure of the space of vector
fields

Λ0
V0

(D, V ) :=
{

ξ ∈ Λ0 (D, V ) | ξ (∂D) ⊆ V0
}

in the Sobolev spaceW k,q (D, V ). LetW k,q
V0

(D, V )ε ⊆W k,q
V0

(D, V ) denote the
ball of radius ε centred at the zero section.

As in [11], there exists a differentiable map

D :W k,q
V0

(D, V )ε −→W k−1,q
(

Λ0,1 (D) , V
)

,

such that D−1(0) consists of all holomorphic curves (D, ∂D) → (M,L) suf-
ficently near u and whose linearization D0 at 0 is exactly the canonical
operator

∂ :W k,q
V0

(D, V ) −→W k−1,q
(

Λ0,1 (D) , V
)

.

Thanks to this fact, it is possible to prove the rigidity of holomorphic discs
in dimension 2.

Proposition 3.1. Let L be a minimal Lagrangian submanifold in a non-
positive Kähler-Einstein manifold M of complex dimension 2. If u : D →M
is a holomorphic immersed disc, and u (∂D) ⊆ L, then u is rigid, i.e. there
is no transversal 1-parameter family of holomorphic discs starting from u.
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Proof. Using the notation above, according to the axiomatic definition of
the Maslov index in [16], Appendix C,

µ (V, V0) = µ (u∗TM, u∗TL)− µ (TD, T∂D) ,

and µ (TD, T∂D) = 2. Furthermore, [4] proves that each minimal Lagrangian
submanifold L in a Kähler-Einstein ambient M is monotone; specifically,

µ (u∗TM, u∗TL) = 2λ

∫

D

ω,

where λ is the Kähler-Einstein constant. Thus, in our case, µ (u∗TM, u∗TL)
is nonpositive, so µ (V, V0) ≤ −2.

Since the bundle V has complex rank 1 and µ (V, V0) is negative, we can
apply Theorem C.1.10, (iii) in [16], thus the operator D0 is injective. Since
we are in dimension 4 and

kerD0 = { infinitesimal transversal holomorphic deformations of u} ,

the holomorphic disc does not admit any transversal holomorphic deforma-
tion. □

In particular, Theorem 1.1 follows.
In arbitrary dimensions, the theory of J-holomorphic curves allows us

to prove the same result only in the case of regular discs, i.e. discs for which
D0 is surjective.

Proposition 3.2. Let L ⊂M be a minimal Lagrangian submanifold in a
nonpositive Kähler-Einstein ambient of complex dimension n. Then L does
not admit a filling by regular immersed holomorphic discs.

Proof. If a disc u : D →M is regular, it generates a smooth moduli space
M of real dimension equal to

dimkerD0 = dimkerD0 − dim cokerD0 = index (D0) .

Thanks to the Riemann-Roch theorem, as stated in [16], Theorem C.1.10,
the linearized operator D0 is Fredholm, and

index (D0) = rank (V ) · χ (D) + µ (V, V0) = (n− 1) · χ (D) + µ (V, V0) ,
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thus we have

dimkerD0 = (n− 1) · χ (D) + µ (V, V0)

= n− 1 + µ (u∗TM, u∗TL)− µ (TD, T∂D)

= n+ µ (u∗TM, u∗TL)− 3.

Since the dimension of an analytic filling is n+ 1 and the dimension of a
disc is 2, it must be dimM ≥ n− 1, so

n+ µ (u∗TM, u∗TL)− 3 ≥ n− 1 ⇒ µ (u∗TM, u∗TL) ≥ 2,

which contradicts the fact that L is nonpositive monotone, as proved in [4].
□

However, in some cases one can prove that holomorphic discs are cer-
tainly not regular, because the index is negative. For example, if M is neg-
ative Kähler-Einstein and

• if n=3, then n+µ (u∗TM, u∗TL)−3=µ (u∗TM, u∗TL)<0, because L
is monotone;

• if n = 4, the n+ µ (u∗TM, u∗TL)− 3 = µ (u∗TM, u∗TL) + 1 ≤ −1,
because µ (u∗TM, u∗TL) ≤ −2, since it is even and negative.

Thus in dimension 3 and 4 we can not use the theory of J-holomorphic
curves to prove general results regarding the non existence of holomorphic
disc fillings.

4. Convexity of the length functional

In order to generalize our non-filling results to higher dimensions, the above
standard ideas are not sufficient. The purpose of this section is to introduce
a new technique and to illustrate its use in the simplest situation. Specifi-
cally, we prove a convexity result for the Riemannian volume functional in
dimension 1, i.e. the length functional, and use it to give an alternative proof
of Theorem 2.2. This is a concrete example of the more general results, in
higher dimensions, discussed in Sections 5 and 6.

We will need the following classical isothermal coordinates theorem which
shows that a Riemannian structure on an oriented surface induces a complex
structure, and that the metric is locally conformal to the Euclidean one. See
[9] for the proof.
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Theorem 4.1. Let (Σ, g) be an oriented Riemannian surface. Then Σ can
be made into a Riemann surface, i.e. it admits a complex structure compat-
ible with g. Local holomorphic coordinates are given by smoothly invertible
solutions of the differential equation

wz = µwz,

where µ is a complex valued function which depends on the metric g.
In such coordinates the metric has the form eσdw ⊗ dw and the scalar

curvature is K = − 1
eσ

∆σ, where ∆ is the Laplacian operator.

Thanks to the complex structure J compatible with the metric g, it is
possible to define the symplectic form

ω (·, ·) = g (J ·, ·) ,

and the hermitian metric

h := g − iω.

From now on, J will denote this complex structure on (Σ, g).

Theorem 4.2. Let (Σ, g) be a Riemannian surface with nonpositive curva-
ture and let u = u(z) = u(r, θ) : D → (Σ, J) be a smooth map, holomorphic
on D. Then the length functional

L : (0, 1] −→ R, r 7→

∫ 2π

0

∣

∣

∣

∣du|(r,·) (∂θ)
∣

∣

∣

∣

g
dθ

is nondecreasing and convex with respect to the variable log r.

Proof. Denote with αr the circle
{

reiθ
}

⊆ D and consider the function

f(z) = f(reiθ) :=
∣

∣

∣

∣du|(r,·) (∂θ)
∣

∣

∣

∣

g
= ||du (∂z)||h ·

∣

∣

∣

∣

∂z

∂θ

∣

∣

∣

∣

= ||du (∂z)||h · r = ||du (∂z) · z||h ,

where h is the hermitian metric induced by g.
We want to show that f : D −→ R is subharmonic. Thanks to Theo-

rem 4.1, for each point of Imm (f) we can consider a holomorphic chart φ
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defined on a neighborhood of the point. Thus we have that

||du (∂z) · z||h = eσ◦ϕ◦u(z) ·

∣

∣

∣

∣

∂ (φ ◦ u)

∂z
· z

∣

∣

∣

∣

std

.

Since K ≤ 0, we have that ∆σ ≥ 0.
The function σ is subharmonic; since φ and f are holomorphic it follows

that σ ◦ φ ◦ u is subharmonic too. Furthermore ∂(ϕ◦u)
∂z

is holomorphic, so

(σ ◦ φ ◦ u) (z) + log

∣

∣

∣

∣

∂ (φ ◦ u)

∂z
· z

∣

∣

∣

∣

is locally subharmonic, so

f(z) = eσ◦ϕ◦u(z) ·

∣

∣

∣

∣

∂ (φ ◦ u)

∂z
· z

∣

∣

∣

∣

is locally subharmonic too. Covering Imm(f) with local holomorphic charts,
we have that f(z) is subharmonic.
A standard argument shows that L is nondecreasing: choose 0 < r1 < r2 < 1
and let k(z) be the function harmonic in |z| < r2, continuous in |z| ≤ r2 and
equal to u(z) on αr2 . Then u(z) ≤ k(z) in |z| ≤ r2, so

L(r1) ≤

∫ 2π

0
k
(

r1e
iθ
)

dθ = 2πk(0)

=

∫ 2π

0
k
(

r2e
iθ
)

dθ =

∫ 2π

0
u
(

r2e
iθ
)

dθ = L(r2).

Furthermore, the functional L is convex with respect to the variable log r:
let k(z) be the harmonic function in the annulus A = {r1 < |z| < r2}, con-
tinuous in r1 ≤ |z| ≤ r2 and equal to f(z) on the two boundary components
of A. Then f(z) ≤ k(z) for r1 ≤ |z| ≤ r2 and

d

dr

∫ 2π

0
k
(

reiθ
)

dθ =

∫ 2π

0

d

dr
k
(

reiθ
)

dθ =
1

r

∫ 2π

0

∂k

∂n
dσ,

where dσ = rdθ is the element of arc length and ∂k
∂n

denotes the normal
derivative, i.e. < grad k,n >, where n is the normal vector.
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As k is a harmonic map and thanks to the Divergence Theorem we have
that:

0 =

∫

A

∆k =

∫

∂A

< grad k,next > dσ

=

∫

Br2

< grad k,n > dσ −

∫

Br1

< grad k,n > dσ,

so
∫ 2π
0

∂k
∂n
dσ does not depend on r, and we can conclude that, for r ∈ A,

L(r) ≤

∫ 2π

0
k
(

reiθ
)

dθ = a log r + C.

Furthermore, f(z) and k(z) coincide on ∂A, so the functional L is convex
with respect to the variable log r. □

This result gives an alternative proof of the non existence of holomorphic
discs with geodesic boundary:

Second proof of Theorem 2.2. If a smooth map

u = u(z) : D −→ Σ,

holomorphic on D existed, r = 1 would be a critical point for the length
functional L : (0, 1] → R defined above, since u|α1

≡ γ is a geodesic. Thanks
to Theorem 4.2 the functional

L ◦ exp : (−∞, 0] −→ R

has a critical point in t = 0, it is convex and tends to 0 when t tends to −∞:
this gives a contradiction. □

5. The J-Volume functional

In this section we introduce an alternative volume functional defined in [2]
and we state its properties, proved by J. Lotay and T. Pacini in [14] and [13],
which generalize the convexity of the length functional proved in Section 4.

Definition 5.1. Let (M,J, h) be an almost Hermitian manifold. Denot-
ing with g the real part of the hermitian metric of M , and with TR+ the
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Grassmannian of oriented totally real n-planes, we define the function

ρJ : TR+ → R, π 7−→
√

volg (e1, . . . , en, Je1, . . . , Jen),

where e1, . . . , en is a positive orthonormal basis for the totally real n-plane
π.

Fix a totally real submanifold ι : L→M . We can define the J-volume
form as

volJ = ρJ volg,

where volg is the standard Riemannian volume on L.

Observe that ρJ (π) ≤ 1 and that the equality holds if and only if π is
Lagrangian.

We can extend the map ρJ to the Grassmannian of n-planes, setting
ρJ(π) = 0 and σ [π] = 0, when π contains a complex line.

We will say that a totally real submanifold is J-minimal if it is a critical
point for the J-volume functional. See [2], [15] for examples of J-minimal
submanifolds. The following results hold (cf. [14], [13]):

Lemma 5.2. For any compact oriented n-dimensional submanifold L in
an almost Hermitian manifold (M,J, h), we have VolJ(L) ≤ Volg(L) and the
equality holds if and only if L is Lagrangian. In particular, the values of VolJ
and Volg and their first derivatives coincide on Lagrangian submanifolds.

Proof. The first part follows from the fact that ρJ ≤ 1 with equality if and
only if L is Lagrangian.

To prove the second statement, let {Lt} be a one-parameter family of
totally real submanifolds such that L0 is Lagrangian. Consider the real
functions f(t) := Volg (Lt) and g(t) := VolJ (Lt); we have that g − f ≥ 0.
Since it is null for t = 0, this is minimum, hence it is a critical point, so
f ′(0) = g′(0) = 0. □

Theorem 5.3. Let M be a Kähler–Einstein manifold with Ric ̸= 0. Then
the set of J-minimal submanifolds coincides with the set of minimal La-
grangians.

Interesting properties hold for the J-volume functional adding assump-
tions on the ambient manifold.
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Definition 5.4. Let T be the space of totally real immersions of L into M
which are homotopic, through totally real immersions, to the given ι, up to
orientation preserving diffeomorphisms of L.

A one parameter family {ιt : L→M}t∈R in T is a geodesic in T if and
only if there exists a fixed vector field X ∈ Λ0 (TL) such that

(1)
∂ιt
∂t

= J (dιt (X)) .

We say that a functional f : T −→ R is convex (respectively, strictly
convex) if and only if it restricts to a convex function (respectively, strictly
convex function) in one variable along any geodesic in T .

Such a family is called geodesic in T because there exists a connection
on T with respect to which it is a geodesic; cf [14], Section 2.

In [14] the following result about the convexity of the J-volume func-
tional is proved.

Theorem 5.5. Let M be a Kähler manifold with Ric ≤ 0 (respectively,
Ric < 0). Then the J-volume functional is convex (respectively, strictly con-
vex).

Observe that in dimension 1 any totally real curve is Lagrangian, so the
J-volume functional, the Riemannian volume functional and the length func-
tional coincide. In this case the statement above generalizes Theorem 4.2.

6. Non existence of a holomorphic discs filling

In Section 3 we proved the non existence of a filling by holomorphic discs
for minimal Lagrangian tori, as stated in Theorem 1.1.

In this section we will generalize that result to higher dimensions.
Let L a compact, oriented n-dimensional manifold such that L admits

a locally trivial S1-fibre bundle structure, i.e. there exists a S1-fibre bundle
π : L→ B. Observe that π : L→ B is a restriction of a complex fiber line
bundle (N, h) → B, the restrictions to the circles of radius r on each fiber
are circle bundles themselves and that the restriction N → B to the unit
discs is a disc bundle.

For example, the n−dimensional torus
(

S1
)n
, seen as the trivial S1-

bundle over the (n− 1)-torus, is the restriction of the complex trivial line

bundle C×
(

S1
)n−1

→
(

S1
)n−1

. Also the Hopf fibration is the restriction to
the sphere S2n+1 of the tautological line bundle over Pn (C).
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In this setting, we want to generalize the concept of filling by holomorphic

discs, used in Theorem 1.1.

Definition 6.1. Using the notation above, let L →֒M be an immersion
which extends to an immersion ι′ : N →M . If its restriction to each fiber
Dp = π−1(p) is holomorphic, we will say that it is a filling by holomorphic

discs.

Definition 6.2. Let M be a 2n−dimensional Kähler manifold; an im-
mersed submanifold S has complex rank 1 if, for each p ∈ S, the tangent
space TpS contains exactly one complex line.

We can now prove our main result, which generalizes Theorem 1.1 to
higher dimensions, since a solid torus in a 4-dimensional Kähler-Einstein
manifold has complex rank 1.

Theorem 6.3. Let M be a 2n-dimensional Kähler manifold with Ric ≤ 0
and let L be an oriented compact n-manifold which admits a locally trivial
S1-fibre bundle structure. If ι : L →֒M is a J-minimal immersion, it does
not admit any complex rank 1 filling by holomorphic discs.

Proof. The punctured disc D \ {0} (with the standard complex structure as
a subset of the complex plane C) is biholomorphic to the cylinder S1 × R+,
endowed with the complex structure given by

Jcyl (∂θ) = ∂t, Jcyl (∂t) = −∂θ,

where {∂θ, ∂t} is the standard oriented basis. The biholomorphism is given
by

φ : S1 × R
+ −→ D \ {0} ; (θ, t) 7→ eiθ · e−t =

(

e−t cos θ, e−t sin θ
)

,

and, in particular, φ
(

S1 × {0}
)

= ∂D.
Suppose by contradiction that such a complex rank 1 filling by holomor-

phic discs ι′ : N →M existed; thus the only complex line in each tangent
space TpN would be {∂θ, ∂t}, tangent to the holomorphic disc.

We would have a family {ιt : L→M}, with t ∈ [0,+∞), of immersed
submanifolds given by the restriction of ι′ : N → B to the circle bundle of
radius r = e−t: observe that ι0 coincides with the J-minimal ι : L→M .

For each t ∈ [0,+∞) we have that ιt : L→M is a totally real subman-
ifold: if a tangent space TpL contained a complex line, it would contradict
that ι′ : N →M has complex rank 1.
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We claim that {ιt} is a geodesic in T (see Definition 5.4): considering
the vector field X = ∂θ we have that

dιt (X) =
∂ιt
∂θ

=
∂ι′

∂θ
, and

∂ιt
∂t

=
∂ι′

∂t
,

so equality (1) holds because it is equivalent to

∂ι′

∂t
= J

(

∂ι′

∂θ

)

,

which is the Cauchy-Riemann equation for each holomorphic disc.
Applying Theorem 5.5 we have that the J-volume functional restricted

to the curve {ιt} ⊂ T is convex because Ric ≤ 0. Thanks to Lemma 5.2 we
have that t = 0 is a critical point because ι0 is J-minimal, and VolJ(ι0) > 0.
Furthermore it tends to 0 for t tending to +∞ because the Riemannian
volume of ιt (L) tends to 0 and VolJ ≤ Vol (see Lemma 5.2), and it leads to
a contradiction because the J-volume functional is convex. □

Observe that, according to Theorem 5.3, the main theorem concerns ex-
actly minimal Lagrangian submanifolds when the ambient space is negative
Kähler-Einstein.

In Calabi-Yau manifolds the statement above is trivial for special La-
grangian and J-minimal totally real submanifolds since they are calibrated
submanifolds, thus their homology classes are not null.

7. Examples

We want to look for nontrivial examples of minimal Lagrangians in a Kähler
manifold (M,J, g, ω).

Denoting by ρ the Ricci 2-form, the Lagrangian condition implies that

d [ω (H, ·)] = ρ.

Thus a minimal Lagrangian submanifold L would have ρ|L = 0, and looking
for examples of minimal Lagrangian submanifolds in Kähler ambients is an
overconstrained problem. See [8] for details.

This last condition is automatically verified on a Lagrangian submanifold
L ifM is a Kähler-Einstein manifold, i.e. if ρ (·, ·) = λω (·, ·), for some λ ∈ R.

Thus Kähler-Einstein manifolds are the suitable context in which look
for minimal Lagrangian submanifolds. Very few examples are known; see [12]
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for results about existence of minimal Lagrangian tori in product spaces. We
will exhibit a few more, following [3].

Let us consider a homogeneous polynomial p of degree d on Cn+1, with
d > n+ 1, and suppose that the zero locus

M = {[z] ∈ P
n (C) | p ([z]) = 0}

is smooth. Denoting with J the induced complex structure, by the adjunction
formula we have that its first Chern class is

c1(M,J) = (n+ 1− d) [ω] ,

where ω is the pull back of the Fubini-Study metric on Pn (C). Observe that
c1(M,J) < 0.

A theorem of Aubin and Yau (see [17]) guarantees that there is a unique
Kähler-Einstein 2-form ω on M in the class −c1(M,J). Let g denote the
corresponding metric.

If p has real coefficients, M is invariant under complex conjugation on
Pn (C): its restriction to M gives a real structure c ∈ Diff (M), i.e. an anti-
holomorphic involution such that c∗J = −J .

Since both c∗ω and −ω are Kähler-Einstein for (M, c∗J), it follows that
c∗ω = −ω by uniqueness, and that c is an isometry with respect to the metric
g:

c∗g (·, ·) = g (c·, c·) = ω (−J(c·), c·) = ω (J ·, ·) = g (·, ·) .

The fixed point set L of c, called the real locus, if non empty, is a totally
geodesic (thus minimal) Lagrangian submanifold of M , in fact

ωp (v, w) = ωp (c(v), c(w)) = c∗ωp (v, w) = −ωp (v, w) ,

for any p ∈ L and v, w ∈ TpL, thus ω|L ≡ 0.

First example. Let us consider the homogeneous polynomial

P (X,Y, Z,W ) = X6 + Y 6 − Z6 −W 6.

The zero locus

M =
{

[X : Y : Z :W ] ∈ P
3 (C) |X6 + Y 6 − Z6 −W 6 = 0

}

admits a negative Kähler-Einstein structure, and the real locus

T :=M ∩ P
3 (R) =

{

[x : y : z : w] ∈ P
3 (R) |x6 + y6 − z6 − w6 = 0

}
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is a minimal Lagrangian submanifold of real dimension 2, as above.
Observe that the curve C =

{

(x, y) ∈ R2 |x6 + y6 = 1
}

is diffeomorphic
to a circle, so

T =M ∩ P
3 (R) ∼= (C × C) / ∼ ,

where ((x, y) , (z, w)) ∼ ((−x,−y) , (−z,−w)) ; hence T is diffeomorphic to a
2-torus. Thus T is a minimal Lagrangian torus in a negative Kähler-Einstein
manifold.

Second example. Let us consider the polynomial

q(x, y, z) =
(

x2 + y2 − 1
)4

+ z8.

The critical locus of q in R3 is the circle

C =
{

(x, y, z) ∈ R
3 |x2 + y2 − 1 = 0, z = 0

}

plus the origin O = (0, 0, 0). Since q(C) = 0 and q(O) = 1, the regular values
of q are all the real numbers except 0 and 1.

Let ε be a real number in (0, 1) and consider the polynomial qε := q − ε.
Since 0 is not a critical value for qε, the zero locus of qε is smooth, and is a
boundary component of the region q−1 [0, ε], which retracts onto C.

Now let us consider the homogeneous polynomial

Q (X,Y, Z,W ) = (X2 + Y 2 −W 2)4 + Z8 − εW 8 =W 8 · qε

(

X

W
,
Y

W
,
Z

W

)

.

Its singular points in P3 (C) are the two nonreal points [±i : 1 : 0 : 0], hence
M = {Q = 0} ⊂ P3 (C) is a compact Kähler orbifold, so the Calabi conjec-
ture holds; cf. [10]. Thus, away from the singular points,M admits a negative
Kähler-Einstein structure.

Since Q(X,Y, Z,W ) =W = 0 only at the origin, the real locus is smooth
and is given by

T :=M ∩ P
3 (R) =

{

[X : Y : Z : 1] ∈ P
3 (R) | qε (X,Y, Z) = 0

}

.

It is a minimal Lagrangian torus as above.

Conclusions

Non existence results in Section 2 can be applied to very special examples:
totally geodesic Lagrangian submanifolds in Kähler manifolds with non-
positive sectional curvature.
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It is possible to apply Proposition 3.1 to the two examples above; in
particular they do not admit any filling by holomorphic discs.

Moreover, thanks to Corollary 6.1 in [15], any small perturbation of the
polynomial p gives a new Kähler-Einstein manifold and a locally unique
minimal Lagrangian submanifold (in general, not totally geodesic). Propo-
sition 3.1 can be applied also to these examples to prove that they do not
admit any filling by holomorphic discs.

Analogous examples of minimal Lagrangians in higher dimensions can
be studied only via Theorem 6.3. Furthermore, any small perturbation of
M in the same Kähler class, with negative Ricci curvature, has a locally
unique J-minimal compact submanifold (see Corollary 6.1 in [15]). Such
submanifolds are not minimal Lagrangian in general, hence Theorem 6.3 is
necessary to prove that they do not admit any filling by holomorphic discs.
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