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H-principles for regular Lagrangians

Oleg Lazarev

We prove an existence h-principle for regular Lagrangians with
Legendrian boundary in arbitrary Weinstein domains of dimension
at least six; this extends a previous result of Eliashberg, Ganatra,
and the author for Lagrangians in flexible domains. Furthermore,
we show that all regular Lagrangians come from our construction
and describe some related decomposition results. We also prove
a regular version of Eliashberg and Murphy’s h-principle for La-
grangian caps with loose negative end. As an application, we give
a new construction of infinitely many regular Lagrangian disks in
the standard Weinstein ball.

1. Introduction

1.1. Existence h-principle for Lagrangians

In [8], Eliashberg, Ganatra, and the author introduced the class of regu-

lar Lagrangians in Weinstein domains. These are exact Lagrangians whose
complementary Liouville cobordism is actually a Weinstein cobordism. Al-
ternatively, L ⊂W is regular if the Liouville vector field for the Weinstein
structure on W is tangent to L. Since they have Weinstein complement,
regular Lagrangians have the advantage that they can be manipulated via
Weinstein homotopy moves and studied via Legendrian handlebody theory.
In fact, all regular Lagrangians can be constructed by coupled Weinstein
handle attachment; so a regular Lagrangian can be thought of as a rela-
tive Weinstein structure. Their importance also stems from the fact that all
currently known exact Lagrangians in Weinstein domains are regular. It is
an open problem whether all exact Lagrangians in Weinstein domains are
regular; see Problem 2.5 of [8].

The special class of flexible Lagrangians, which have flexible Weinstein
complement, was also defined in [8]. It was shown that flexible Lagrangians
with non-empty boundary satisfy an existence and uniqueness h-principle,
demonstrating that flexible Weinstein domains have many Lagrangians with
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Legendrian boundary. The slightly more general class of semi-flexible La-
grangians was also introduced; these are constructed by considering a flex-
ible Lagrangian in a flexible Weinstein domain and taking the boundary
connected sum with an arbitrary Weinstein domain. However as shown in
[8], semi-flexible Lagrangians have vanishing wrapped Floer homology and
hence there is no general existence h-principle for semi-flexible Lagrangians
in arbitrary Weinstein domains. For example, there is no semi-flexible rep-
resentative of the cotangent fiber T ∗Mx ⊂ T ∗M ; see Corollary 6.4 of [8].
In this paper, we will give a general existence h-principle for Lagrangians
with Legendrian boundary in an arbitrary Weinstein domain. Although the
resulting Lagrangians cannot be flexible (or semi-flexible) in general, it is
interesting to note that their construction uses flexible Lagrangians in a
crucial way and in some sense generalizes the construction of semi-flexible
Lagrangians.

We first recall the necessary differential-topological condition for a man-
ifold to admit a Lagrangian embedding into a Weinstein domain. As in
[8], a formal Lagrangian embedding of L into a Weinstein domain W is
a pair (f,Φt), where f : (L, ∂L) → (W,∂W ) is a smooth embedding and
Φt : TL→ TW , t ∈ [0, 1], is a homotopy of injective homomorphisms cov-
ering f such that Φ0 = df and Φ1 is a Lagrangian homomorphism, i.e.
Φ1(TxL) ⊂ TxW is a Lagrangian subspace for all x ∈ L. Note that we do
not impose any conditions on Φt restricted to ∂L and that this definition
makes sense even if L does not have boundary. We say that two formal
Lagrangians are formally Lagrangian isotopic if they are isotopic through
formal Lagrangians. The following result says that this necessary condition
for the existence of a Lagrangian embedding is in fact sufficient.

Theorem 1.1. Suppose that Ln, n ≥ 3, has non-empty boundary and ad-

mits a formal Lagrangian embedding into a Weinstein domain W 2n. Then

Ln admits a regular Lagrangian embedding into W 2n in the same formal

Lagrangian isotopy class.

In particular, Theorem 1.1 constructs many regular Lagrangians in ar-
bitrary Weinstein domains. As explained before, these Lagrangians are in
general not flexible (if W is not flexible) nor semi-flexible. For example,
if L · L′ ̸= 0 for some closed exact Lagrangian L′ ⊂W , then L has non-
vanishing wrapped Floer homology and hence cannot be semi-flexible [8].
Unlike flexible Lagrangians, these Lagrangians will not be unique in their
formal class; see Theorem 1.2 and Corollary 1.7 below.
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We also note that the restriction n ≥ 3 in Theorem 1.1 cannot be re-
moved. For example, there is a formal Lagrangian embedding of the punc-
tured torus T 2\D2 →֒ B4 such that S1 = ∂(T 2\D2) →֒ S3 is the smooth
unknot. However, it is known that any exact 2-dimensional Lagrangian
whose Legendrian boundary is the smooth unknot must be a disk [7]. A
4-dimensional construction similar to the one in Theorem 1.1 was consid-
ered by Yasui [20], who produced many Lagrangian disks in B4. However,
these disks necessarily have different formal classes, and even smooth isotopy
classes.

1.2. Decomposition of regular Lagrangians

The proof of Theorem 1.1 involves first using the existence h-principle from
[8] to realize the formal Lagrangian as a flexible Lagrangian in the flexible
domainW 2n

flex and then applying the following result from previous work [14]:

any Weinstein domain W 2n, n ≥ 3, can be Weinstein homotoped to W 2n
flex

plus a smoothly trivial Weinstein cobordism C2n. Here W 2n
flex is the unique

flexible Weinstein structure almost symplectomorphic to W 2n; a diffeomor-
phism φ : (W,ωW ) → (X,ωX) of two symplectic manifolds is an almost sym-
plectomorphism if φ∗ωX can be deformed through non-degenerate (but not
necessarily closed) two-forms to ωW . Therefore the Lagrangians produced
by Theorem 1.1 can be decomposed as flexible Lagrangians inW 2n

flex that are

extended trivially in C2n. The following result shows that in fact all regular
Lagrangians with boundary are of this form. Here a Weinstein homotopy
of (W,W0) for a Weinstein subdomain W0 ⊂W will mean a Weinstein ho-
motopy of the Weinstein cobordism W\W0 fixed on ∂−(W\W0) = ∂+W0.
If ∂W0 ∩ ∂W ̸= ∅, then we consider W\W0 as a Weinstein cobordism with
corners and require the homotopy to be fixed on these corners as well. For
example, if L ⊂W 2n is a regular Lagrangian with Legendrian boundary,
then W\T ∗L is a Weinstein cobordism with corners ∂ST ∗L, the boundary
of the unit cotangent bundle ST ∗L of L.

Theorem 1.2. Let Ln ⊂W 2n, n ≥ 3, be a regular Lagrangian with non-

empty boundary. Then (W 2n, Ln) is Weinstein homotopic to (W 2n
flex ∪ C

2n,

Ln
flex ∪ (∂Lflex × [0, 1])), where C2n is a smoothly trivial Weinstein cobor-

dism, Ln
flex ⊂W 2n

flex is a flexible Lagrangian, and ∂Lflex × [0, 1] ⊂ C is a

trivial extension of ∂Lflex ⊂ ∂−C = ∂Wflex to C.

Here Ln
flex ⊂W 2n

flex is the unique flexible Lagrangian [8] that is formally

isotopic to L ⊂W 2n under the almost symplectomorphism between Wflex
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and W . So Theorem 1.2 shows that all regular Lagrangians with bound-
ary can be decomposed into a flexible Lagrangian and a smoothly trivial
Lagrangian. However, as we noted before, it is an open problem whether
all exact Lagrangians in Weinstein domains are regular. The condition that
the Weinstein homotopy is done in the complement of T ∗Ln implies that
there is an exact symplectomorphism φ :W 2n →W 2n

flex ∪ C
2n (or rather

their completions) such that φ(Ln) = Ln
flex. Of course, this does not im-

ply that Ln ⊂W 2n is flexible since Ln
flex ⊂W 2n

flex ceases to be flexible once

C2n is attached to W 2n
flex to form W 2n. In general, flexible Lagrangians and

Weinstein domains are defined only for n ≥ 3. However a 4-dimensional ver-
sion of Theorem 1.2 was proven by Conway, Etnyre, and Tosun [6] for regular
Lagrangian disks D2 in B4

std. We also note the similarity between the de-
composition (W 2n

flex ∪ C
2n, Ln

flex ∪ (∂Lflex × [0, 1])) of arbitrary regular La-
grangians in Theorem 1.2 and the definition of semi-flexible Lagrangians [8],
i.e. Lagrangians Ln ⊂W 2n such that (W 2n, Ln) is Weinstein homotopic to
(W 2n

flex♮W0, L
n
flex) for Ln

flex ⊂W 2n
flex and some arbitrary Weinstein domain

W0. However the former decomposition is much more general than the latter
because the attaching spheres of the Weinstein handles of C2n can link, as
Legendrian submanifolds, with the Legendrian boundary ∂Ln

flex.
A slight modification of Theorem 1.2 implies the following decomposition

result for disks in cotangent bundles of spheres.

Corollary 1.3. Suppose Ln, n ≥ 3, is a regular Lagrangian disk in T ∗Sn

with any Weinstein structure. Then (T ∗Sn, Dn) is Weinstein homotopic to

(T ∗Dn ∪Hn
Λ, D

n).

Here T ∗Dn is equipped with the standard subcritical Weinstein struc-
ture, Λ is some Legendrian in ST ∗Dn = (S2n−1, ξstd)\N(∂Dn), and Dn ⊂
T ∗Dn ∪Hn

Λ corresponds to the zero-section of T ∗Dn. Since T ∗Dn = B2n
std,

Corollary 1.3 provides a presentation of T ∗Sn
std, the standard cotangent

bundle, using a single n-handle attached along Λ. However it is not clear
whether or not Λ is the standard Legendrian unknot Λunknot ⊂ ∂T ∗Dn, as
is the case for the standard presentation T ∗Sn

std = B2n
std ∪H

n
Λunknot

.

Question 1.4. Suppose Dn is a regular Lagrangian disk in the standard

cotangent bundle T ∗Sn
std. Can we always take Λ in Corollary 1.3 to be

Λunknot?

A negative answer to this question would give an exotic presentation for
T ∗Sn

std with a single n-handle. On the other hand, a positive answer to this
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question would imply that the data of a regular disk Dn ⊂ T ∗Sn
std is just the

data of two Legendrian unknots Λunknot,1

∐
Λunknot,2 ⊂ (S2n−1, ξstd) that

are Legendrian linked with each other. This is equivalent to the data of a
single Legendrian unknot in (S2n−1, ξstd)\N(Λunknot) = ST ∗Dn. A positive
answer would also imply that any regular Lagrangian disk in T ∗Sn

std can be
disjoined from some cotangent fiber. Corollary 1.3 already shows that for
any regular disk Dn ⊂ T ∗Sn

std, there exists another regular disk Cn, namely
the co-core of the handle Hn

Λ, which is disjoint from Dn and generates the
wrapped Fukaya category of T ∗Sn

std; see [4].
We also point out that there is another natural decomposition of reg-

ular Lagrangian disks. As shown in [8], any regular Lagrangian disk can
be presented as the co-core of an n-handle. However carving out this co-
core, i.e. removing the n-handle, can often result in exotic Weinstein do-
mains. For example, consider an exotic Weinstein structure Σ2n on the
ball B2n, for example the structures constructed by McLean [16], and let
Dn ⊂ Σ2n ∪Hn

Λunknot
be the co-core of the handle Hn

Λunknot
. The result of

carving out Dn is precisely Σ2n. In general, the carved out domain does
not even have to be diffeomorphic to the ball. For example, if Dn · Sn = k
in T ∗Sn, then the carved out domain is a rational homology ball B2n

k with
Hn−1(B

2n
k ;Z) ∼= Z/kZ. Hence this co-core decomposition results in the data

of a (possibly exotic) Weinstein structure Σ2n on B2n (or some other smooth
domain) and a Legendrian in ∂Σ2n. On the other hand, our decomposition
in Corollary 1.3 just depends on the data of a Legendrian in the standard
structure (S2n−1, ξstd)\N(Λunknot) = ST ∗Dn.

Of course closed Lagrangians cannot be decomposed as in Theorem 1.2
since flexible Weinstein domains have no closed exact Lagrangians. However,
a similar factorization result does hold in the closed case: all the topology
(except the top handle) of a closed regular Lagrangian can be put in a flex-
ible domain. For example, in [8], Theorem 4.7, it was shown that for any
closed smooth manifold Mn, n ≥ 3, satisfying the appropriate formal condi-
tions, there is a Weinstein structure T ∗Sn

M on T ∗Sn that contains M as a
regular Lagrangian. These examples are constructed by using the flexible La-
grangian existence h-principle [8] to produce a flexible embeddingMn\Dn ⊂
B2n

std and then attaching a handle to ∂(Mn\Dn) ⊂ (S2n−1, ξstd) = ∂B2n
std,

i.e. (T ∗Sn
M ,M

n) is Weinstein homotopic to (B2n
std ∪H

n
∂(M\Dn), (M

n\Dn) ∪

Hn
∂(M\Dn)). So the interesting topology of Mn is contained in the flexible

domain B2n
std. In fact, all regular Lagrangians in T ∗Sn can be constructed

this way. More generally, we have the following result.
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Theorem 1.5. Suppose that Ln is a closed regular Lagrangian in W 2n, n ≥
3. Then there exists a regular Lagrangian Ln\Dn in a flexible domain V 2n

flex

such that (W 2n, Ln) is Weinstein homotopic to (V 2n
flex ∪H

n
∂(L\Dn), (L

n\Dn) ∪

Hn
∂(L\Dn)).

The point of Theorem 1.5 is that the Lagrangian Ln\Dn is in the flex-

ible structure V 2n
flex. Namely, the claim that (W 2n, Ln) is Weinstein homo-

topic to (V 2n ∪Hn
∂(L\Dn), (L

n\Dn) ∪Hn
∂(L\Dn)) with an arbitrary Weinstein

structure V 2n follows immediately from the definition of regularity. By The-
orem 1.2, the regular Lagrangian Ln\Dn ⊂ V 2n

flex can be further decomposed

into the flexible Lagrangian (Ln\Dn)flex ⊂ V 2n
flex plus a trivial extension in

the Weinstein cobordism Vflex\i(Vflex), where i : Vflex →֒ Vflex is some We-
instein embedding.

In general the topology of Vflex in Theorem 1.5 will depend on the for-
mal class of Ln ⊂W 2n. Except for this, we can essentially control the topol-
ogy of V 2n

flex. For example, a slight modification of Theorem 1.5 shows that

for any regular Mn\Dn ⊂W 2n, (W 2n ∪Hn
∂Mn\Dn ,M

n\Dn ∪Hn
∂Mn\Dn) is

Weinstein homotopic to (W 2n
flex ∪H

n
∂Mn\Dn ,M

n\Dn ∪Hn
∂Mn\Dn). In partic-

ular, there is an exact symplectomorphism φ :W 2n ∪Hn
∂Mn\Dn →W 2n

flex ∪

Hn
∂(Mn\Dn) such that φ(Mn) =Mn. However, this symplectomorphism does

not induce a symplectomorphism between W 2n and W 2n
flex (as it shouldn’t).

This is because even though φ maps Mn to Mn, it does not map the
co-core of Hn

∂(Mn\Dn) in W 2n ∪Hn
∂(Mn\Dn) to the co-core of Hn

∂(Mn\Dn) in

W 2n
flex ∪H

n
∂(Mn\Dn), which would be needed to conclude thatW 2n andW 2n

flex

are symplectomorphic. In particular, the two co-cores are two regular La-
grangian disks Dn

1 , D
n
2 ⊂W 2n ∪Hn

∂(Mn\Dn) both intersecting Mn in exactly

one point such that carving out Dn
1 results in W 2n but carving out Dn

2 re-
sults in W 2n

flex. In particular, these disks can be smoothly isotopic but are
not Lagrangian isotopic.

We can rephrase the above discussion as follows. Let Lagrangian(W 2n,
Ln) denote all regular embeddings of a closed manifold Ln into some fixed
Weinstein domain W 2n. Then Theorem 1.5 shows that the following map
induced by simultaneous handle-attachment is surjective:

Lagrangian(W 2n
flex,M

n\Dn)(1.1)

→ Lagrangian(W 2n ∪Hn, (Mn\Dn) ∪Hn
∂(M\Dn)).

On the right-hand-side,Mn\Dn is considered as a Lagrangian inW 2n, which
is allowed to have an arbitrary Weinstein structure. In particular, the map
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is surjective even if we consider all Weinstein structures on the right-hand-
side since the Weinstein structure on the left-hand-side is always flexible. A
similar map just on the level of Weinstein domains is considered in [14] and
is also shown to be surjective. Theorem 1.5 shows that surjectivity holds
even when we consider Weinstein domains and Lagrangians simultaneously.

Now we consider an application of Theorem 1.5.

Corollary 1.6. Let Sn be a regular Lagrangian sphere in T ∗Sn, with any

Weinstein structure. Then there exists a regular disk Dn ⊂ B2n
std such that

(T ∗Sn, Sn) is Weinstein homotopic to (B2n
std ∪H

n
∂Dn , Dn ∪Hn

∂Dn).

For example, the zero-section Sn
0 ⊂ T ∗Sn

std can be obtained by attaching
a handle to the boundary of the Lagrangian unknot Dn

0 ⊂ B2n
std. It is un-

known whether there are exotic Lagrangian spheres in T ∗Sn
std (or whether

all Lagrangian spheres in T ∗Sn
std are regular). However Corollary 1.6 shows

that all such hypothetical spheres come from Lagrangian disks in B2n
std. In

particular, the following map is surjective.

(1.2) Lagrangian(B2n
std, D

n) → Lagrangian(T ∗Sn, Sn).

Hence there are at least as many regular Lagrangians disks in B2n
std as regular

Lagrangian spheres in T ∗Sn, with some Weinstein structure. The latter set
is infinite, e.g. T ∗Sn

std♮Σ where Σ is an exotic Weinstein structure on the ball
constructed by McLean [15]. Therefore, the former set is also infinite.

Corollary 1.7. If n ≥ 4, there are infinitely many different regular La-

grangian disks in the standard Weinstein ball B2n
std.

These Lagrangian disks have different Legendrian boundaries since at-
taching an n-handle to them results in different symplectic structures
T ∗Sn

std♮Σ on T ∗Sn. In particular, these disks are not isotopic through exact
Lagrangians with Legendrian boundary. In fact, there is no symplectomor-
phism of B2n

std taking the (completed) disks to each other. Hence these are
non-flexible disks in a flexible Weinstein domain. The first such examples
were found by Eliashberg, Ganatra, and the author [8] using a different con-
struction based on work of Murphy and Siegel [19]. The disks in [8] were
shown to be exotic because the complement Weinstein subdomains obtained
by carving them out are also exotic [19]. Since it is not known how to carve
out Lagrangians other than disks to produce Weinstein subdomains, it is
not clear how to extend the method in [8] to Lagrangians with more gen-
eral topology. On the other hand, the construction in Corollary 1.7 can be
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easily modified to create many exotic Lagrangians in B2n
std with non-trivial

topology, i.e. there is no topological restriction on the Lagrangian Ln in
Theorem 1.5 (besides the necessary formal conditions).

Since flexible domains have vanishing symplectic homology, the Lagran-
gians in Corollary 1.7 all have vanishing wrapped Floer homology. How-
ever they can be distinguished by the Legendrian contact homology of their
Legendrian boundaries (or equivalently the symplectic cohomology of the
Weinstein domains obtained by attaching an n-handle to these Legendri-
ans [2]). So even their Legendrian boundaries are not isotopic. Even though
the wrapped Floer homology of these disks vanishes, the Legendrian con-
tact homology does not vanish since the Legendrian boundaries have exact
Lagrangian fillings, namely the disks themselves.

Using the regular disks from Corollary 1.7, it is easy to construct exotic
disks in the standard cotangent bundle T ∗Sn

std disjoint from the zero-section.
Abouzaid-Seidel [1] constructed exotic disks in T ∗Sn

std that intersect the zero-
section Sn

std many times; these were obtained by looking at the graphs of
functions f : Dn → R in T ∗Dn ⊂ T ∗Sn and distinguished by their wrapped
Floer homology with the zero-section. However, it was unclear whether there
are any exotic disks that intersects Sn

std ⊂ T ∗Sn
std exactly once. Any such disk

is equivalent to T ∗Sn
x in the wrapped Fukaya category of T ∗Sn and hence

cannot be distinguished via its wrapped Floer homology. Here we show that
such exotic disks do in fact exist in abundance, distinguished again by the
Legendrian contact homologies of their boundaries.

Corollary 1.8. If n ≥ 4, there are infinitely many different regular La-

grangian disks in the standard cotangent bundle T ∗Sn
std that intersect the

zero-section Sn
0 ⊂ T ∗Sn

std exactly once.

Hence Sn
0 ⊂ T ∗Sn

std is a flexible Lagrangian (since its complement is a
trivial Weinstein cobordism) but Sn

0 ∪Dn is a non-flexible (singular) La-
grangian (or Weinstein subdomain). To prove this corollary, we follow
the same approach as for Corollary 1.7 and show that a related handle-
attachment map

(1.3) Lagrangian(T ∗Sn
std, S

n
0 ∨Dn) → Lagrangian(T ∗Sn♯pT

∗Sn, Sn ∨ Sn)

is surjective. The left-hand-side consists of singular regular Lagrangians
Sn
0 ∨Dn in T ∗Sn

std, where Sn
0 is the zero-section as before; equivalently,

we can think of these as regular Lagrangian disks which intersect the zero-
section exactly once. On the right-hand-side, we consider arbitrary Weinstein
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structures on the plumbing T ∗Sn♯pT
∗Sn that contain the standard plumb-

ing (T ∗Sn♯pT
∗Sn)std as a subdomain, i.e. a singular Lagrangian Sn ∨ Sn.

The surjectivity of Equation 1.3 is a decomposition result for two plumbed
spheres, similar to how the surjectivity of Equation 1.2 was a decomposition
of a single sphere.

We can summarize the approach in Corollaries 1.7, 1.8 as follows. Once
we know that a certain class of structures have many distinct objects, i.e. dis-
play rigidity, we can conclude via a flexibility argument that related classes
also have many distinct objects without using rigid techniques separately on
this second class. In practice, the only method we currently have to show
rigidity in the symplectic setting is through J-holomorphic curve invariants
(Legendrian contact homology in the examples above). But the flexibility
argument above shows that whatever method can be used to prove rigidity
in the first class can also be used to prove rigidity in the second class.

1.3. Regular Lagrangian caps

As noted before, it is an open question whether all exact Lagrangians in
Weinstein domains are regular. However this is known to be false for We-
instein cobordisms W with non-empty negative end ∂−W . Eliashberg and
Murphy [10] showed that there is an existence h-principle for Lagrangians
caps whose negative end in ∂−W is a loose Legendrian. Hence it is possible to
construct exact non-regular Lagrangians inW by applying the h-principle to
a formal Lagrangian embedding whose complement cobordism has homology
above the middle-dimension (and therefore cannot be a Weinstein cobordism
for topological reasons). In fact, Murphy [18] used the caps h-principle to
construct non-regular closed, exact Lagrangians in the symplectization of
overtwisted contact manifolds.

The proof of the Lagrangian caps h-principle involves Gromov’s h-
principle for Lagrangian immersions [13] and a version of the Whitney trick
(which relies on the looseness of the negative end) to remove the double-
points of the immersion. These operations do not take the ambient Wein-
stein structure into account and hence do not produce regular Lagrangians
in general, as noted above. In particular, it was not known whether there is
an existence h-principle for regular Lagrangian caps with loose negative end.
Here we show that such an h-principle does hold, assuming the necessary
formal conditions. We say that a smooth cobordismW 2n is an almost Wein-
stein cobordism ifW 2n has an almost complex structure and admits a Morse
function all of whose critical points have index at most n (and is increasing,
decreasing near the positive, negative boundaries of W 2n respectively).
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Theorem 1.9. Let W 2n, n ≥ 3, be a Weinstein cobordism and Ln ⊂W 2n

a formal Lagrangian cobordism such that ∂−L is formally isotopic to a loose

Legendrian Λ− ⊂ ∂−W , ∂+L is formally isotopic to a Legendrian Λ+ ⊂
∂+W , and W 2n\Ln is an almost Weinstein cobordism. Then there is a reg-

ular Lagrangian cobordism in W 2n from Λ− to Λ+ formally isotopic to L.
The same holds if ∂+L is empty.

Using the Lagrangian caps h-principle, Eliashberg and Murphy [10] also
proved an h-principle for Liouville embeddings of flexible Weinstein domains.
More precisely, they showed that if a flexible Weinstein domain admits an
almost symplectic embedding into some Liouville domain, then it admits
a Liouville embedding into that Liouville domain, i.e. is a Liouville subdo-
main. Since this construction was based on their Lagrangian caps h-principle,
which produces non-regular Lagrangians, the resulting Weinstein domains
are not necessarily Weinstein subdomains and it was unknown when this is
possible. We will use Theorem 1.9 to show that there is an h-principle for
Weinstein embeddings of flexible domains, again assuming the necessary
formal conditions.

Corollary 1.10. Suppose that X2n, n ≥ 3, is a Weinstein domain andW 2n
flex

is a flexible domain that has an almost symplectic embedding i :W 2n
flex →

X2n such that X2n\W 2n
flex is an almost Weinstein cobordism. Then i is

smoothly isotopic to a Weinstein embedding j :W 2n
flex → X2n, i.e. j(W 2n

flex)

is a Weinstein subdomain of X2n.

2. Proofs of Results

We now give proofs of the results stated in the Introduction. We will need
to use the following decomposition theorem from [14] and its variations.

Theorem 2.1 ([14]). If W 2n, n ≥ 3, is a Weinstein domain, then W 2n

can be Weinstein homotoped to W 2n
flex ∪ C

2n, where C2n is a smoothly trivial

Weinstein cobordism with two Weinstein handles of index n− 1, n.

We briefly recall the proof of this result. Consider two Legendrian spheres
Λ0,Λ in (Y, ξ) = ∂W0, the boundary of a Weinstein domain W0. Then we
can handle-slide Λ over Λ0 and get a new Legendrian hΛ0

(Λ). Although
Λ0

∐
Λ and Λ0

∐
hΛ0

(Λ) may not be isotopic even as smooth links, the
Weinstein structuresW0 ∪H

n
Λ0

∪Hn
Λ andW0 ∪H

n
Λ0

∪Hn
hΛ0

(Λ) are Weinstein

homotopic. A handle-slide depends on the choice of a local chart where Λ0,Λ
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look like parallel Legendrians and hΛ0
(Λ) is obtained by replacing Λ with

the cusp connected sum of Λ0,Λ in this local chart; see [3]. To prove Theo-
rem 2.1, we first Weinstein homotopeW toW0 ∪H

n
Λ0

∪ · · · ∪Hn
Λk
, whereW0

is subcritical. Then we choose local charts in Λ0
∐

Λ1
∐

· · ·
∐

Λk so that the
handle-slid link hΛ0

(Λ1)
∐

· · ·
∐
hΛ0

(Λk) is loose (but not loose in the com-
plement of Λ0). Therefore W0 ∪H

n
hΛ0

(Λ1)
∪ · · · ∪Hn

hΛ0
(Λk)

is flexible and W

is Weinstein homotopic to W0 ∪H
n
hΛ0

(Λ1)
∪ · · · ∪Hn

hΛ0
(Λk)

∪Hn
Λ0

as desired.

To be more precise, we actually need to do two handle-slides of opposite
signs over Λ0 to ensure that the cobordism C2n is smoothly trivial; see [14].

Now we use Theorem 2.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We first describe the almost symplectomorphism be-
tween Wflex and W in more detail. By Theorem 2.1, Wflex ⊂W is a Wein-
stein subdomain and the Weinstein cobordism C2n =W\Wflex consists of
two handles, i.e. C2n = Hn−1

Λ0
∪Hn

Λ. Here Λ0 ⊂ ∂Wflex is an n− 2-dimen-

sional isotropic attaching sphere for Hn−1
Λ0

and Λ ⊂ ∂(Wflex ∪H
n−1
Λ0

) is a
Legendrian attaching sphere for Hn

Λ. Since C2n is smoothly trivial, Λ is
smoothly isotopic in ∂(Wflex ∪H

n−1
Λ0

) to a cancelling Legendrian that in-

tersects the belt sphere of Hn−1
Λ0

in a single point. We can assume that this
smooth isotopy is supported in a neighborhood of some collection of Whitney
2-disks with boundary on Λ and the belt sphere of Hn−1

Λ0
. Let φt be the ex-

tension of this smooth isotopy to an ambient diffeotopy of ∂(Wflex ∪H
n−1
Λ0

),
which is also supported in a neighborhood of these disks, and let A ⊂ ∂Wflex

be the subset where φt is the identity. Now we will show that there is a dif-
feomorphism ψ between Wflex and W which is the identity on A. Here we
view A ⊂ ∂Wflex\Op(Λ0

∐
Λ) as a subset of ∂W , where Op(Λ0

∐
Λ) is a

neighborhood Λ0,Λ in ∂Wflex along which the handles are attached; note
that Λ intersects ∂Wflex in a punctured Legendrian sphere whose boundary
lies in Λ0. To produce the diffeomorphism ψ, we use the isotopy φt to homo-
tope the gradient-like vector field in W\Wflex rel ∂Wflex to a vector field
with no zeroes and flow along that vector field. Since φt is the identity on A,
this vector field is fixed over A and so ψ is the identity on A. We note that ψ
is an almost symplectomorphism since W\Wflex is smoothly trivial and any
almost symplectic structure on a smoothly trivial cobordism is homotopic
to the product structure.

Let F : Ln →W 2n be the given formal Lagrangian embedding which we
seek to realize by a genuine Lagrangian embedding. Then ψ−1 ◦ F is a for-
mal Lagrangian in W 2n

flex. By the existence h-principle for Lagrangians in

flexible Weinstein domains [8], ψ−1 ◦ F admits a flexible Lagrangian embed-
ding Ln

flex into W 2n
flex. We can Legendrian isotope the Legendrian boundary
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∂Ln
flex ⊂ ∂W 2n

flex so that it is disjoint from the isotropic attaching spheres

Λ0,Λ of the two handles in C2n. This is because a small neighborhood of
∂Lflex is contactomorphic to J1(∂Lflex) and nearby Legendrians are given
by graphs of 1-jets of functions. Thom’s jet transversality theorem shows
that for any submanifold Σk of J1(∂Ln

flex) such that k < n, there exists a

C0-small function on ∂Ln
flex whose 1-jet in J1(∂Ln

flex) is disjoint from Σk;

see Theorem 2.3.2 of [9]. The isotropic attaching spheres Λn−2
0 ,Λn−1 of C2n

have dimension less than n and hence we can find such a Legendrian iso-
topy of ∂Lflex. In particular, we can assume that Lflex ⊂Wflex is a flexible
Lagrangian such that ∂Ln

flex is disjoint from these attaching spheres. Also,
since n ≥ 3, we can assume that ∂Ln

flex is disjoint from the Whitney 2-disks

inducing φt and hence contained in A ⊂ ∂W 2n
flex. Now we attach handles to

W 2n
flex along Λ0,Λ to formW 2n. Since ∂Ln

flex is disjoint from these attaching
spheres, it extends trivially to a Lagrangian with Legendrian boundary in
W 2n which we also call Ln. Since the cobordism C2n is Weinstein, Ln is
regular in W 2n.

Finally, we note that Ln ⊂W 2n is in the original Lagrangian formal
class F . Since ∂Ln

flex is contained in A and the almost symplectomorphism

ψ between W 2n
flex and W 2n is the identity on A, ψ(Ln

flex) agrees with its

trivial extension Ln ⊂W 2n described previously. Since Ln
flex ⊂W 2n

flex is in

the formal class ψ−1 ◦ F by construction and the almost symplectomorphism
ψ preserves Lagrangian formal classes, Ln = ψ(Ln

flex) will be in the desired
formal class F . □

Remark 2.2. Even when W =Wflex, the almost symplectomorphism ψ
produced via the procedure above will not be a symplectomorphism. This is
because the new vector field obtained by modifying the original Liouville vec-
tor field by φt is no longer Liouville for the symplectic structure onW\Wflex

and so ψ will not be a symplectomorphism. Indeed if ψ were a symplecto-
morphism (of completions), then L = ψ(Lflex) ⊂ ψ(Wflex) =Wflex would
be a flexible Lagrangian. However as we will see later in Theorem 1.2 and
Corollary 1.7, all regular Lagrangians are of the form ψ(Lflex) but there are
non-flexible Lagrangians even in flexible Weinstein domains.

As noted before, Theorem 1.1 does not hold in dimension 4 since there
are Lagrangian formal classes not realized by any genuine Lagrangians. How-
ever an analogous construction in dimension four was considered by Yasui
[20], who constructed many Lagrangians disks in B4

std by trivially extending
the Lagrangian unknot D2 ⊂ T ∗D2 = B4

std across a trivial Weinstein cobor-
dism (S3, ξstd)× [0, 1], presented as a Weinstein cobordism with two handles
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of index 1 and 2. These Lagrangian disks (and their Legendrian boundaries)
are often in different formal classes, even different smooth isotopy classes; for
example, there exist many smoothly slice knots in S3 that are not isotopic
to the unknot. Theorem 1.1 is high-dimensional which gives us control over
the formal class of the Lagrangian.

It is also crucial that the cobordism C2n is Weinstein. In this case, we
can make the Legendrian boundary of Ln

flex disjoint from the attaching

Legendrians and extend Ln
flex to a Lagrangian in W 2n. So the key idea

is that a Weinstein cobordism C2n modifies its negative contact boundary
∂−C

2n only in a small region, of dimension less than n. If we only knew that
the cobordism had a Liouville structure, as shown earlier by Eliashberg and
Murphy [10], then we could not necessarily conclude that the Lagrangian
extends since the Liouville cobordism could in principle modify the negative
boundary ∂−C

2n in an arbitrarily large region. In particular, the following
question is open.

Question 2.3. Is there an existence h-principle for exact Lagrangians with

Legendrian boundary in general Liouville domains?

Of course these Lagrangians will not be regular since the ambient domain
is not Weinstein. A related question is which Liouville domains are non-

degenerate in the sense of Ganatra [11].
Now we prove Theorem 1.2 that all regular Lagrangians with Legendrian

boundary come from the construction in Theorem 1.1.

Proof of Theorem 1.2 . Since Ln is regular in W 2n, by definition (W 2n, Ln)
is Weinstein homotopic to (T ∗Ln ∪X2n, Ln) for some Weinstein cobordism
X2n. Then by Theorem 2.1, we can homotope X2n to X2n

flex ∪ C
2n, where

C2n is smoothly trivial. The proof of this result involves Weinstein homo-
toping X2n to X2n

flex ∪ C
2n relative to the closed contact manifold ∂T ∗Ln.

However, we can also do this Weinstein homotopy relative to ∂T ∗Ln\∂Ln,
i.e. view X2n as cobordism with corners ∂ST ∗L and require the homotopy
to be fixed on the corners as well. This is because we can pick the Darboux
balls and isotropic arcs in [14] used to do the handle-slides away from ∂L.
As a result, the attaching spheres of X2n

flex will be loose in the complement of

∂Ln ⊂ ∂T ∗Ln and hence Ln ⊂ T ∗Ln ∪X2n
flex =W 2n

flex will be a flexible La-

grangian. We denote this Lagrangian by Ln
flex ⊂W 2n

flex. When we attach C2n

to W 2n
flex to get W 2n, the Lagrangian Ln

flex ⊂W 2n
flex extends trivially to Ln

(as in the proof of Theorem 1.1). Hence (W 2n, Ln) is Weinstein homotopic
to (W 2n

flex ∪ C
2n, Ln

flex). □
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We can apply a modified version of Theorem 1.2 to Lagrangian disks in
T ∗Sn and prove Corollary 1.3.

Proof of Corollary 1.3. SinceDn⊂T ∗Sn is a regular Lagrangian, (T ∗Sn, Dn)
is Weinstein homotopic to (T ∗Dn ∪X2n

n , Dn). Here T ∗Dn has the standard
Weinstein structure and X2n

n is a Weinstein cobordism with corners, which
by the Whitney trick and fact that n ≥ 3 has a smooth handle-body decom-
position with a single handle of index n. By a slight variation on Theorem 2.1
(see Theorem 1.1 of [14]), X2n

n can be Weinstein homotoped (relative to the
corners ∂ST ∗Dn) to a Weinstein structure with a single Weinstein handle
of index n. Hence (T ∗Sn, Dn) is Weinstein homotopic to (T ∗Dn ∪Hn

Λ, D
n)

as desired. □

Now we prove Theorem 1.5, a version of Theorem 1.2 for closed La-
grangians.

Proof of Theorem 1.5. SinceMn ⊂W 2n is regular, by definition (W 2n,Mn)
is Weinstein homotopic to (T ∗Mn ∪X2n,Mn) for some Weinstein cobor-
dism X2n. The n-handles of X2n are attached along a Legendrian link Λ in
∂(T ∗M ∪X2n

sub), where X
2n
sub is the subcritical part of X

2n. By attaching the
single n-handle of T ∗M after these n-handles of X2n, we can consider Λ as
a Legendrian link in ∂(T ∗(Mn\Dn) ∪X2n

sub).
Now we handle-slide Λ over ∂(Mn\Dn) ⊂ ∂(T ∗(Mn\Dn) ∪X2n

sub) so that
the resulting Legendrian link h∂(Mn\Dn)(Λ) is loose (but not loose in the com-
plement of ∂(Mn\Dn) ⊂ ∂(T ∗(Mn\Dn) ∪Xsub)). Since T

∗(Mn\Dn) is sub-
critical, T ∗(Mn\Dn) ∪X2n

sub ∪H
n
h(Λ) is a flexible Weinstein domain, which

we denote by V 2n
flex. Furthermore V 2n

flex ∪H
n
∂(Mn\Dn) = T ∗(Mn\Dn) ∪X2n

sub ∪

Hn
h(Λ)∪H

n
∂(Mn\Dn) is homotopic to T ∗(Mn\Dn) ∪X2n

sub ∪H
n
Λ ∪Hn

∂(Mn\Dn) =

T ∗Mn ∪X2n
sub ∪H

n
Λ = T ∗Mn ∪X2n =W 2n, the original Weinstein structure.

More precisely, this homotopy is just a Legendrian isotopy from Λ to
h∂(Mn\Dn)(Λ) in ∂(T

∗Mn ∪X2n
sub). This homotopy occurs above T ∗Mn and

so (V 2n
flex ∪H

n
∂(Mn\Dn),M

n\Dn ∪Hn
∂(Mn\Dn)) is Weinstein homotopic to

(W 2n,Mn), as desired. □

Applying Theorem 1.5 to Lagrangian spheres in cotangent bundles, we
prove Corollary 1.6.

Proof of Corollary 1.6. By Theorem 1.5, (T ∗Sn, Sn) is Weinstein homotopic
to (V 2n

flex ∪H
n
∂Dn , Dn ∪Hn

∂Dn) for some regular Lagrangian disk Dn in a
flexible domain Vflex. Since Sn ⊂ T ∗Sn is regular, we have [Sn] = ±1 ⊂
Hn(T

∗Sn) ∼= Z. The co-core Cn of the handle Hn
∂Dn intersects Sn in exactly
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one point and hence [Cn] = ±1 ∈ Hn(T
∗Sn, ∂T ∗Sn) ∼= Z. Since Vflex is ob-

tained by carving out Cn from T ∗Sn, we see that Vflex is a homology ball
(with simply-connected boundary since n ≥ 3). By the h-cobordism theo-
rem, Vflex must be diffeomorphic to the ball. Since Vflex is flexible and the
ball has a unique almost symplectic structure, Vflex must be Weinstein ho-
motopic to B2n

std by the h-principle for flexible Weinstein structures [5]. □

We can use Corollary 1.6 to produce many Lagrangian disks in the stan-
dard Weinstein ball and prove Corollary 1.7.

Proof of Corollary 1.7. McLean constructed an exotic Weinstein ball Σ2n,
n ≥ 4, and showed that Σ2n

k := ♮ki=1Σ
2n are non-symplectomorphic since

they have different number of idempotents in their symplectic homology.
Since symplectic homology is additive under boundary connected sum and
SH(T ∗Sn

std) has only one non-zero idempotent, T ∗Sn
std♮Σ

2n
k are also non-

symplectomorphic. Furthermore, each T ∗Sn
std♮Σ

2n
k contains a regular La-

grangian sphere, i.e. the zero-section Sn
0 of T ∗Sn

std. By Theorem 1.5, there
is a regular Lagrangian disk D2n

k ⊂ B2n
std such that (T ∗Sn

std♮Σ
2n
k , S

n
0 ) is We-

instein homotopic to (B2n
std ∪H

n
∂Dn

k

, D2n
k ∪Hn

∂Dn

k

). Since T ∗Sn
std♮Σ

2n
k are not

symplectomorphic for different k, the Legendrian attaching spheres ∂Dn
k

are not Legendrian isotopic; more generally, there is no ambient contacto-
morphism of ∂B2n

std taking different ∂Dn
k to each other. In particular, the

Lagrangian disks Dn
k ⊂ B2n

std are not isotopic through Lagrangian disks with
boundary and are not symplectomorphic to each other. □

Remark 2.4. The ‘Legendrian surgery formula’ relates Floer-theoretic in-
variants of the Legendrian boundary ∂Dn

k to similar invariants of T ∗Sn
std♮Σk,

which is the domain B2n
std ∪H

n
∂Dn

k

obtained by handle-attachment along
∂Dn

k . Namely, a proof was sketched in [2] that the Hochschild homology
of Chekanov-Eliashberg DGA of ∂Dn

k is isomorphic to the symplectic ho-
mology of T ∗Sn

std♮Σ
2n
k . A rigorous proof was given in [12] that the wrapped

Fukaya category of T ∗Sn
std♮Σ

2n
k is isomorphic to a certain pushout of the

partially wrapped Fukaya category of B2n
std stopped at ∂Dn

k . By [15], the do-
mains T ∗Sn

std♮Σk have different symplectic homology for different k. There-
fore the attaching Legendrians ∂Dn

k can be distinguished by the Hochschild
homology of Chekanov-Eliashberg DGA of ∂Dn

k (in the formulation of the
surgery formula from [2]) or by the Fukaya category stopped by ∂Dn

k (in the
formulation of [12]).

Next we prove Corollary 1.8: there are many Lagrangian disks in the
standard cotangent bundle intersecting the zero-section exactly once.
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Proof of Corollary 1.8. It suffices to prove that the handle-attachment map
for plumbings in Equation 1.3 is surjective since there are infinitely many
different Weinstein structures on T ∗Sn♯pT

∗Sn containing (T ∗Sn♯pT
∗Sn)std.

For example (T ∗Sn♯pT
∗Sn)std♮Σ

2n
k is an infinite collection of such struc-

tures, where Σ2n
k are McLean’s exotic Weinstein structures on the ball [16].

The surjectivity of Equation 1.3 basically follows from a relative version of
Theorem 1.5, which was used to prove the surjectivity of Equations 1.1, 1.2.
Namely, we can view (T ∗Sn♯pT

∗Sn, (T ∗Sn♯pT
∗Sn)std) as (T

∗Sn
std ∪ C

2n, Sn
0 ∨

T ∗Sn
x ∪ Ln), where C2n is a Weinstein cobordism with ∂−C

2n = ∂T ∗Sn that
admits a smooth Morse function with a single handle of index n and Ln ⊂
C2n is a regular Lagrangian disk cap with ∂−L

n = ∂T ∗Sn
x . Then a version

of Theorem 1.5 for cobordisms implies that (C2n, Ln) is Weinstein homo-
topic to (W 2n

flex ∪H
n
∂+(Sn−1×[0,1]), S

n−1 × [0, 1] ∪Hn
∂+(Sn−1×[0,1])). Here W

2n
flex

is a Weinstein cobordism with ∂−W
2n
flex = ∂T ∗Sn and Sn−1 × [0, 1] ⊂W 2n

flex

is a regular Lagrangian cylinder with ∂+(S
n−1 × [0, 1]) = ∂T ∗Sn

x ⊂ ∂−W
2n
flex

and ∂−(S
n−1 × [0, 1]) ⊂ ∂+W

2n
flex. The flexible cobordism W 2n

flex is smoothly
trivial and hence is Weinstein homotopic to the trivial Weinstein struc-
ture ∂T ∗Sn × [0, 1]. Then (T ∗Sn

std ∪W
2n
flex, S

n
0 ∨ (T ∗Sn

x ∪ Sn−1 × [0, 1])) is
Weinstein homotopic to (T ∗Sn

std, S
n
0 ∨Dn) for some regular Lagrangian disk

Dn ⊂ T ∗Sn
std. Since S

n−1 × [0, 1] ⊂W 2n
flex, the disk Dn ⊂ T ∗Sn

std intersects
the zero-section Sn

0 in precisely one point T ∗Sn
x ∩ Sn

0 = {x}. Furthermore,
(T ∗Sn

std ∪H
n
∂Dn , Sn

0 ∨Dn ∪Hn
∂Dn) is Weinstein homotopic to (T ∗Sn

std ∪ C
2n,

Sn
0 ∨ T ∗Sn

x ∪ Ln) and hence to (T ∗Sn♯pT
∗Sn, (T ∗Sn♯pT

∗Sn)std). □

Now we prove Theorem 1.9, a regular version of the Lagrangian caps
h-principle due to Eliashberg and Murphy [10].

Proof of Theorem 1.9. We will break down the proof into three cases. First,
we will prove the case when W 2n is a flexible Weinstein cobordism and
Λ−,Λ+ are both loose. Then we will prove the case when W 2n, Ln are both
smoothly trivial and Λ−,Λ+ are both loose. Finally, we will prove the case
when W 2n is smoothly trivial with the trivial product Weinstein structure,
Ln is smoothly trivial, Λ− is loose but Λ+ is arbitrary. The general case
follows by gluing the Lagrangians and Weinstein cobordisms produced in
these three cases.

We first prove the case whenW 2n is a flexible Weinstein cobordismWflex

and Λ−,Λ+ are both loose. By the h-principle for flexible Lagrangians [8],
there is a flexible Lagrangian cobordism Lflex ⊂W 2n

flex such that ∂−Lflex =

Λ− in ∂−W
2n
flex and L is in the prescribed formal class. Recall that ∂−Lflex =

Λ− is loose by assumption. We will show that ∂+Lflex ⊂ ∂+W
2n
flex is also
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loose. To see this, note that Lflex ⊂W 2n
flex is constructed in two steps: first

we attach T ∗L to ∂−W
2n
flex along Λ− and then attach W 2n

flex\T
∗L. For the

first step, suppose Sk−1 ⊂ Λ− is an attaching sphere for a k-handle of T ∗L.
By the h-principle for loose Legendrians [17], we can assume that Λ− has a
loose chart U such that Λ− ∩ U is a disk Dn−1 ⊂ Λ−. Since D

n−1 is a disk,
we can smoothly isotope Sk−1 in Λ− so that Sk−1, Dn−1 are disjoint; note
that this smooth isotopy is in fact an isotropic isotopy of Sk−1 in ∂Wflex

since Λ− is isotropic. Because Λ− ∩ U = Dn−1, we see that Sk−1 is disjoint
from the loose chart U . So when we attach a handle along Sk−1, the loose
chart persists and the resulting Legendrian will still be loose. Iterating this
procedure, we see that ∂+L ⊂ ∂−W

2n
flex ∪ ∂T

∗L is also loose. For the second

step, the attaching spheres for W 2n
flex\T

∗L are loose in the complement of

∂+L ⊂ ∂−W
2n
flex ∪ ∂T

∗L (this is what it means for Lflex ⊂W 2n
flex to be a

flexible Lagrangian) and so the loose chart of ∂+L ⊂ ∂−W
2n
flex ∪ ∂T

∗L again

extends to a loose chart of ∂+Lflex ⊂ ∂+W
2n
flex. Because Lflex is in the correct

formal class, so is ∂+Lflex, i.e. formally Legendrian isotopic to Λ+. Since
∂+Lflex,Λ+ are both loose, they are actually Legendrian isotopic by the
loose Legendrian h-principle [17].

Now we prove the second case when W 2n, Ln are smoothly trivial and
Λ−,Λ+ are both loose. By [14], we can assume that W 2n has a Weinstein
presentation with two handles Hn−1

Λ0
, Hn

Λ (although having precisely two
handles will not really matter for the argument here). There is a Legen-
drian isotopy φt(Λ−), t ∈ [0, 1], of Λ− ⊂ ∂−W

2n so that φ1(Λ−) is loose in
the complement of Λ0,Λ (of course φt(Λ−) might cross Λ0,Λ during this
isotopy). Let Ln ⊂W 2n be the concatenation of the graph of this isotopy in
∂−W

2n × [0, 1] with the trivial extension of φ1(Λ−) in W
2n. Then Ln is in

the correct formal class and ∂+L
n is loose by construction. Therefore ∂+L

n

is Legendrian isotopic to Λ+.
Next we prove the third case when W 2n has the trivial product Wein-

stein structure (Y 2n−1, ξ)× [0, 1], Ln is smoothly trivial, and Λ− is loose
but Λ+ is arbitrary. First we attach two symplectically cancelling handles
Hn−1

Λ0
, Hn

Λ to W 2n such that Λ0,Λ ⊂ ∂+W
2n are contained in a Darboux

ball. Now we handle-slide Λ+ ⊂ ∂+W
2n over Λ twice (with opposite orienta-

tions) so that the resulting Legendrian h2(Λ+) ⊂ ∂+(W
2n ∪Hn−1

Λ0
) is loose

and intersects the belt sphere of Hn−1
Λ0

algebraically zero times. Since we are
working in the ball, which is simply-connected, and n ≥ 3, we can use the
Whitney trick to smoothly isotope h2(Λ+) off the belt sphere. Since h2(Λ+)
is loose, we can actually Legendrian isotope h2(Λ+) off this belt sphere and
view h2(Λ+) as a Legendrian in ∂+W

2n. Let Ln ⊂W 2n ∪Hn−1
Λ0

∪Hn
Λ =W 2n
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be the regular Lagrangian obtained by extending h2(Λ+) trivially when
Hn−1, Hn

Λ are attached. So ∂+L
n ⊂ ∂+W

2n is Legendrian isotopic to Λ+

and ∂−L
n = h2(Λ+) =⊂ ∂−W

2n is loose. Furthermore, Ln is formally iso-
topic to a product Lagrangian. Since ∂+L

n is Legendrian isotopic to Λ+,
∂−L

n must be formally isotopic to Λ−. Since ∂−L
n and Λ− are both loose,

they are Legendrian isotopic by the h-principle for loose Legendrians [17].
This finishes the proof of Theorem 1.9 when ∂+L is non-empty.

Finally, we prove the case when ∂+L is empty. We first realize L as
a flexible Lagrangian in Wflex with ∂−L = Λ−. We cannot directly ap-
ply the h-principle for flexible Lagrangians [8] since ∂+L = ∅. Instead, we
first Weinstein homotope W 2n

flex to V 2n
flex ∪H

n
Λ, for some loose Legendrian

sphere Λ, such that L\Dn has a flexible Lagrangian embedding into V 2n
flex

with ∂+(L
n\Dn) = Λ ⊂ ∂+V

2n
flex. Then L

n\Dn ∪Hn
Λ ⊂ V 2n

flex ∪H
n
Λ is a flexi-

ble Lagrangian embedding Ln ⊂W 2n
flex. Then we attach the Weinstein cobor-

dism W\Wflex from Theorem 2.1 to W 2n
flex and obtain the desired regular

Lagrangian L ⊂W 2n. □

We conclude by proving Corollary 1.10, an h-principle for Weinstein
embeddings of flexible domains.

Proof of Corollary 1.10. By Theorem 2.1, Xflex is a Weinstein subdomain
of X such that X\Xflex is smoothly trivial. Also, we can realize the almost
Weinstein cobordism X\Wflex by a flexible cobordism Cflex by Eliashberg’s
existence h-principle [5]. Then Wflex ∪ Cflex is a flexible domain that is
almost symplectomorphic toXflex. So by the h-principle for flexible domains
[5], Wflex ∪ Cflex is Weinstein homotopic to Xflex. In particular, Wflex is
a Weinstein subdomain of Xflex and hence a Weinstein subdomain of X.
Since X\Xflex is smoothly trivial, this new embedding is smoothly isotopic
to the original embedding. □

Remark 2.5. Alternatively, we can prove Corollary 1.10 by first construct-
ing a Weinstein embedding of Wsub into X and then using Theorem 1.9 to
find a regular embedding of the cores of the n-handles ofWflex into X\Wsub.
This second proof is more along the lines of Eliashberg and Murphy’s orig-
inal proof [10] of this result for Liouville embeddings, which directly uses
their Lagrangian caps h-principle.
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